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FOREWORD

The program described in this report has evolved over

a period of many years.

Readers should be cautioned that some errors may remain
in the program. It is customary for users to alter the program
to fit their own requirements and tastes. Such users are urged
to append a suitable designation to the program name, so that
different versions may be distinguished, and to add distinctive
identifying symbols to the last eight columns of the FORTRAN pro-
gram cards which have been altered. Needless to say, the authors
cannot take responsibility for any versions of the program which

do not correspond exactly to the program listing in this report.
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using NOH = 2.0 with h; = -1,0,

LDB:1142:sm

Copy to:

L. D. Bertholf, 1142

File 1142



1. INTRODUCTION

WONDY is a versatile FORTRAN code for computing wave propa-
gation in one dimension in rectangular, cylindrical or Spherical
coofdinates, The code is based on conventional finite difference
analogs to the Lagrangian equations of motion and is similar in

many respects to other such codes.*

Considerable effort nas been expended to produce a very
flexible code. Routines for equations_of state or constitdtivé
relations, special boundary routines, radiation energy additibn,
as well as the initializing routine are written as self¥contaiped
subroutines, and new routines are easily written to cover prdblémé
not handled by the original set. In this way most probléms'of

motion in one dimension may be handled without difficulty.

Since many users may be unacquainted with previoué‘ work in the
field, a very elementary treatment :of the differehéihg technique
is given. However, no attempt is made at a rigorous derivation or

treatment.

There are several versions:of WONDY. IThe code described in

this report is designated WONDY 2, It is written in C;D.C.»SSOOIFORTRAN

4 R 3
*In particular that of Herrmann (1964) and of Wilkins and Giroux (1963).



and in its present configuration occupies two 32K banks on the C,D,C,
3600.,* A maximum of 3,000 meshes and 20 differemt layers of material
can be accomodated. While care has been ‘taken to minimize computing
_time,+ the program has been written for flexibility rather than extreme
efficiency, and some compromises on both program and storage size and on

R

running time bave been made to retain this flexibility.ﬂ In this version .

no attempt has been msde to. minimize bank transfers on the C D.C 3600 sincem

attempts to do- 8o wOuld mske the program less adaptable to other computers.'

I

" For special classes of problema for which much repetitive production runningf'
is required, it would be advisable to modify and specialize the code to

minimize running times and/or optimize storage requirements forhtheipsr—

ticular computer on which the code 1is to be used

\ ‘_/_w, Sl e o

The finite difference technique is an approximate method of solving

the non-linear partial differential equations describin ‘one-dimensionsl R

motion, The degree of approximation depends on the mesh sizes and artifi- if

cial viscosity coefficients which are used.

*The main storage array is forced into Bank 1 :'and occupids approximately
31,100 decimal locations. The remainder of the storage arrays and the- o
program including’ Tibrdry subroutines, ‘but - excluding Pplot: routines, occupy
approximately: 18,000 decimal locations in Bank Q. If the program and
storage are to be ‘accomodated ‘in one 32K memo¥y’ bank,’ the ‘storage array
must be reduced to approximately 8, 000 decimal locations which allows _Q,
a maximum of 800 meshes to be used: BRSNS o - BRE

+Running times depend on the complexity of the equation of state and .
the amount of output requested. For most problems, about 0.5 to 0.8 million
mesh calculations (number of meshes times the number of cycles) can be. . ...
done per hour on the C.D.C. 3600, N




It is quite possible to obtain completely false or even random
results by inappropriate choice of mesh sizes and viscosity coefficients.
It is always advisable to run severai problems with successively smaller
mesh sizes and often with several choices of viscosity coefficients to
insure that the solution is insensitive to choice of these parameters,

A few problems cannot be handled adequately by finite difference tech-
niques on present computers due to the fact that sufficiently small

mesh sizes would entail prohibitively long computation times,

Results are, of course directly dependent on the constitutive
equations or equations of state describing the materials involved,
If physically realistic results are to be obtained, then physically rea-
listic constitutive equations and material constants must be used,
For some materials these are known less precisely than for others,
and results will therefore have a greater uncertainty., The question
of the sensitivity of the results to variation in any particular
material constant connot be answered in any generality, If material

constants have considerable uncertainty attached to them, it is al-

ways advisable to run at least three problems: one with the most
probable value, one with the maximum, and one with the minimum

probable value,

When the constitutive equations and material constants are known
precisely and when the proper mesh sizes and viscosity coefficients

are chosen, the finite difference technique is capable of great accuracy,



2. BASIC DIFFERENCE EQUATIONS

2.1 Differential Equations

The one-dimensional equation of motion expressing conservation of
morientum is

37 o) ? P
pa = -a-’-}z(--é—?{‘P(a-l)% (2.1)

where x is the spatial coordinate, p the density, a tne acceleration,

7 the stress in the x direction, and g the viscous stress, both taken
positive in compression. The quantity » is the difference between the
stresses in the longitudinal and transverse directions (x = 1 for rectangu-

lar, 2 for cylindrical, 3 for spherical one-dimensional coordinates).

We will follow material particles in the motion, and thus the accelera-

tion is given simply by

i

a = S%- (2.2)
where u is the velocity defined by
w o= X (2.3)
Mass conservation is expressed by
g—o = ‘—;% o (2.4)

where dV is an element of volume at time t = O, when the density is 06 and

dv is the current volume of the same element at time t.



These equations are supplemented by the equation expressing energy
conservation and the equation of state or constitutive equation. It is
convenient to defer consideration of these equations as they are solved

separately in the equation of state subroutine.

2.2 Difference Equations

In the finite difference method all quantities are sampled at discrete
material particles and at discrete times. The particles are labeled in
crder with an index Jj, and times are labeled in order with an index n. Thus
the value of an arbitrary quantity Y at the jth particle and nth time is
denoted i:. The differential equations are set into finite difference form

by consistent use of simple, centered, second-order analogs

n __n
» Yo - 7y
3 Y) = g
d X J*ME X+l = Xy
(2.5)
n w ‘7n+1 n
<~3 f) + f’ - YJ
5% = T
and linear interpolation expressions.
‘ﬂ 1 .l n
fy+1e = 5(f4+1 + f:)
(2.6)
pt VR 1 n+l a
1y = 56: + ﬁ)
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The difference equations used, corresponding to (2.1) through (2.4) are

( n n n n
a : JTy-1k %—W> - (%*W + %*W>
a_, = 2 o) n n [} n n
0y+V2 (x3+1 - xj) + 0k ( Xy - x,-1>
(c.7)
n n
(‘p,u/a + pr-1/2>
+ 2((1 - l) B ) ) B 7B S
Pyl (XJH + x:) + ogmak (X + x:-l)
n+if2 n-/2 1 a+l/2 n-1/2 a
Uy = Uy + §(At + At aj (2.8)
a+l2 ntl n
where At = t -t
n+l n ptll at ik
X, = x5 + At uy (2.9)
n+l my~1/z
oj“l/td = < n?L)d n.FL):I (2010)
XJ - (x"-—j.
where m is a mesh constant initialized at t = 0 to
o o\Q o |\
mee = pSug ’(x,) - () (2.11)

These equations are subject to excessive roundoff when 2 = 2 and 3.

The mesh constant m is written in the equivalent form

o] o] o) =0
Mi.1/2 = Dy-1/2 (XJ - XJ-]_) 5y-1/=

where



N1 = 1 for « = 1
= x% + K5, for 1 = 2
= (GF + x? x?_1+(x°;_1 )2 for 1 = 3
The mass equation may be written in the alternate forms
1y Q SRR a
mJ_l/Z = On+1 (X:3+ ) - (xj‘l ) |: pf“_l/e {()"13 j}' - (Xl}_l) I
3=1/2
Rearranging and subtracting leads to
' o ; Q
s e [T T 0 ()
-2 Py-va i !
This may be written as
o+ 1f2 ) -
.\“+1 - 1 + At ;n+1/2 n +1/2 _n41/3 nt 1/2 1
5—1/:.. n m 1/2 bj u - -:J_ 1 uJ_l
.‘\3_1/2 J - 3
where
ntlfe
%J = 1 for » = 1
n+1 n
= x, ot X for a = 2
= (x2*1)® . M o+ (xP )
( . ) J 3 ( J ) for n~ = 3
Two quantities are useful in later calculations.
, p+l a
- 2 <OJ‘1/3 = O;-lk)

B

(=)
: (726 + oywe )2 (2:22)

2 ( 02;:@ - oj-»é)
A t“*W (ojfié + oj_m)

(2.13)

/\
(0%
ot

\/

]



Note that a, u, and x are centered at j, while all other quantities are

centered at j - & in space. This suggests the following interpretation:

Ty Ny O\ /X, u, 8,‘

i
|
[
1
|

5 J J

+F----

!

If lines are drawn on tne material at the initial instant to define a
material coordinate mesh, which distorts with the material as the motion pro-
ceeds, the positions, velocities, and accelerations of these lines defining
the mesh boundaries are found at discrete times. The same material particles
are always contained in a given mesh. Stresses, densities, etc., are found
which may be regarded as averages over each mesh between successive mesh

boundaries.

All quantities except velocity are centered at n in time, while u is

centered at n + %. This occasions no difficulty except at the initial

instant. Velocities are usually either zero or constant prior to the initial
1

instant, so that uj 2 = ug, and starting the computation is not a problemn.

In order to facilitate storage, mesh quantities, e.g., o

1
n+=
1) etc., are indexed Jj. The velocity u ° is stored at n + 1.
2

S

3

2.3 Order of Computation

The calculation proceeds as follows: at t = O, all quantities are
defined at all meshes by the initial data (via the initializing routine

described later). The computation is performed successively at each mesh

v



starting with the left-hand boundary. At the jth mesh the momentum equation

(2.7) is used to compute the acceleration at the Jth mesh boundary. Velocity
) .0t R th
at a time 2 At after the initial instant at the }J

1
+1 t
from (2.8). Position at time At™2 after the initial instant at the j

mesh boundary follows
h

mesh boundary follows from (2.9).

Calculations completed, Calculation being performed

/|

'_l
D
S

&

n = ]i § >
n=0 O—6—0—0—0—0—06
? S BN £ 8

J
The new position of the (j - 1)st mesh has already been found at tnis
stage of the calculation. The mass equation (2.10) can therelore be used
to determine the density in the mesh between jJ - 1 and j. For elastic-
prlastic materials the velocities at j - 1 and j can be used to determine
strain rates at j - %. The energy equation and equation of state are then

used to determine the energy and stresses at j - %. These calculations are

accomplished in the equation of state subroutine and are discussed later.

The computation at the jth mesh point is now complete, and the next mesh
in sequence can be treated in the same way. Boundary calculations are de-
scribed below. When all the mesh points have been treated, the solution for
time zltn+% after the initial instant has been constructed. Tne procedure

can be repeated for the next time increment. Further repetition allows

construction of the solution for the entire time of interest.



2.4 Units

No dimensional constants are coded into the program.

consistent set of absolute units may be used.

Thus any self-

The user must be cautioned

that nowhere does the acceleration due to gravity appear and absolute mass

and force units must be used.

useful are shown in the table below.

Several sets of units which have been found

Cuantity c.g.S. c.g.4s 5. I. f.p.s. i.p.s.

Time sec Msec sec sec sec

Length cm cm m ft ins

Mass am gm kg slug slug

Force dyn T dyn Newton { 1b 1b

Energy erg T erg Joulie ft 1b ins 1b
Energy Density | erg/gm Mbar cm3/gm J/kg ft 1b/slug ins 1bs/slug
Power erg/sec T erg/sec Watt ft 1lb/sec ins 1b/sec
Density gm/cm3 gm/cm3 kg/m3 slug/ft 3 slug/ins 3
Pressure dyn/cm2 M bar N/m2 1b/ft 2 1b/ins 2

10




3. ARTIFICIAL VISCOSITY

Since materials are non-linear in the sense that they become stiffer
as tney are compressed, solutions to wave propagation problems which do not
include viscosity may develop discontinuities or shock waves. Such discon-
tinuities would have to be handled as internal floating boundaries since tne
difference analogs (2.5) are only approximately correct tor small differences
in all parameters. These internal boundaries are part of the solution, and

it is extremely difficult to handle them.

The problem is resolved* by including viscosity, which renders the
solution continuous and prevents formation of mathematical discontinuities.
Shock waves are recognized as very steep but finite gradients in the solution.
It is clear that & shock wave must occupy several mesh widths in order to

satisfy the requirement that differences in gquantities remain small.

Natural viscosity can be used. However, for most materials natural
viscosity is so small that shocks would be extremely narrow. In order to
insure that a shock occupies several mesnes, it would then be necessary to
use extremely small meshes. For the usual physical problems this would mean

that an extremely large number of meshes would be required.

For this reason an artificially large viscosity is introduced. Care

is necessary so that the viscous term does not affect the solution anywhere

i
*See Von Neumann and Richtmyer (1950).

11



except near shocks. At shocks the solution is intentionally distorted to
insure that gradients are much lower than in nature, so that a reasonable
number of meshes can be used in a given problem. In effect, use of artificial

viscosity broadens or smears shock waves.

The exact choice of form of artificial viscosity is somewhat arbitrary.

we use a quadratic viscosity* in the form

t

Ne]

L1}

ko)

o

H
N
NN
O =
Qv

2
—9> (3.1)

s

where bl'is a constant with dimensions of length. Since (%--%) essentially

represents the volumetric strain rate, g is essentially a bulk viscosity.

Q/

The quadratic form is chosen so that the viscosity is very small
except when rates become large, at which time the viscosity becomes very
large. The quadratic form is therefore most effective in controlling

gradients at shocks while introducing minimal disturbances elsewhere.
. . LI
A linear viscosity is also used in the form
- 5_0_>
@ = byc (3 (3.2)

where ¢ is the sound speed and b2 is a constant with dimensions of length.
The linear viscosity is effective in controlling small spurious oscillations

in which gradients are insufficient to make the quadratic viscosity effective.

1
*Introduced by Von Neumann and Richtmyer (1950).

2
ilntroduced by Landshoff (1955).

12



Great care is necessary in the use of linear viscosity, as there 1is a much

greater chance of distorting the solution in areas away from shocks.

The constants bl and b2 determine the shock width.* Since it is

desirable that the shock encompass a given number of meshes, independent of

the choice of mesh size, bl and b2 are non-dimensionalized by use of the

mesh size.

b = B.Ax b = B_Ax (3.3)

In finite difference form

at+l at+l n
13
B2 (xJ - X-1 ) Cy-1f2 (5- 3%)

n+l nt+l
qy-1/3 = py-1f2

(3.4)

10 ,
where(; 5%) is given by (2.13).

Since rarefactions do not steepen into shocks, viscosity 1is set to

zero when éﬂ < 0.
3t

1
*¥See von Neumann and Richtmyer (1950) for a discussion of the relation

of the shock width to b, in the case of a perfect gas.
¥

1
13



I, CONSTITUTIVE EQUATIONS

There are several options for constitutive equations in the program.
Currently, six different constitutive equations can be accommodated, but
it is very simple to increase this number. Individual constitutive equations
are programmed in subroutines, an input parameter for each layer determining
which subroutine is to be called for this layer. Only some of the available
subroutines will be described in this report. Other special-purpose sub-

routines can be written as required.

The equation expressing conservation of energy is included in the con-
stitutive subroutine. Before writing down the energy equation, it is useful

to note a few results concerning stress and strain.

4,1 Stress and Strain

In one-dimensional motion shear strains are absent since there is no
shearing of the material. It is more convenient to work in terms of the
strain rate or stretching. In the direction of motion, i.e., the x direction,

the stretching is defined as du

In rectangular coordinates there is no motion in the y and z coordinate

direction so that
3
dy = = dy = O dz = O fora = 1 (4.1)

3x

14




In cylindrical coordinates there is no motion in the 2z direction,
so that d, = O. However, motion in the x direction will induce a circum-

ferential strain, so that (x is the radial direction)

dx = g_::' dy = % d; = O fora = 2 ('4».2)

In spherical coordinates there is a hoop strain induced in mutually
perpendicular circumferential directions when there is motion in the x direc-

tion, so that (x is the radial direction)

du

di = é—; dy = l'xi d = l':z for X = 3 (14"3)

The volumetric strain rate or dilatation is defined as

a = a4, +4d, +d, (L.b)

Thus it must be related to the rate at which the density is changing by

- 13
a4 = -Zs3 (4.5)
Stretching deviators are defined as
d 1 1 dp '
= - iy - + — — .
dx dy 3 d dg ) (b.6)

[ d
and similerly for &, , d; . They are a measure of the rate of distortion in-

dependent of the volume change. From (4.4) it is evident that

d d 4
& + & + & = O (4.7)

Since the shear strains are zero in one-dimensional motion, shear

stresses are zero. The stress components in the coordinate directions are

15



Jx, 7y, 8nd 0, . The pressure is defined as
p) = & (4.8)
('P) = Y (Ux + 3, + 3, ) .

the minus sign appearing in agreement with the convention that stresses are
considered positive in tension, while pressure is considered positive in
compression. Stress deviators are defined as

axd = o, -(-p) = ox +p (4.)

and similariy for 7,%, 0,¢. From (4.8) it is evident that
7%¢ o+ g0+ g0 = 0 (4.10)
The rate at which mechanical work is being done by the stresses, i.e., the

stress power, is given by

P

"

ox & +* Iy 4 * 0 & (k.21)

Using (4.4), (4.5), (4.6),(4.8), and (4.9) the stress power may be expressed as

P = P, * Py (k.12)

where Ps is given by

1

(4.13)

(%

= D
P 55t
and represents the rate at which work is being done by the pressure against

a volume change, and Pd is given by

4 d d

P, = ot & + gt d + ot G (b.14)

and represents the rate at which work is being done by the deviator stresses
against distortion. Using (4.7) and (4.10) the components in the y direction

can be eliminated. .

Py o= 200 +old 4ot r2atd (4.15)

16
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In the momentum equation (2.7) we require

® = O -0y (4.16)
ﬁe noﬁe that, using definitions (4.9), v can be written
o = 0 -0,¢ (4.17)
and using (4.10), this can be(pﬁt into the more convénient form:
» = 20" +al | (k.18)

Also the quantity o in the momentum equation, from (4.9), is

O = Ux = P -~ O (4.19)
where 7 is taken positive in compression for convenience.

Considerable simplification arises when a1 = 1 or 3. The symmetry inherent
in rectangular and spherical one-dimensional motion implies that o, =¢, .

Thus (4.7) and (4.10) can be written

& = & = 34 (4.20)
5y = gr = kot  (k.21)

Therefore, fora = 1 or 3 (h.lﬁ)'ahd (4.18) become

Py = %oﬁ & (4.22)

. " 3 a
cp) ) = 2°x (h.23)

4,2 Conservation of Energy

The one-dimensional equation for conservation of energy expresses the

fact that the rate of increase of internal energy per unit mass is equal to

17
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the rate at which work is being done by the stresses and the rote at which

heat is being added.

5 1 02 oh h|
= . == + + — . - =+ . oL
o > (p+a) 255 * By 5 v G- 1pprae (ke2k)

where & is the internal energy per unit mass, Q is the heat added (say, by
chemical reaction or radiation) per unit mass, and h is the heat flux due to

lieat conduction. We have included work done by the viscous stress g.

Heat addition @ may be assigned as required, while h will depend on the
temperature gradient. Since the energy equatioh is included in the constitu-
tive subroutine, Q and h are only included when necessary. They do not appear
anywhere else in the program.

The energy equation using the difference analogs (2.5) becomes, in the

absence of heat conduction

n+l n n+l B nt+l n
83-1/2 = 63—1/2 + <Pj‘1/2 + py-ife Qy-y= * %'W)(%%)
d
+ ACi-ys + AQuie (4.25)
n+ll2

Where AQj-yz 1is the heat addition during the time increment At
AQy-1. 1is ordinarily initialized to zero when there are no energy sources.

For an example of how energy addition may be accommodated, see Section 6.7.

B

has been defined in (2.12), end

\Y]

0= v
p+1/e
a 2At Pd
A€ = T (k.26)
Py~ * Py-is

4.3 Fluid Equation of State

Liquids can support only a pressure, and the stress deviators vanish.

The assumption is sometimes made that when very high pressures occur in solids,

18



the stress deviators are negligible, and the solid may be assumed to act
like a liquid.
In this case it is evident that

v o= 0 P, = O (k.27)

The equation of state of the material is usually taken in the form

p = 1 (0,8 ) ' (k.28)

This ecuation is centered at n+l and j—%. It is therefore seen that the

energy equation (4.25) and the equation of state (4.28) are two simultaneous
n+l n+l

equations for the two unknowns p;-if, 53~yb. If the eguation of state has

the form

p = Ji1{) + J200) € (k.29)

then (4.25) and (4.29) can be solved explicitly

n n+l n n+l n d
,n*l Cj—lfa + (]13—1/2) + pj—le + Q_;—l/e + q1_1/4><§45§-) +AC‘/ +AQ
Cy-lf2 =
n+l
1 - Jay-1e (é%%)
| (k.30)
n+l RS2 n+l n+l
Py~ = Jug-ye v Jag-yz Sy (%.31)
. ] ) o
where A€ = 0 from (4.27) and (4.25). Then
n+l n+l
CJ—I/E = Dy-y2 (u"32)
n+l )
oy = 0 . : (4.33)

The functions j; and J, must be given. It is commdnly assumed that a

liquid or solid can be described by the Mie-Grueneisen equation, which can

19



be written ‘ » ) ) o
P - P = (€ -€,) (4.34)

where py (p) and &, (p) are the pressure and energy along some reference
line and are functions of density only and where " (p) is the Grueneisen
ratio and is also a function of density only. The reference.pressure py ()
and energy €, (o) are generally taken from experimental data along the -
Hugoniot. Two forms are common for py -
Po s M .
Pw = —_— . (b.35)
(1 .- sm)

:1'.‘i

where p, is the initial density at zero pfessure and ambient temperature,

c and s are constants, and
n = l - = (4.36)

This form follows from the observation that the shock velocity U is a linear

function of particle velocity u for meny materials, given by,

U = Co + S u » (h.37)
4
where ¢, and s are given constants. Alternately, pg is given as a power

series expansion in n
P = Ken (1L + K7 + kg© + Kar® + ....) (4.38)
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d
where the K's are given constants. In order to match ey atn =0,

it is necessary to assume that
, ) 3 X
Ko = Pe Co ( -39)

Note that c, corresponds to the bulk souhd speed and K, to thevadiabatic

bulk modulus at zero pressure and room temperature.

The energy &€, is related to py by

&, = g;” | | (4.40)

wvhere € = Oat p=0at p = 0.

The Grueneisen ratio is usually expressed as

r = I, (L+hm+han” + ... ) (4.41)

where the h's are given constants. Thus, rearranging (4.34) we have

p - il - g.(_%_ - 1) +Ioé (k.42)
(-]
so that
Y (1 22_&) o (h.b3)

fz = Lo (b.4h)
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where
° (4.b5)

|

and p, is given by (h;35) and (4.38) and T is given by (4.41).

The equation for py is selected by an equation. of state constant NOK.
If NOK = O, then (4.35) is used, the first two succeeding equation of
state constants being K, and s. If NOK is a positive integer (s 6), then
(4,38) is used. Thé first succeeding equation of state constant is K,
which is computed internally n51ng (4.39), and the next (NOK - 1) constants
are the k's. Up to 5 k's can be used. If NOK = 1, then (4.38) becomes
linear.

The Grueneisen ratio (h.hl)‘is computed similarly. The mumber of
terms used is selected by the equation of state constant NOH (s 6), the
succeeding constant being I,. The néxt (NOH - 1) constants are the h's.

Note that if NOH = 1, then the Grueneisen ratio becomes a constant.

The sound speed is also computed in the constitutive subroutine. The

sound speed is defined as
op
c (52), (b.16)

where ( ); indicates that the differentiation is taken at constant entropy.

Differentiating (h.29) at constant entropy
9 ‘ 4j djz , ( ) :
= ' 1 + g 2= + —
(39)5 & 3 =\&o)s (b.47)
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We note the thermodynamic relation

(5. - (&)

where U = 1/p is the specific volume. Thus

(%), - (=)&) - F

ds, = dpy dn (4 . Tu) _ Lda | wddy
dp an I 2 P2 2 dn 3

&
L1}
.
+

51

=
~~
'-l
]
3

Where, differentiating (4.4t1)

I}, (hl + Ehan + 3hg3 T']2 + ... )

dn

and using (4.35)

dp, Oaé;,(l + Sﬂl
dn - (l = S~"|)’3

(L.48)

(4.49)

(4.50)

(k.51)

(4.52)

(4.53)
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or using (4.38)

Ko (1 + 2Kkym + 3kan® + o...) (4.5k)

dp
dn

4 4 Elastic-Plastic Material

The constitutive equation is of general form
Ox = }(dx; dy’ dzya) (L‘-SS)

with similar equations for 7, and 5, . However, (4.55) may be resolved into
separate equations through the use of (4.6) and (4.9). Thus for the deviator

stresses

d

d
Ox = (e, p, €) (4.56)

d q
and similar equations for g, and g, , and for the pressure

P = J(p, &) (b.57)

The latter equation is taken in identical form to (4.29), The deviator
relations are specifically,

d

33, ¢
= - 2 G 4 (4.58)

where G (p, £) is the shear modulus and is taken as a function of the thermo-
dynamic state. If the material exhibits plasticity, the deviator stresses

have an upper limit determined by the yield condition. The Von Mises yield
is . 4\ @ a\ % a\2 2
Iy = (Ox ) + (7:! ) +'<Oz) s 3 Y? (4.59)
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where Y (p ,‘;;) is a material constant known as the flow stress. It is more con-

venient to eliminate the y component by the use of (4.10).
Iy = 2 {(3xd>2 + de‘jzd + (314)2 } s %’ Ya (’-#.OO)
When ¥ = 1 or 3, the symmetry condition (4.21) reduces (4.60) to
3 4 ¢ 2 f P
Jy = =g, s 3 (b.61)

2

Thus, putting these relations into finite difference form, &® is given by

(4.6) and (4.1) as

atle p+le
d n+l/;;’ 2(\13 - Uy-1 )
1(12
de y-1k = n¥L ) b ) + 3‘(5 5—9') ()4.62)
(XJ + XJ) - (x:—l + XJ-I)
190\, .
where (5- 5;) is given by (2.13).

d
Then 0, is given, if the material were entirely elastic, by

d d n u+1,/‘a n+li2 g n+1/2
Jx = Ox -1z *+ 2 At Gy-ye 4 y~1£ (4.63)

This value is limited by the yield condition. (See Ref. 4) Fora = 1 or 3

3(.4)°
b 3(e) (h.64)
) 2 n+l s 4 n+l 4
Thus, if f, = §-(Y,_yg> , then oy 4-1/2 = Oy
2 ntl =
However, if f, > 3 (Y;—vz) , then
d p+l a4 2 n+l
Ox 5-11/2 = (Sgn Jx) § YJ-)J;g . (’4.65)
The deviator stress work is, from (4.22) and (4.26)
4 n*l d n
d ‘+1/2 4 n+l/2 Tx J-V= + Tx -2
¢ 3 4 -
Ac = §At de 5—1/2 R Y (Ll».b6)
0y4-12 + 04~z
and
atl 3 4 ptl
CD_\-l"? = —2- Jx y-l=2 (4-67)
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However, when 1 = 2, it 1s necessary to use more complex equations.

d
first necessary to compute & given by (4.2) and (4.6) as

4 n+1./3
d; j-1e =
where (%-%%) is again given by (2.13).

d
Then 0, is given 6 it tue material were entirely elastic, by

n+le

d dn

o = Tz 4-12  + 2 At

o+
Gj—l/l.f

L{1lop
3 oit)

an+lz

& -1

The yield condition is therefore, from (4,60)

Iy

. {(gi)a .

'

Then, if f,

of a*tl \@
However, if j, > —(?:—y@) , then

3
a\n+l
(Jx) 1“1/2

d\nt+l
Jz J‘l/{?

d
2

2 [ »tl \= d n+1
§ Yj-l/z P OX -1 2 =

)|

('d n+l (Td
TS T

2 n+l =4
A

Ty Ox

o |
) n+l 2
'3—(YJ—1/2) d

Ty T

and the deviator stress work is, from (4.15) and (4.26)

d n+lz
] t
At’ = n+1A o [
Qj*l/E + Cy-lle

|

and from (4.18)
o+l dn+l
Vy-Uz = 2 0g -1
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dnt+l
+ 31 J-llﬁ

dn+l dn
Ox J-l/e + Tx J—I/E >(2dxj-l/2

dntl
Jz 3-1

dn‘*m

dn 4n+lz
+ 3z y-U2 J\24; y-ye

It is

(k.68)

(k.69)

(k.70)

(k.71)
(4.72)
10+l
t & 3-1/2)

1 n*1/2>
+ dyy-ve | (B.73)

(b.74)



o

n+l n+l

The energy €,-12 and pressure p;-1/2z 1is then found from (4.30) and (&4.31)
as before. Then from (4.19)

p+l n+l dntl

3_1-1/2 = pJ—I/E - T;J—],/? (h-YS)

The sound speed appropriate to the elastic-plastic case is
g+l \ 2 -V B
() = ¥ e (1.76)

where ¢} on the right is given by (4.49), where v is Poisson's Ratio,

usually taken to be constant.

It now remains to specify the functions G(p, £€) and Y(p, £) which
appear above. The most common assumption is that the shear modulus G is

related to the bulk modulus K by

¢ - g—(&-g—f—“)—)x (.77)

where Vv is Poisson's Ratio taken to be a constant. The bulk modulus is

related to di given by (4.49) by
K = pdi (h-78)

Thus in finite difference form, in terms of (4.76) and (4.78)

o+¥2 1 -2v)|>® R N
Gy-1e . = ézi—:ﬁg% py-1e (Cj—vb) (4.79)
Note that (4.79) is not precisely centered.

An approximation which is used for G is to assume G is a function of

p only, written as a power series in n
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G = G (L+av+e,si + ....) (L.&C)

2qo
1=l_ n  n*l
7t
where (
_31'2\)) TrYete
S = STy % (4.0Ca)

The form of G 1is selected by an equation of state constant NOG. 1If NOG = C,
the form (4.79) is used. If NCG is a positive integer (<05), the form (4.80)
is used, the first succeeding constant being GO, which is computed internally
using (4.8¢a), the next (NOG-1) constants being the g's. Up to 5 g's can be
used. Note that if NOG = 1, G is a constant with value Go'

One formulation for Y(p, &) is

B+ 1 g
Yow = Y, (rpa) (1-5) 20 (4.61)

where Y, , ¥, , and ¥ are given constants. The term yp,may be taken to re-
vresent the melting or sublimation energy. An increase in the flow stress
due to compression and a decrease in flow stress due to energy (or temperature)
can taus be accommodated. Note that (4.81) does not represent strain herdening.
The form of egquation to be used is selected by an equation of state con-
stant NOY (<5). If NOY = O, then the elastic-plastic routine is bypassed and
the material is a fluid. If NOY = 1, then a constant yield stress Yo is used
which appears as tne next equation of state constant after NOY. If NOY = 2,
then the yield test is omitted, and the material has an infinite yield strensth.
If NOY = 3, then (M.Sl) is used and y; and y» are the next equation of state
constants after Yo. (If other equations are added in place of (h.81), up to
© constants can be supplied, and NOY can be used as an indicator to choose

the appropriate equation.)
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4.5 Vapor Equation of State

Under certain circumstances, especially when the material is heated
by energy sources, the material may vaporize. Material strength disappears
automatically if (4.81) is used. However, the HYDRO description is no longer
applicable, and a vapor equation of state must be used. The vapor equation

is only used for distended materials (n < 0). It is taken in the form

o lH + (T - H)\/ml It: -2 [1 - exp(Nq(l - n))” (4.82)

P

This form is chosen for the following reasons: When %—-<< 1, i.e., for very

-]

distended materials, the equation essentially reduces to
p = H(E€ -&) (4.83)

The material constant & represents the sublimation energy of the material.

Equation (4.83) is therefore equivalent to the perfect gas law

P (v =1)o (& -&) (.81)
if H =y -1, where v 1s the ratio of specific heat of the perfect gams,
and the sublimstion energy is subtracted from the internal energy.

When o0 = po, then the equation reduces to

p = TIopt (4.85)

- and is therefore continuous with the Mie-Grueneisen equation (4.34) at this

point.

Differentiating the vapor equation (4.82) and setting o = p, leads to

g_.g. - r,,e+§(r°-H)e+p,%e+no‘,%+nr‘,es (4.86)

Differentiating the Mie-Grueneisen equation (4.42) and setting p = o, leads
L

to ar .
g‘pE = Cg + Do Ea + 1_‘o&’ + Fo.oo 5—5 (u-87)
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for ps, given by (4.35) and (4.38) providing that (4.39) is satisfied.
In order that the slopes match, equating (4.86) and (4.87), we have the
condition -

R (G A

The second term is mich smaller than the first when £<& ”S, and N is

usually chosen as 2

N = ff%: (4.88)

so that the two equations (4.42) and (4.82) are approximately continuous in

slope at p = Do »

Equation (4.82) can be put into the form

nip) +1200)e

P =

where
h = A (exp B - 1) p & (4.89)
]2 = Ap : (4.90)

The sound speed will be given by (4.49). However,

%fai_ = (A+p%\)(exp3 - l) € + pA expB%as (4.91)

Yo . aepl  (s92)
where

A = H+ (T -H)yu + 1}

dA 3 al’ _ _

% = \/__T{ (1 -n)+ 4T H)‘ (4.93)
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B = Nn (1 -n) (4.93)

&

= N%%‘(l-'&'l)

Qu
O

4,6 Tensile Stress Limit

A material cannot support an indefinitely large tensile stress.
Provision is made to limit the tensile stress as one means of simulating

fracture or cavitation. This is accomplished as follows:

n+l
If Jg-1z < Tata
n+l
where Jaiy, 1S usually a negative quantity, then 0oy-iy2 1s set equal to

Ja1n and the energy is recomputed by setting

n+l dn+l

Py-12 = Jatn t* Oxy-ie (b.9k)

pn+l

and using (4.25) to recompute €;-14.

L.,7 Solid E pmation of State Subroutine

All of the previously described features are combined in a single
subroutine STATE1l . Thus, a solid material which supports a shear stress
may be allowed to melt and vaporize, the correct equation of state being‘
chosen automatically.

Certain features may be suppressed if they are not required. The vapor
equations are normally used if ;<0. However a test on H is included so that
if H = O, then the vapor equation is by-passed, and the normal equations for
tne solid are used. Similarly, deviator stresses are normally computed if
* < yy. However, computation of deviator stresses is by-passed entirely

if the indicator NOY 1is set to zero.
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Since several options are incluled, & few unnecessary logical, an.
nocasionally arithmetic, operations are performed when the simpler forms
of tie equations are used. Care has been taken to minimi<e unnecessary
nuerations. MNevertneless, if extensive production runs are contempleted
using: n particular simplified form of the equation of state, it may be
sossible to reduce running times slightly by reprogramming the equation
ol state to incorporate only those features which are required.

.o High Explosives

Hign explosives are treated by considering that no pressures can appear
in the undetonated explosive, and by forcing the detonation wave to move at
the Chapman-Jouguet velocity from the initiation point.

If ¥ 1s the position of the point of initiation, then the time at
which the detconation wave will reach a particular mesh is

‘ %(X% + X%-l ) - Xol
tt3-1/2 = D (4.95)

where D 1is the Chapman-Jouguet detonation velocity. Then the equation

of state of the detonation products is written.

"“I}ti 2 = F (f1 t Sy 1R fz) (h.96)

where F 1s a burn fraction given by

F o= 0 if v <
(4.97)
D('tn+l-tg_1/3)
= 4 n+l b
RGA R P



with the restriction F<1., The constant B is a factor, generally 2.5,
which spreads the detonation front over several meshes.
Solving (4L.96) and the energy equation (4.25) for the internal

energy leads to

n

o A0
Cy1 2 t (F fit P’}_l/a + %l;j]i/e + gl 1z )(E_Ei)

4]
AL = = (4.98)
l - F fe —
232
the pressures being found from (4.96).
Since explosive gases cannot support a shear stress, it i1s unnecessary
to distinguish between 7 and p. Thus the pressure p 1is stored directly
in the array named SIGMA. The burn time t°, which is computed on the
first call to this subroutine, is stored in the array named P.
Functions f, and f; appropriate to the explosion products must be

supplied. For a perfect gas, the equation of state is

p = (v-1)p=® (4.99)
where y 1is the ratio of specific heats. Writing this in the form (k.29),
the functions f; and f; for perfect gas explosion products are

f]. = O

a (4.100)

f2 = (v-1)o *
Also

df.

=L o= 0 (b.101)

af.

= -
e (v -1)
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so that if these are inserted into (4.49), the expression for sound speed

in u verfect gas is obtained, vic.,

Yquations for perfect gas explosion products are supplied in the

subroutine STATE 2. The forms (4.96) and (4.49) for p and ¢ are re-

tnined, slthough they lead to some inefficiencies in computation, in order

to provide flexibility in accommodating more realistic equations of state.

a

If the equations for mass, momentum, and energy conservation across a

shock, vis.

n(D-u) = o D-w)
P + a(D-uf = p ro, (D-u )?

o Y
- =Q = 3

(p+ ) (uyy -v)

wvhere ( 1is the chemical energy added in the detonation, are combined with

the Chapman-Jouguet condition

and the expression for sound speed (4.102), then the pressure, density,

anl energy at the Chapman-Jouguet point immediately behind the detonation

wave moving into undisturbed solid explosive (Po =y, = 0) are

1

£y RYES "o If
v+l

Jes = T o
Y

A Y
ey = r
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(L,1a2)

(L.103)

(b.104)



and the chemical energy added in the detonation is

R (4.106)

For perfect gas explosion products the required equation of state input
parameters are chosen to be v and D . The pressure (SIGMA) is initialized
to zero, the density is initialized to o,, the density of the solid un-

detonated explosive, and the internal energy is initialized to Q.

4.9 Gasses

Wnen F =1, the above equations are appropriate for a gas,
irrespective of whether the gasses are detonation products or not. Thus,
equations (4.98) and (%96) with F = 1 are used. Functions for £, f;,
;éi and ?{b appropriate to the particular real gas being used must be

supplied. If tae gas 1s a perfect gas, then equations (4.100) and (k.101)

are used, and a subroutine STATE3 is supplied using these equations.

The pressure is stored in the array named SIGMA. The array named P

is not used.

The pressure, density, and internal energy must be initialized to
spuropriate values. Note that the pressure (stored in SIGMA) must never
be initialiced to <ero. The initial values of pressure, density, and
energy must exactly satisfy the equation of state, (For a perfect gas

p, N and “ must exactly satisfy (h.99).)
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.10 Other Constitutive Equations 6

The program has been written expressly to ellow the constitutive eauations
or equations of state to be changed easily. Any set of constitutive equations
n+l ntl

which compute the quantities J -1 and ;-1 from the following gquantities

can be written:

a n ntl n+l
XJ-l XJ XJ—]. XJ
atife n+1/2 .
Uy-1 Y]
n n+l
py-1/2 Dy-1e
a n+l
Q-2 Qy-1/z
n
33—1/5
n
By~1/2

The quantities x, u, p, g, 3, and p are saved in arrays. When the equation
of state subroutine is entered, all of the above quantities are available.

In addition, two other arrays are provided to save information at each mesh
point for use internal to the equation of state. These are labeled € and p
and are used in the routines described previously for the internal energy

and pressure. However, they are not used anywhere else in the program except
for output and may be used for storage of other quantities if internal energy

and pressure are not reguired in the equation of state. (Note that £ and p

are initialized in the initializing routine.) Additional arrays may be
added when required as described in Section 6.1. Such additional arrays
are used, for example, when strain hardening is included and the plastic

work done must be computed and saved at each mesh,
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5. STLBILITY

The computation is advanced each cycle by a time increment

Atn+1/2 _ tn*l - tn (5.1)

The choice of time increment is not independent of the choice of mesh size,
Without entering into a full discussion at this point, the numerical method
becomes unstable if the time increment becomes too large. Instability leads
to oscillations which grow very rapidly with time, The criterion for stability

for the difference equations used here is (see Apendix A)

ax for Au < 0

A

At

Boc + BlalAui +J(BEC + 312IAUI)2 + c®
(5.2)

IA

% for Au =2 0

where AX = Xy - X;~;, and B; and By are defined by (3.3).

The criterion (5.2) is applied to each mesh, the minimum value over all
meshes being used to advance the calculation, The criterion (5.2) is actually
computed at the conclusion of each mesh computation, the minimum value first

being used in (2.8) and (2.9) on the next cycle, Thus (5.2) is written

n+l n+l
n+Z/ 2 Key (XJ T Xy
J=i1/z2

n+l n+l

-
p=1 . 2 3 2
BaCy-re * Ba |au +\/(B‘?C.i-l/z + By " Jau)® + CRPY

for Au <0
( n+1 n+1 ) (5.3)
Kt—l XJ - XJ_I N
= ntl for Au =z 0
Cy-1/2
6 +1/2 t1/2
where Au = un - un 1/ .
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The factor K,; is included so that the time increment may be reduced below
that for stability. This factor is an input variable and is normally chosen
to be 1. Occasionally, when a more stringent criterion is desired, it may
be set to 0,95 or 0.9,

In order to limit the rate of increase of At, the value actually used

on the next cycle is

A7 Min (Ac“*ijz, K Atn+1/2> (5.4)

The factor K,y is an input variable and is normally chosen to be 1.1 or 1.2.
1f this feature is not desired, K., may be made a very large number, say 100,
Occasionally, it is desirable to start a calculation with a smaller At
than required for stability., Such a case arises, for instance, if there is
an initial pressure or velocity discontinuity in the initial conditions.,
(Sce Section 6.,5) The desired initial time increment may be read in as
input in DELT (4). Then K,; may be used to control the rate at which At
increases until it is controlled entirely by stability. If this feature is
not desired, DELT (4) may be left blank, which is read as zero, The program
then automatically assigns a value of 10°,
When energy sources are included, the energy added each cycle as AQ
in (4,25) must be small, If the time during which energy is deposited is
small, then the time increment for stability may be tco large, The deposition
time is called TDEP, This is normally initialized to zero., 1If it is non-
zero, then if t is less than TDEP, the smaller of the time increment for
stability and one hundredth of the deposition time is used to advance the

computation. For an example of the use of TDEP, see Section 6.7.
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Q@ 6. INITIAL AND BOUNDARY CONDITIONS

6.1 Storage Arrangement

Initial and boundary conditions are very simple mathematically but
require an understanding of the storage arrangement of variables in the
program if the way they are treated in the program is to be understood.

Normally, ten quantities are stored at each mesh point. These are,
in order, x, u, 3, p, 4, ¥, P, my €, ¢. The ten quantities are normally
arranged in arrays overlaid in a single array named STORE in such a way
that the first ten quantities are x, u, 0, etec., for j = 1, the next ten
quantities are x, u, o, etc., for j = 2, and so on, up to the maximum value
of j. In this way storage is packed with no vacant locations interspersed
with locations containing data. The number of variables may be increased
by specifying an input quantity NVAR. Usually NVAR = 10 and the STORE
array is arranged as described above. However, when extra quantities are
required (for example, in the equation of state), then NVAR may be set to
an integer greater than 10 to accommodate the extra arrays. Thus, for
example, if one variable is to be added, NVAR = 11 and the eleventh quant‘ity
in STORE is this extra variable for j = 1, the 22nd quantity is this extra
variable for j = 2, and so on, In the present version STORE is dimensioned

31,100. The maximum number of meshes which can be accommodated is

dnax = %v’k—%q - 3 s 3,100 (6.1)

rounded to the next lowest integer. (Note that meshes are allocated to J = 0,

ﬂ Imax " 1, and Imax +2)
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Mesn quantities, =, p, @, ¥, p, m, &, and c are centered at j - 1

but are stored and indexed at J.
Virtual Mesh -~ Left-hand - Right-hand — Virtual Mesh
Boundary Boundary
[ l | ! I
[ |
[ ! : ' ;
r ! N | |
n | T ! ' T T !
0 | 1 | 2 : Juax b deax+l | Jrax+e
. | .
% l‘%‘? Jaax—1/3 Juaxt+l/e dmax+l

Thus at the left-hand boundary the position and velocity of tne
boundary itself are indexed with j = 1. The values of ¢, p, q, », p, m, &,
and ¢ indexed with j = 1 then actually refer to a location outside the left-
hand boundary. These quantities appropriate to a virtual mesh outside the
boundary are initialized to zero and are usually not used{ However, they

may be used to implement certain types of boundary conditions.

The maximum number of meshes in a problem is termed j ax (JMAX). Since
we have started indexing at 1, the mesh boundary indexed jax is actually
one mesh short of the right-hand boundary. The right-hand boundary is
indexed jyax+l - <he position and velocity of the right-hand boundary are
indexed Jjax+1. The values of 3, 2, q, v, p, m, €, and c indexed jay+1
refer to the mesh just inside the right-hand boundary. In the computer an
additional virtual mesh indexed J,.x+x 1s provided, which refers to a loca-
tion outside the right-nand boundary. All gquantities in this mesh are
initialized to zero and are usually not used, but they may be used to im-

plement certain types of boundary conditions.
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When a mesh calculation is started at mesh j, the values of the ten
variables stored in arrays have already been advanced at all meshes to the
left, i.e., for smaller values of j, and are therefore appropriate to
time n + 1. The values of the stored variables at j and at all meshes
to the right, i.e., for larger values of j, have not yet been advanced and
are appropriate to time n. Only after all calculations are complete at J
are the variables in the arrays advanced to their new values appropriate to

time n + 1.

6.2 Boundary Conditions

Three types of boundary conditions are provided at the left-hand and
right-hand boundaries of the problem. They are: 1) a fixed boundary or
reflection plane, 2) a free surface, and 3) a special boundary routine
contained in a subroutine BOUNDARY which must be supplied by the user. Two
indicators are used to determine the left-hand and right-hand boundary
types called LHBT and RHBT, respectively. They are specified to be 1, 2,
or 3 according to whether the boundary is fixed, free, or special,
respectively.

The boundary condition affects only the calculation of acceleration,

velocity, and position at the boundary in (2.7), (2.8), and (2.9).

For a fixed boundary, computation of acceleration a and velocity u
are omitted, and these quantities are set to zero, while the position x

is left unchanged.

In order to deal with a free surface, use is made of the virtual meshes

outside the boundary. The values of 0, p, and o are initialized to zero in
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these virtuzl meshes outside the boundaries, and their values are not
changed during the calculation. Use of the ordinary equations (2.7), (2.8),
and (2.9) at the boundaries then leads to the correct acceleration, velocity,

and position of the free surface.

A different type of boundary condition may be introduced via a sub-
routine BOUNDARY, which is called if either of the boundary indicators LHBT
or RHBT is set to 3. This routine may be used to insert values of =, 9, ¢,
or x in the virtual mesh outside the boundary. Note that these quantities
are used only in the momentum equation (2.7) to calculate the acceleration

at the boundary.

As one example of the use of the special boundary type, a BOUNDARY
subroutine is included which applies a time-varying load on either boundary

(but not both), given by

3 = Jo + 7 exp (-K; t) (6.2)

where 7,, 0y, and K; are constants., If g, = O, an exponentially decaying
load is applied. If 7, = O, a step function load is applied. Note that Ky
should be positive. A normally vacant input array ADDATA is provided which
is used to input these three constants. The values of 7,, 0;, and K& are
the 8th, 9th, and 10th quantities in ADDATA. (In order to use this feature,

NOAD, the number of ADDATA variables read, must be set to at least 10.)

The work done at the boundary in a time cycle will be the applied

stress times the distance moved by the boundary. In finite difference form
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wn+ﬂ2 : <3n+l . 7n)( Xn*l i xn> (6.3)

oj-

where the appropriate index for the virtual mesh is used for 5, and for the
boundary mesh for x. This work is added to the total energy in performing

energy checks. See Section 8.1.

6.3 Spall and Join

A spall and join routine is provided for an alternate treatment of
fracture to that discussed in Section 4.6, When the stress ¢ drops below
the fracture stress, specified as input, the material is allowed to separate
to form two free surfaces. If subsequently these surfaces collide, then
the material is considered to rejoin, and the ordinary equations appropriate
to an interior mesh are used. 'Subsequent fractures at a mesh which has
fractured previously are considered to occur if the stress drops below a

value wnich is effectively zero,

Since the material is considered to fracture only at mesh boundaries,
g is interpolated to the mesh boundary before testing for fracture. The
logic is accomplished through two arrays of logical indicators called PFRACT
and QFRACT. If the interpolated stress 5 drops below the fracture stress,
QFRACT is set to 1. Thuis signals that two free surfaces occur at that mesh.
It is now necessary to store extra values of x and u. The values of x and u
for the right side of the fracture are stored in the X and U storage arrays,
but the values of x and u for the left side of the fracture are stored in
TABLE., In addition, mesh numbers of meshes currently fractured and separated
are stored in ITABLE.
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left side ~ TrBCture .ot side

J-1 J J Jrl
‘_l t a n—l/z
x and u in TABLE| Xy uy

Different fracture stresses may be specified in each different layer
of material ( SIGMAr) and at each interface between materials (SIGMAIF),*
The latter might represent a weak bond between layers.

During subsequent calculation at a mesh where a fracture has occurred,
a test is made to see if the wvalue of x at the left side exceeds the value
of x at the right side of the fracture. If it does, the fractured surfaces
have come together during that cycle. The values of x and u at the two sides
are averaged and inserted into the X and U storage arrays, QFRACT is set to O
and PFRACT is set to 1. This signals that the mesh is henceforth to be
treated as an ordinary interior mesh. However, PFRACT signals that subse-
quent tests for fracture are to be made on a quantity SIGMASEP instead of
on the fracture stress, SIGMASEP is an input quantity and may be set to
zero or to a small negative value to prevent separation on small spurious

oscillations about zero stress which occasionally occur in the solution.

Messages are printed on the standard output medjum whenever a fracture
occurs or fractured surfaces collide giving the cycle, time, and mesh number.
A maximum of 50 fractures are allowed. If this number is exceeded, an

error message is printed on the standard output medium and the run is terminated.

* The first SIGMAIF refers to the interface between the first and

second material layers, etc. The last SIGMAIF has no significance,
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6b.4 Initial Conditions

Initial conditions are specified by assigning values to all quantities
at all mesﬁ points. This is accomplished in a subroutine GENERATE. Input
cards are read and a detailed tabulation of input data is printed in
GENERATE so that the main program need not be disturbed when these are
altered.

The quantity q is always initialized to zero in &ll meshes. The
following arrays are initialized according to information contained in the
input data: x, u, 9, p, J, P, £, and c. The quantity m is computed once
and for all and is usel only in (2.10) and must not be tampered

with.

The quantities u, p, p, 7, v, &, and ¢ are given constant values in
each material layer but may be different in different material layers. *
The way in which each one of these quantities is initialized is described
below,

The sound speed ¢ is given as the second equation of state constant
and corresponds to the sound speed of the material in its natural uncom-
pressed state., Initial values of p, p, 0, ®, and € are specified for each
material layer in the input data. Note that values of p, p, 0, 1, and &€
mast be fully compatible. Thus if the material is initially compressed to
some pressure p, then values of g, », p, and € appropriate to this compression
firom the initial uncompressed state must be used. In particular, note that
the initial value of p will be different from p, specified as the first
equation of state constant, which is the reference density in the uncompressed

state.

* For a way in which more complex initial conditions can be accommodated,

see 3ection T.bL.
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Values of ¢, 2, p, J, P, and € are initialized to zero in the virtual

meshes outside the left-hand boundary (at j = 1) and right-hand poundary

() = Jaax * 2)*

6.% Initial Velocity

Initialization of the velocity is a little more complicated since the
velocity refers to mesh boundaries., The velocities of meshes within each
material layer are initialized to values given in the input data for each
material layer (UZERO). However, the velocities at interfaces between
material layers is specified separately in the input data (UZEROI).* The
velocity at the left-hand boundary (5 = 1) is automatically set equal to that
in the first material layer, while the velocity at the right-hand boundary

(3 = Jawx * 1) is automatically set equal to that in the last material layer.

To illustrate the use of the initial interface velocities, consider a
plate impact problem in which the first material layer has a positive
velocity, while the second material layer has a zero velocity. The problem
is considered to start at the moment of impact. The material at the inter-
face will be compressed and begin to move with a velocity intermediate be-
iween that of the first and second material layers, In order to minimize
starting transients, the correct interface velocity could be calculated from
the shock impedances of the two materials, and this can be entered as the

initial interface velocity.

For many purposes it is sufficiently accurate to initialize the inter-

race velocity to tne average of the velocities of the adjacent layers.

x (=3
The first UZEROI refers to the interface between the first and second

material layers, etc. The last UZEROI has no significance.
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Occasionally, no serious violence is done to the solution if either one of
the velocities of the adjacent layers is used directly. After a number of
cycles of computation, the interface velocity will automatically assume the

correct value.

Some difficulties may arise in problems where the difference in velocity
of adjacent material layers becomes very large. Since the time increment
is determined by the stability criterion (5.3), on the first cycle the time

increment reduces essentially to

at = E2

Thus when the initial velocity approaches the value of the sound speed c,

the meshes adjacent to the interface will undergo very large compressions.

In fact, it may happen that the interface moves beyond one of its neighboring
mesh boundaries, leading to a negative density in that mesh. The code does
not automatically check for this condition. It is necessary in such problems
to choose an initial time increment At sufficiently small so that the meshes
adjacent to the interface do not change volume by more than 10 per cent.

This time increment may be entered in DELT(4) in the input.

KT2 (see Section 5) can then be used to control the rate of increase of At

on successive cycles until At is controlled entirely by the stability criterion.

Similar problems may be encountered if a large initial pressure dis-
continuity is introduced. The difficulty makes itself felt by introducing
large oscillations at an interface or boundary. Use of a sufficiently small

initial time increment usually alleviates the difficulty.
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The velocity in the virtual mesh outside the right-hand boundary

(j = Jnax * 2) is set equal to that in the last material layer,

0.0 Zoning

The positions x of the mesh boundaries are initialized in such a way
that the mesh size may be constant, increasing or decreasing in each layer
of material. We will denote the value of j at the left-hand boundary or

*
interface of a material layer by J.

«—TInterface or Boundary
Ax
T T I ! L

J J+1 J-1 J J+1

Then the total number of meshes k between the left-hand boundary or interface J
and a mesh boundary j will be
k = 5.7 (6.4)
The position of the jth mesh is computed from
k -
Xy =  Xg-1 t AX T (6.5)

where Ax and r are constants for each layer,

For the first mesh in the layer, from (6.5)

Axo = Xg+1 = Xr Ax r (6.6)

*
Note that J = 1 for the first material layer.
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The value of T (XRATIO) and the size of the first mesh Ax, (DELTAX) are

specified for each material layer in the input data.

Note that (6.5) is equivalent to

Ax,+1/‘3 r AXJ—]/,Q (6.7)

where

Axy-1/a Xy = X5-1 (6.8)

etc. Thus, the mesh size progressively increases if r> 1 and progressively
decreases if r< 1. If r = 1, the mesh size in a layer is constant., The
total distance {4 from the left-hand boundary or interface J to the jth mesh

is given by the sum of (6.5).

k
L= x-x% = 4% =21 (6.9)

The size of the last mesh is, from (6.5), (6.6), and (6.8)

Ax r = AX T (6.10)

A xj-l/z

Thus the ratio of sizes of last mesh to first mesh is

AXy-12 k-1

A%

=
1]
|

s ]

(6.11)

Substituting (6.10) into (6.9) and solving gives the useful relations

rax-1e - AX

v = T (6.12)
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4 - A%

Solving (6.11) for the number of meshes k gives

log Axy-1e - log A%

k = Top T + 1 (6.14)

The equations (6.9) through (6.14) are useful in determining the input
quantities from the desired thickness of the layer £ and the ratio of sizes
of the last mesh and first mesh R. If the first mesh size is specified,
i.e., if L, Ax,, and R are given, then r and the total number of meshes k

are given by (6.13)

L - 0%
ol = m{o (6.15)
and (6.14)
k = log R (6.16)
log r

Alternatively, if the total number of meshes is specified, i.e., if {, k, and

R are given, then r and the initial mesh size Ax, are given by (6.11)

k-1
r = R (6.17)
and (6.9)
A% = ¢ 222 (6.18)
r -1

Some iteration is usually required to choose appropriate values of A%, r,

and R to give a suitable number of meshes for a given thickness.
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The position x, of the left-hand boundary at j = 1, called XZERO, is
specified as input. In the rectangular case, @ = 1, the choice of this
position does not affect the results and should normally be zero to minimize
roundoff. However, in the cylindrical and spherical cases, 1 = 2 or 3,

XZ7ERO determines the radius at the left-hand boundary j = 1.

Ll $ \ xl T
N o
“ A
s >
Concave Convex

If this boundary is to be concave as shown, then XZERO must be positive.

If this boundary is to be convex as shown, then XZERO must be negative.

It is also possible to introduce a gap between successive layers when
setting up a problem. This is done easily by making use of the spall and
join feature described in Section 6.3. It is only necessary to specify that
an interface is initially fractured and separated. When the surfaces sub-
sequently collide during the motion, the spall and join routine automatically

computes the correct behavior at the interface,

Gaps may be introduced at each interface between material layers by
*
specifying an input quantity XGAP for each layer. If XGAP is vacant, read
as zero, then zoning proceeds normally and no gap is introduced. However,

if XGAP is non-zero, then initialization proceeds as follows: GQFRACT for

*
The first XGAP refers to the interface between the first and second

material layers, etc. The last XGAP has no significance.
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the interface mesh is set to 1, indicating that the interface is to be
treated as two free surfaces, and the correct positions of the two sides of
the gap are computed. The velocities of the two sides of the gap are set
equal to the velocities in the adjoining layers. (Note that the input value

of UZEROI is not used at this interface.)

6.7 Additional Arrays, Energy Sources

The subroutine GENERATE initializes the ten storage arrays x, u, o, p,
o, v, £, and ¢ but does not initialize any of the extra storage arrays wnich
may be provided by setting NVAR> 10 (see Section 6.1). This initialization
may be accomplished in a special subroutine MORSTORE called from the main

program after generate if NVAR=> 10,

The subroutine MORSTORE must be written specifically for each applica-
tion since all of the possible applications cannot be foreseen. The simplest
use is to initialize one or more extra storage arrays to Zero. Note that
MORSTORE must be compatible with the number of extra variables specified by
NVAR. Additional data required by MORSTORE may be read as ADDATA or may be

read directly by READ statements in MORSTORE from additional data cards.

As an example of how an extra array may be used to specify energy sources,

a very simple subroutine MORSTORE is included which specifies energy deposited

in the material at a uniform rate for a given time interval. Mich more complex

subroutines which determine the energy deposition due to electromagnetic radia-

tion, etc., may be programmed as required.
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The total energy per unit mass deposited in each layer is read from
additional input data cards. The energy is considered uniform in a given
material layer, but may be different in each layer. This energy is stored
for each mesh in an array SPEC which is overlaid with the normal storage

arrays in STORE.

The energy 1s deposited at a constant rate for a total time TDEP, where-
after no further energy is deposited. TDEP 1s read as an input quantity
on the additional data cards and placed in COMMON. Energy addition is
accomplished in the equation of state via Q in (4.25), and this part

of the computation is done in the equation of state subroutine.

At the beginning of each time cycle a quantity DEP is computed, given

b
Y gh+12

DEP “TOED (6.21)

Then the energy added at a particular mesh on that cycle, Q &, 1s the
product of DEP and SPEC for that mesh. The total energy added to all meshes
in that cycle is summed (SUMQE). This energy sum is required to perform
energy checks. (See Section 8.1) The above computation is performed by a
nunber of special cards in the equation of state. If the way in which energy
is to be added 1is changed, these cards must be altered.

It is important that the energy addition on each time cycle is small
in order to avoid truncation errors in (4.25). 1In order to keep this
energy addition small, the time increment used to advance the calculation
must be kept small. The time increment required for stability may be too
large. The time increment is therefore limited to one hundredth of the

deposition time TDEP, while t < TDEP. (See Section 5)
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7. OUTPUT ROUTINES

There are four output methods: 1) Binary Dump Tape, 2) Standard
Editing, 3) Special Printed Output for a completed time cycle, 4) Special
Printed Output during a time cycle. Several input parameters control fre-
quency at which output is taken by each method. In each case the minimum
time, time increment, and maximum time at which each type of output is re-

quired must be specified.

This is accomplished as follows: For the Binary Tape Dump, three input
variables are provided, called TMIND, TDUMP, AND TMAXD. At each cycle a test
is made to determine if the time t 1is greater than TMIND. On the first cycle
on which t exceeds TMIND, the tape dump is called. Subsequent tests are made
on TMIND + TDUMP, so that the second dump occurs after a further time equal
to TDUMP, This is repeated adding TDUMP to the test time after each dump, so
that the dump is called at time intervals TDUMP until TMAXD is exceeded, where-
after the tape dump is not called. If the output is to be inhibited, TMIND
can be made larger than the maximum time in the program TMAX. If the output
is to be called every cycle, TMIND and TDUMP can be set equal to zero.

Exactly similar methods are used for calling the standard edit (via TMINP, TPRINT,
and TMAXP) the output routine OUTPUT (via TMINPS, TPRINTS, and TMAXPS) and the
output routine OUTL (via TMINPL, TPRINTL and TMAXPL).

In addition, a variety of messages and diagnostics are printed on the
standard output medium during the computation, such as information concerning
the occurrence or rejoining of fractures, overflow, occurrence of energy
errors, normal exit, etc. Most messages include the mesh number, cycle, and
time at which they were printed, and should be self-explanatory. For detailed
information concerning origin of error messages, refer to the program listings

and flow charts.
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7.1 Binary Tape Dump

The primary output is via binary tape, which is written on logical
tape unit 20. This tape may be used for subsequent plotting, listing,
and tape storage of the results. The binary dump tape also contains

sufficient information to restart the problem. (See Section 7.&)

The primary information on the dump tape is the STORE array, i.e.,
all quantities in the overlaid arrays in which values of x, u, 7, 0, q,
n, p, my &, and ¢ and any additional variables are stored. (See Section
6.1) Also contained on the dump tape is information concerning fractures
stored in TABLE and ITABLE, (See Section 6.3)

Each time the binary dump tape is written, a message appears on the
standard output medium giving the cycle number, time, time step, and number
of meshes written on the tape. If fractures have occurred, their mesh mumbers
are listed. If fractures have rejoined, their mesh numbers are also listed,

This information is needed to restart the problem.

T.2 Standard Edit

Standard edit is written on logical tape unit 21 in B. C. D. by the
main program and may be listed directly on a printer or the SC 4L(20. An
input indicator Wi4020 should be set equal to 1. If only a small amount
of printed output is required, the output may be put onto the standard out-
put medium by equivalencing logical tape unit 21 to the standard output unit.
In this case WhO20 should be set equal to O to prevent duplication of error

and input messages.
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The primary information in the standard edit is the values of the
following arrays at each mesh point: x, u, 0,5, n, q, £, and ¢. 1In
addition, the cycle number, time, and time increment are printed. At
the end of the edit are printed the energy sums described in Sections 8.1
and values of x and u at the left-hand sides of any fractures. The
edit is also called initially to check that the problem has been correctly

set up, and when the problem terminates for any reason.

7.3 Special Printed Output and Plotting

Two special outuvut subroutines OUTPUT and OUTL are provided waicu
may be used to obtain information not contained in the standard edit.
Since output requirements vary greatly depending on the problem, it
is expected that these subroutines will be written as required. They may
be written to print information not contained in the standard clitc, to
write binary data tapes for subsequent computations or for input to sub-
sequent plotting programs, or they may be programmed to prepare plots
directly. The special array ADDATA; which can be read as input, may be
used to communicate with these subroutines.

OUTPUT is called at the completion of a cycle when all of the storage
arrays overlaid in STORE have been advanced. It is chiefly useful fof
printing selected information in the storage arrays at more frequent -
intervals than the standard edit, or for writing selected information in
the storage arrays on a binary tape for subsequent plotting. Calculations

may be performed on the data before printing or writing.

A typical example of the use of OUTPUT is to print values of the

principal stresses
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Ty = 3.‘ _1/3
ntl B4l
3 = 3 +
' - P (7.1)
n+l n+l n+l
o) = 20 + ¢ - 3p
z s -2 $ -1 3§ -y

(taken positive in compression) and position

(1.2)

at a selected number of meshes at every cycle after some specified time.
Another typical example is to write the three stresses above on a binary
output tape at one or more particular meshes at every cycle for subsequent
plotting of stress versus time by means of a suitable plot program., Alterna-
tively, quantities could be written on tape at every mesh for one or more

time cycles for subsequent piotting of stress versus position. The OUTPUT

7n+1 +1

j=12

subroutine included in the listings writes and X at each mesh
J

on binary tape whenever the routine is called, together with the cycle
number and time. The output from this subroutine is written on logical

tape unit 23.

OUTL is called at the completion of each mesh calculation, providing
that the cycle is one specified by input varisbles TMINPL, TPRINTL, and
TMAXPL. At this stage of the calculation, intermediate quantities not stored
in arrays are available. Thus, OUTL may be used to print or write on binary
tape such gquantities as

(& 2

5_tp)) fl)fewa:T:fy:Y;dd) ed

lal
X
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et ste. at selected times and meshes. It is also possible to perform

0

calculations on the data before writing or printing. As an example, it
is possible to compute the plastic work per unit mass done in a given

mesh in a given cycle by

n+l2 f T oe 2 -
Yy (\/3 v 2y ) (7.3)
-2 n+l2 n+l n A
G () + 0 > £ £y
2

Yy
[T -1 J - 3=
and to print this quantity at selected meshes and time cycles.

It is more efficient to use OUTPUT to print or write quantities
contained in the storage arrays, since OUTPUT is called only once per
cycle, while OUTL is called at each mesh calculation. However, it is
sometimes convenient to use OUTL to write quantities such as stress on
tape at selected meshes on each time cycle for subsequent plotting
versus time, if OUTPUT is being used to write quantities such as stress
at each mesh at selected times for subsequent plotting versus position.

n+l
The OUTL subroutine included in the listings writes = at up to

§-1/2
seven mesh numbers at each time cycle specified by the input. These
mesh numbers are specified in the input as ADDATA (L to 7). The output

from this routine is written on logical tape unit 22,

While plotting routines may be programmed directly into the sub-
routines OUTPUT and OUTL, it is generally more desirable to have these
subroutines write a binary data tape which can then be processed by a
separate plotting program. If desired, the plotting program can be

submitted as the next program after WONDY in the program batch, so that

there is no delay in plotting. Since systems subroutines and hardware
to accomplish plotting vary greatly, no plotting programs are included
nere. They must be written as required.
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7.4 Restart Feature

The binary dump tape contains sufficient information to restart the
problem. The tape must be equipped to logical tape unit 25. The input
variable JTAPE is used to signal that the run is to be restarted from a dump
tape. If JTAPE is non-zero, the calculation will be restarted from the dump

tape.

For s normal restart the same input cards must be used with the follow-
ing changes:

1) JTAPE must be set to the number of meshes on tape; NSTART must be
set to the cycle number at which the calculation is to be restarted. Both
these quantities will be included in the dump message on the original run.

2) If fractures have occurred, their mesh numbers must be entered in
QMESH. If fractures have rejoined, their mesh numbers must be entered in
PMESH. These are listed in the dump message. The number of fractures NOQM
in the list QMESH, and the number of rejoined fractures NOPM in the list PMESH,
nust also be entered.

3) It may be necessary to change the maximum time TMAX and the quantities
specifying times at which output are required. Output must not be requested

at times prior to the restart time. This may require changes in TMIND, TMINP,

TMINPS, and TMINPL,

Under certain conditions it is possible to change the prcblem slightly
when restarting. To give an example of how this may be done, consider a plate
impact problem in which the first layer of material has a positive velocity

and the second layer has a zero velocity. The problem is run to a stage where
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the shock wave originating from the interface has not yet reached the right-
hand boundary of the second layer. At this stage a number of meshes adjacent
to the right-hand boundary have not yet undergone any motion and are uncompressed,
If a dump is taken at this stage and the problem is restarted, it is possible
to add more meshes beyond the original right-hand boundary by suitably altering
the input data. This feature is particularly useful when a parametric study

is involved in which, say, a third material layer is to be added and the
effects of the thickness or composition of this layer are to be investigated.
It is unnecessary to rerun the first part of the problem which is unchanged.
Very great care is necessary to ensure that changes are made only in or beyond
undisturbed meshes. Under no circumstances may changes be made in meshes

which have already undergone motion or compression.

It is possible under certain circumstances to use the restart feature to
introduce complex initial conditions not allowed for in the present version
of GENERATE. A binary tape may be prepared from a suitable program written
for the purpose, with quantities in correct sequence, to initialize values
of the storage arrays overlaid in STORE and values in TABLE and ITABLE. Very
great care must be exercised to ensure that the information on tape is com-
patible with the input on cards. Also very great care must be exercised to
ensure that the values of x, u, 7, p, 9, ¥, p, m, &€, ¢, and any additional
variagbles are completely compatible with each other and with the equation of
state which is to be used. If these values are not completely compatible,

totally false results will be obtained.
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8. ERROR CHECKS

A number of features are included which permit checking for errors or
to speed up the computation, and in some cases, to halt the calculation if

errors become serious. These are described below,

8.1 Energy and Momentum Checks

The mass M in a mesh can be related to m given by (2.11) by

Mrl/z = k! m,—w (8'1)
where k! = 1 for a = 1
k' = T for a = 2
k! = %-n for a = 3

Note that m is not the mass in a mesh except in the rectangular caseqa = 1.
The momentum in a mesh may be written in finite difference form, within the

factor k', as

o +1f2 1 n+l/2 ,,+1/a) o
Hy-v2 = 5 my-1/2 (u, + uy-1 (6.2)
The kinetic energy in a mesh is given within the factor k', as
n+l/3 1 n+1/2 n+1/2)2
K,-1/2 = el my-1/a (u, + uy-1 (8.3)
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while the internal energy in a mesh is given, within the factor k', as

n+lf
Ey-1e

[}

n+tl n
1 my-ys (C,_yg + bj_ug> (B.4)

Tnese quantities (8.2), (8.3), and (8.4) are computed at each mesh and
could be called out in the special printed output, if desired. Various sums

over specified numbers of meshes are also occasionally of interest.

It is possible to check whether momentum and energy are conserved during

the calculation. In particular, for the momentum

atl/2
k' E Hy-1k = Constant (8.9)

This sum is computed initially from the input data (HTOT). It is subsequently
computed on each cycle (HT). A test is made to see if momentum is conserved
by testing if

|lgr - mror| > xm (8.6)

where KH is the allowable momentum error and is specified as an input variable.
If this error is exceeded, the computation is terminated, an error message is
printed, and standard printed output is initiated. If no value is inserted

for Ki, read as zero, a vaelue of 1d°° is used to defeat this test.

The energy balance is more difficult since energy may be added by energy
sources (AQ%-MS in (h.25)) or by work done on boundaries by an applied load
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(in subroutine BOUNDARY). The sum of kinetic and internal energy over all

meshes 1is
haxt 1
atl/e atl2 a+l3
Esun = k' Z <K3—l/2 + E:-l,/2> (8-7)
j=2

This sum is computed initially from the input data (ETOT). It is subse-
quently computed on each cycle (ET). 1In addition, if energy sources exist,
these must be computed and stored in one of the additional storage arrays
available in STORE. The energy added by these energy sources in each cycle
must be summed over all the meshes and the result stored in SUMQE. This
calculation can be done in the equation of state subroutine (see Section 6.7).
If a load is applied to either the left-hand or right-hand boundary, the

work done in each cycle must be computed and stored in WL or WR for the
left-hand and right-hand boundary, respectively. This calculation can be

done in the BOUNDARY subroutine (see Section 6.2).

A check is then made to determine if energy is conserved by testing if

2 KE (8.8)

ET - ‘ETOI‘ + { (SUMGE + WL + WR)|

where KE is the allowable energy error and is specified as an input variable.
If this error is exceeded, the computation is terminated, and an error
message is printed, and standard printed output is initiated. If no value
is inserted for KE, read as zero, a value of 10°° is used to defeat

this test.
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The total energy, kinetic energy, internal energy, and momentum summed

over all meshes is printed in the standard printed ocutput, as is the energy

error and momentum error.

Occasionally when complex energy sources or boundary loads are used for
experimental runs, it is convenient to omit calculation of SUMQE, WL, and WR.
The value of the energy error then indicates the amount of energy added from
these sources since the beginning of the problem. The value of KE must be

set to zero or a very large number to circumvent the energy check in this case.

The energy and momentum checks are very valuable in halting the computa-

tion if an error occurs and should normally be used.

8.2 Overflow Test

When instabilities occur, oscillations usually grow exponentially with
time until overflow occurs in the computer. If the problem is terminated
due to overflow, an abnormal exit occurs and no diagnostics are possible.

For this reason an overflow test is incorporated., If the stress g in any
mesh exceeds a maximum pressure ¢,,, which is an input variable, the compu-
tation is terminated and a standard printed output is initiated together with

an error message.

8.3 Activity Test

In many problems the motion initiates at or near the left-hand boundary.
For a significant portion of the calculation, a large number of meshes may be

inactive. In order to save computer time, an activity test is incorporated.
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A quantity LACT is provided in tae input. The computation is performed
normally from j = 1 to J = LACT. If the value of 0 in the last mesh to be
computed, i.e., j = LACT, is less than a quantity SIGMAACT which is also an
input variable, the computation is interrupted and advanced to the next time
cycle. However, if 7 is greater than SIGMAACT, then LACT is advanced by

one and the computation is advanced normelly.

Thus, meshes are activated as needed as a pulse propagates from left to
right. The value of LACT should be specified in the input to be greater
than any mesh number at which motion is expected in the first few cycles.
To give an example of its use, consider a plate impact problem in which the
first layer has a positive velocity, while the second layer has a zero velocity.
Then LACT is given an integer value greater than the interface mesh number
by, say 5. As the shock initiated at the interface moves to the right into

the second layer, meshes are progressively activated just ahead of the shock.

The value of SIGMAACT should be a little greater than possible roundoff
or spurious oscillations. Since considerable care has been taken to eliminate

roundoff, SIGMAACT can be set to zero.

Note that meshes are activated from left to right. Under no circumstances
must LACT be less than jiax + 2 unless it is absolutely certain that no dis-

turbances originate in the non-active region.

When a standard printed ocutput is called, only the active meshes will be

printed.
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APPENDIX A
Stability of the Difference Equations

R. J. Thompson

It is well known that when partial differential equations are replaced
by difference equations, stability problems may arise, If the difference
equations are not stable small rounding errors which occur in the computa-
tion are eventually magnified to such an extent that the computation becomes
meaningless., In order to have a stable difference scheme, it is often neces-
sary to place a restriction on the size of the time step.*

The purpose of this Appendix is to derive the stability criterion which
is used in program WONDY. The program will accept such a wide variety of
problems that it appears impossible to carry out a stability analysis which
will cover every conceivable situation, On the other hand, it is impractical,
if not impossible, to carry out separate stability analyses for each class
of problems which the program will accept, In this Appendix an analysis will
be made for a particular class of problems, The class is simple enough to be
analysed. Nevertheless, it is a large class and incorporates many of the
important features of the larger class of problems which can be studied with
WONDY, Experience with the program indicates that the stability criterion
works well with the larger class of problems,

L
The stability condition will place a restriction on the size of Atn+2.

e n+’ n=%
In the derivation it is assumed that At = At

and their common value
will be denoted by At. In rectangular coordintes the equations (2,7) and

(2.8) combine to give

* A rather thorough discussion of stability questions can be found in

R. D, Richtmyer (1957)°,
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B B n n
s+l/2 a-1/2 (Py-1,2 + G4o1/2) = /3 * d44a/2)
u - u + ZAt{ i S - (1)

J 3 -3 - [y
Pyar/2(Xys1 - Xy) + p,-l/g(x, - x‘_,)

Here it hac been assumed that the stress deviators are negligible so that
¢ = p. (See Sec. 4,3 for a discussion of this case.) Equations (2.10)

aad (2.11) combine to give

B+l P ax .
Py-1/2 = T+l B+l (:.2)
Xy T Xyl
where it has been assumed that the initial density p° is coastant and
o )

that the mesh spaciag is initially uniform so that x; - x,.; is a con-

staat £x, Using (#2) in (..1) one obtains

n+l/2 n-1/2 n n n n
Uy = uy + K(py_1/2 = Pysr/2 + 9y-1/2 - dy41/2) (-+3)
Lt . Loaay s
where X = . Puttiag (2.12) into (3.4) one gets
p° Lx
n+l v . B4l n
Qy-1/2 = 0 if py-1/a3 = P3-1/=2
(-:4)
2( n+} a
o+l D+l R+l Pi=1/2 = Pi-1/2)
= Ps=1/2 { Balxy = xy) C:-1/a 2+1 T (2
Ot(py=1/a + p:-l/z)

( a4+l 2
n+l1 a+l. “\Dy-1/2 = py-1/2
+ BI(X’ - x’_l)

21 2 otherwise,
£ePy=y/a + Pyoyya)
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The pressure p is assumed to depend only on the density so the

v

equation of state (4,28) becomes p = f(p). In the computation this becomes

B+l a2+

1
Pj-1/2 = f(p:_l/s) (a5)

Equation (2.9) will also be used aid is listeu here for convenience:

a4+l n n+x/2
3 =x’+Atu’

(A6)

! X

The specific volume v = 1/p is more convenient to work with than
the density. In what follows it will be assumed that the computed values
of p are positive. Heuristic arguments can be made in support of this.
In any case negative values for p are physically meaningless. In terms

of v equation (A2) can be writ:en

A+l n+ld

n+l X, = Xy

v = ———
I=1/3 o

and, with the aid of (A6), this becomes

n4l n l+l/2 n+1/3
Vioi/a = v:—x/a + K(u‘ - uy, (a?)
(45) becomes
o+l B4+l
Pi-1/a = 8(Vy-y,2) (48)

where g(z) = £(1/z).

(A4) can be written

n+l n n+l ‘
8y-1/e = Vyey 2 = Vynyys) (49)
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. 2 1ng4l n n,l
Bac, . /2 Bl Vior/e \Vymiya” Vini/2

where ¢ = ; o+l n D41 2
« Vicy/z T Vg2 < MEVEREYE
2 2
n B4l
if vj—l/z > VJ-I/E
a =0 otherwise.

Equations (..3), (&7), (..8), and (a9) are the equatioas which
will be analyzed. They prescribe how u, v, p, and g are to be computed at
the (n+1)'t time step when their values at the nth time step are known,

For lineuar equations with constant coefficients techniques for
makiag a stability analysis can be found in Richtnyer's book.® For
more complicated situations where it may be impossible to make a rigor-
ous stability analysis he suggests replacing the equations by analogous
equations which can be analyzed. The result provides at least a tenta-
tive stability criterion which can be tested with the original system
of equations.

{A3) and (A7) are linear equations with constant coefficients
if the ratio At/Ax is fixed. The other two are not; however they caa be |
replaced by related equations which are linear, 1If o is regarded as
a constant then (A9) becomes a linear equation. (A8) is replaced by

a linear equation with the aid of Taylor's expaasion:

n+1l n LI | nsl )
Py=1/2 = Py-1/2 * & Vyor/2(Vylije + Vyoy/2)

Now n N
1 n ' pj-l 2 cJ—l/S =

g Vyi/2 = -f —-;—L—z- =
(vyo1/2) Vi-1/2

where ¢ is the speed of sound, see (4.8) and (4.7).
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Hence equation (A8) is replaced by

4l | ) el ]
Pyoi/a = Pyaa/a ” N(V,_l/g - Vio1/s) (410)

a n )
where N = (cy_,/3/v;_1/2) . If N and o are regarded as constants, the
equations (a3), (A7), (A9), and (Al0) can be analyzed by the techniques
discussed in Richtmyer's book®., The so-called amplification matrices

can easily be found, They are given by

(1 0 i1 -ir]
it 1 7 7
G(At,k) = ?
-airt 0 -a®  -ar
-NiT 0 N7 1-N7* |
kix —
where T = 2K sin-z— and { = ,~~1 . The eigenvalues )\ of G satisfy the

equation

D= [O-D2+ 7P +N(L-1) ++¥N] =0

The von Neumann criterion for stability is satisfied if |x| < 1 for all
the roots for each integer k if At is sufficiently small, A = 0 and A =1

are roots, and the other roots are given by

_1-ParN ¢ S[Par N - 4PN
2

Since g and N are both nonnegative, it can be shown that |1| £1 if and

only if
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kix

#(x + N) <4 or 4K*(20 + N) sin” === < 4.
This must hold for every integer k for all Ix sufficiently small, so

the stability condition becomes K°(2q + N) s 1.

Now, using (a7), a can be written

Y @ | P
Bacyoi/z B Vy-i/a | u |
a = * + ey if bu <O
Kv Kv
= 0 otherwise
where B+l 2
* Vi-i/z T Vyoa/2
v = 2 N
and
n+l/2 n+1/2
AU = UJ - U’_l .

Substituting g in N into the stability condition one obtains

2
2Bzc 2Bl v[&ul 2
K * + s + K—; <1
\'% v v

B n a+l
where ¢ = Cy_y/3 , V = V4 /2 , and Vie1/2 has been approximated by v.

Since K 2 0, the inequality ic satisfied if and only if

1
1

2 2

Byc Blvlﬂul Bgzc Blv[Aul o2
x T . N\t Ts

v v v v

K =
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v

*
If v 1is approximated by v, this can be written

° fxv

ot s

=)
Bzc + BflAu' +\/kB,c + BTIAu|)3+ cz

a2 -3
Finally, using (A2), pOAxvl_i/a = Xy = X;_; 80 the stability con-

dition can be written

B n
Xy - X4

At <

2 2 3 3’
Boc + B |ou] + qéBzc + B [bu]) +c
This is the condition when Au < O, When Ou 2 0 the artificial viscosity

is zero and the stability coudition becomes

x‘ - X"_l
At S mem——cn——

This is the classical stability condition for the equations of hydro-
dynamicg. It says that At must be small enough that a disturbance cannot
propagate from one mesh point to another in time At,

The Au which appears in the stability criterion is, by definition,

ael /2 n4l/2
uy - Uy . Since this quantity is not available until At has

a-1/2
been chosen, Au is approximated by Uj-1/a »
In the actual computation the stability criterion is evaluated

for each j. The At used to advance to the next time step is chosen to

be at least as small as the minimum of these,
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APFENDIX B

- LIST OF SUBROUTINES AND TAPE UNITS -

These subroutines must be supplied whenever the program is run.

WONDY
GENERATE
MORSTORE
BOUNDARY
JLOOPING
MOTION
STATEL
STATLEZ2
STATES
STATEN
STATES
STATEG
OUTPUT

OUTL

Main Program.

Reads Input and Initializes Arrays.
Initializes Extra Arrays - May Be Dummy.
Handles Special Boundary - May Be Dummy.
Handles Logic to Advance Through Meshes.

Computes Conservation of Mass and Momentum.

Compute Equations cof State - Up to 5 May Be Dummies.

Handles Special Output. - May be Dummy

Handles Special Output - May Be Dummy.



These logical tape units must be defined whenever the program is run.

20

21

22

23

Dump on binary tape, includes: N, T, DELT(1),
DELT(4), (ITABLE(K), TABLE(1,K), TABLE(2,K),
K=1,20), (STORE(J), J=1,JM)

3

Wnere JM=(LMAX+1)*NVAR.

Restart on binary tape, using same order of

information as Tape 20.

BCD Tape of all regular output, including listing
of input data, error messages, and information
normally written in the normal edit. This tape

may be equivalenced to the system output medium.

BCD or Binary Tape of all information written in

the sample Subroutine OUTL,

BCD or Binary Tape of all information written in

the Sample Subroutine OUTPUT.
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VARIABLES IN COMMON

Fortran Name

APPENDIX ¢

GLOSSARY OF VARIABLE NAMES

A
ADDATA (14)
Bl

Bll

B2

B22

CAPE

CAPH

CAPK
c(31000)
CES(L2,20)
DELE
DELFRHO
DELRJ
DELT(4)
DELTAX(20)
DELXJ

DEP

76

Descrigtion

n
a,

n+l/2
HJ—I/Q
at¥y2
Ky-1e

n
CJ—],/2

acceleration

dummy array for additional input data
quadratic viscosity coefficient

L BS +1

linear viscosity coefficient

2B, +1

internal energy

momentum

kinetic energy

sound speed

equation of state constants per plate

A€

Ap /2p”
n+l n n+l n
2<°.1-1/2 - 01-1/3>/<DJ'U2 + Orl/2>
a1z n-1/2 n+l/2 n+y2

At ; 4t 5 Aty-y2 At

initial mesh size per plate

at+l a+l

XJ - XJ-l
n+1fe

4t tdep




Fortran Name

E(31000)
El |
EERROR
ET

ETOT

EXIT
EZER0(20)
GOIND
HERROR
HT

HTOT

IND
ITABLE (50)
J

JONE

JTAPE

KM(3)

KT1

Description

internal energy

latest calculation of E(J)

energy error, ET-ETOT

total present energy

total initial energy plus added energy
exit indicator

initial energy in each mesh per plate
computed go to index in MOTION
momentum error, HT-HTOT

total present momentum

total initial momentum

indicates an interface

storage for mesh numbers at fractures
index for STORE arrays

indicates first mesh

number of data in STORE on tape

index for TABLE array

shutoff value for energy error
shutoff value for momentum error
symmetry constants 1; m; %'n

time constant in stability criterion
maximum increase in time step per cycle

mesh number
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Fortran Name

Type Description

LACT
IHBT
LMAX
LPHA

M(31000)

NIL
NUL

NOAD
NOMESHES(20)
NONE

NOP

NOPM

NOQM

NSTART

NTWO

NVAR
P(31000)

Pl

PFRACT(3100)

PHI(31000)
PHIZERO(20)

PLATE
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R mJ—l/Z

R pJ—l/;%
n+l

R Py-y=

R ‘:pJ—l/E

activity test

left-nand boundary type

maximum number of meshes -1

symmetry coefficient

mesh constant

¢ycle number

not used

not used

number of addition data on Card 8
number of meshes per plate

indicates first cycle

mumber of plates

number of PMESH on Card 4

number of QMESH on Card 3

restart from dump tape at this cycle
indicates first cycle after restart
number of variables in STORE array 2 10
pressure

latest calculation of P(J)

indicates fracture which has rejoined
difference in principal stresses
initial value of 2

indicates plate number



Fortran Name T@e Descrigtion

pMESH(50) I mesh number for fracture which has rejoined
PRINTL I indicates call QUTL

PRINTR I indicates call editing

PRINTS I indicates call QUTPUT

PZERO(20) R initial pressure in each mesh per plate
Q(31000) R q:—l/z artificial viscosity

Q1 R ql;ji/a latest calculation of Q(J)
QFRACT(3100) L indicates fracture

QMESH(50) I mesh number for fracture

RIBT I right-hand boundary type

RH0(31000) R p,;—l/a density

RHO1 R p:ti/e latest calculation for RHO(J)

RHODOT R p/p

RHOZERO(20) R initial density of each mesh per plate
SIGMA(31000) R o::i/b stress

SIGMAACT R stress used in activity test
SIGMAF(20) R fracture stress per plate

SIGMAIF(20) R fracture stress at interface

SIGMAL R left boundary stress

SIGMAMAX R maximum stress

SIGMAP R 0:-1/2 previous stress

SIGMAR R right boundary stress

SIGMASEP R separation stress

SIGZERO(20) R initiel stress in each mesh per plate
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Fortran Name

STATE(20)

STORE(31100)

SULH

SUMIE

SUMKE

SUMQE

T

TABLE(2,50)

TDEP
TDUMP
TITLE(10)
TMAX
TMAXD
TMAXP
TMAXPL
TMAXPS
TMIND
TMINP
TMINPL
TMINPS
TPRINT

TPRINTL

TPRINT S

U(31000)
Ul
UZERO(20)
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Description

n- 12

o
u ; 12

equation of state type per plate

STORE array in BANK 1

total momentum

total internal energy

total kinetic energy

total energy sources

time

storage of U and X at fractures

time duration of energy sources

time interval between dumps

title of run

maxirum time

time of last dump

time of last edit

time oflast special output via OUTL
time of last special output via OUTPUT
time of first dump

time of first edit

time of first special output via OUTL
time of first special output via OUTPUT
time interval between edits

time interval between special output
via OUTL

time interval between special output
via OUTPUT

velocity
latest calculation of U(J)

initial velocity per plate




Fortran Name Type Description

UZEROI(20) R initial velocity at interface

WL Q20 indicates write tape 21

WL R work at left boundary

WR R work at right boundary

X(31000) R xj position of mesh boundary

X1 R x:+l latest calculation of X(J)

Xp R x:-l former position of previous mesh
XGAP (20) R initial distance between plates
XRATIO(20) R ratio between successive mesh sizes
XZERO R initial position of left boundary
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VARIABLES IN JLOOPING ONLY

Fortran Name Type

LOR I
PHIE R
QE R
RHOE R
SIGMAA R
SIGMAE R
TEST R
UE R
XE R
XPE R

Description

mesh on right interface of plate
temporary storage of p at a fracture
temporary storage of q at a fracture
temporary storage of p at a fracture
average stress

temporary storage of ¢ at a fracture
test stress for fractures

temporary storage of u at a fracture
temporary storage of x at a fracture

temporary storage of XP at a fracture




VARIABLES IN STATE1 (HVEP) ONLY:

Fortran Name Type Description
A R 1
AP R & intermediate quantities
B R in vapor equation
BP R J
DEP * R Atﬁl/z/Tdep
DX dd, stretching deviator
DZ R d: stretching deviator
‘ n*tl

ETA R n 1 -po/0;-12

2+l a
ETAl R n' 1- 29../(01-1/2 + o,—l/z)
ETAP R intermediate quantity in sums
F1 R hi
F2 R fa
FP1 R I
Fp2 R /2
G R G shear modulus
GAMMA R T Grueneisen ratio
GAMMAP R ar*/dn
GCONST(20) R (L -2v)/(2 - 2v)
KCONST(20) R 3(0 -v)/(1 + V)
MU R " 0/pe -1
NCONST (20) R (o )?/(T,E5)

PE R temporary storage for Pl



Fortran Name

PH
PHP

QDEP

RTMU
SPEC(31000)*
SUMDEP*

SUMG

SUMGAM
SUMGAP

SUMPH

SUMPHP

TX

TXP

TZ

Y

YIELDF

Description

Bu
dp, /dn

AQJ‘I/Z

Ox

Oz

Ty

reference pressure

energy source strength

JaF T

special array for energy sources

LDEP =1

intermediate quantities in

polynomial expansions

stress deviator

stress deviator of previocus cycle

stress deviator

flow stress

yield function

* These quantities used only with Energy Absorption Program
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in MORSTORE.




Normal Input Cards

APPENDIX D

INPUT INSTRUCTIONS

CARD 1 FORMAT(10A8)

TITLE -

date, run title, run nmumber,

CARD 2 FORMAT(1415)

NOP -

NVAR -

RHBT -
LACT -

JTAPE* -

NSTART* -

NOP M* -

Symmetry Coefficient

1 rectangular symmetry
2 cylindrical symmetry
3 spherical symmetry

number of layers, maximum of 20,

mumber of variables in STORE array, normally 1O.
(LOSNVARS100. )

left~hand boundary type

1 fixed boundary
2 free boundary
3 calls SUBROUTINE BOUNDARY

right-hand boundary type, same as above,

mesh number to begin activity test,

mumber of words of STORE to be read in from & binary
dump tape for restart. Set to zero if not restarting

from tape.

cycle mumber to be read in from a binary dump tape
for restart.

mumber of QMESH data to be read in, maximum of 50.
If zero, omit CARD 3.

mumber of PMESH data to be read in, maximum of 50.
If zero, omit CARD 4,

*Jsed for restarting from binary dump tape only. If not restarting

from tape, set to

zero,
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NQAD

WLo2o

NIL
NUL

number of ADDATA data to be read in, maximum of 14,
If zero, omit CARD 9.

0 if equivalencing unit 21 to 6l.
1 if writing output on user tape 21.

set
set

inon

- not used, but included for user's convenience

for including additional input indicators.

I FORMAT(1415)

QMESH

mesh numbers where there are fractures.
Omit CARD 3 if NOQM = O.

b* FORMAT(1415)

PMESH - mesh mumbers where fractures have rejoined.
Omit CARD 4 if NOPM = O.

5 FORMAT(T7E10.3)

XZERO - initial position of the left boundary.

Bl - quadratic viscosity coefficient, usually 2.0,

B2 - linear viscosity coefficient, usually O.1.

KE - energy error, if exceeded - program calls exit.
Set = 0 to avoid using this feature,

SIGMAACT - activity is tested for this value of stress.
If stress is less than SIGMAACT at a mesh, further
meshes are not computed for that time cycle.

SIGMAMAX - maximum stress, if exceeded - program calls exit.

SIGMASEP - separation stress for a mesh which has already
fractured, set equal to roundoff of SIGMA.

6 FORMAT(TE10.3)

KT1 - constant used in stability criterion, usually 1.0.

KT2 - maximum allowable increase in time step,

usually 1.1 or 1.2.

~ *If there are more than 14 of these quantities, use more cards.



TMAX - meximum time, program has "normal exit" when this
is exceeded. ‘

TMIND - the time to write the first binary dump on tape 20.
Set greater than TMAX if tape is not desired.

TDUMP - the time increment for additional bihary dumps on
tape 20. Set to 0.0 to dump every time cycle.

TMAXD - the time of the last binary dump on tape 20.

DELT (&) - maximum initial time step.

CARD 7 FORMAT(7E10.3)

TMINP - the first time to call EDIT. Set greater than TMAX

to avoid calling EDIT.

TPRINT - the time increment for additional calls to EDIT.
SET = 0.0 to call EDIT every time cycle.

TMAXP - the final time to call EDIT.

TMINPS

TPRINTS - same as above, for OUTPUT

TMAXPS

KH - momentum error, if exceeded - program calls exit.

Set = O to avoid using this feature.
CARD 8 FORMAT(7E10.3) |
TMINPL
TPRINTL - - same as card T, for OUTL
TMAXPL )

CARD 9* FORMAT(TE10.3)

ADDATA Af'aQQitidhaludapg may be added here. This array may be
used for input to subroutines BOUNDARY, OUTPUT, OUTL

Omit CARD 9 if NCAD = O.

* If there are more than T of these quantities, use as many cards as required.
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For Layer 1:

CARD 10 FORMAT(7E10.3)

NOMESHES - number of meshes in- this layer.

STATE o= indicator for equatlon of state to be used for this
layer. 5 S

DELTAX - initial mesh size for this layer.

XRATIO - ratio of successive mesh sizes, Set-=1.0
for constant mesh size. ‘

XGAP - distance between right boundary of this layer and

’ left boundary of the next: Set = 0.0 if no gap

is desired. . :

UZERO - initial velocity for this layer.

UZEROI - initial velocity of interface between thls layer

and the next to the right

CARD 11 FORMAT(T7E10.3)

RHOZERO - injtial density in this layer.

PZERO - initial pressure in this layer.

SIGZERO - initial stress in this layer

EZERO - initial energy in this layer.

PHIZERO -~ initial value of ™ in this layer.

SIGMAF - fracture stress in this layer.
\SIGMAIF ) - fracture stress at interface between this layer

and the next to the right.
CARDS 12 - 16 FORMAT(TE10.3)

CES - equation of state constants for this layer.
There are 35 of these constants.

REPEAT CARDS 10 THROUGH 16 FOR EACH ADDITIONAL LAYER.
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11.
| 12.
13,
1k,
15.
16.
17.
18.
19.
20.

21.

Po

Co

Tata

H=vy-l*

NOK +

NCH +

EQUATION OF STATE CONSTANTS FOR HVEP

- density of uncompressed material

- bulk sound speed of uncompressed material
- energy of sublimation

- minimum stress

- must be left blank; used internally

- Poisson's ratio

- where y = ratio of specific heats of distended vapor

- mumber of K constants, including K,

- must be left blank; computed internally from co, p,

( if NOK = 0, s appears here )

- number of H constants, including [,

(if NOH = 1, T =1, )

* To suppress vaporization, set H = O,

t For linear elastic material, set NOK = NOH = 1 NOG

I

i}
O

NOY

H
n
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28
29.

30.

31.
32.
33.
34,
35.

NOG*

gs

NOY*

Y2

- number of G constants, "including G,
- must be left blank; computed internally from co, Vv

(if NOG = O, G is computed from K and v internally)

- if NOY = O, the material is a fluid with zero strength
- initial yield 1f NOY = 1, Y is constant at Y,
if NOY = 2, yield strength is infinite
if NOY = 3, yield strength varies
- rate of increase of yield with compression. Use with NOY = 3

- energy at which the yield strength vanishes. Use with NOY = 3

*¥For linear elastic material, set NOK = NOH = 1, NOG
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1. 9
2. Cy
3. v

L, D

5. Xp
6. Bs
7. to 35.
1. "o
2. Cp
3. v

k, to 35.

EQUATION OF STATE CONSTANTS FOR HE

- density of solid explosive
-~ initial sound speed

- ratio of specific heats

- detonation wave velocity

- detonation point

- wave width constant

- not used

EQUATION OF STATE CONSTANTS FOR GAS

initial density

initial sound speed

ratio of specific heats

not used
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special Input Read by MORSTORE

The following cards follow the normal input cards.

card 17 FORMAT(ELO.3)
TDEP - deposition time -in seconds
CARD 18% FORMAT(7E10.3)

SPECZERO(PLATE) PILATE = 1, NOP

- energy deposited per mesh for each material layer

*If there are more than 7 layers,additional cards may be used.
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APPENDIX E

FLOW CHARTS
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PROGRAM
WONDY

Initialize
TABLE

Call
GENERATE

Call
MORSTORE

NVAR> 10

Compute

Viscosity
Coefficients

Read
Binary Tape

NSTART

Compute

Initigl Time Step

Initial Energy Sums
Initial Momentum Sum

Begin
Time Loop

Initiglize
Energy Sums
Momentum Sum

Iy

Set Print
Indicators

Go To
1010

94

Coll
JLOOPING

Check for
Momentum Error
and
Enérgy Error

'

Check for

Maximum

Time

. Print
€s Standard
Editing

Yo
No
n :
No

Call
QUTPUT

Time 1o Write
write a Binary Binary Tape
Dump Tape

No



QFRACTI(L)

Fracture

Normal
Meshes

Call
MOTION

Yes

QFRACTIL) =

Print
New Fracture
Message

Store
U, X in
TABLE

Advance
PLATE,LOR

Routine

!

Find New Position
at Right Hand Side
of Fracture

Y

Find New Position
at Left Hand Side

of Fracture

Surfaces
Collide

QFRACT(L)=0
PFRACT (L) =!I

Print
Collision
Message

Recompute
Ui, Xi

Catl
MESHES

Stor¢
ul, Xt in
TABLE
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Subroutine

STATE |

Compute
ETA

Compute
o G,Y
Set Compute
PHI(J) =0 PHI(J)
Compute
GAMMA
GAMMAP
ETA<O Yes - Vapor
H> 0O
No J
Compute
Hydro A, AP Initialize
4 B, B8P Ko, Go, Y,
Fi, FPI
Compute F2, FP2 ‘
PH, PHP
Fi, FPI Compute
F2, FP2 6 CONST
K CONST
N CONST
Compute
Ei, Pi
SIGMA |
C(J)
1
Advance
E(J), P(J)

SIGMA ()




Subroutine
GENERATE

Reod
input Dato

Print

input Data

Compute

LMAX

}

Initiglize
Fracture
Indicators

¥

Generate

Storage
Arrays

Subroutine
MOTION

Compute
A, Ul, XI

QFRACT(L) =8

3

=

Compute
DELXJ, RHOI

Y
@und oft >—

N

Compute

Call
STIN {,STIN 2,
STIN 6

DELRJ, RHODOT,
DELRHO, Qf

Set
DELRJ=RHODOT = 0O

DELRHO=Q1=0

Call
Equation of State

Compute
DELT(3), DELT(4)

}

Compute
Energy Sums
Momentum Sum

<R|NTL

S

Advance

xP, QtJ), Ul
RHO(J), X(J)

SIGMA(J)-
SIGMAMAX

PRINTR=1
EXIT =

Print
Maximum Stress
Message

RETURN
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SUBROUTINE

JLOOPING

J=L=|
PLATE =

Initialize

LOR

Set Call
A=UI=0 BOUNDARY
Set Y
X1:XZERO Call

o

Compute J=J+NVAR
WL L=L+1
¥ Set Ne Call
Advance AzUI=0 BOUNDARY
XP, SIGMAP
ulJ), XWJ) ‘
Set y
Xi= X)) Call
MOTION
JONE=I
Catl
@ > MESHES Compute
WR
J = J+NVAR
L=L+1I
'
Set up
Fracture Test
Criterion
v
GO TO
3005
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COMMON /CONSTS/ Bls Bl1ls B2s B22s £XIT, INDs Js JONEs LACTs LMAXs WONDY
1UTAPE, KEs KHs X¥(23), KT1ls KT2, Ly LHBTs LPHAs Njs NOADs NONEs NOPs#ONDY
2NOPMs NCGHM»s NSTARTs NTWCs NVAR, PRINTRs PRINTSs RHBT» SIGUMAACTs  WONDY
3SIGMAMAXs SIGMASEPs Ts TDEPs TDUMPs TITLE(103}s TMAXs TMAXDs THAXP sWONDY
4TMAXPSs THMINDs TMINP, TMINPSs TPRINT, TPRINTSs W4020s XZERO WONDY
55 NILs NULs LOLs LORs TMINPLs TPRINTL»s TMAXPLs PRINTL RONDY

COMMON /INTERM/ As ADDATA(14), CAPE, CAPHs, CAPKs DFLEs DEP»s DELRHOWONDY
1s PELRJs DELT(4)s DELXJs Els EERRORs ETs ETOTs GOINDs HERRORs HTs wONDY
2HTOTs ITABLE(5U)s Ks Pls PMESH(50)s Qls QMESH(50)s RHOls RHODOTs WONDY
351G#ALs SIGMAPs SIGMARs SUMHs SUMIEs SUMKEs SUMQEs TABLE(2s50)s  WONDY
4015 Wls WRs X1a XP WONDY

COMMON /PLATES/ PLATE, CES(42520)s DELTAX(20)s EZERF(20)s NOMESHESWONDY
1(27) s PHIZERQ(20)s PZERO(20)s RHOZERN(20)s SIGMAF(20)s SIGMAIF(20)WONDY

29STGZERCE2T) s STATE(2C) s UZERC(20)s UZEROI(20)9XGAP(20) sXRATIO(20)WONDY

COMMON /LOGIC/ PFRACTI(31CC)s QFRACT(3100) WONDY
COMMON /JARRAYS/ STOREI(31100) ‘ WONDY
EQUIVALENCE (STORE(1C)s X(10)s U(9)s SIGMA(B)s RHO(T)s Q(6 ), WONDY
IPHI(5Ys P(4)s M(3)s E£(2)s C(1})) WONDY
DIMENSION C(3100G)s E(Z1CC0)s M(31000), P(BiOOO)’ PHI(31000) WONDY
1Q021686) s RHO(2100G)s SIGMA(21000)y U(31000)s X(31000) WONDY

TYPS INTECER EXITs GOINDs PLATEs PRINTRs PRINTSs PMESHS, QMESH»RHBTWONDY
TYPE REAL HERROR, HT, HTOT, KE, KHy KMy KTl, KT2s My NOMESHES WONDY

TYPE LQGICAL PFRACTs QFRACT WONDY

100
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12

13

14

15

16
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19

20

21

22

23

24

25

26

27




)

[

1aco

PROGRAM WONDY

VERSION 11

BANKs{1)s /ARRAYS/

BANKs (G)s WONDY ’

INSERT COMMON CARDS HERE

DATA ((KM(UIC)ysIC=193)=

INITIALIZE INDICATORS

DC 1001 K=1+50

ITARLE(K)=TABLE(1sK)=TABLE(Z25K)=04,0

TREP=0.0

EXIT=NTWO=0

CALL GENERATE

ASSIGN 1002 TO I0UT

GO TC 1021

IF (NVARL,GT.10) CALL MORSTORE

e
Bll=2,0%31%%2

£22=2.%82+1,

‘NONE=1

SIGMAL=SIGMAR=0.0

IF (DELT(4)eEQeCe0) DELT(4)=1,0E05

IF (NSTART) 10u3s 1004

‘READ BINARY DUMP TAPE HERE

L=JTAPE/NVAR

/CONSTS/s /INTERM/s /PLATES/ s

3,1415926535y 441837902029

WONDY
WONDY
WONDY

WONDY

wONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WwCNDY
WONDY
WONDY
WCONDY
WONDY
WONDY
WONDY
WCNDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY

WONDY

29

3C

31

32

33

34

36

37

38

40

41

42

43

44

45

46

47

48

49

50
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15C1

1582

102

READ (25) Nso Ty DELT(1)s DELT(4)s (ITABLE(K)s TABLE(1s4K),

1K)s K=195C)s (STORE(J)s J=1s JTAPE)

IF (N-NSTART) 1501, 1502, 1502
PRIMT 17C1s Ns L

IF (W4020) WRITE (21, 1701) N»s L
NTwWO=1

ASSIGN 1004 TO 10UT

GO TO 1021

" COMPUTE INITIAL TIME STEP AND INITIAL ENERGY SUMS

SUMIE=SUMKE=SUMH=0,.0
LM=LMAX+1

J=1

DO 1005 L=2sLM

J=J+NVAR
DELU=U(J)-U(J~-NVAR)

IF (DELU) 1025, 1026y 1026

BCBU=B2#C(J)-B1#*2%DELU

DELT(3)=KT1*¥(X{J)=X(J=NVAR) )/ (BCBU+SQRTF (BCBU**¥2+C(J)*%2))

GO TO 1027
DELT(3)=KT1#(X(J)=X{J=-NVAR))/ClJ)

IF (TDEP) DELT(3)=MINIF(DELT(3)s0.01%TDEP)
DELT{4)=MINIF(DELT(4)sDELTI(3))
CAPH=0«5*¥M{J) ¥ (U(J)+U(J=-NVAR))
CAPK=M(J) /B 0¥ (U(J)+U(J=-NVAR) ) #%2
CAPE=M(J)*E(J)

SUMH=SUMH+CAPH

TABLE (2 sWONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY.

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

WONDY

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77




16355

SUMIE=SUMIE+CAPE
SUMKE = SUMKE+CAPK
SUMH=SUMH¥*KM (LPHA )
SUMIE=SUMIE#*KM(LPHA)

SUMKE=SUMKE#KM(LPHA)

CETOT=SUMIE+SUMKE

HTOT=SUMH

PRINT 1201, SUMIE, SUMKEs ETOT,

IF (W4a02C) WRITE (21s 12C1) SUMIE,
“IF (KE«EQs0eN) KF=1.0E100

TIF (KHefQeNe0) KH=1NELIOCD

"TASSIGN 1022 TO 10UT

DELT(2:=DELT(1)

DELT(1)=DELT(4)

o IF (JTAPE) GO TO 1006

o~

CELT(2)=DELT(1)

BEGIN TIME LOOP
T=T+DELT(1)
N=N+1
PRINTR=PRINTS=C
”

PRINTL=0

SUMIE=SUMKE=SUMQE=WL=WR=0 40

~SUMH=0e0"

DELT(4)=XTZ*¥DELT(]1)

SET PRINT INDICATORS

IF (T-TMINPL) 1020y 1019, 1019

wONDY
WwONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY
WONDY

WONDY

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

94

95

96

97

98

99

100

101

lo2

103

104

105

103



1019

1020

1007

101G

1017

1018

104

TMINPL=TMINPL+TPRINTL

PRINTL=1

IF (TMINPL«GT«TMAXPL) TMINPL=2,0*TMAX
IF (T-TMINP) 1008s 17074 1007
TMINP=TMINP+TPRINT

PRINTR=1

IF (TMINP«GTs TMAXP) TMINP=2,0%TMAX

IF (T-TMINPS) 1010s 1009, 1009
TMINPS=TMINPS+TPRINTS

PRINTS=1

IF (TMINPSeGT+TMAXPS) TMINPS=2,0%TMAX

CALL JLOOPING

COMPUTE MOMENTUM ERROR

HT =SUMH=SUMH*KM(LPHA)
HERROR=HT-HTOT

IF (ABSF(HERROR)+.GTeKH) 1017y 1018

PRINTR=EXIT=1

MESSAGE SAYS MOMENTUM ERROR EXCEEDED
PRINT 1204y No T

IF (W4020) WRITE (21s 1204) Ns T

COMPUTE ENERGY ERRORs THE DIFFERENCE BETWEEN PRESENT AND INITIAL

ENERGIES
SUMIE=SUMIE*KM(LPHA)

SUMKE=SUMKE*KM(LPHA)

WONDY106
WONDY107
WONDY108
WONDY 109
WONDY110
WONDY111
WONDY112
WONDY113
WONDY114
WONDY115
WONDY116
WONDY117
WONDY118
WONDY119
WONDY120
WONDY121
WONDY122
WONDY123
WONDY 124
WONDY125
WONDY126
WONDY127
WONDY 128
WONDY129
WONDY130
WONDY131

WONDY132



SUMQE=SUNTE*KM(LPHA) WONDY 133

ET=SUMIE+SUMKE WONDY134
ETOT=ETOT+SUMQE+WL+WR . NONDY 135
FERROR=ET-ETOT WONDY136

IF (ABSF(EERROR)«GT4KE) 1011y 1C12 WONDY 137

lull PRINTR=EXIT=1 WONDY 138
¢ : WONDY 139
C MESSAGE SAYS ENERGY ERRCR EXCEEDED WONDY 140
PRINT 12025 Ns T WONDY141

CIF (W4C20) WRITE (21 1202) Ns T ‘ WONDY 142

1612 IF (T=TMAX) 1014, 1014s 1012 - , WONDY 143
1013 PRINTR=EXIT=] WONDY 144
C WONDY 145
< MESSAGE SAYS NORMAL EXIT WONDY 146
PRINT 12039 Ny T WONDY 147

[F (W4C20) WRITE (21, 12C3) N, T , WONDY148

1014 iF (PRINTR) 1021, 1022 WONDY 149
1021 CONTINUE , WONDY150
C WONDY 151
C BEGIN STANDARD EDITING © WONDY152
J=1-NVAR , WONDY 153
LEND=O - - WONDY 154

900N LREGIN=LFND+1 WONDY 155
LEND=LEND+55 N v WONDY 156

IF (LENDsGTeLACT) LEND=LACT o WONDY 157

WRITE (21s 9101) N»s Ts DELT(1) : WCNDY158

WRITFE (21 9102) o - WONDY159
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DO 9002 L=LBEGINs LEND wCNDY 160
J=J+NVAR WONDY161

WRITE (219 9103) Ls X(J)s UlJ)s RHOCJYs SIGMATIYs PHI(J)s GlJ)) WONDY 162
1ECJys C(J) WONDY 163

90G2 CONTINUE WONDY 164
IF (LENDJEG.LACT) 9003, G000 WONDY 165

S04G3 WRITE (21, 9105) WLs WRs SUMIEs SUMKE, SUMGEs SUMH, EERROR,s HERRORWONDY166
IF (ITABLE(1l)) WRITE (21, 9106) WONDY 167

DO 90604 K=1s50 WONDY168

IF (ITABLE(K)«EQWsO) GO TO 9005 WONDY169

WRITE (21s S104) ITABLE(K)s TABLE(1lsK)s TABLE(24sK) WONDY170

90C4 CONTINUE WONDY171
$005 CCNTINUE WONDY1T72
GO 7O I0UT WONDY173

C WONDY174
C END STANDARD EDITING WONDY175
1622 1F (PRINTS) CALL OUTPUT WONDY176
IF (T-TMIND) 1016, 1015s 1015 WONDY 177

1015 TMIND=TMIND+TDUMP WONDY178
C WONDY179
C WRITE BINARY DUMP TAPE HERE WONDY180
C EINARY DUMP TAPE MAY BE USED TO RESTART THE RUN OR FOR PLOTTING  wONCY181
JM=(LMAX+1);NVAR WONDY182

WRITE (20) Ns Ts DELT(1)s DELT(&4)s (ITABLE(K)s TABLE(1sK)>» WONDY183
ITABLE(Z23K)s K=1950)s (STORE(J)s J=1sIM) WONDY 184
PRINT 92C1ls Ns Tse DELT(1)s UM | WONDY 185

IF (ITABLE(1)) PRINT 9202s (ITABLE(K)s» K=1s50) WONDY 186
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L= MAX+] : wOonhDY187

DO 5001 L=1sLM _ WONDY 188

IF (PFRACTIL))PRINT 9203, L WONDY 189

3201 CCNTINUE . WONDY 190
IF (TMIND<GT«TMAXD) TMIND=140 wONDY 151

1215 IF (EXIT) GO TO 105D WONDY 192
DELT(2)1=RELT(1) WONDY 163
DE_T(1)=DELT(4) WONDY 194
NONE=NTWO=0 WONDY195

GO TO 10C6 WONDY 196
1050 STCP , , WONDY197

12¢1-FORMAT ( 27HL INITIAL INTERNAL ENERCGY » S154% / 27H INITIAL KINEWCNDYLSS8
1TIC ENLRGY s 1545 / 27H INITIAL TCTAL ENERGY s E1545 / WONDY199
2274  INITIAL TOTAL MCMENTLM s £1545 ) WONDY200

1202 TORMAT (22HL ENERGY ERROR EXCEEDED ON CYCLE s T4y 10H AT TIME = wWONDY201

1, Z15.5) WONDY202
1243 FORMAT (22HC NORMAL EXIT CON CYCLE s 14y 10H AT TIME = s E15.5)WONDYZ03
12v4 FORMAT (34Hu MOMENTUM ERROR EXCEEDEID ON CYCLE s I5s 10H AT TIMEWCONDYZO04

1 = s El5e5 ) WONDY205

17/0] FORMAT (28HU RESTART FROM TAPE AT CYCLE sI5y 10Xs 9H READ IN sI5swONDY206
17H MESHES) WONDY207

Slul FORMAT (7HL CYCLEs 15 8M TIME s E1545s 18H TIME INCREMENT s WONDYZ208

1 £1565) WONDYZ209
9102 FORMAT (113HO L X U RHO SWONDYZ21G
11GMA PHI Q E C ) WONDYZ211
91C2 FORMAT (I5y BEl&4e4) WONDY212
21la FORMAT (1CXy 15; TXsy El544s 11Xy ElD44 ) » WONDY213
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9105 FORMAT ( 20HU WORK AT LEFT s> E1545510Xs 20H WORK AT RIGHT

wONDY214

1 s E1545 /7 20H INTERNAL ENERGY 9 E15e455 10Xs 20H KINETIC ENEWONDYZ215

2RGY s E1545 s 20H ADDED ENERGY s E1D545s 10Xy 20H TOTALWONDYZ216
3 MOMENTUM » E1545 / 20H ENERGY ERROR s E15e5s 10X» WONDY217
4 20H MCMENTUM ERROR s E15.5 ) WONDY218
9106 FORMAT ( 68HU FRACTURE AT L U AT LEFT HAND SIDE X AT LWONDYZ19
1EFT HANC SIDE ) WONDY220
5201 FORMAT (12HUG DUMP AT N= s I5s 3H T=y E15¢59 9H DELT(l)=s E1545 WONDY221
120H POINTS ON TAPE s 1109 WONDY222
92G2 FORMAT (23H FRACTURES AT STATIONS s 1417 / (23Xs 1417)) WONDY223
9203 FORMAT (30H PREVIOUS FRACTURE AT STATION » I5) WONDYZ224
END WONDY225
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N

20mM

SURRCUTIME GENERATE

PROGRAM WONDY

EANKs (0U)s GENERATE » /CONSTS/s /INTERM/s /PLATES/s /LOGIC/

INSERT COMMON CARDS HERE

READ INPUT DATA

READ 1101 (TITLE(ICYs IC=1,10)

REAZ 11C2s LPHASs NOP, NVARs LHBTs RHBTs LACTs JTAPE, NSTART,
NOGMs NOPMs NOADs W&C2Cs NILs NUL

[F (NOGM) READ 1102+ (QMESH(K)s K=1sNMOOM)

IF {(NOPM) READ 1102s (PMESH{K)s K=1,NCPM)

READ 11C3, XZERCs Bls B2s KHs SIGMAACTs SIGMAMAX, SIGMASEP

READ 1103 XKT2s KTZs TMAXs TMINDs TDUMPs TMAXDs DELT(4)

READ 11L39 TMINPs TPRINTs TMAXPs TMINPSs TPRINTSs TMAXPos KH

AD 11302, TMINPLs TPRINTLs TMAXPL

D
\

i}

IF (NCAD) READ 11C2s (ADDATA(K)s K=1sNGCAD)

DO 2C01 PLATE=14NOP

-

1ATE)s XOCAP(PLATE)s UZERC(IPLATE)s UZEROII(PLATE)

GENER
GENER

GENER

GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER

GENER

READ 110U3s NCOMESHES(PLATE)s STATEIPLATE)s DELTAXIPLATE)s XRATIO(PLGENER

GENER

READ 11C3s RHCZERCUIPLATE)s PZERGIPLATE)s SIGZERO(PLATE)s EZERO(PLAGENER

1TE)Ys PHIZERO(PLATE)s SIGMAF(PLATE)s SIGMAIF(PLATE)

READ 1103y (ZES(IICsPLATE)sIC=1s 35)

CONTINUE

PRINT INPUT DATA
PRINT 12Cls (TITLE(IC)s IC=1s 1C)

PRINT 12CG2s LPHAs NOPs NVARs LHBTs RHBTs LACTs JUTAPEs NSTARTS

GENER
GENER
GENER
GENER
GENER
GENER

GENER

31

32

33

35

30

37

38

39

40

41

42

43

44

45

46

47

48

49
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2002

110

INOQMs NOPM, NOADs W4020s NILs NUL
IF (NOGM) PRINT 1203, (QMESH(K)s K=1,NOGM)

IF (NOPM) PRINT 12C4s (PMESH(K)s K=1sNOPM)

PRINT 12C5s XZEROs Bls B2s KEs SIGMAACTs SIGMAMAXs SIGMASEP
PRINT 1206s KT1s KT2s TMAXs TMINDs TDUMP, TMAXDs DELT(4)
PRINT 1207s TMINPs TPRINTs TMAXPs TMINPSs TPRINTS, TMAXPS, KH
PRINT 1223, TMINPL, TPRINTL, TMAXPL

IF (NOAD) PRINT 1208, (ADDATA(K)s K=1sNOAD)

NOP2=0

NOP1=NOP2+1

NOP2=NOP2+6

IF (NOP2.GT.NOP) NCP2=NOP

PRINT 120%s (NOMESHES(PLATE)s PLATE=NCP1sNOP2)

PRINT 1210s (STATE(PLATE)s PLATE=NOP1sNOP2)

PRINT 1211s (DELTAX(PLATE)s PLATE=NOP1sNOP2)

PRINT 1212s (XRATIO(PLATE)s PLATE=NOP1,NOP2)

PRINT 1212, (XGAP(PLATE)s PLATE=NOP1,NOP2)

PRINT 1214s (UZERC(PLATE)s PLATE=NOP1sNOP2)

PRINT 1215s (UZEROI(PLATE)s PLATE=NOP1sNOP2)

PRINT 1216s (RHOZERO(PLATE)s PLATE=NOP14NOP2)

PRINT 1217s (PZERO(PLATE)s PLATE=NOP1sNOP2) |

PRINT 1218s (SIGZEROQ(PLATE)s PLATE=NOP1sNOP2)

PRINT 1219, (EZERO(PLATE)s PLATE=NOP1sNOP2)

PRINT 1234s (PHIZERO(PLATE)s PLATE=NOP1sNOP2)

PRINT 1220, (SIGMAF(PLATE)s PLATE=NOP1sNOP2)

PRINT 1221s (SIGMAIF(PLATE)s PLATE=NOP1sNOP2)

DO 2003 IC=1,35

GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER
GENER

GENER

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

72
73
T4
75

16



)

004

PRINT 1227
IF (NOPJNESNCP2) GO TD 2002
LF (sa020) 2904, 200
CONTINUE

WRITE (21s 12C1) (TITLE(IC)s 1C=151C)

wiRITE

INOGMs NOPHs NOADs Wa20s NILs NUL

[F (NOGM)Y WRITE (21s 1207%) (QMESHI(K) s K=1sNOGM)

IF ONOFM) WRITE (21s 1204) (PMESH(K), K=1,NOPM)

WwRITE (21 1205) XZER0s 319 82s KEs SIGMAACTs SIGMAMAXs SIGMASEP

(21s Z204) KTlse KT2s TMAXs TMINDs TDUMPs TMAXDs DELT(4)

WilT: (21s 1 TMINPy TPRINTs TMAXPSs TMINPSs TPRINTS,

S}
<y
-~

WRITE (21s 12 TMINPLs TPRINTLSs THMAXPL

[N}
[SN]

IF (NOAD) wWRITE (21s 1202) (AD2ATA(K)s <=1sNOLD)
NOPZ=0

NCP1=NCP 2+

NOP2=NOP2+6

IF INDOPZ2.GT«NOP) NOP2=NCP

WRITE (21s 1209) (NOMESHES(PLATE)s PLATE=NCP1sNCP2)
WRITE (21 121v) (STATE(PLATE)s PLATE=NCP1sNCGP2)
WRITE (21s 1211) (DELTAX(PLATE)s PLATE=NOP1sNOP2)}

WRITE (21s 1212) (XRATIOU(PLATE)s PLATE=NOPLsNOP2)

wRITE (21s 1212) (XGAP(PLATE)s PLATE=NQOP]1sNOP2)

WRITE (21s 1214) {(UZFERO(PLATE)s PLATE=NOP1sNOP2)}

WRITE (21 1215) (UZERCI(PLATE)s PLATE=NCP14sNOP2)

WRITE (21 1215) (RHOZERO(PLATE)s PLATE=NCP1sNQP2)

WRITE (21s 1217) (PZFRC(PLATE)s PLATE=NOP1sNOP2)

THMAXP S,

CENER 77

GENEZR 78

GENER 79

GENER 81

(21 21202) LPHEASs NOPs NVARs LHBTs RHBTs LACTs JTAPESs NOTARTSGENLR 82

GENER 83

GENER 84

GENER 85

GENER 86

GENER 87

KHOENER 88

GENER 85
GENER 90
CENER 91
GENER 92
GENER 93
GENER 94
GENER 95
GENER 96
GENER 97
GENER 98
GENER 99
GENER100
GENER101
GENER102

GENER1O?Z

111



WRITE (21, 1218)
WRITE (21s 1219)
WRITE (21s 1234)
WRITE (21s 1220)
WRITE (21s 1221)
DO 2006 1C=1535
2006 WRITE (21s 1222)
IF (NOPoNEJNOP2)
2005 CONTINUE
LMAX=0

DO 2007 PLATE=1,

(SIGZERO(PLATE)s PLATE=NOP14NOP2)
(ZZERO(PLATE), PLATE=NOP1sNOP2)
(PHIZERO(PLATE)s PLATE=NOP1sNOP2)
(SIGMAF (PLATE)s PLATE=NOP1sNOP2)

(SIGMAIF(PLATE)s PLATE=NOP1sNOP2)

ICs (CES(ICs PLATE)s PLATE=NOP1sNOP2 )

GC TC 2019

NOP

2007 LMAX=ULMAX+NOMESHES(PLATE)

LM=LMAX+]

CO 2008 L=1sLM

2008 QFRACT(L)=PFRACTI(L)=0

DO 2009 K=1s NOQM

L=QMESH(K)

2009 QFRACTI(L)=1

DO 2010 K=1s NOPM

L=PMESH(K)

2010 PFRACT(L) =1

QFRACT (1) =1

GENFRATE LARGE ARRAYS

J=PLATE=L=1

LoL=1

LOR=NOMESHESI(PLATE)+1

112

GENERIN4
GENER105
GENER106
GENER107
GENER108
GENER109
GENERI11C
GENER111
GENER112
GENERI113
GENER114
GENER115
GENER116
GENER117
GENER]18
GENER119
GENER120
GENER121
GENER122
GENER123
GENER124
GENER125
GENER126
GENER127
GENER128
GENER129

GENER130




2011

(S

N

202¢

2030

2021

S}

3.

)

DXx=0-LTAXIPLATL)/XRITIO(PLATED

X(J)Y=XZERO

UlJ)=UZERQIPLATE)
C(J)Y=RHO(J)=Q(J)=PHI(J)=E(U)=P(J)=SIGMA(J)=0,0
M(J)=0eC

J=J+NVAR

L=t+1

U(JY=UZERGC(PLATE)

DXx=DX*¥XRATICO(PLATE)

X{J)Y=X{IJ~-NVAR)+DX

C(J1=CES(2sPLATE)

RHO(J)=RHOZERC(PLATE )

PLJ)Y=PZZRQO(PLATE)

SIGMA(J)=SIGZERO(PLATE)

CE(J)=EZFRO(PLATE)

PHI(J)=PHIZERO(PLATE)

Q(Jr=0.0

IF (LPHA-21 2028, 2029, 2730
C(XI=1,0

GO TO 2031

CXT=X(J)+X(J=NVAR)

GO TO 2031
C*I;X(J)**2+x(J)*X(J—NVAR)+X(J—NVAR)**2
M D) =RHOLJ)* (X () =X {J=-NVAR) ) #CXI
IF (L-LOR) 2011s 20125 2012
GOIND=STATE(PLATE)

GO TO (Z2C21s 2022y 2023s 2024, 2025s 2C2&) GOIND

GENER1S1
GENER13Z
GENER133
GENER134
GENER135
GENER126
GENER137
GENER138
GENER139
GENER140
GENER141
GENER142
GENER143
GENER14&4
GENER145
GENER146
GENER147
GENER148

GENER149

" GENER150

GENER151
GENER152
GENER153
GENER154
GENER155
GENER156

GENER157

113



2C21

20272

2023

2024

2014

2015

216

[N

114

CALL STIN1
GO TO 2027

CALL STIN2

G0 TO 2027

CALL STIN3

GO TO 2027

CALL STIN4

GO TO 2027

CALL STINS

GO TO 2027

CALL STING

IF (L-LMAX+1) 2013, 2018, 2C18
U(J)=UZEROI (PLATE)

IF (XGAP(PLATF)) 20145 2017
QFRACT(L)=1

PO 2015 K=1s 50

IF (ITABLE(K)) 2015, 2016
CONT INUE

ITABLE (K)=L

TABLE (15K)=UZERO(PLATE)
TABLE(25K) =X (J)

X (J1=X(J)+XGAP (PLATE)
U(J)=UZERO(PLATE+1)
PLATE=PLATE+1

LOL=LOR

LOR=LOR+NCMESHES (PLATE)

DX=DELTAX(PLATE)/XRATIO(PLATE)

GENER158
GENER159
GENER160
GENER161
GENER162
GENER163
GENER164
GENER165
GENER166
GENER167
GENER168
GENER169
GENER170
GENER171
GENER172
GENER173
GENER174
GENER175
GENER176
GENER177
GENER178
GENER179
GENER180
GENER181
GENER182
GENER183

GENER184.



50 7O 2011

20 k8 J=J+NVAR

U(J)=UZERO(PLATE)

X(J)y=X{J=-NVAR)
C(J)=RHO(J)=Q(J)=PHI(J)=E(J)=P(J)=SIGMA(J)}=04.0
M(J)=RHO(J)Y ¥ (X (J)*¥*LPHA-X(J-NVAR )} *#LPHA)
RETURN

1101 FORMAT (10A8)

1102 FORMAT (1415)

1103 FORMAT (751043)

1201 FORMAT (1H1, 10A8)

1202 FORMAT(115H0 LPHA NOP NVAR LHBT

1PE  NSTART NOQM NOPM NOAD W4020 NTL

11Xs 1418)

1203 FORMAT ( 29HU MESHES WHICH HAVE FRACTURED 7/ (1X»

12C4 FORMAT ( 26H0O MESHES WHICH HAVE JOINED / (1Xs 141

1205 FORMAT (114H0 XZERO B1

1 KE SIGMAACT SIGMAMAX

2 1Xs T7E1643)

1206 FORMAT (114HO KT1 KT2

1 TMIND TDUMP TMAXD

2 1Xs TE1643)

1207 FORMAT (114HO TMINP TPRINT

1 TMINPS TPRINTS TMAXPS

2 1Xs 7E1642)

1208 FORMAT ( 17HU ADDITIONAL DATA / 1Xs 7E16e3 / 1X»

1209 FORMAT (17HC NOMESHES y 6E1643)

RHBT

LACT

NUL

1418))

81)

B2

SIGMASEP

DELT(

TMAX

4)

TMAXP

TE16e3)

KH

/

/

GENER185
GENER186
GENER187
GENER188
GENER189
GENER190
GENER191
GENER192
GENER193
GENER194

GENER195

JTAGENER196

/ GENER197

GENER198
GENER199%
GENER200
GENERZ201
GENERZ202
GENER203
GENER204
GENER205
GENER206
GENER20Q7

GENER208

"GENER209

GENERZ210

GENER211

115



1210 FORMAT
1211 FORMAT
1212 FORMAT
1212 FORMAT
1214 FORVAT
1215 FORMAT
1216 FORMAT
1217 FORMAT
1218 FORMAT
1216 FORMAT
1220 FORVA
1221 FORMAT
1222 FORMAT

1223 FORMAT

£17H
(17H
(174
(17H
(17H
(174
(17H
(17+
(17H
(17H
(17H
(17H
( 18,

(5CHC

1 1Xs 3E1643)

1234 FORMAT

116

(17H

STATE EQ

DELTAX

XRATIO

XGAP

UZERO

UZEROI

RHOZFRO

PZEROC

SIGZERO

EZZRO

SIGMAF

SIGMAIF

SXs 6E1643)

TMINPL

PHIZERD

.

’

L

1663
5E1643)
6E1643)
6E1642)
6E516432)

6E16e2)

6E164Z

6E1643)

6El6e3)

TPRINTL

6FE1643)

GENER212
GENER213
GENER214
GENER215
GENER216
GENER217

GENERZ218

[63}
m

NER219

-

GENER2Z

s
&

GENER2Z1
GENER222
GENER223
GENER224
GCENERZ25
GENER226
GENER227

GENER228




SUBROUTINE MORSTORE MORST

if PROGRAM WCNDY 1] MORST

2703 FORMAT

BANKs (C)» MORSTORE » /CONSTS/s /INTERM/s /PLATES/s /LOGIC/ MORST

INSERT COMMON CARDS HERE

EQUIVALENCE (STORE(11)s SPEC(1))

DIMENSICN SPEC(310600)
DIMENSION SPECZERO(Z20)

READ 2701s TDEP

READ 27Cls (SPECZERO(PLATE) s

PRINT 2702, TDEP

PRINT 2703s (SPECZERGC(PLATE})

L=J=LOR=1

PLATE=0

PLATE=PLATE+]
LOR=LOR+NOMESHES(PLATE)
L=L+1

J=J+NVAR
SPEC(J)=SPECZERC(PLATE)
[F (L-LOR)Y 2402, 2403
IF (PLATE-NOP) 2401, 24C4
CONTINUE

RETURN

FORMAT (7E10.3)

FORMAT (#C DEPOSITICON TIME

(TE1643))

END

PLATE=1,NCP)

PLATE=1,NOP)

{#0 TOTAL ENERGY DEPOSITED PER MESH FOR EACH PLATE * /

VORST
MORST
MORST
JORST
MORLT
MORET
MORST
MORST
MORST
MORST
MORS T
MORST
MORST
MOR'ST
MORST
MORST
VORST
MORST
MOR'ST
MORST
MCRST
MORST

MORST

27

28

23

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
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SUBRCUTINE BOUNDARY

C PROGRAM WONDY

[}

@)

[

6001

6002

6999.

118

BANKs (C).s BOUNDARY o /CONSTS/s /INTERM/,s /PLATES/s /LOGIC/
INSERT COMMON CARDS HERE

SAMPLE ?ODING CF A SPECIAL BOUNDARY CONDITION

BY .CHOOSING PROPER INPUT FOR THE ADDATA ARRAYs THIS CODING’WILL

GIVE.A CONSTANT OR AN EXPONENTIALLY VARYING SURFACE LOAD FOR
EITHER THE LEFT OR THE RIGHT BOUNDARY. | ‘

IF (LHBT=-3) 6002, 6001

SIGMAL=SIGMA(1)
SIGM.A(l)=ADDATA(8)+ADDATA(9)*EXPF(—ADDATA(lO)*T)~
SIGMAL=C«E*¥ (SIGMA(1)+SIGMAL) B

GO TO 6999

JN=J+NVAR

SIGMAR=SIGMA(JUN).

. SIGMALUN) =ADDATA(B8)+ADDATA(S ) *¥EXPF(~ADDATA(10) *T)

SIGMAR=045*(SIGMA(JUN)+SIGMAR)

RETURN

END

BOUND

B0UND

BOUND

BOUND
BOUND

bOUND

BOUND

BOUND 3

BOUND

BOUND

BOUND -

BOUND

BOUND
BOUND

BOUND

BOUND

BOUND

BOUND

W

27

28
29

30

35

36

37

39

40

41




~

[

o\

SUBROUTINE JLOOPING

PROGRAM WONDY

30en

30C1

3002

3030

BANKs (C)s JLOCPING » /CONSTS/s /INTERM/s /PLATES/
INSERT CCOMMON CARDS HERE
J=L=PLATE=]

LOR=NOMESHES(PLATE)+1

LEFT HAND BOUNDARY

BOUNDARY TYPES ARE IN ORDER - FIXEDs FREESs SPECIAL
I% (LHRT-2) 3000s 3002, 2001

A=U1=0.0

X(J)=X1=XZERC

GO 70O 3030

CALL BCUNDARY

CALL MOTION

WL=STIGMAL*(X1-X(J))*¥KM(LPHA)

XP=X(J)

SIGMAP=SIGMA(J)

utJdy=ul
X{Jy=X1
JONE=1

INTERNAL MESHES
J=J+NVAR

L=L+1
TEST=SIGMAF(PLATE)

IF (L-LOR) 30054 3004y 3004

/LCGIC/

JLCCP
JLOOP

JLOULP

JLCCP
JLOOP
JLOOP
JLOOP
JLCOP
JLOCP
JLOCP
JLOOP
JLOOP
JLCOP
JLOGP
JLOOP
JLOOP
JLOCP
JLCCP
JLOCP
JLOGCP
JLOOP
JLOOP
JLOCP
JLOOP
JLOOP

JLOOP

29

30

31

42
473
44
45
46
47
48

49
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3004

2008

3C06

3007

3401

3404

3008

120

TEST=SIGMAIF(PLATE)

IND=1

TEST FOR PRESENT FRACTURE
IF (GFRACT(L)) 3011s 3006

TEST FOR PREVIOUS FRACTURE WHICH HAS COME TOGETHER
IF (PFRACT(L)) TEST=SIGMASEP

TEST FOR NEW FRACTURE
SIGMAA=0e5%(STCMA (J+NVAR) +STGMA (J) )

IF (SIGMAA-TEST) 3008, 30C7s 3007

LOOK AHEAD FOR FRACTURE

IF (QFRACTI(L+1)) 2401 3404
XAHEAD=X(J+NVAR!

DO 3402 K=1,50

IF (L+1.EQeITABLE(KI) 3403, 3402
CONTINUE

X(J+NVAR)=TABLE(24K)

CALL MOTION

X{J+NVAR ) =XAHEAD

GO TO 3013

CONTINUE WITH NORMAL MESHES
CALL MOTION

GO TO 3013

NEW FRACTURE OCCURREDs STCRE VALUES IN TABLE

QFRACTI(L) =1

JLCOP
JLOOP
JLOOP
JLOCP
JLCOP
JLOOP
JLOOUP
JLOUP
JLOGP
JLOGP
JLOCP
JLOOP
JLCOP
JLOOP
JLCOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP

JLOOP

57

58

59

60

61

62

63

64

€5

66

67

68

69

70

71

72

73

74

75

76

77




M

(&

3009

3010

3011

NP=N-1
PT=T-DELT(1)

PRINT 3201, Ls NP, PT

IF (W&4020) WRITE(21, 32C1) Ls NP, PT

DO 3009 K=1250

IF (ITABLE(K)«EQeUsOReITABLE (K)eEQsL) GO TC 301C
CONTINUE

PRINT 3202, Ns T

IF (W4020) WRITE (21, 3202) N» T
PRINTR=EXIT=1

GO TO 3020

ITABLE(K)=L

TABLE(1s<)=U(J)

TABLE(Z2sK)=X(J)

FRACTURE ROUTINE BEGINS HERE

IN=J+NVAR

FIND NEW POSITION AT RIGHT HANO SIDE OF FRACTURE

STORE VALUES FOR LEFT SIDE OF FRACTURE TEMPORARILY AND TREAT

FRACTURE AS & FRFE SURFACE
SIGMAE=SIGMA(J)

PHIE=PHI (J)

RHOE=RHO(J)

QE=Q(J)
SIGMA(J)=PHI(J)=RHO(J)=G(J)=040
LOOK AHEAD FCR FRACTURE

IF (QFRACTI(L+1)) 2405, 3408

JLCOP
JLGOP
JLOCOP
JLOUP
JLCOP
JLOOP
JLCOP

JLOOP

JLCOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP
JLOOP

JLOOP

78
79
380
81
82
83
84
85
86
87

88

G2

3

94

95

56

97

98

399

JLOOP1CO

JLOOPL1O1

JLOOP102

JLCOP1C3

JLCOP1D4

JLOGCP105

121



3405 XAHEAD=X(J+NVAR) JLOUP106

DO 3406 K=1+50 JLOCP1O7
IF (L+1.EQelITABLE(K)) 3407s 3406 JLOOP108
3406 CONTINUE JLOOP1CY
3407 X(J+NVAR)=TABLE(2+K) JLOCP11D
CALL MOTION JLOCP111
X (J+NVAR)=XAHFAD , _ JLOCP112
GO TC 3409 JLOCP112
3408 CALL MOTION JLOOP114
3409 XPE=X(J) JLOOP115
UtJ)=ul JLOOP116
X(J)=xX1 JLOOP117
SIGMA(J)=SIGMAE ©JLocrPl118
PHI(J)=PHIE JLOGP11G
RHO(J)=RHOE JLOOP12C
0(J)=0F | JLoor121
C | JLOOP122
C FIND Nﬁw POSITION AT LEFT HAND SIDE OF FRACTURE JLcopléa
C STORE VALUES FOR RIGHT SIDE TEMPORARILYs SAME AS ABOVE JLOOP124
SIGMAE=STIGMA (JN) JLOCP125
PHIE=PHI (UN) ' | JLOOP126
RHOE=RHO (JN) JLOOP127
QE=Q(JN) JLoOCP128
UE=U(J) JLOOP12S
XE=X(J) _ JLOCP130
SIGMA(JN)=PHI (JN)=RHO(JIN)=Q(JIN) =040 JLOOP131
DO 3501 K=1,550 ‘ JLOOP132

122



3501

3502

35013

3504

IF (LeEQeITABLE(K))

CONTINUE

PRINT 3701,

L

PRINTR=EXIT=1

GO TO 3020

UlJ)=TABLE(1sK}

X(J)=TABLE(Z2sK)

CALL MOTIGCN

3502,

[38]
N

D
—

IF (WaC2C) WRITE (21 3701) L

DID FRACTURE SURFACES COLLIDE

IF (X1-XE)

QFRACTI(L)=0
PFRACT(L);I
PRINT 3702,

IF (w4020}

350U

Ls Ny

WRITE

Ul=UE=C.5%(U1+UE)

X1=XE=0+.5%({X1+XE)

CONTINUE WITH MESH CALCULATIONS FOR MESH TO LEFT OF FRACTURE

CALL MESHES

TABLE(1sK)=U(J)

TABLE(2sK)Y=X(J)

SIGMA(UN)=SIGMAE

PHI (UN)=PHIE

QUINY=QE

RHO(JN) =RHOE

3504y

T

(21,

35013

37C2)

Ls

No

T

JLCOP133
JLOOP134
JLOOP125
JLOOP136
JLCOP137-
JLOOP138
JLOCP139
JLOOP140
JLOOP141
JLOOP142
JLOOP 143
JLOCP1l44
JLOOP145
JLOCP146
JLOOP147
JLOCP148
JLOOP149
JLOCP150
JLOCP151
JLOCP152
JLOOP153
JLOOP154
JLOOP155
JLOOP156
JLOOP157
JLOGP158

JLOOP1569
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¥
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UlJ)y=UE JLOUPL16C

X (J)=XE JLOOP161 @
XP=XPE JLOOP162
3701 FORMAT (39HU CANNOT FIND FRACTURE ENTRY AT STATION » 14) JLOGP163
3707 FORMAT (49HL FRACTURED SURFACES COLLIDED AT STATION » Ik, JLOCP 164
17H CYCLE » I4s 6H TIME 5 E1545) JLOGP165
c JLOCP166
C CONTINUE WITH JLOOPING JLOOP167
2013 JONF=N JLOOP168
IF (IND) 3014s 3015 JLOOP169
c JLOOP170
< IF THIS IS AN INTERFACE, ADVANCE PLATE INDICATOR JLo¢P171
3014 PLATE=PLATE+1 | | JLOCPL72
LOR=LOR+NOMESHES (FLATE) JLOOP173
IND=0 JLOOP174
c JLOOP175
C HAS JMAX BEEN REACHED JLOCP176
3015 IF (L.LT.LMAX) 3021, 3016 JLOOP177
C JLOOP178
c ACTIVITY TESTED HERE JLOOP179
2021 IF (L.GELLACT) 3022, 3003 JLOOP180
3022 1F (SICMA(J)«GELSIGMAACT) 3003, 3023 JLOCP181
3022 LACT=L JLOCP182
GO TO 3020 JLOOP183
c JLOOP184
C RIGHT HAND BOUNDARY JLOOP185
c BOUNDARY TYPES ARE IN ORDER ~ FIXEDs FREEs SPECIAL JLOOP186
3016 J=J+NVAR JLOGP187




3017

3018

3019

3020

3201 FORMAT (30HC. FRACTURE OCCURRED AT STATION » I4y TH CYCLE » 14,

3202 FORMAT (46HC MAXIMUM NUMBER OF FRACTURES EXCERDEDs CYCLE s 14

L=L+1

LACT=L

IF (RHBT=2) 3019, 3018, 3017
CALL BOUNDARY

cALL MOT ION

WR=STGMAR¥ (X1=X(J))*KM(LPHA)
G0 TO 3020

A=U1=040

X1=X(J)

CALL MESHES

RETURN
16H TIME » E1545)

16H TIME 4 E1545)

END

JLoop188
JLOCP18S
JLOCP19D

JLOCP1G1

JLOOP1G2

JLOOP193
JLOOP194
JLOCP195
JLOCPlQb
JLOCPR197
JLOOP198
JLOOP199
JLOOP20CG
JLOOP20O1
JLOOP202

JLOCP203
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CUBROUTINE OTICN e

C PROGRAM WONDY YOTIC

4018

M

4013

126

BANKs (U) s MOTION ’ /CQNSTS/ai/INTERM/o /PLATES/s /7LOGIC/ MCTIC
INSERT CCMMCN CARDS HERE
A=2.U*(SIGMA(J)—SIGMA(J+NVAR)+Q(J)—G(J+NVAR))/(RHC(J)*(X(JJ~XP) MOT IO

THRHOCJ+RVAR) ® X CSHNVAR) =X (U) ) ) # 20 0% LLPHA=140) % (PHI (J)+PHI ( J+NVAR) ) 0T 15

2/ (RHOG ) ® (X CI)+XP)+RHO L J+NVAR) ¥ (X (J+NVARY+X () ) ) MOT1C
U1=U(J)+Ca 5% (DELT (L +0DELT(2) ) %2 | MOTIC
X1=X{J)+ULI*DELT (1) MOT 1O
CXIP=CXT1 7 MOTIO
IF (LPHA-2) 4018, 4019, 4020 MOTID
CXI=1.0 MOTIO
GO 70 4021 MCTIO
CXI=X1+X{J) MOTIO
GO TC 4021 MOTIC
CXT=XT®¥24+X1*X(J)+X(J)#*%2 MOTIO
CONTINUE | MOTIO
IF (QFRACT(L)) GO TO 4011 MOTIOQ
ENTRY MESHES MOTIO
SIGMAP=SIGMA( J) MOTIO
DELXJ=X1-X{J=-NVAR) | MOTIC
RH01=1.L/(l.U/RHO(J)+DELT(1)/M(J)*(CXI*UI—CXIP*U(J—NVAR))) MOTI0

MOTIO

CHECK FOR ROUNDOFF IN DENSITY MOTIO
IF (ABSF(RHOI~RHO(J)).LT.5.0E-10%RHO(J)) 40134 4014 MOTI0
DELRJ=RHODOT=DELRHO=Q1=0.0 MOTIO
GO TO 4003 MOTIO

RS}

9%

T

23

32

31

32

33

35
36

37

41

42

43

44

47
48

49



4001

4002

4003
4004
4005
4006
4007
QOOS

4009

4010

4015

DELRJ=2¢* (RHO1I-RHC(J)1/ (RHOLI+RHCIJ) )
RHODOT=0RELRJ/DELT(])
DELRHO=DELRJ/(RHOLI+RHO(J) )

IF (RHODOT) 4001s 4NG1s 4C02

Q1=0a4N

GO TC 4003

W1=RHO1*#(B2*DELXJ¥C{JI#RHODOT+(BL1*DELXJI*RHODOT ) #%2)

CALL EQUATION OF STATE RCUTINE FCOR CORRECT PLATE
GOIND=STATE(PLATE)

GO TO (4004s 4U05s 40069 4007+ 4008 4009)GOIND
CALL STATEL

GO TO 4010

CALL STATEZ

GO TO 4010

CALL STATES3

GO TO 4010

CALL STATEY

GO TO 4010

CALL STATES

GO TO 4010

CALL STATES

COMPUTE NEW TIME STEP
DELU=U1-U(J=NVAR)
IF (DELU) 40154 40164 4016

BCRU=B2*C(J)-B1**¥2#DELU

MOTIC
MOTIC
MCTIC
MOTIC
MCTIO
MOTIO
“OT10
VCTI0
MOTIO
MOTIC
MOTIC
MOTIC
MOTIO
MOTIO
MCTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO
MOTIO

MOTIO

w

%3]
—

mn
~

60

61

62

63

64

65

66

67

68

69

70

71

72

73

14

75

76
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DELT (3} =KT1¥DELXJ/(3CBU+SQRTF (BCBUX*2+C{J)%*%2)) MOTIO 77

GO TO 4017 MOTIO 78
4016 DELT(3)=KT1*DELXJ/C(J) ’ MOTIO 79
4017 CONTINUE MOTIO 80
IF (TDEPWGTeT) DELT(3)=MINLF(DELT(3)s CuC1*TDEP) MOTIC 81
DELT(4)=MINLF(DELT(4)sDELT(3)) _ MOTIO 82 .
MOTIC 83
COMPUTE ENERGY SUMS MOTIO 84 .
CAPH=045%M(J)*(U(J-NVAR) +U1) MOTIO 85
CAPK=M(J)/8eU% (U(J-NVAR)+U1)*¥2 _ MOTIO 86
CAPE=045%M(J) ¥ (E1+E(J)) MOTIO 87
SUMH=SUMH+CAPH MOTIO 88
SUMKE = SUMKE+CAFK MOTIO 89
SUMIF=SUMIE+CAPE MOTIC 90
IF (PRINTL) CALL OUTL ’ MOTIO 91
XP=X(J) ' MOTIO 92
QtJ)r=Q1 MOTIC 93
UtJ)=ul MOTIO 94
RHO(J)=RHO1 MOTIO 95
X(Jy=x1 MOTIO 96
MOTIO 97
CHECK IF MAXIMUM STRESS IS EXCEEDED MOTIO 98
IF(SIGMA(J)-SIGMAMAX) 4011y 4011y 4012 MOTIO 99
4012 PRINTR=EXIT=1 MOT10100
PRINT 4101y Ls Ny T MOT10101
IF (W&020) WRITE (21, 4101) Ls Ns T : MOTI0102

4101 FORMAT (36HC MAXIMUM STRESS EXCEEDED AT STATION s 14, 7H CYCLE 4 MOTIOL103
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G 114y 6H TIME sE154%) MOTIC104

4011 RETURN . MCTIOLCS

END MOT10106
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()

SUBROUTINE STATEL

PROGRAM WONDY

5001

5002

5003

5004

5005

5006

130

BANK»s (0)y STATEL s /CONSTS/,s /INTERM/s /PLATES/s /LOGIC/

INSERT COMMON CARDS HERE

ELASTIC-PLASTIC HYDRO VAPOR EQUATIONS
DIMENSION GCONST(2C)s KCONST(20)s NCONST(20)

TYPE REAL KCONSTs NCONST, MU

SPECIAL CARDS FOR ENERGY DEPOSITICN ~ THRCUGH 5006 +2
EQUIVALENCE (STCORE(11)e SPEC(1))
DIMENSION SPEC(31000)

IF (JONMESANDSTDEP) 5001, 5006

IF (NONE) SUMDEP=C.

IF (NTWO) SUMDEP=1.0

IF (SUMDEP-1.0) 5002, 5005
DEP=DELT(1)/TDEP

IF (SUMDEP+DEP-1.0) 5004y 5003, 5003
DFP=1,0-SUMDEP

SUMDEP=SUMDEP+DEP

GO TO 5006

DEP=0,.N

QDEP=DEP*SPEC(J)
SUMQE=SUMQE+GDEP*M(J)

END OF SPECIAL CARDS

ETA=1.0-CES(1sPLATE)/RHO1L

IF (ABSF(ETA)eLT+5.05-10) ETA=C.0

STATE
STATE

STATE

STATE
STATE
STATE
STATE

STATE

OTATE

STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE

STATE

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

46

47

48

49



(&)

[

5007

5008

5009

5010

5011

5012

IF ((E{J)elLTeCES(32sPLATE))«ANDCES(2G,PLATF)) 5008, 5007

MATERIAL HAS NO STRENGTH
PHI(J)=DELE=TX=C.0

GO TO 5021

MATERIAL HAS STRENGTH - ELASTIC-PLASTIC YIELDING

COMPUTE G AND Y
ETA1=1eC—-2eC*CES(19PLATE)/(RHOL1+RHO(J))
IF (ABSF(ETALl)elLTe540E-10) ETAL1=0.0
IF (CES(22sPLATE)) 5010s 5009
G=GCONST(PLATE)*RHO(J)*C{J)**2

GO TO 5012

SUMG=ETAP=1.0

NO=CES{22sPLATE} =049

bO 5011 IE=14sNO

ETAP=ETAP*ETAI
SUMG=SUMG+CES(1E+23sPLATE)*ETAP
¢=SUMG*CES(23yPLATE)

Y=CES(3CsPLATE)

YIELD EQUATION MAY GOE CHANGED HERE

STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE

STATE

IF (CES(29sPLATE) «EQe340) Y=CES(30sPLATE)*(1+0+CES(31sPLATE)*ETA)STATE

1% (140-E(J)/CES(32sPLATED))

COMPUTE DEVIATORS

IF (LPHA-2) 5013, 5017, 5013

STATE
STATE
STATE

STATE

55

56

57

58

56

60

61

62

63

64

65

66

67

58

69

70

71

72

73

74

75

76

77

131



STATE 78

ALPHA = 1 OR 3» RECTANGULAR OR SPHERICAL SYMMETRY STATE 79 Gii
5013 TXP=P(J)-SIGMA(J) _  STATE 80
DX=2eC* (U1=U(J=NVAR) )/ (DELXJ+X(J)=XP)+RHODGT/340 STATE 81
TXI=TXP+2C¥DELT (1) *#G#DX STATE 82

IF (CES(29sPLATE)«EQe240) GO TO 5015 STATE 83 .
YIELDF=145%#TXI%%2 STATE 84
IF (YIELDFeGTaY*%¥2/14,5) 50145 5015 STATE 85
5014 TX=TXI*#Y/(1a5%ABSF(TXI)) STATE 86
GO TO 5016 STATE 87
5015 TX=TXI | STATE 88
5016 DELE=1e5%DELT(1)% (TX+TXP)*DX/ (RHO1+RHO(J)) STATE 89
PHI(J)=145%TX . STATE $0
GO TO 5021 STATE 91
STATE 92
ALPHA = 2, CYLINDRICAL SYMMETRY STATE 93
5017 TXP=P(J)~SIGMA(J) STATE 94
DX=240%(Ul-U(J=NVAR) )/ (DELXJ+X(J)=XP)+RHODOT/340 STATE 95
DZ=RHODOT /340 STATE 96
TXI=TXP+2,0%¥DELT (1) *G*DX STATE 97
TZI=PHI(J)=2e0¥TXP+2.0%¥DELT (1) *G*DZ STATE 98
IF (CES(29sPLATE)«EQe2+0) GO TO 5019 STATE 99
YIELDF=24O¥(TXI%%2+TXI*TZI+TZI%%2) STATE100
IF (YIELDFWGToY#%2/145) 50185 5019 STATE101
5018 TZ=Y/SQRTF(1lae5%YIELDF) STATEL02
TX=TZ*TXI ' STATE103

TZ=TZ*TZ1 STATE1O04 .

132
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5019

5020 DELE=DELT(1)/(RHOLI+RHO(J) I ¥ ((TX+TXP) ¥ (2,0%¥DX+DZ2)+(TZ+PHI(J)1=-2.,0%

5021

5022

5023

5024

5025

GO TO 5020
TX=TXI

TZ2=T21

1TXP)*(2.0%#DZ+DX )

PHI(J)=2,0%TX+72

FOR ALL THREE EQUATIONS

COMPUTE GAMMA
MU=RHO1/CES(1,PLATE)-1.0

IF (CES(15+PLATE)) 5023s 5022

GAMMA IS A CONSTANT
GAMMA=CES(164PLATE)

GAMMAP=0,0

GO TC 5029

GAMMA IS A POLYNOMIAL IN ETA
SUMGAM=ETAP=1.0

SUMGAP=0,0

NO=CES(15sPLATE)~-049

DO 5024 I1E=1,NO
SUMGAP=SUMGAP+IE*CES({IE+16sPLATE ) *ETAP
ETAP=ETAPRETA
SUMGAM=SUMGAM+CES(IE+16+sPLATE ) *ETAP
GAMMA=CES(16sPLATFE ) *SUMGAM
GAMMAP=CES(16sPLATE ) *SUMGAP

IF (ETAWLEWCeUeANDeCESITIPLATE) «GT4Me) 50269 5027

S5TATELOS
STATELCG
STATEL107
STATE108
STATEL109
STATELLC
STATEL1l1
STATELl1lZ2
STATELL13
STATELll4
STATELLS
STATELLSG
STATELLY
STATE11l8
STATELLl9
STATE120
STATEL21
STATELZ22
STATELZ23
STATEL124
STATEL2S
STATEL26
STATEL127
STATEL28
STATELR29
STATEL30

STATEL131

133




5026

5029

5030

134

VAPOR EQUATION
RTMU=SQRTF (MU+140)

A=CES(7sPLATE) +{GAMMA~CES(7sPLATE) ) *RTMU

AP={ GAMMAP* (1 eU~ETA)+0+5% (GAMMA-CES(T7sPLATE) ) )/ (CES(1sPLATE)*RTMU)

B=NCONST(PLATEI*ETAX(140-FTA)
BP=NCONST(PLATE)*CEG(1sPLATE)*(1e0~24C*ETA)/RHQ1%**%2
F1l=A¥RHOL1*#CES(3+PLATE)*(EXPF(B)-1s0)

F2=A%RHO1

FP2=A+RHO1%*AP
FP1=CES(3sPLATE}*(FP2*X(EXPF(B)-1e0)+AXBP*RHOI¥EXPF(R))

GO TO 5032

HYDRO EQUATION
IF (CES(8,PLATF)) 5029, 5028
PHP=CES(9sPLATE)/(140-CES(10sPLATE)*ETA) %%2

PH=PHP*ETA

PHP=PHP* (140424 0%CES(10sPLATE)*ETA/(1.0-CES(10sPLATE)*ETA))
GO TO 5031

PH IS A POLYNOMIAL IN ETA
SUMPH=SUMPHP=ETAP=1,0
NO=CES(8sPLATE) =049

DO 5030 IE=1,NO
ETAP=ETAP*ETA
SUMPH=SUMPH+CES (1549, PLATE) *ETAP
SUMPHP=SUMPHP+ (1E+1)*CES(IE+9,PLATE ) ¥FTAD

PH=SUMPH®CES(SsPLATE)*ETA

STATE132
STATEL133
STATE134
S5TATEL3S
oTATEL36
STATEL37
STATEL38
STATEL39
STATEL4S
STATEL4]
STATEL42
STATE143
STATEL4G
STATEL4S
STATEL46
STATEL47
STATEl48
STATE149
STATELS50
STATELS)
STATELS2
STATELS2
STATELS54
STATEL1S55
STATELS56
STATE157

STATELSS




PHP=SUMPHP®*CES(94PLATE)

5031 F1l=PH%(1le0—Ce5*¥GAMMAXMU)
F2=GAMMAXRHC]
FP1=CES(1sPLATE)/RHOL**2% (PHP* (140-0e5*¥GANMAXMU ) =0 o S*¥PH* (GAMMAX
1(MU+]1 60 ) #¥2+GAMMAP¥MU ) )

FP2=GAMMA+GANMAP % (1,0-ETA)

[

ENERGY FQUATION
Era5 E1=(E(J)+(F14P(J)+Q1+Q(J) ) *¥DELRHO+DELE+GDEP)/(140-F2*DELRHO)
P1=F1+F2%F1
SIGMA1=P1~TX
IF (SIGMAleGEWCES(4sPLATE)) 5034 5023
5033 SIGMAL=CES(4sPLATE)
PE=STIGMAL+TX
E1=E£1+(PE-P1)*DELRHO

P1=PE

C COMPUTE SOUND SPEED
5024 C(J)=FP1+FP2¥EL+F2%¥P1/RHO1#*%2
IF (C(J)y) 5035, 5035, 5026
5025 C(J)=CES{2sPLATE)
GO TO 5039
5036 IF (E(J)eLTeCES(3+sPLATE)) 50284 5027

5337 C(J)=SQRTF(CtU))

GO TO 5039
5038 C(J)=SQRTF{KCONST(PLATEY*C(J))
C
C ADD ANY SPECIAL CALCULATIONS HERE

5039 E(J)y=E1l

STATELSS
oTATEL160
STATELGL
sTATEL6Z
STATELGZ.
STATELGG
STATEL165
STATELG6
STATEL67
STATEL168
STATEL169
STATELT70
STATE171
STATELTZ
STATEL73
STATEL74
STATELTS
STATEL176
STATELT7
STATEL178
STATEL7S
STATEL80
STATE181
STATEL182
STATEL83
STATEL184
STATELBS
STATEL86

STATE187
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[

5201 FORMAT

PJ)y=P1
SIGMA(J)Y=SIGMAL
GO TO 5999

ENTRY STINI

INITIALIZE EQUATION OF STATE CONSTANTS
CES(GsPLATE)=CES(1sPLATE) *CES(2sPLATE ) *%#2
CES(23sPLATE)=1e5%¥CES{9sPLATE)I*¥(140=2e0%CES(H6sFLATE))/

10140+CES(6sPLATE))

GCONST IS USED IN THE CONSTANT G EQUATION

KCONST 1S USED IN THE SOUND SPEED EGUATION IFF EPP

NCONET IS USED IN THE VAPOR EQUATION

GCONSTI(PLATE ) =(1e0-2e0%CES(6sPLATE) )/ (2e0~2e0%CES(E6PLATE))
KCONST(PLATE)=3.0%(140-CES(6sPLATE) )/ (1e04+CES(E&sPLATE))
NCONST(PLATE}=CES(2sPLATE)*¥*2/({CES(16sPLATE)Y*CES(343PLATE))
IF (CES(32sPLATE) «EGeGa0) CES(32sPLATE)=140E 30

QDEP=0.0

DEP=0.0

PRINT 5201y PLATE

IF (W4020) WRITE (21, 5201) PLATE

1 FOR PLATE s I5)

5999 RETURN

136

END

STATE188
STATE189
STATELSC
STATELS]
STATELG?2
STATEL93
STATE194
STATEL195
STATELG6
STATEL97
STATELGS
STATELGSS

STATE20C

STATE201

STATE202
STATE203
STATE204
STATE205
STATE2C6
S5TATE2C7

STATE208

{66HC THE HYDRO VAPOR ELASTIC PLASTIC EQUATION WILL BE USEDSTATEZ09

STATE210
STATEZ211

STATEZ212




v

SUBROUTINE STATEZ2

C PROGRAM WONDY

5002

5003

5004

5005

5001

BANKs (0)s STATEZ s /CONSTS/s /INTERM/s /PLATES/s /LOGIC/
INSERT COMMON CARDS HERE

HIGH EXPLOSIVE WITH BURN TIME

PERFECT GAS DETONATION PRODUCTS
F=CES(4sPLATE)*(T~P{J))/(CES(6sPLATE)*DELTAX(PLATE))
IF (P(J) «GE«T) F=0.0

IF (FeGTeleQ) F=140
E1=(E(J)+(SIGMA(JU)I+Q1+Q(J))*DELRHO)/ (140=F*RHO1 *DELRHO*
1 CES(9sPLATED))

SIGMA(J)=F*¥RHOI1*EL1*CES(9,PLATE)

C(J)y=CES( 3sPLATE)*SIGMA(J)/RHO1

IF (C(J)eLTCES(8sPLATE)) 5003y 5004
C(J)=CES(2+PLATE)

GO TO 5005

C(JY=SARTFI(CILI))

E(J)=E]

GO TO 5999

ENTRY STINZ2

PRINT 5201y PLATE

IF (Wa020) WRITE (21y 5201) PLATE

LOM=L0L+1

DO 5001 LF=LOM,LOR

JF=(LF=-1)%NVAR+1

P{JUF)=ABSF(OeS5*(X(JF)+X(JF=NVAR))I-CES(5sPLATE))/CES{(4sPLATE)

STATE
STATE

STATE

STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE
STATE

STATE

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

417

48

49
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CES(&4PLATE)=CES(2PLATEY *%2
CES(9+sPLATE)=CLESI3sPLATE)-140

5201 FORMAT (53hU THE HIGH EXPLCSIVE EQUATION WILL BE JSED FOR PLATE

138

>TATE
STATE
STATE

STATE

51
52
53
54
>
55



v

suBrROU

TINE STATEZ

C PROGRAM WONDY

BANK 9

C INSERT

E1=(E(JI+{SIGMA(J)I+Q1+Q(J) I *DELRHO) /7 (1e-RHOL1*¥DELRHO*CES(9yPLATE))

STGMA(

(0)rs STATES s /CONSTS/s /INTERM/,s /PLATES/s /LOGIC/

COMMON CARDS HERE

J)=RHO1*E1*CES(9sPLATE)

ClJYy=CES( 3sPLATE)*SIGMA({J)/RKO1

IF (C{

5001 C(J)=C

GO T0O

J)eLT«CES(B8sPLATE)) 5001y 5002
ES{2sPLATE)

5003

5002 CHJ)y=SQRTF(IC(JIN)

5003 E(Jy=E
GO 710
ENTRY
PRINT
IF (W4
CES(8,
CES(9,

5201 FORMAT

1 1I5)

5999 RETURN

END

1

5999

STIN3

5201s PLATE

020) WRITE (21, 5201) PLATE
PLATE)=CES(2yPLATE) **2
PLATE)=CES(3sPLATE)-1.0

(50HC THE PERFECT GAS EQUATION WILL BE USED FOR PLATE

>TATE
STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

27
28
29
30
3]
32
33
e
35
36
37

38

40
41
42
43

44
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SUBROUTINE OUTPUT

C PROGRAM WONDY

INnNs_

140

BANK s

INSERT COMMON CARDS HERE

JMAX=LMAX®#NVAR+1

WRITE

RETIRN

END

(C)o

123)

QUTPUT

Ns

T

s /CONSTS/

(X0J) s

SIGMA(J)

/INTERM/»s /PLATES/,

J=1 9 JJMAX s NVAR)

/LOGIC/

UUTPU

ouTPU

QUTPU

CuTPU

oUTPUL

ouTPU

OUTPU

1

2

3

27

28

29

30

-
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SUBROUTINE CUTL
PROGCRAM WONDY
BANKs (0)s OUTL s /CONSTS/s /INTERM/s /PLATES/s /LCOIC/

INSERT COMMON CARDS HERE

ouTL

QUTL

JUTL

SAMPLE CGDING FOR A SPECIAL CUTPUT RCUTINES. ARRAYS MAY BE PRINTEDCULTL

EVERY TIME CYCLE FOR VARIQUS MESH POINTS. MESH POINTS MAY BE
LISTED IN THE ADDATA ARRAY (MAXIMUM OF 7)
EQUIVALENCE (LPRLADDATA)
DIMENSION LPR(T7)
IF(JONE) 11=1
IF(JONE «ANC«NONE) WRITE(22s9700)(TITLE(IC)sIC=1,10)
9502 IF (IFIX(ADDATA(II)) «EQeL) 9503 9504
9502 WRITE(22s97C1) LeTs X(J)s UlJ)s RHO(CU)s SIGMALUY s PHI(J)s QLI
1800
[T1=11+1
IF (ITeEQe8) PRINTL=O

9504 RETURN

9700 FORMAT (70HuU SPECIAL OUTPUT IS5 PRINTED IN THE ORDER - L T X U RHO

1SIGMA PHI Q E / 1Xs 10A8)

97C1 FORMAT (15+8E1444)

END

uuTL

ouTL

QuTL

oUTL

QuUTL

CUTL

UUTL

oUTL

ouUTL

ouTL

OouTL

ouTL

OUTL

ouTL

ouTL

ouUTL

bt

31

32

33

34

38

39
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