
The Perfect Match: RPL and RDF Rule
Languages

François Bry1 and Tim Furche1 and Benedikt Linse1

University of Munich,
http://www.pms.ifi.lmu.de

Abstract. Path query languages have been previously shown to com-
plement RDF rule languages in a natural way and have been used as
a means to implement the RDFS derivation rules. RPL is a novel path
query language specifically designed to be incorporated with RDF rules
and comes in three flavors: Node-, edge- and path-flavored expressions
allow to express conditional regular expressions over the nodes, edges, or
nodes and edges appearing on paths within RDF graphs. Providing reg-
ular string expressions and negation, RPL is more expressive than other
RDF path languages that have been proposed. We give a compositional
semantics for RPL and show that it can be evaluated efficiently, while
several possible extensions of it cannot.

Graph traversal operators play a crucial role in rule and query languages for
semi-structured data and for RDF rule languages in particular. This need bas
been acknowledged by the development of languages like Versa [11] SPARQLeR
[7] and nSPARQL [12] and underlined in [2]. Moreover, the need for traversal
of semi-structured data in general, and XML in particular is underscored by
the huge success of XPath, arguably the most prominent XML query language.
In [12] it has been shown that SPARQL augmented with conditional (in the
sense of [9]) regular path expressions is expressive enough to query RDF graphs
under the RDFS semantics without computing the closure of the graph under
the RDFS entailment rules.

Most path query languages proposed up until now are unfit for clean integra-
tion with RDF rule languages for the following reasons: (i) their use of variables
interferes with the use of logical variables already present in rule languages, (ii)
they do not always evaluate to pairs of nodes and thus cannot be safely used
at the place of RDF predicates in query patterns and (iii) they lack negation,
regular string expressions and often also conditional operators.

We propose the RDF path language RPL, that is designed for easy integration
with RDF rule languages such as SPARQL [14], XcerptRDF [5, 13] and RDFLog
[4, 3]. RPL is an orthogonal extension to RDF rule languages in that it sets out
to extend RDF rule languages by features they lack, and in that it tries to avoid
duplication of features they already provide. RPL expressions always evaluate
to pairs of nodes within an RDF graph, and can thus be safely used at the place
of predicates within the body of RDF rules. Despite of this restriction, SPARQL
extended with RPL predicates is capable, just as nSPARQL, to query RDF

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universität München: Elektronischen Publikationen

https://core.ac.uk/display/216438806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

graphs under the RDFS semantics without computing the closure of the queried
graphs under the RDFS entailment rules. RPL is more expressive than previously
proposed RDF query languages in that it provides regular string expressions and
negation.

RDF Path Expressions (RPEs) come in three flavors: node-restricting, edge-
restricting and path-restricting, identified by the keywords NODES, EDGES,
PATH, respectively. Node-restricting (edge-restricting) RPEs only place restric-
tions on the nodes (edges) appearing within a path. Path-restricting expressions
may place restrictions on both, nodes and edges. RPEs evaluate to sets of pairs
of nodes – i.e. binary relations over the set N of nodes of an RDF graph. The
three unrestrictive RPEs [PATH ()∗], [EDGES ∗] and [NODES ∗] evaluate
to N ×N .

This paper is organized as follows: Section 1 informally introduces the se-
mantics of RPL by example, before its syntax and semantics is formally defined
in Sections 2 and 3. Section 5 compares RPL to related path query languages
and comes up with first complexity results. Section 6 shows the tractability of
RPL as a whole, and the intractability of node and edge flavored path RPL
expressions augmented with unordered paths.

The contributions of this paper are as follows: (i) We formalize the syntax and
semantics of RPL expressions, and (ii) show that RPL can express all relevant
RDFS queries. (iii) We show that RPL can be evaluated efficiently, and (iv) that
also nSPARQL could be extended by regular string expressions and negation
without sacrificing tractability. (v) Finally we show that extensions of RPL and
nSPARQL to unordered paths results in the loss of the tractability of both
languages.

1 RPL by Example

Before introducing RPL, we define the notions of RDF triples, graphs, and paths
in RDF graphs.

Definition 1 (RDF triple, graph). Let U , B, L be three disjoint sets of URIs,
blank node identifiers and RDF literals. Then t = (s, p, o) ∈ U∪B×U×U∪B∪L
is an RDF triple, and tg ∈ U × U × U ∪ L is a ground RDF triple. s, p, o are
the subject, predicate and object of t, respectively. A (ground) RDF graph is
a set of (ground) RDF triples. The set of nodes N of an RDF graph G are all
elements in U ∪B ∪ L that appear in subject or object position of a triple in G.

Definition 2 (Path in an RDF graph). Let G be an RDF graph. The se-
quence n1, . . . , nk is a path in G, iff the triples (n1, n2, n3), (n3, n4, n5), . . . ,
(nk−2, nk−1, nk) are in G.

Example 1. [PATH (eg:/.∗/)∗ rdf:type]: All pairs (n1, n2) of nodes connected
over intermediate nodes of the namespace eg. Additionally, the last edge on
the connecting path must correspond to the qualified name rdf :type. This first
example demonstrates the following points:

– RPEs start with an opening square bracket followed by one of the keywords
PATH, EDGES and NODES specifying the flavor of the path expression,
and end with a closing square bracket.

– As in SPARQL, XPath, XQuery, XSLT and XcerptRDF, URIs may be ab-
breviated by qualified names.

– Wildcards () and regular expressions (e.g. /.∗/) play an important role
within RPEs. Together with qualified names, URIs and literals, they consti-
tute the atomic building blocks of RPEs, called atomic RPEs.

– From atomic RPEs, compound RPEs can be built via sequencing (denoted
by whitespace), alternation (|), Kleene closure (* and +), optionality (?),
and negation (not(...)).

Example 2. The expression [PATH (>eg:p ˆ [not(PATH eg:p1])])∗ eg:p] collects
all pairs of nodes connected over a path with at least one predicate with URI
eg:p. All intermediate nodes must not have an outgoing eg:p1 edge.

This second example introduces path directions and path predicates and
demonstrates the following points:

– URIs, regular expressions or qualified names within RPEs may be modified
by one of the directions ‘>’ (forward predicate), ‘<’ (reverse predicate) or ‘̂ ’
(node). If an atomic RPE is prefixed with ‘<’ (‘̂ ’) then it must match with
a reverse edge (node) on the path connecting the nodes n1 and n2. If an
atomic RPE is undirected or prefixed by ‘>’, then it must match a forward
edge on the path connecting n1 and n2.

– Path expressions may be nested via path predicates, which roughly corre-
spond to XPath predicates. While URIs, qualified names or regular ex-
pressions within RPEs represent local restrictions only, predicates allow the
specification of non-local restrictions, i.e. restrictions that are not directly
enforced on nodes or edges on the path, but on nodes or edges connected via
a nested path expression.

Example 3. The edge-flavored expression [EDGES rdf:type (rdfs:subClassOf)∗]
evaluates to all pairs of nodes connected via one rdf :type edge and zero or more
rdfs:subClassOf edges (in this order).

This query determines the indirect class membership of resources under the
RDFS semantics. Note that also for many other RDF queries, only the edges
along a path are relevant. The query [EDGES (<rdfs:subClassOf)∗ <rdf:type]
evaluates to the reverse relation.

Example 4. The node-flavored expression [NODES (eg:a eg:b)] finds all pairs
of nodes that are connected over nodes eg:a and eg:b (in this order), with ar-
bitrary predicates on the path. The query [NODES (eg:/.∗/ | foaf:/.∗/)∗] on
the other hand, finds all pairs of nodes connected over a path of length zero or
more which contains only intermediate nodes belonging to the namespaces eg
or foaf. The predicates on the path are irrelevant, as indicated by the keyword
NODES.

Example 5 (RDFS querying with RDFLog augmented by RPL). This example
shows how RDF rule languages can be augmented by RPL path expressions to
immitate the RDFS semantics. We choose RDFLog as the extended rule language
because of its simplicity. The RDFLog rule

∀x p y p1 z . (x p y)← (x p1 z), (p1 [EDGES subprop*] y) (1)

can be used to materialize the extension of the predicate p under the RDFS
semantics. In a backward chaining evaluation of an RDFLog program, material-
ization is only carried out on demand, and is thus more efficient than computing
the RDFS closure of the queried graph. If only single rules or queries are allowed
(such as in SPARQL), then the body of Equation 1 can simply be used in the
query at the place of p.

The extension of predicates with a special semantics under the RDFS model
theory deserve special treatment. E.g the extension of rdf :type is computed by
the following RDFLog rules with RPL predicates:

∀x y . (x type y)← (x [EDGES type subclass*] y)
∀x y p1 z. (x type y)← (x p1 z), (p1 [EDGES subprop* dom subclass*] y)
∀x y p1 z. (x type y)← (z p1 x), (p1 [EDGES subprop* range subclass*] y)

It can be shown that also extensions of the remaining RDFS predicates
subclasss, subProperty, domain and range can be encoded as RDFLog or SPARQL
rule bodies augmented with RPL. The encoding is analogous to the one presented
in [12] and is omitted here for the sake of brevity.

2 RPL Syntax

Definition 3 (Abstract syntax of RPEs). The abstract syntax of RPL, is
recursively defined as follows:

– A URI u, regular expression re, qualified name q, literal l and wild card
is an atomic RPE. Moreover, a qualified name prefix:localpart where

localpart is a regular expression, is an atomic RPE.
– If p is an atomic path expression, then p, < p, > p and ˆp are directed path

expressions.
– if p1 is an atomic RPE, and q1, . . . qn are RPL predicates (see below), then
p1 and p1[q1] . . . [qn] are predicated RPEs.

– If p is a predicated or concatenated RPE, then p, p∗, p+ and p? are adorned
RPEs.

– If p1, . . . pn are adorned or disjunctive (see below) RPEs, then (p1 . . . pn) with
n ≥ 1 is a concatenated RPE.

– If p1, . . . pn are concatenated RPEs, (p1 | . . . | pn) with n ≥ 1 is a disjunctive
RPE.

– If p is a concatenated RPE, PATH p, EDGES p, NODES p are flavored
RPEs. They are called path-restricting, edge-restricting and node-restricting
expressions, respectively.

– If p is a flavored RPE, then p and not(p) are RPL predicates.

Figure 1 summarizes the relationships between the different types of subex-
pressions in RPL. An arrow labeled with 1, + or ∗ from type A to type B
means that expressions of type B are made up of exactly one, at least one, or
zero or more expression of type A, respectively. It holds that any atomic RPL
expression is also a directed subexpression, which are in turn also predicated
subexpressions, which are in turn adorned subexpressions. As in XQuery, a con-
catenated expression (called sequence in XQuery) of one element is equivalent
to the element itsself. Also an disjunctive RPE of one element is equivalent
to the element itsself. Only flavored RPL expressions can be embedded in rule
languages.

Fig. 1. Relationships among subexpressions of RPEs

atomic directed predicated adorned

predicate flavored concatenated disjunctive

1 1 1

∗

1

+

+

+1

1

The following remarks clarify Definition 3.

– Atomic RPEs correspond to the building blocks of ground RDF graphs with
the following exceptions: (i) qualified names are allowed as shorthand nota-
tions for URIs, (ii) regular expressions are allowed as a means for matching
URIs and Literals1, (iii) the local part of a qualified name may be expressed
by a regular expression, (iv) wildcards can be used to match any blank node,
URI or literal.

– RPEs do not provide any means for selecting RDF literals based on their
types or based on their language tags, other than using a regular expression
for this purpose.

– Just as with ordinary regular (string) expressions, parentheses are used to in-
fluence operator precedence. The operators Kleene star (*), Kleene plus (+),
optionality (?) are mutually exclusive and have precedence over all other op-
erators. The concatenation operator (denoted by whitespace) binds stronger

1 matching blank nodes with regular expressions is not allowed, since this would mean
syntactic matching of RDF graphs, i.e. the semantics of an RPE would be dependent
on the syntactic representation of the RDF graph that is being queried.

than the disjunctive operator |, i.e. a b | c is equivalent to (a b) | c. Paren-
theses may be omitted, if they do not alter operator precedence.

3 RPL Compositional Semantics

The intuitive presentation of the RPEs is now formalized by a compositional
semantics, which is given by the function [[·]] and its four helper functions [[·]]P for
path-restricting expressions, [[·]]E for edge-restricting expressions, [[·]]N for node-
restricting expressions and [[a]]V for atomic expressions a that are evaluated in
vertex position. While the functions [[·]], [[·]]P , [[·]]E and [[·]]N evaluate to subsets
of N ×N , i.e. binary relations on the set N of nodes of the queried RDF graph,
the function [[·]]V evaluates to subsets of N .

In order to present the semantics in an easily digestible manner, we split the
entire definition according to the flavor of the RPE to be formalized. Definition
4 gives the semantics for edge-restricting RPEs, Definitions 5, 6 and 7 add the
necessary equations for node-restricting, path-restricting and arbitrary RPEs,
respectively. The three flavors of RPEs differ in the way subexpressions are con-
catenated. In contrast, most equations for evaluating atomic RPEs, alternatives
and Kleene closures are independent of the flavor and are only given once.

In the following, let G be an RDF graph over the vocabulary U ∪ B ∪ L,
u a URI, l an RDF Literal, re a regular expression, a an atomic RPE, pe a
predicated RPE, f1, . . . fk flavored RPEs, and e, e1, . . . , ek arbitrary RPEs.

Definition 4 (Semantics of edge-restricting RPEs). The semantics of edge-
restricting RPEs is given by the function [[·]]E defined as follows:

[[u]]E,P = {(n1, n2) | (n1, u, n2) ∈ G} (2)
[[]]E,P = {(n1, n2) | ∃p . (n1, p, n2) ∈ G} (3)

[[/re/]]E,P = {(n1, n2) | ∃p ∈ L(re) . (n1, p, n2) ∈ G} (4)
[[>pe]]X = [[pe]]X for X ∈ {E,P} (5)
[[<pe]]X = {(n2, n1) | (n1, n2) ∈ [[>pe]]X} for X ∈ {E,P} (6)

[[e1 . . . ek]]E = {(n1, nk−1) | ∃n2, . . . nk . ∀1 ≤ i ≤ k ((ni, ni+1) ∈ [[ei]]E)}(7)
[[(e1 | . . . | ek)]]X = [[e1]]X ∪ . . . ∪ [[ek]]X for X ∈ {P,E,N} (8)

[[a[f1] . . . [fk]]]E =
⋃

a′∈[[a[f1]...[fk]]]V

[[a′]]E (9)

[[ε]]E,P = {(n, n) | n ∈ N} (10)
[[e+]]X = [[e]]X ∪ [[e e+]]X for X ∈ {P,E,N} (11)
[[e∗]]X = [[ε]] ∪ [[e+]]X for X ∈ {P,E,N} (12)
[[e?]]X = [[ε]] ∪ [[e]]X for X ∈ {P,E,N} (13)

The centerpiece of Definition 4 is Equation 7. It states that the semantics of a
sequence of edge-restricting RPEs is a binary relation of nodes (n1, n2) such that

there is a path from n1 to n2 over arbitrary intermediate nodes n2, . . . nk−1 such
that these intermediate nodes are connected via the subexpressions e1, . . . , ek.

The other equations in Definition 4 do not only hold for edge-restricting
RPEs, but also for path-restricting ones, and some hold also for node-restricting
expressions, as indicated by X.

Equations 2, 3 and 4 establish that a URI u evaluates to the pairs of nodes
connected via a predicate of name u, the wildcard character to all pairs of nodes
connected via an arbitrary predicate, and a regular string expression re to those
pairs of nodes which are connected via a predicate that is in the language L(re)
defined by re. Note that when part of a node-restricting expression, the semantics
of URIs, wildcards and regular string expressions is different (see Definition 5).

Equations 5 and 6 formalize the specification of edge traversal in forward
or reverse direction with the directions < and >. If no direction is given, then
Equations 2, 3 and 4 hold, i.e. forward traversal is assumed.

Equations 10, 11, 12 and 13 define the semantics of the Kleene star, Kleene
plus and optional parts of RPEs.

Formalizing the semantics of predicates within edge-restricting expressions,
Equation 9 references Definition 5. Here the idea is to also allow the formulation
of queries that use the same URI in predicate and subject or object position. An
example for such queries from [12] is finding all pairs of cities that are connected
via some transportation service, given a hierarchy of transportation services and
connections among cities using instances of this hierarchy.

Definition 5 (Semantics of node-restricting RPEs). The semantics for
node-restricting RPEs is defined as follows:

[[]]V = N (14)
[[/re/]]V = N ∩ L(re) (15)

[[u]]V = {u} ∩N (16)
[[l]]V = {l} ∩N (17)

[[pe]]N = {(n, n) | n ∈ [[pe]]V } (18)
[[a[f1] . . . [fk]]]V = [[a]]V ∩ {n1 | ∃n2 . (n1, n2) ∈ [[f1]]} ∩ (19)

. . . ∩ {n1 | ∃n2 . (n1, n2) ∈ [[fk]]} (20)
[[e1 . . . ek]]N = {(n1, n2k) | ∃n2, . . . n2k−1, p1, . . . , pk−1 . (21)

∀1 ≤ i ≤ k ((n2i−1, n2i) ∈ [[ei]]N) ∧
∀1 ≤ i ≤ k − 1 ((n2i, pi, n2i+1) ∈ G)}

While many RDFS queries only respect the predicates on a path between
two resources and are therefore best expressed as edge-restricting RPEs, some
path queries may only be interested in the traversed nodes and are better ex-
pressed as node-restricting RPEs. An example for this type of query is find-
ing all pairs of persons in a social graph that are somehow connected over
the resources anna and new york. This query could be answered by the RPE

NODES (anna new york) | (new york anna). Definition 5 formalizes node-restric-
ting RPEs.

In this setting, a URI, regular string expression, wildcard or qualified name
is evaluated in node position (Equation 18), and is thus treated differently from
the evaluation within edge-restricting RPEs (Equation 2).

The core of Definition 5 is the formalization of node concatenation in Equa-
tion 21. Concatenations may involve arbitrary RPEs, i.e. atomic, predicated,
directed, grouped path expressions, alternatives, Kleene closures and concatena-
tions themselves. While the nodes on the path described by a node-restricting
concatenation are given by the subexpressions of the concatenation, the pred-
icates are arbitrary. Equation 21 makes use of the binary helper function [[·]]N
defined on subexpressions, and the unary function [[·]]V , which is part of the
formalization of path-restricting RPEs.

Path-restricting RPEs are needed whenever constraints shall be laid both on
the predicates and nodes on a path within an RDF graph. Equation 23 is the
centerpiece of Definition 6. Path-restricting RPEs are expected to start and end
with restrictions on the first and last edge of an RDF graph, because they are
designed for easy integration with RDF query languages such as SPARQL and
XcerptRDF where they are used at the place of RDF predicates. If the first
and/or last restriction is laid on a node instead, this must be indicated with a
‘̂ ’ symbol, and Equations 24 and 25 apply.

Definition 6 (Semantics of path-restricting RPEs). The semantics of path-
restricting RPEs is defined as follows:

[[̂ a]] = [[a]]V (22)
[[e1 . . . ek]]P = {(n1, nj) | ∃n2, . . . , nj−1 . (n1, n2) ∈ [[e1]]P ∧ n2 ∈ [[e2]]V ∧(23)

. . . ∧ nj−1 ∈ [[ek−1]]V ∧ (nj−1, nj) ∈ [[ek]]P }
[[̂ pe e]]P = {(n1, n2) ∈ [[e]]P | n1 ∈ [[pe]]V } (24)
[[e p̂e]]P = {(n1, n2) ∈ [[e]]P | n1 ∈ [[pe]]V } (25)

Definition 7 (Semantics of flavored RPEs).

[[PATH e]] = [[e]]P (26)
[[EDGES e]] = [[e]]E (27)
[[NODES e]] = {(n1, n4) | (28)

∃n2, n3, p1, p2 . (n2, n3) ∈ [[e]]N ∧ (n1, p1, n2), (n3, p2, n4) ∈ G}
[[not(u)]] = [[]] \ [[u]] (29)

4 RPL Restrictions and Extensions

In order to compare RPL to other regular path languages over ordinary graphs
and RDF graphs, and to study the complexity of RPL fragments, we introduce
the following set of sublanguages:

Definition 8 (RPL sublanguages). Besides the operators +, ? and *, RPL
makes use of the following features:

– regular string expressions (denoted by RSE)

– the EDGE keyword (denoted by →)

– the NODE keyword (denoted by ◦)
– the PATH keyword (denoted by 99K)

– predicates (denoted by [])

– concatenation (denoted by /)

– disjunction (denoted by |)
– predicate negation (denoted by ¬)

– direction modifiers (denoted by µ)

RPLf1,...,fk with f1, . . . , fk ∈ {RSE,→, ◦, 99K, [], /, |,¬, µ} denotes the sub-
language of RPL making use of the operators +, ?, and * and the features
f1, . . . , fn only.

Languages such as XPath and Xcerpt allow queries to be incompletely spec-
ified in depth, or with respect to order. Incompleteness in depth is specified via
the descendant axis in XPath and via the desc keyword in Xcerpt. Incomplete-
ness with respect to order is the default querying mode in XPath and can be
overridden by using the << operator; in Xcerpt it is specified via curly braces.

An obvious extension of RPL is thus to introduce unordered and incomplete
paths. While the order in Xcerpt query terms is enforced/relaxed with respect
to the sibling axis of an XML document, the order in RPEs may be relaxed
with respect to the paths traversed, i.e. the descendant axis. Also the concept
of incomplete specification of siblings in Xcerpt query terms may be transfered
to the descendant axis by allowing double brackets within RPL. We denote the
extensions of the sublanguages of RPL by unordered paths, incomplete paths and
both by adding the symbols {}, [[]] or both to the feature list of the sublanguage.
The RPL expression Nodes { x y z } thus evaluates to all pairs of nodes that
are connected by a path containing only the intermediate nodes x, y, and z in
an abritrary order. The RPL expression Nodes [[x y]] on the other hand
evaluates to all pairs of nodes that are connected via a path that contains the
nodes x and y with x appearing before y, and an arbitrary number of nodes
before x, between x and y and following y.

The semantics of {} is formalized by the functions [[·]]UN , [[·]]UE , and [[·]]UP
for unordered node-flavored, edge-flavored and path-flavored expressions, respec-
tively. The semantics of [[]] is given by the functions [[·]]IN , [[·]]IE , and [[·]]IP .

Definition 9 (Semantics of unordered and incomplete RPEs).

[[e]]UN =
⋃

p∈Perm(e)

[[p]]N (30)

[[e]]UE =
⋃

p∈Perm(e)

[[p]]E (31)

[[e]]UP =
⋃

p∈Perm(e)

[[p]]P (32)

[[e]]IN =
⋃

c∈Comp(e)

[[c]]N (33)

[[e]]IE =
⋃

c∈Comp(e)

[[c]]E (34)

[[e]]IP =
⋃

c∈Comp(e)

[[c]]P (35)

A completion of a sequence e := e1, . . . , en is a sequence c that contains all
elements of e plus an arbitrary number of wildcards. A completion of e is called
order-respecting, iff for ei, ej ∈ e with i < j, ei appears in c before ej. Perm(e)
and Comp(e) denotes the set of all permuations and order respecting completions
of e, respectively.

Both extensions of RPL – to unordered paths and to incomplete paths –
are mere syntactic sugar. The RPE Nodes { x y } can be rewritten to the
equivalent RPE Nodes (x y) | (y x) and the RPE Nodes [[x y]] can
be rewritten to Nodes _* x _* y _*. Observe that whereas the rewriting of
incomplete path expressions is linear in the size of the original expression, the
rewriting of unordered paths is exponential in the size of the original expression.
We chose not to include incomplete RPEs in standard RPL, since one can easily
do without them. On the other hand we chose not to include unordered RPEs
in standard RPL, because it would make evaluation of RPL NP-hard as shown
in Section 6.

The semantics of RPEs that are both unordered and incomplete (denoted by
{{}}) is easily defined at the aid of non-order-respecting permutations. For the
sake of brevity, we omit this extension of RPL.

5 RPL compared to Lorel, SPARQLeR and nSPARQL

[?] extends SPARQL by regular expression patterns which may occur at the place
of predicates in RDF graphs. These regular expression patterns include amongst
others kleene closure, disjunction, concatenation, but not predicate negation and
regular string expressions. Moreover, node labels are are not considered part of
the path to be matched by the regular expression pattern.

The Lorel query language[1] is an offspring of the XML database system Lore,
but can be used to query all kinds of semi-structured data. It has received con-
siderable attention in the research community, partially due to its incorporation
of regular path expressions.

RPEs compare to Lorel path expressions as follows:

– The data model of Lorel is an edge-labeled graph, without node labels. There-
fore Lorel does not distinguish the three flavors of RPEs.

– Both languages provide the unary operators Kleene plus (+), Kleene star (*)
and optionality (?), and the binary operators concatenation (denoted by ’.’
in Lorel), and alternative.

– Lorel allows the use of the character ’%’ to match 0 or more characters within
a label. RPL on the other hand allows regular string expressions. Wildcards
for entire labels are denoted by ’#’ in Lorel and ’_’ in RPL.

– Lorel allows the extraction of values from traversed paths by so-called path
variables. RPEs do not use variables since they may be embedded in RDF
query language such as SPARQL or XcerptRDF, that provide themselves
variables.

– RPEs allow the restriction of paths based on path predicates, Lorel does not.
Hence query 2 is not expressible in Lorel.

In [10] the evaluation of regular expressions over the alphabet σ of an edge-
labeled graph g is studied. Compared to RPEs, [10] considers the labels of edges
to be atomic, i.e. they do not consider regular string expressions on node or edge-
level. Moreover, non-local restrictions on paths (i.e. predicates) and traversal
in reverse direction are not expressible. Since nodes in the queried graphs are
unlabelled, only the edge labels are relevant, i.e. the path expressions in [10]
correspond to a subset of edge-flavored RPEs.

[10] considers the problems Regular Simple Path, Fixed Regular Path (R),
and Regular Path. The problem Regular Simple Path takes a regular expression
e, a graph g over the same alphabet Σ, and a pair of nodes (x, y) as input, and
returns true iff g contains a directed simple path from x to y that satisfies e. A
path is called simple, if it does not contain the same vertex twice. The problem
Fixed Regular Path is the same as regular simple path, but e is not considered
as input. Regular Path is the same as Regular Simple Path, but the path is not
required to be simple.

[10] show that Fixed Regular Simple Path is NP-complete and Regular Simple
Path is NP-hard by a simple reduction from the problems Even Path and Disjoint
Paths treated in [8] and [6], respectively. Regular Path, however, is decidable in
time O(|E| |D|), where |E| is the size of the regular path expression and |D| is the
size of the data – shown by the construction of a product automaton of the NFA
of a regular path expression and the database graph interpreted as a NFA. In
RPL we choose to accept arbitrary paths, including non-simple paths as possible
connections among two nodes. RPEs are more expressive than the regular path
expressions of [10] in three respects: (i) They allow the specification of predicates
on nodes, (ii) regular expressions for matching edge and node labels, and (iii)

in that they take into account also the labels of nodes. Therefore, the results of
[10] leave the question, if there is a polynomial time algorithm for the evaluation
problem of RPEs, open. The following result for the complexity of RPL→,/,|,µ

expressions is a direct consequence of the complexity Regular Path.

Corollary 1. RPL→,/,|,µ can be evaluated in time O(|E| |G|), where |E| is the
size of the path expression and |G| is the size of the queried RDF graph.

[12] propose the regular path language nSPARQL with the following syntax:

exp := axis | axis::a (a ∈ U) | axis::[exp] | exp/exp | exp |exp | exp∗ (36)

where axis ∈ {self, next, next−1, node, node−1, edge, edge−1} and U denotes
the set of URIs. The axes next, edge and node are used to navigate from one
node in an RDF graph to an adjacent one, from a node to one of its outgoing
edges and from an edge to its sink. If the starting node is left unspecified, next,
edge and node can be interpreted as binary relations over an RDF graph G. Node
tests following the axes next, edge and node constrain the label of a traversed
edge, the object of an arc, and the subject, respectively. The semantics of the
predicates [], alternatives |, Kleene star ∗, and concatenation / are as expected.

In this section we briefly give an intuitive semantics of nSPARQL path ex-
pressions by translating Examples 1, 2, 3 and 4 to nSPARQL.

We abbreviate URIs in nSPARQL path expressions by qualified names to
shorten the examples.

Example 6 (nSPARQL path expressions).

– Example 1 is contained in the nSPARQL path expression (next)∗/next::rdf:type.
An exact translation is not possible due to the absence of regular string ex-
pressions for matching nodes or edges of RDF graphs.

– Example 2 is contained in the nSPARQL path expression (next::eg:p)+. An
exact translation is not possible due to the absence of negation in nSPARQL
predicates.

– Example 3 is equivalent to next::rdf:type/(next::rdfs:subClassOf)∗.
– The first RPL expression in Example 4 is equivalent to next/self::eg:a/next/self::eg:b

in nSPARQL.
– The nSPARQL path expression

next::a/(next::[next::a/self::b])∗/(next::[node::b] | next::a)+ (37)

from [12] is contained in the RPE [EDGES a([PATH a b]) ∗]. An exact
translation to an RPE is not possible, since RPEs always evaluate to pairs of
nodes of an RDF graph. In contrast, nSPARQL expressions may also evaluate
to pairs of edges and nodes, as the subexpression ”node::b” of Expression 6
does. Expression 6 can, however, be translated to an equivalent XcerptRDF

query term or SPARQL query pattern that makes use of a single RPE.

Given an nSPARQL path expression exp, an RDF graph G, and a pair of
nodes (n1, n2), the problem whether there is a path from n1 to n2 matching exp
within G, can be decided in O(|G| · |exp|).

Corollaries 2 and 3 shed light on the expressive relationship between frag-
ments of RPL and nSPARQL. An immediate consequence of corollary 2 is corol-
lary 4.

Corollary 2. Any RPE r ∈ RPL→,◦,99K,[],/,|,µ can be translated to an equivalent
nSPARQL path expression of length O(|pc|).

Proof. The translation function from RPL→,◦,99K,[],/,|,µ to nSPARQL is given in
Listing 1.1. Obviously, the size of to_nSPARRQL(exp) is linear in the size of exp
for any RPL expression in RPL→,◦,99K,[],/,|,µ.

Listing 1.1. Translation from RPL to nSPARQL
to nSPARQL(EDGES exp) = to nSPARQL(exp , edges)
to nSPARQL(NODES exp) = next /to nSPARQL(exp , nodes)/ next
to nSPARQL(PATH exp) = to nSPARQL(exp , path)
to nSPARQL(exp ∗ , mode) = to nSPARQL(exp , mode)∗
to nSPARQL(exp+, mode) = to nSPARQL(exp , mode)+
to nSPARQL(exp ? , mode) = s e l f | to nSPARQL(exp , mode)

to nSPARQL(, edges) = next
to nSPARQL(u , edges) = next : : u
to nSPARQL(>u , edges) = next : : u
to nSPARQL(<u , edges) = next −1: : u
to nSPARQL(u [p1] . . . [pn] , edges) =

next : : u [to nSPARQL(p1)] . . . [to nSPARQL(pn)]
to nSPARQL(exp1 | . . . | expn , mode) =

to nSPARQL(exp1 , mode) | . . . | to nSPARQL(expn , mode)
to nSPARQL(exp1 . . . expn , edges) =

to nSPARQL(exp1 , edges) / . . . / to nSPARQL(expn , edges)

to nSPARQL(, nodes) = s e l f
to nSPARQL(u , nodes) = s e l f : : u
to nSPARQL(exp1 . . . expn , nodes) =

to nSPARQL(exp1 , nodes)/ next / . . . / next /to nSPARQL(expn , nodes)
to nSPARQL(a [p1] . . . [pn] , nodes) =

s e l f : : a [to nSPARQL(p1)] . . . [to nSPARQL(pn)]

to nSPARQL(ˆa , path) = s e l f : : a
to nSPARQL(>a , path) = next : : a
to nSPARQL(< , path) = next−1 : : a
to nSPARQL(exp1 . . . expn , path) =

to nSPARQL(exp1 , edges)/to nSPARQL(exp2 , nodes) / . . . /
to nSPARQL(expn−1 , nodes)/to nSPARQL(expn , edges)

nSPARQL does not support the Kleene optionality operator ?. Nevertheless
RPL expressions with ? can be translated to nSPARQL by using the self axis

without a node test, which has the same semantics as the empty path expression
in RPL.

Note that some syntactically correct RPL expressions are not given a seman-
tics in Section 3. Among these expressions are Edges ^a, Nodes >a, Nodes <a
or Path >a >b. Similarly, these expressions are not handled by the translation
function. For implementations, there are two possible ways of treating such ex-
pressions: Raising a syntax error at parse time, or evaluation to the empty rela-
tion over all possible input graphs.

Corollary 3. Any nSPARQL path expression pn excluding the axes node, node−1,
edge, and edge−1 can be translated to an equivalent RPE pc of length O(|pn|).

Proof. For the translation of an nSPARQL expression including only the axes
next, next−1 and self , the expression is first normalized by inserting steps along
the self axis without node tests. The resulting expression e does not contain
consecutive steps along the axes next and next−1, but the axis next and next−1

on the one hand and the axis self on the other hand alternate. This transforma-
tion is done for both the expression itself and for any subexpression appearing
within a predicate. For example the nSPARQL expression

next−1::b/next[next::a/next::b]/next−1::c

is normalized to

next−1::b/self/next[next::a/self/next::b]/self/next−1::c .

Obviously, this transformation preserves the semantics of the expression. Sub-
sequently, the transformed expression is translated to RPL according to the func-
tion to_rpl in Listing 1.2. Obviously size of the resulting expression is linear in
the size of the original.

Listing 1.2. Translation of nSPARQL to RPL.
t o r p l (s tep 1 / . . . / s tepn) = PATH t o r p l (s tep 1) . . . t o r p l (s tepn)
t o r p l (next) = >
t o r p l (next : : a) = >a
t o r p l (next−1) = <
t o r p l (next−1 : : a) = <a
t o r p l (s e l f) = ˆ
t o r p l (s e f l : : a) = ˆa

Corollary 4. A RPE pc in RPL→,◦,99K,[],/,|,µ can be evaluated in O(|G| · |pc|).

6 Further Complexity Results

The comparison of RPL to related path query languages in the last section has
already brought up some complexity results for sublanguages of RPL. In this
section we establish the tractability of RPL as a whole and the intractability of
RPL with unordered paths.

Theorem 1 (Tractability of RPL and nSPARQLRSE,¬). RPL and the
extension of nSPARQL by regular string expressions and predicate negation (de-
noted by nSPARQLRSE,¬) can be evaluated in time O(|exp| · |G|).

Proof. (Sketch) Theorem 1 builds upon Corollary 4, that establishes that the
evaluation of RPL→,◦,99K,[],/,|,µ is in O(|exp| · |G|). The only features missing
in RPL→,◦,99K,[],/,|,µ when compared to full RPL are predicate negation (¬)
and regular string expressions (RSE). The evaluation of regular string expres-
sions is linear. Thus, defining the size of an RDF graph as the total length of
the characters appearing within its nodes and edges, the complexity remains in
O(|exp| · |G|) when regular string expressions are added to the language.

Showing that predicate negation has no effect on evaluation complexity is a
little more tricky: Consider the proof of the tractability of nSPARQL in [12].
It involves the construction of product automata G × Ap for each predicate
p appearing in the expression exp to be evaluated. We can extend nSPARQL
to nSPARQL¬ by allowing predicate negation in the same way as RPL allows
predicate negation. A RPE pc with predicate negation can then be translated
to an nSPARQL¬ expression pn in linear time, such that the size of pn remains
linear in the size of pc.

It remains to be shown that nSPARQL¬ is in O(|exp| · |G|). For this end,
we adapt the algorithm LABEL(G, exp) from [12] to label both positive and
negative predicates appearing in exp. For each negative predicate not(p) we
introduce the label notp which is attached to each node n in G not matching
with p. Then, for each negative predicate not(p) in exp, we substitute not(p) in
notp, thereby obtaining an ordinary nSPARQL expression exp+. exp+ evaluates
to over G with the adapted labelling algorithm if and only if exp evaluates to
true over G with the original labelling algorithm.

Theorem 2 (NP-Completeness of RPL◦,/,{}). The evaluation problem of
RPL◦,/,{} is NP-complete.

Proof. Obviously the evaluation problem for RPL◦,/,{} is in NP. We show its
NP-hardness by a reduction from the directed Hamiltonian path problem. Let
G be an abritrary RDF graph with nodes {n1, . . . , nk}. Then G has a directed
Hamiltonian path if and only if the RPE { NODES n1, . . . nk } has a non-empty
solution over G.

Theorem 3. The evaluation problem for RPL→,/,{} is in O(n · σw · e) where n
is the number of nodes of the RDF graph, e the number of edges, σ the number
of edge labels, and w is the length of the path expression.

Corollary 5. The evaluation problem for RPL→,/ is in O(e ·w) where w is the
length of the regular path expression and e is the number of edges in the RDF
graph.

Proof. Theorem 3 only gives an upper bound for the evaluation of RPL→,/,{},
therefore it suffices to give an algorithm that runs in O(n · σw · e) time.

Let G be an RDF graph, and p ∈ RPL→,/,{}. The idea of the algorithm is to
view G as a non-deterministic finite automaton, and p as a word to be checked
by the automaton. p is checked from the first element to the last, and the set of
valid states in the automaton is remembered in each step, starting out from the
set of all nodes in the RDF graph. For RPL→,/ (i.e. only ordered edge-flavored
expressions), this view gives us an algorithm in O(e ·w), where e is the number
of edges in G, and w is the length of p (Corollary 5).

For unordered edge-flavored path expressions, a naive implementation would
compute all possible permutations, and check the RDF graph for correspondance
with each of these permuations. Since there w! permutations for a path of length
w, this procedure has a complexity of O(w! · e). The following algorithm is more
efficient:

Again, the RDF graph G is viewed as a finite automaton, which is traversed
using symbols occurring in the path expression p. In step i of the computation,
each node n in G is labelled with all paths p of length i such that n is reachable
over p from some other node m in G. Initially, all nodes are labeled with the
empty path ε. After w steps (or earlier), the algorithm terminates and exactly
the set of labeled nodes in G is reachable over p. In Listing 1.3 we use set notation
to represent paths, since the order of traversal is irrelevant; however we must
think of paths as multisets, because the same edge label may occur multiple
times in p. For this reason, the set difference operator \ and the union operator
∪ in Listing 1.3 are the set difference and the union operator for multisets, not
sets, respectively.

Listing 1.3. Evaluation algorithm for expressions in RPL→,/

for each node n in G do labels(n) = {ε} end
for i = 1 to w do // w i s the l ength o f path p

for each e in E do // f o l l o w every edge
for each l in labels(source(e)) do

i f label(e) i s in p \ l then
labels(sink(e)) . add ({l} ∪ label(e))

end
end

end
remove a l l l a b e l s o f l ength i− 1

end

In the i-th iteration of the outermost loop of Listing 1.3, the set of labels for
the nodes in G is bounded by σi · |n|. Thus, the number of edge traversals in step
i is bounded by σi · |n|. The total number of edge traversals is thus σw+1 · |n|
(geometric series).

Theorem 4 (NP-Completeness of RPL→,/,{}). The evaluation problem of
RPL→,/,{} is NP-complete.

Proof. For the proof of Theorem 4 we use a reduction from the Hamiltonian
Cycle Problem. The idea of the proof is illustrated in Figure 2. Let G = (V,E)

be a directed labeled graph with nodes {1, . . . , k}. G has a Hamiltonian Cycle if
and only if the RPE { EDGES 1in, 1out, . . . , kin, kout } has a non-empty solution
over the edge expansion graph of G, which is defined as follows:

Definition 10 (Edge expansion graph). Let G = (V,E) with V = 1, . . . , k
be a graph. The edge expansion graph F = (V ′, E′, µ) of G is an edge labeled
graph with the following properties:

– V ⊆ V ′
– For each edge (u, v) ∈ E there is some node n in V ′ and edges (u, n), (n, v) ∈
E′ with µ(u, n) = uout and µ(n, v) = vin. There are no other edges in E′

involving n.
– These are all nodes and edges in F .

The edge expansion graph F of a given Graph G with v vertices and e edges
contains v + e vertices and 2 · e edges. Obviously, F can be constructed from G
in polynomial time.

Fig. 2. Polynomial reduction from the Hamilton Cycle Problem to RPL→,/,{} evalu-
ation

1

2

3

4

5

1

·

· ·

2

· 3

4

·

5·

·

1out

2in

2out

5in

1out

3in

3out

4in

3out

5in

5out

3in

4out

5in

7 Implementation of RPL by Compilation to Prolog

In this section we show how RPL can be easily and efficiently implemented by
a compilation to Prolog. Before giving the translation, we first hihglight three
challenges that must be met by the translation process.

1. Since regular expressions make excessive use of the kleene closure operators +
and *, which must be translated to recursive rules in Prolog, non-termination

must be avoided. Non-termination of transitive closure computations in Pro-
log can often be resolved by term permutation in rule bodies, or clause per-
mutation in programs. But in the presence of cyclic data, transitive closure
computations may still not terminate, due to infinitely many paths between
nodes. There are two ways of dealing with this issue: (a) keeping track of
the path that is traversed during the computation of the transitive closure
or (b) tabling of the predicates that are used for transitive closure computa-
tion. Solution (b) eases the translation process, but requires evaluation by a
Prolog engine that supports tabling such as XSB.

2. A second challenge in the translation process arises from the use of regular
string expressions in RPL. This challenge is most easily met by translation
to a Prolog engine that takes care of regular expression matchin such as Ciao
Prolog or XSB Prolog.

3. A third challenge arises from the fact that most Prolog engines are not pre-
pared to dealing with RDF data, with the notable exception of SWI Prolog.
Again, there are (at least) two solutions for dealing with this situation: (a)
use SWI Prolog or (b) assume that RDF graphs are encoded as ternary terms
with some distinguished predicate name such as triple. This assumption is
not as farfetched as it might seem, since the well-known N-Triples serializa-
tion of RDF is simply a collection of triples, and can be easily imported into
Prolog engines. Moreover, there are conversion utilities from RDF/XML,
Notation3 or Turtle to N-Triples.

We deal with the issues 1 and 2 by a translation to XSB Prolog and resolve
issue 3 by assuming a native Prolog encoding of RDF graphs as ternary atoms
with predicate name triple.

Let u be a URI, pr1, . . . RPL predicates, a1, . . . adorned or disjunctive RPEs,
and c a concatenated or predicated RPE. The translation of RPL expressions to
Prolog is given by the following function to prolog. Each translation rule yields
at least one Prolog rule, and may recursively call other translation rules. The
predicate name of the head of the rule to be generated is given as an argument
to the translation function.

to prolog(flavor c, p) =


edges(c, p) if flavor = EDGES.
path(c, p) if flavor = PATH.
nodes(c, p) if flavor = NODES.

(38)

edges(u, p) = p(X,Y) :- triple(X, u, Y). (39)
edges(<u, p) = p(X,Y) :- p1(Y, X). R (40)

with p1 a fresh predicate name and edges(u, p1) = R. Predicated RPL expres-
sions are translated by Equations 41 and 42.

edges(u[pr1] . . . [prn], p) = (41)
p(X,Y) :- triple(X,u,Y), p1(u,), . . . , pn(u,). R1 . . . Rn

with pi fresh predicate names and edges(pri, p1) = Ri for 1 ≤ i ≤ n. The corre-
sponding rule for<u is obtained by switching X and Y in the term triple(X,u,Y).

edges([pr1] . . . [prn], p) = (42)
p(X,Y) :- triple(X,P,Y), p1(P,), . . . , pn(P,). R1 . . . Rn

with pi fresh predicate names and toprolog(pri, pi) = Ri for 1 ≤ i ≤ n. The cor-
responding rule for a regular expression re instead of an underscore is obtained
by inserting the term re match(re, P, , ,) after the term triple(X, P,
Y) into the rule defining p. Note that this translation only works for XSB Pro-
log when the module regmatch is included. Again, the corresponding rules for
the reverse edges < or < re is obtained by switching X and Y in the term
triple(X,u,Y).

nodes(u[pr1] . . . [prn], p) = (43)
p(u,u) :- node(u), p1(u,), . . . , pn(u,). R1 . . . Rn

with p1, . . . , pn fresh predicate names, and to prolog(pri) = Ri for 1 ≤ i ≤ n.
Wildcards and literals at the place of u are translated in the same way. A regular
expression re at the place of u requires binding the node n to a variable, and
testing if n is in the language defined by re with the XSB predicate re match
as follows:

nodes(u[pr1] . . . [prn], p) = (44)
p(P,P) :- node(P), re match(re, P, , ,), p1(P ,), . . . , pn(P ,). R1 . . . Rn

edges(c?, p) = p(X,X) :- node(X). p(X,Y) :- p1(X,Y). R (45)

with p1 a fresh predicate name and edges(c, p1) = R, and the predicate node
defined by the following rules:

node(X) :- triple(X, ,). node(X) :- triple(, , X). (46)

edges(c+, p) = p(X,Y) :- p1(X,Y). p(X,Y) :- p1(X,Z), p(Z,Y). R (47)

with p1 a fresh predicate name and edges(c, p1) = R. The Kleene star operator
* is translated in a very similar fashion.

edges((a1 . . . an), p) = (48)
p(X,Y) :- p1(Z0,Z1), . . . , pn(Zn−1,Zn). R1 . . . Rn

with p1, . . . pn fresh predicate names and edges(ai, pi) = Ri for 1 ≤ i ≤ n.

nodes((a1 . . . an), p) = p(X,Y) :- p1(Z0,Z1), triple(Z1, , Z2), . . . , (49)
triple(Z2n−2, , Z2n−1), pn(Z2n−1,Z2n).

R1 . . . Rn

with p1, . . . pn fresh predicate names and nodes(ai, pi) = Ri for 1 ≤ i ≤ n.

path((a1 . . . an), p) = (50)
p(X,Y) :- p1(Z0,Z1), . . . , pn(Zn−1,Zn). R1 . . . Rn

with p1, . . . pn fresh predicate names and edges(ai, pi) = Ri for odd i and
nodes(ai, pi) = Ri for even i in {1, . . . , n}.

edges((c1 | . . . | cn), p) = (51)
p(X,Y) :- p1(X,Y). . . . p(X,Y) :- pn(X,Y). R1 . . . Rn

with p1, . . . pn fresh predicate names and edges(ci, pi) = Ri for 1 ≤ i ≤ n.
Disjunctive RPEs within edge- and path-flavored RPEs are translated in exactly
the same way.

to prolog(not(f), p) = p(X,Y) :- not p1(X,Y). R (52)

where p1 is a fresh predicate name and to prolog(f, p1) = R.

8 Conclusion and Future Work

This paper describes the novel RDF path language RPL. RPL is one of the
few RDF path languages with a formal semantics. Compared to other query
languages it omits features that are rarely used, but includes features such as
regular string expressions, direction modifiers, and predicate negation, that may
turn out to be extremely useful for query authors. RPL can be evaluated effi-
ciently, but extensions of RPL with unordered paths or variables cannot. RPL is
currently being implemented. Future work includes the experimental affirmation
of the tractability of RPE evaluation.

References

1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel
query language for semistructured data. International Journal on Digital Libraries,
1(1):68–88, 1997.

2. Renzo Angles, Claudio Gutierrez, and Jonathan Hayes. RDF query languages need
support for graph properties. Technical report, 2004.

3. François Bry, Tim Furche, Clemens Ley, and Benedikt Linse. RDFLog—taming
existence - a logic-based query language for RDF, 2007.

4. François Bry, Tim Furche, Clemens Ley, Benedikt Linse, and Bruno Marnette. RD-
FLog: It’s like datalog for RDF. In Proceedings of 22nd Workshop on (Constraint)
Logic Programming, Dresden (30th September–1st October 2008), 2008.

5. François Bry, Tim Furche, Benedikt Linse, and Alexander Pohl. XcerptRDF: A
pattern-based answer to the versatile web challenge. In Proceedings of 22nd Work-
shop on (Constraint) Logic Programming, Dresden, Germany (30th September–1st
October 2008), pages 27–36, 2008.

6. S. Fortune, J.E. Hopcroft, and J.C. Wyllie. The Directed Subgraph Homeomor-
phism Problem. 1978.

7. Krys Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for semantic
association discovery. In Enrico Franconi, Michael Kifer, and Wolfgang May, edi-
tors, ESWC, volume 4519 of Lecture Notes in Computer Science, pages 145–159.
Springer, 2007.

8. As La Paugh and Ch Papadimitrou. The even-path problem for graphs and di-
graphs. Networks(New York, NY), 14(4):507–513, 1984.

9. M. Marx. Conditional XPath. ACM Transactions on Database Systems (TODS),
30(4):929–959, 2005.

10. A.O. Mendelzon and P.T. Wood. Finding Regular Simple Paths in Graph
Databases. SIAM Journal on Computing, 24:1235, 1995.

11. Chimezie Ogbuji. Versa: Path-based RDF query language, 2005.
12. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. nSPARQL: A navigational

language for RDF. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci,
Diana Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, In-
ternational Semantic Web Conference, volume 5318 of Lecture Notes in Computer
Science, pages 66–81. Springer, 2008.

13. Alexander Pohl. RDF Querying in Xcerpt: Language Constructs and Implemen-
tation. Deliverable I4-Dx2, REWERSE, 2008.

14. Andy Seaborne and Eric Prud’hommeaux. SPARQL query language for RDF.
W3C recommendation, W3C, January 2008. http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/.

