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ABSTRACT 
This paper describes a model for evaluating the 
late (after-the-fact) detection capability of 
material control and accountability (MCSA) 
systems against insider theft or diversion of 
special nuclear material. Potential Insider 
cover-up strategies to defeat activities provid
ing detection (e.g., inventories) are addressed 
by the model in a tractable manner. For each 
potential adversary and detection activity, two 
probabilities are assessed and used to fit the 
model. The model then computes the probability 
of detection for activities occurring periodi
cally over time. The model provides insight 
into MCSA effectiveness and helps identify areas 
for safeguards improvement. 

INTRODUCTION 
The threat of theft or diversion of special 

nuclear material (SNM) by insiders is a key con
cern for safeguards planners. Different types 
of employees having varying degrees of access to 
both SNM and safeguards systems pose a difficult 
challenge for theft detection. Safeguards 
planners rely on physical security, material 
control, and material accountability to provide 
detection of a theft attempt. When detection 
occurs too late to prevent a theft, it is called 
a late or after-the-fact detection. 

After-the-fact indication that material may 
be missing is usually provided by a material 
control and accountability (MC&A) system. MCSA 
activities include maintaining records for 
tracking nuclear material, verifying that all 
material is in its authorized location and 
conducting periodic inventories and audits to 
establish material balance. Inventory differ
ences exceeding acceptable limits or material 
not in its authorized location when requested 
for processing are examples of MCSA system 
alarms. Late detection includes both an alarm 
and resolution of its cause, e.g., an error, 
falsification of records, or an actual theft or 
diversion. 

Late detection is beneficial if it is 
timely enough to: 1} improve the ability to 
determine the cause of an alarm, 2) prevent an 
incorrect response to a threat demand (e.g., a 
hoax), 3) speed recovery of SNM, or 4) promote 
assurance that no theft has occurred in the 
absence of an alarm. We have developed a model 
for quantifying late detection capability. The 
model computes the probability of after-the-fact 
detection as a function of time elapsed since a 
theft or diversion. Effective MCSA should 
provide a high probability of material Toss 
detection within a short time. 

If a theft has occurred, the probability 
that the MCSA system will provide an indication 
of theft depends on many factors. These factors 
include MCSA measurement uncertainties, process 
holdup, and tampering or falsification (e.g., 
theft cover-up) by an adversary. Many detection 
events are repeated at certain time intervals, 
e.g., daily, weekly, or monthly inventories. An 
inventory taken shortly after a theft may be 
more likely to trigger an alarm than subsequent 
inventories. These factors complicate the task 
of estimating the probability of late detection 
versus time. Our simple model to evaluate late 
detection capability addresses these and other 
complications in a tractable manner. 

Overview of Model for Late Detection Capability 
We begin modeling MCSA late detection 

capability by identifying events that may pro
vide an indication of material loss. Examples 
of such events are a daily check, physical 
inventory and DOE audit occurring daily, 
monthly, and yearly, respectively. Next, we 
characterize potential insider adversaries 
according to their MCSA access and authority 
(e.g., material custodian, manager, operator, 
guard). Such access may be used by insiders to 
hamper discovery of a theft. For each adversary 
and detection event two probabilities are 
assessed: the probability of detection for the 
first occurrence of the event and, if appli
cable, that of the second occurrence if no alarm 
resulted from the first occurrence. These 
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Fig. 1. Schematic of die Inputa and outputs of the WeibuU late detection model 

p r o b a b i l i t i e s must take i n to account p o t e n t i a l 
f a l s i f i c a t i o n or tampering s t r a t eg i es . As 
described in the paper, these two numbers are 
s u f f i c i e n t to f i t a Weibul l^ p r o b a b i l i t y d i s t r i 
but ion to est imate the p r o b a b i l i t y of de tec t ion 
on subsequent occurrences of the event. We w i l l 
discuss the reason behind the choice of the 
Weibul l d i s t r i b u t i o n . 

By assuming p r o b a b i l i s t i c independence 
among the various de tec t i on events , we can 
der ive the cumulat ive de tec t ion p r o b a b i l i t y as a 
funct ion of t ime based on a l l MC&A l a te detec
t i o n events. Figure 1 i l l u s t r a t e s the input and 
output for the Wei b u l l model. This model i s 
implemented as par t of a PC-based computer 
program ca l l ed ET.^ Figure I i l l u s t r a t e s the 
use of the model fo r eva lua t ing a hypothe t ica l 
f a c i l i t y . The hypo the t i ca l r esu l t s shown in the 
f i gu re demonstrate the poss ib le v a r i a t i o n i n 
safeguards performance among adversar ies. 

Despite i t s s i m p l i f i c a t i o n s , the Weibul l 
model provides usefu l i n s i g h t about how the 
t iming and e f f i c a c y o f l a t e detec t ion events 
a f fec t the ove ra l l p r o b a b i l i t y of l a te de tec t i on 
as a funct ion o f t ime . Po ten t i a l upgrades such 
as a computerized account ing system, a d d i t i o n a l 
independent i n v e n t o r i e s , r o t a t i n g of inventory 
personnel, or more f requent inventor ies can be 
analyzed by t h i s model fo r t h e i r impact on the 
la te detec t ion e f fec t i veness against a spectrum 
of ins ider adversa r ies , 

COffuTING LATE DETECTION PROBABILITY AS A 
FUNCTION OF THE 

In t h i s sec t ion we descr ibe the ser ies of 
steps fol lowed i n our modeling and eva lua t ion o f 
l a t e detect ion c a p a b i l i t y . For each step we 
describe assessments and assumptions needed to 
address compl icat ing fac to rs encountered. 

I den t i f y i ng Late Detect ion Events 

To evaluate the p r o b a b i l i t y of la te detec
t ion as a funct ion of t ime , we focus on HC&A 
a c t i v i t i e s or events that could reveal loss of 
SNM. Many of the l a t e de tec t ion events are 
per iod ic . I t is poss ib le that i f the f i r s t 
occurrence of a l a te de tec t i o r event does not 
ind icate missing SNM, a subsequent occurrence o f 

the event w i l l . Table I i l l u s t r a t e s th is f i r s t 
step of de f i n ing l a t e de tec t i on events and t h e i r 
periods of recurrence i f appropr ia te . 

TABLE I 
Illustrative Identification of 

Late Detection Events 

Late Detection Time Lag 
Events (Units = Days) Repeated 

Daily check 1 Yes 

Forms reconciliation 3 No 

Process call 15 Ves 

Physical inventory 30 Yes 

DOE audit 365 Yes 

Assessing P r o b a b i l i t i e s o f Detect ion 

Af ter an occurrence of a detect ion event, 
there is a p r o b a b i l i t y o f a loss ind ica t ion and 
proper alarm r e s o l u t i o n r e s u l t i n g from that 
event, given mate r ia l i s miss ing. We can e s t i 
mate such a p r o b a b i l i t y based on knowledge of 
measurement u n c e r t a i n t i e s , s t a t i s t i c a l methods 
( e . g . , i f Inven to r ies or checks are based on 
random sampling techniques) or e r ro r propagation 
models. When adversary tampering or f a l s i f i -
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cation is a possibility, subjective judgment by 
experts at the facility may be required to 
provide an estimate of the probability. For 
example, an inventory may detect a loss with a 
certain probability absent any tampering. But 
if a particular adversary participated in the 
inventory taking, falsification of data could 
significantly degrade the detection proba
bility. Ideally, accountability exercises or 
tests would be conducted to "validate" subjec
tive probability asssessrnents. But such judg
ments are required to address the insider threat 
and are strongly related to each adversary's 
knowledge, access, and authority. Thus we need 
to review each insider's potential strategies 
for delaying or defeating late detection from an 
event and incorporate this knowledge into the 
assessment of the detection probability. 

As mentioned previously, detection events 
are often repeated at periodic intervals. The 
probability of detection for the second occur
rence given no detection on the first occurrence 
of an event will, in general, be different than 
that for the first occurrence of the event. We 
can imagine that if an adversary's falsification 
strategy for an event worked the first time, it 
is more likely to work again the second and 
subsequent times (e.g., falsifying an inven
tory). It is also possible to imagine a falsi
fication strategy that is more likely to fail as 
it is repeated. Of course, the probability 
could remain the same for subsequent events as 
well. To address repeat occurrences of events, 
we must at least assess the probability of 
detection for the second occurrence of the event 
given no detection on the first occurrence. 
This second probability assessment gives some 
indication of the trend of effectiveness (e.g., 
decreasing) for subsequent events. 

Table II shows some illustrative proba
bility assessments for different adversaries and 

T A B L E II 
Illustrative Assessed Probabilities 

of Detection for the First 
and Second* Occurrences 

uf Detection Events 

Adversary 

Detection Events 

Adversary 

Dai ly 
Check 
I day 

Process 
Cal l 

15 davs 

Physical 
nventory 
3(1 davs 

DOE 
Audit 

365 davs 
Adversary Itl 2mi l.l 2ml In 2ml l<l 2ml 

Operator 1 01 1 1 1 2 2 tl 

Custodian t i l l 11(1 111 (II 1 1 2 (1 

Manager I (J 1 01 01 1 1 2 1) 

Guard .3 .1 .1 .1 .8 3 2 (1 

*Ttic probability of detection for the second occurrence 
given no dclcc'iin from the firm occurrence. 

detection events. In this illustration, detec
tion probabilities are different for each adver
sary because of special access or strategies 
available to each adversary. For example, the 
probability of the daily check detecting a 
material theft by a custodian is effectively 
zero if the custodian, as assumed here, is the 
sole individual performing the daily check. 
Table II illustrates events all of which 
repeat. To address a nonrepeating event, the 
probability of detection for the second occur
rence ian be set to zero. A nonrepeating event 
is just like a repeating event with no chance of 
detection except on the first occurrence. 
Conputlng Late Detection Probability as a 
Function of Time for Each Event 

From the previous discussion, we need at 
least two probabilities to characterize the 
trend for late detection for each adversary and 
detection event. We need to estimate MCSA 
effectiveness, however, for other times--not 
simply for the first and second occurrences of 
an event. Assessing additional input probabil
ities for this purpose is not desirable. Such 
assessments are impractical to make in a consis
tent fashion. We require a model to extrapolate 
in a reasonable manner for subsequent occur
rences of a detection event. The model must be 
tractable enough to calibrate using two input 
probabilities. 

In addition to such extrapolation, the 
model must also address another i sue—that of 
the possible timing of malevolent acts (such as 
theft or diversion) 1n relation to the HCJA 
detection events. Theft attempts could occur in 
random relation to detection event schedules. 
Even if we assumed conservatively that a theft 
attempt occurred to maximize the length of time 
before one type of detection event took place, 
it is difficult to assume rigid timing with 
respect to all event types; e.g., theft always 
occurs exactly 365 days before the DOE audit. 
Avoiding late detection 1s but one concern of an 
adversary and avoiding detection during the 
theft act may dictate when the theft attempt 
occurs. Also, the timing of detection events 
can vary. In fact, for safeguards reasons, it 
is not unusual for certain events like inven
tories to be scheduled somewhat randomly. Thus, 
events like the process call and inventory occur 
on average, say, at 15- and 30-day intervals 
respectively, rather than exactly at those 
intervals. Because of these issues, we must 
consider how smoothly late detection probabil
ities should vary as time elapses. 

To address these concerns, we selected a 
"Weibull distribution" calibrated using the 
probability assessments for the first two occur
rences of an event in order to model late detec
tion capability. The equation for the Weibull-
based model 1s shown in Table III. The proper-
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TARI.E III 
Definition of the Weibull 

l.ate Delectiun Model 

iM.n, 1) = ( t /T,)P, i f o r l l < i < T, 

= 1 - E x p [ - ( H , t /T , ) 1 ' ] i o n >-\\ 

with 
C, = = Ln{l,n|(l - ! ' 1 i ) ( l P,:)11-»ll l ' . i l l /U-

and 
= 1 l-"(l P,!)!1*"' 

where 
PI r>,u = probability of hie detection from 

event i as a function nf time 
T = average period of recurrence for 

detection event i 

P.i = probability of detection for the first 
occurrence of event i 

P.. = probability of detection for the 
second occurrence of event i, given 
no detection on the first occurrence.* 

•Though technically P ( 1 and P^ must lie between 0 and 1, 
when made very close to either boundary ihcy produce 
the effect expected at the boundary 

ties of the Weibull model are discussed in the 
following paragraphs. 

Eq. (1) in Table III may seem complex but 
the important features of the model can be 
described in simpler terms. The model is 
Weibull-based because of the functional form for 
PLD-j(t) for t J T-j, which is that of a Weibull 
cumulative distribution function. The Weibull 
distribution is used in a variety of appli
cations where the rate of "failure" (e.g., 
failure to detect) is not constant but changes 
oyer time. The Weibull model offers the flexi
bility of several key extrapolations given basic 
input on the probability of detection for the 
first and second occurrences of the event. 

From time zero until the first occurrence, 
the model in Eq. (1) linearly interpolates 
between probability zero and P^i. This reflects 
the fact that at time T-j, we are sure exactly 
one detection event of this type occurred and 
thus the probability of detection is Pji for 
that event. Before time T\, it is still possi
ble that the event occurred because of the 
relative timing of the theft vis-a-vis the 
detection event. For example, a theft may have 
occurred just a few days before a monthly inven
tory. The linear interpolation is a way of 
reflecting this possibility. Thus an event with 
period T} can still be given some credit for 
earlier than time Ti detection. This type of 
extrapolation seems reasonable and also provides 
for a more smoothly varying probability of late 

detection as a function of time. (As a tech
nical aside, the pure Weibull formula does not 
always extrapolate backwards to time 0 in a 
sensible manner for safeguards analysis; e.g., 
it indicates that a system with Pjj ~ .5, 
P\2 • 0 is better before time T^ than one with 
Pi 1 • .5, Pi2 - .5, when there should be no 
difference before time 1\; hence the need for 
something like the linear interpolation.) 

From time Tj onward, the Weibt.ll model 
follows the trend established by the inputs for 
Pji and PJO. Between times lj and 2Tj, Eq. (1) 
reflects the possibility that due to the 
relative timing of the theft and detection 
event, more than one detection event may have 
occurred since the theft. (If in Eq. (1) we 
ignored any fractional part of the term (t/Tj) 
wherever it appears, we would have a stair-step 
function instead of a smooth function. Such a 
stair-step function is conservative and assumes 
rigid timing between theft and detection 
events.) To summarize, the Weibull cumulative 
detection probability increases stnoothly as a 
function of time in a way that reasonably 
extrapolates the trend indicated by the user 
inputs PJI and P ^ . We now explore the kinds of 
trends possible for repeated events and compare 
the Weibull to other schemes. 
Modeling of Detection Trends for Repeated Occur
rences of an Event 

If Pi] and P-j2 are both equal, say 0.5, and 
Ti is 1 day, then using Eq. (1), the PLD-j(t) for 
times 1, 2, 3, and 4 are respectively, 0.5, 
0.75, 0.B75, and 0.9375. in essence. Eq. (1) 
reduces to PtDj(t) - 1 - (1 - Pii)t/Ti f o r 

t J T^. We can also arrive at this result usinq 
the following reasoning. The probability of 
detection after four occurrences of the event is 
one minus the probability fiat no detection 
resulted from any of the f'Jur occurrences, or 
1 - (1 - D.5)4. The Weibull model gi»es the 
results we would expect for these times and is 
hardly mysterious for this case. However, we 
need something else when Pji and P ^ are differ
ent. Table IV shows three possibilities for how 
we might extrapolate given P^j and P^. 

In Table IV, trend (a) is an optimistic 
extrapolation of the assessed inputs. The 
probability of detection provided by a 
subsequent event occurrence given no detection 
on previous occurrences is no worse than that 
for the second event occurrence. For T-? - 1 
day, the optimistic extrapolation implies a 
"certainty" of detection after 60 days (e.g., 
using the trend (a) equation in Table IV). In 
essence, even though each occurrence after the 
first has only 0.1 chance of detection, 
defeating 59 of them is just about impossible. 
When encountered by practitioners in the field, 
this behavior was judged overly optimistic. If 
detection is degrading markedly from the first 
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TABLE IV 
Possible Trends for 

Late Detection Probabilities 

Illustrative assessed inputs: 

P, = 0.5, Extrapolated 

Trend 

Pi 2 = 0.1 Probabilities 

Trend P,i Pi2 P j P,4 

a. "0.5 0.1 0.1 0.1 
b. tfj.5 0.1 0.07 0.05 
c. =0.5 0.1 0.0 0.0 

•PLD.UI = l - ( l - P , i ) ( ' - P , : ) ( 1 T , ) f r , . t 2 2T,. 
•"Corresponds to Wcibull extrapolation. 
•PLD,(t) = l - ( l - P l l ) ( I - P , ; ) . t S 2 T , . 

to second occurrence, f u r t he r degradation i s 
also expected on subsequent occurrences. 
Trend (c) i s the pess im is t i c e x t r a p o l a t i o n . The 
downward t rend between the f i r s t two occurrences 
i s sharply ex t rapo la ted to y i e l d a p r o b a b i l i t y 
of zero i n subsequent occurrences beyond the 
second. Such an ex t rapo la t i on e s s e n t i a l l y 
assumes the event has no detec t ion value beyond 
the second occurrence. (This pess im is t i c model 
does not prov ide a normalized cumulat ive 
p r o b a b i l i t y d i s t r i b u t i o n tha t goes to 1 as t ime 
goes t o i n f i n i t y . ) Trend (b) i s the Weibul l 
model e x t r a p o l a t i o n . The Weibul l cont inues the 
t rend of decreasing detec t ion p r o b a b i l i t y f o r a 
subsequent event given no detec t ion on previous 
events. But the t rend i s not exaggerated and 
the Weibul l prov ides a t rac tab le cumulat ive 
p r o b a b i l i t y d i s t r i b u t i o n eventual ly going t o 1 
as time gets l a r g e . I t represents a "happy 
medium" between the two extremes shown i n 
Table IV. 

CoafMiting the Probabi l i ty of Late Detection as a 
Function of Tine for A l l HCSA Events 

By assuming p r o b a b i l i s t i c independence 
among the var ious types of de tec t ion even ts , we 
can der i ve the cumulat ive detec t ion p r o b a b i l i t y 
as a func t i on o f t ime based on a l l MC&A l a t e 
de tec t ion events . The r e s u l t i n g equation i s 

PLD(t) - 1 - ![1 - PLD^t)] (2) 
where 

PLD(t) - probability of late detection from 
all events as a function of time (t) 

! - product of i terms 
PLDi(t) is as defined in Eq. (1), Table III 

for each detection event. 

The reasoning behind Eq. (Z) is the same as that 
encountered earlier. The probability of detec
tion at any time t is just 1 minus the proba
bility that no event has resulted in a detection 
by time t. Eq. (2), along with the input data 
in Table II, was used to generate the illustra
tive curves shown in Fig. 1 at the beginning of 
this paper, 

USE OF MODEL IN ANALYZING LATE DETECTION 
CAPABILITY 

The model described here is relatively easy 
to use while still addressing major concerns 
such as adversary falsification strategies and 
reasonable extrapolation of inputs. The model 
can be used to generate curves such as that 
shown in Fig. 1, or summary statistics such as 
the median (highlighted by the horizontal line 
in Fig. 1), or mean time for late detection for 
each adversary. 

Because many inputs rely Dn subjective 
judgments of experts at a facility, the trac-
tability of the model is important. The model's 
ease of use provides a simple way to test the 
sensitivity of results to alternative input 
assumptions and probability assessments. This 
sensitivity analysis can highlight those inputs 
requiring Investigation and data collection and 
focus debate on the most important judgments. 

The model helps identify those adversaries 
for which the late detection capability is weak 
and helps to pinpoint areas where corrective 
action or upgrades are required. The model can 
help one assess the change in late detection 
effectiveness prior to implementing upgrades so 
that the benefits of various alternatives can be 
highlighted. 
CONCLUSION AND FUTURE MODELING DIRECTIONS 

The model described in this paper 
characterizes late detection capability by the 
probability of late detection as a function of 
time. While an important Indicator, this cu
mulative detection probability does not directly 
address key issues associated with quantifying 
the value of MCSA late detection. Specifically, 
each benefit provided by a good late detection 
capability described in the Introduction may 
place different emphasis on timeliness. The 
value of time is only considered informally when 
examining a cumulative detection probability. 
To address the value of time formally with 
respect to alarm resolution, alarm response, SNH 
recovery (or prevention of protracted theft), 
and assurance, value models 3 are needed. Such 
models quantify the relative importance of 
improved after-the-fact detection (e.g., how 
much better is late detection in 2 days rather 
than 3 days). However, these value models (like 
our probability model) require subjective input 
by decision makers at facilities and therefore 
must be tractable to allow for easy sensitivity 
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analysis. Value models combined with 
probability models, such as the one described 
here, will allow facility decision makers to 
characterize late detection capability more 
completely for purposes of resource allocation 
and comparing safeguards alternatives. 

2. R. A. AL-AYAT, B. R. JUDD, and T. A. RENIS, 
"The Safeguards Method for Evaluating 
Vulnerability to Insider Threats," Proc. 
27th Annual Meeting of Institute of~fluclear 
Materials Management, New Orleans, June 25, 
1986, pp. 676-S8S: -
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