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ABSTRACT

This paper describes a model for evaluating the
late (after-the-fact) detection capability of
material control and accountability (MCZA)
systems against insider theft or diversion of
special nuclear material, Potential insider
cover-up strategies to defeat activities provid-
ing detection {e.g., inventories) are addressed
by the mode! in a tractable manner., For each
potential adversary and detection activity, two
probabilities are assessed and used to fit the
model. The madel then computes the probability
of detection for activities occurring periodi-
cally over time, The model provides insight
into MC&A effectiveness and helps identify areas
for safeguards improvement.

INTRODUCTION

The threat of theft or diversion of special
nuclear material (SNM) by insiders is a key con-
cern for safequards planners. Different types
of employees having varying degrees of access to
both SNM and safequards systems pose a difficult
challenge for theft detection, Safeguards
planners rely on physical security, material
control, and material accountability to provide
detection of a theft attempt., When detection
occcurs too late to prevent a theft, it is called
a late or after-the-fact detection.

After-the-fact indication that material may
be missing is usually provided by a material
control and accountability (MC&A)} system. MCRA
activities include maintaining records for
tracking nuclear material, verifying that all
material is in its authorized location and
conducting periodic inventories and audits to
establish material balance. Inventory differ-
encec exceeding acceptable limits or material
not in its authorized location when requested
for processing are examples of WCAA systam
alarms, Late detection includes both an alarm
and resolution of its cause, e.g., an error,
falsification of records, or an actual theft or
diversion.

Late detection is beneficial if it is
timely enough to: 1) improve the ability to
determine the cause of an alarm, 2) prevent an
incorrect response to a threat demand (e.g., a
hoax}, 3) speed recovery of SNM, or 4) promote
assurance that no theft has occurred in the
absence of an alarm. We have developed a model
for quantifying late detection capability. The
model computes the probability of after-the-fact
detection as a function of time elapsed since a
theft or diversion, Effective MC&A should
provide a high probability of material loss
detection within a short time.

If a theft has occurred, the probability
that the MCAA system will provide an indication
of theft depends on many factors. These factors
include MCRA measurement uncertainties, process
holdup, and tampering or faisification {e.g.,
theft cover-up) by an adversary. Many detection
events are repeated at certain time intervals,
e.g., daily, weekly, or monthly inventories, An
inventory taken shortly after a theft may be
more likely to trigger an alarm than subsequent
inventories. These factors complicate the task
of estimating the probability of late detection
versus time. Dur simple model to evaluate late
detection capability addresses these and ather
complications in a tractable manner.

Overview of Model for Late Detection Capability

We begin modeling MC&A late detection
capability by identifying events that may pro-
vide an indication of material loss. Examples
of such events are a daily check, physical
inventory and DOE audit occurring daily,
monthly, and yearly, respectively. Next, we
characterize potential insider adversaries
according to their MC&A access and authority
(e.g., material custodian, manager, operator,
guard). Such access may be used by insiders to
hamper discovery of a theft, For each adversary
and detection event two probabilities are
assessed: the probability of detection for the
first occurrence of the event and, if appli-
cable, that of the second occurrence if no alarm
resulted from the first occurrence. These
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Fig. 1. Schematic of the Inputa and outputa of the Weibul! late detection model

probabilities must take intg account patential
falsification or tampering strategies. As
described in the paper, these two numbers are
sufficient to fit a Weibulll probability distri-
bution to estimate the probability of detection
on subsequent occurrences of the event, We will
discuss the reason behind the choice of the
Weibull distribution,

By assuming probabilistic independence
among the various detection events, we can
derive the cumulative detection probability as a
function of time based on all MCBA late detec-
tion events, Figure 1 illustrates the input and
output for the Weibull model. This model is
implemented as part of a PC-based computer
program called ET,2 Figure 1 illustrates the
use of the model for evaluating a hypothetical
facility, The hypothetical results shown in the
figure demonstrate the possible variation in
safeguards performance among adversaries.

Oespite its simplifications, the Weibull
model provides useful insight about how the
timing and efficacy of late detection even's
affect the overall probability of late detection
as a function of time. Potential upgrades such
as a computerized accounting system, additional
independent inventories, rotating of inventory
personnel, or more frequent inventories can be
analyzed by this model for their impact on the
late detection effectiveness against a spectrum
of insider adversaries.

COMPUTING LATE DETECTION PROBABILITY AS A
FUNCTION OF TIME

In this section we describe the series of
steps followed in our modeling and evaluation of
late detection capability. For each step we
describe assessments and assumptions needed to
address complicating factors encountered.

Identifying Lete Detection Events

To evaluate the probability of late detec-
tion as a function of time, we focus on MC&A
activities or events that could reveal loss of
SNM. Many of the late detection events are
periodic. It is possible that if the first
occurrence of a late detectior event does naot
indicate missing SNM, a subsequent occurrence of
the event wil!, Table | illustrates this first
step of defining late detection events ana their
periods of recurrence if appropriate.

TABLEL
INust-ative Ident:fication of
Late Detection Events

Late Detection Time Lag
Events (Units = Days) Repeated
Daily check 1 Yes
Forms reconciliation 3 No
Process call 15 Yes
Physical inventory 30 Yes
DOE audit 365 Yes

Assessing Probabilities of Detection

After an occurrence of a detection event,
there is a probability of a loss indication and
proper alarm resolution resulting from that
event, given material is missing, We can esti-
mate such a probability based on knowledge of
measurement uncertainties, statistical methods
(e.g., if inventories or checks are based on
random sampling techniques) or error propagation
models. When adversary tampering or falsifi-
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cation is a possibility, subjective judgment by
experts at the facility may be required to
provide an estimate of the probability., For
example, an inventory may detect a loss with a
certain probability absent any tampering. But
if a particular adversary participated in the
inventory taking, falsification of data could
significantly degrade the detection proba-
bility., Ideally, accountability exercises or
tests would be conducted to “validate” subjec-
tive probability asssessments. But such judg-
ments are required to address the insider threat
and are strongly related to each adversary's
knowledge, access, and authority. Thus we need
to review each insider’s potential strategies
for delaying or defeating late detection from an
event and incorporate this knowledge into the
assessment of the detection probability,

As mentioned previously, detection events
are often repeated at periodic intervals. The
probability of detection for the second occur-
rence given nc detection on the first occurrence
of an event will, in general, be different than
that for the first occurrence of the event. We
can imagine that if an adversary's falsification
strategy for an event worked the first time, it
is more likely to work again the second and
subsequent times (e.g., falsifying an inven-
tory}, It is also possible to imagine a falsi-
fication strategy that is more likely to fail as
it is repeated. Of course, the probability
could remain the same for subsequent events as
well. To address repeat occurrences of events,
we must at least assess the probability of
detection for the second occurrence of the event
given no detection on the first occurrence.

This second probability assessment gives some
indication of the trend of effectiveness (e.g.,
decreasing) for subsequent events.

Table Il shows some illustrative proba-
bility assessments for different adversaries and

TABLE I
Ulustrative Assessed Probabilitics
of Detection lor the First
and Second* Occurrences
of Detection Events

Detecnon Events

Daily Process Physical  DOE
Check  Call  Inventory _ Audit
l1day_ 15davs 3davs 363 days

Adsersary lu 2nd lu 2nd lu 2ed [
Operator oo 1 32 20
Custodian 000 0O 1 07 3 ] )
Manager o m o 3 2 20
Guard 30 10 0 8 3 10

*The probability of deiection for the sccond occunence
given no detectinn from the first nccurrence.

detection events, In this iilustration, detec-
tion probabilities are different for each adver-
sary because of special access or strategies
available to each adversary. For example, the
probability cf the daily check detecting a
material theft by 2 custodian is effectively
zero if the custodian, as assumed here, is the
sole individual performing the daily check.
Table II fllustrates events all of which

repeat. To address a nonrepeating event, the
probability of detection for the second occur-
rence can be set to zero. A nonrepeating event
is just like a repeating event with no chance of
detection except on the first occurrence.

Computing Late Detection Probability as a
Function of Time for Each Event

From the previous discussion, we need at
least two probabilities to characterize the
trend for late detection for each adversary and
detection event. We need to estimate MCAA
effectiveness, however, for other times--not
simply for the first and second occurrences of
an event. Assessing additional input probabil-
ities for this purpose is not desirable. Such
assessments are impractical to make in a consis-
tent fashion, We require a model to extrapolate
in a reasonable manner for subsequent occur-
rences of a detection event. The model must be
tractable enough to calibrate using two input
probabilities.

In addition to such extrapolation, the
model must also address another i sue-~that of
the possible timing of malevolent acts (such as
theft or diversion) in relation to the MC&A
detection events, Theft attempts could occur in
random relation to detection event schedules.
Even if we assumed conservatively that a theft
attempt occurred to maximize the length of time
before one type of detection event took place,
it is difficult to assume rigid timing with
respect to all event types; e.g., theft always
occurs exactly 365 days before the 00F audit.
Avoiding late detection is but one concern of an
adversary and avoiding detection during the
theft act may dictate when the theft attempt
occurs. Also, the timing of detection events
can vary. In fact, for safeguards reasons, it
is not unusual for certain events like inven-
tories to be scheduled somewhat randomly. Thus,
events like the process call and inventory occur
on average, say, at 15- and 30-day intervals
respectively, rather than exactly at those
intervals, Because of these issues, we must
consider how smoothly Tate detection probabil-
ities should vary as time eslapses,

To address these concerns, we selected a
"Weibu)l distribution® calibrated using the
grobability assessments for the first two occur-
rences of an event in order to model late detec-
tion capability., The equation for the Weibull-
based model is shown in Table IIl. The proper-



TABLE 111
Definition of the Weibull
Late Detection Model

PLD (= (V)P for<1e T,
=1- E‘p[«(lll Lfl'l)(.“l fore 2 T,

with
C, = La{ln|(t -Pg)(0 Py et Ppaal
and
8= ol Py
where
PO = probability of late detection from

event 1 as a function of ume

T, = average periad of recurrence for
detection event

P, = prohuahbility af detection for the first
occurrence of event

P,y = probability of detecuan for the
second eccurrence of event 1, given
no detection on the first occurence 4

*Though wechmcally P and Py must bie between and 1,
when made very clase w either boundary they produce
the cffeet cxpected at the boundary

ties of the Weibull mode! are discussed in the
following paragraphs.

€g. {1) in Table 11! may seem complex but
the important features of the model can be
described in simpler terms. The mode) is
Weibull-based because of the functional form for
PLD;j{t) for t J T;, which is that of a Weibull
cumulative distribution function. The Weibull
distribution is used in a variety of appli-
cations where the rate of “failure® (e.q.,
failure to detect) is not constant but changes
over time. The Weibull model offers the flexi-
bitity of several key extrapolations given basic
input on the probability of detection for the
first and second occurrences of the event.

From time zero until the first occurrence,
the model in Eg. (1) linearly interpolates
between probability zero and Pj;. This reflects
the fact that at time T;, we are sure exactly
one detection event of this type occurred and
thus the probability of detection is Py for
that event, Before time T4, it is still possi-
ble that the event accurred because of the
relative timing of the theft vis-a-vis the
detection event. For example, a theft may have
occurred just a few days before a manthly inven-
tory. The linear interpolation is a way of
reflecting this possibility. Thus an event with
period T4 can still be given some credit for
earlier than time T; detection. This type of
extrapolation seems reasonable and also provides
for a more smaothly varying probability of Tate

detection as a function of time. (As a tech-
nical aside, the pure Weibull formula does not
always extrapolate backwards to time 0 in a
sensible manner for safeguards analysis; e.g
it indicates that a system with Piy = .5,
Pi2 = 0 is better before time Tj than one with
Pi1 = .5, Pi3 = .5, when there should be no
difference before time Ti; hence the need for
something like the linear interpolation.)

From time T; onward, the Weibull model
follows the trend established by the inputs for
Pi1 and Pip. Between times T; and 2T;, Eq. (1)
reflects the passibility that due to the
relative timing of the theft and detection
event, more than one detection event may have
occurred since the theft. (1f in Eq. (1) we
ignored any fractional part of the term {t/T4)
wherever it appears, we would have a stair~step
function instead of a smooth function. Such a
stair-step function is conservative and assumes
rigid timing between theft and detection
events.) To summarize, the Weibull cumulative
detection probability increases smoothly as a
function of time in a way that reasanably
extrapolates the trend indicated by the user
inputs Pij and Pjp. We now explore the kinds of
trends possible for repeated events and compare
the Weibull to other schemes.

Modeling of Detection Trends for Repeated Occur-
rences of an Event

If Pj; and Pjp are both equal, say 0.5, and
T; is 1 day, then using Eq. (1), the PLD;(t) for
times 1, 2, 3, and 4 are respectively, 0.5,
D.75, 0.B75, and 0.9375. In essence, Eg. n
reduces to PLDj(t) ~ 1 - (1 - Pil)t/?i for
t J 7. We can also arrive at this result using
the following reasoning. The probability of
detection after four occurrenices of the event is
one minus the probability that no detection
resulted from any of the four occurrences, or
1 - (1-0.5)% "The Weibull model gives the
results we would expect for these times and is
hardly mysterious for this case. However, we
need something else when Pi; and Py are differ-
ent. Table IV shows three possibilities for how
we might extrapolate given Py) and Pjj.

In Table IV, trend (a) is an optimistic
extrapolation of the assessed inputs, The
probability of detection provided by a
subsequent event occurrence given no detection
on previous occurrences S no worse than that
for the second event occurrence. For Ty = 1
day, the optimistic extrapolation implies a
"certainty” of detection after 60 days (e.g.,
using the trend (a) equation in Table IV). In
essence, even though each occurrence after the
first has only D.1 chance of detection,
defeating 59 of them is just about impossible.
When encountered by practitioners in the field,
this behavior was judged overly optimistic. If
detection is degrading markedly from the first
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TABLE IV
Possible Trends for
Late Detection Probabilities

Illustrative assessed inputs:

Py =05, Extrapelated

Pn=0.1 Prababilities
Trend Py P Py Pis
a. 20.5 0.1 0.1 0.1

b. b0.5 0.1 0.07 0.05
c. 0.5 0.1 0.0 0.0

-T )T
BLD,W =1~ (1 - Py (L - Pt Tz,
*Corresponds 10 Weibull extrapolation.

PLD, () = 1 - (1 - Py) (1 - P) 1227,

to second occurrence, further degradation is
also expected on subsequent occurrences.

Trend {c} is the pessimistic extrapolation. The
downward trend between the first two occurrences
is sharply extrapolated to yield a probability
of zero in subsequent occurrences beyond the
second. Such an extrapolation essentially
assumes the event has no detection value beyond
the second occurrence, (This pessimistic model
does not provide a normalized cumulative
probability distribution that goes to 1 as time
goes to infinity.) Trend (b) is the Weibull
modal extrapolation. The Weibull continues the
trend of decreasing detection probability for a
subsequent event given no detection on previous
events. But the trend is not exaggerated and
the Weibull provides a tractable cumulative
probability distribution eventually going to 1
as time gets large. [t represents a “happy
medium® between the two extremes shown in

Table IV.

Computing the Probability of Late Detection as a
Function of Time for A11 MCSA Events

By assuming probabilistic independence
among the various types of detection events, we
can derive the cumulative detection probability
as a function of time based on all MC8A late
detection events, The resulting equation is

PLD(t} =1 - I[] - PLD, ()] (2)
where
PLD{t) = probability of late detection from
all events as a function of time (t)
! = product of i terms

PLD{{t) s as defined in Eq. {1), Table III
for each detection event.

The reasoning behind Eq. (2) is the same as that
encountered earlier, The probability of detec-
tion at any time t s just 1 minus the proba-
bility that no event has resulted in a detection
by time t. Eq. (2), along with the input data
in Table I, was used to generate the illustra-
tive curves shown in Fig. 1 at the beginning of
this paper,

USE OF MODEL IN ANALYZING LATE DETECTION
CAPABILITY

The model described here is relatively easy
to use while still addressing major concerns
such as adversary falsification strategies and
reasonable extrapolation of inputs. The mode}
can be used to generate curves such as that
shown in Fig. 1, or summary statistics such as
the median (highlighted by the horizontal line
in Fig, 1), or mean time for late detection for
each adversary.

Because many inputs rely on subjective
judgments of experts at a facility, the trac-
tability of the mode! is important. The model's
ease of use provides a simple way to test the
sensitivity of results to alternative input
assumptions and probability assessments. This
sensitivity analysis can highlight those inputs
requiring investigation and data collection and
focus debate on the most important judgments.

The model helps identify those adversaries
for which the late detection capability is weak
and helps to pinpoint areas where corrective
action or upgrades are required. The model can
help one assess the change in late detection
effectiveness prior to implementing upgrades so
that the benefits of various alternatives can be
highlighted.

CONCLUSION AND FUTURE MODELING DIRECTIONS

The model described in this paper
characterizes late detection capability by the
probability of late detection as a function of
time. While an important indicator, this cu-
mulative detection probability does not directly
address key issues associated with guantifying
the value of MC&A late detection. Specifically,
each benefit provided by a good late detection
capability described in the Introduction may
place different emphasis on timeliness, The
value of time is only considered informally when
examining a cumulative detection probability.

To address the value of time formally with
respect to alarm resolution, alarm response, SNM
recovery {or prevention of protracted theft),
and assurance, value models 3 are needed. Such
models quantify the relative importance of
improved after-the-fact detection (e.g., how
much better is late detection in 2 days rather
than 3 days). However, these value models (like
our probability model) require subjective input
by decision makers at facilities and therefore
must be tractable to allow for easy sensitivity
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analysis. Value models combined with 2. R. A, AL-AYAT, B. R, JuoD, and T. A, RENIS,

probability models, such as the one described "The Safequards Method for Evaluating

here, will allow facility decision makers to Yulnerability to Insider Threats," Proc,
characterize late detection capability more 27th Annual Meeting of Institute of Nuclear
completely for purposes of resource allocation MateriaTs Management, New OrTeans, June 25,
and comparing safeguards alternatives, 1386, pp. 575-255.
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