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This thesis consists of two parts. In the first we study the new features 

of a supersymmetric standard model in the presence of heavy families. We as­

sume the minimal set of Higgs fields, the desert between the electroweak and the 

grand unification scale and pcrlurbative values of the dimensionless parameters 

throughout this region. Using the numerical as well as the approximate analytic 

solution of the rcnormalization group equations, we study the evolution of all the 

parameters of the theory in the case of large Yukawa couplings for the fourth fam­

ily. The desired spontaneous symmetry breaking of the electroweak symmetry 

takes place only for a rather unnatural choice of the initial values of certain mass 

parameters at the grand unification scale. Two scenarios are possible, depending 

on the value of the gravitino mass. If it is smaller than 200 GeV the vacuum ex­

pectation values of the Higgs fields emerge necessarily in an interplay of the tree 

level Higgs potential and its quantum corrections and are approximately equal. 

The quark masses of the fourtii family are roughly 135 GeV, while the mass of 

the fourth charged lepton has an upper bound of 90 GeV. Further characteristic 

features of this scenario are one light neutral Higgs field of mass 50 GeV and 

gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one 

obtains a scaled up version of the well-known three family, heavy top scenario 

with quark masses between 40 and 205 GeV and all superparticle masses heavier 

than 150 GeV except the photino, gluino, one chargino and one ncutralino. 
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In the second part of the thesis we generalize the gauge-invariant theory of 
the free bosonie open string to treat closed strings and superstrings. All of these 
theories can be written as theories of string differential forms defined on suitable 
spaces. All of the bosonic theories have exactly the same structure; the Ramond 
theory takes an analogous first-order form. We show explicitly, using simple arid 
general manipulations, how to gauge-fix each action to the light-cone gauge and 
to the Feynman-Siegel gauge. 
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I. INTRODUCTION 



1. Supersymmetry 

Since its discovery in the early seventies'" supereymmetry has risen to quite 
a prominent place in particle physics. It provides a symmetry operation trans­
forming fermions into bosons, which has turned out to be a rather useful concept: 
we may explain small bosonic masses by linking the bosons to chiral and hence 
maasless fermions, or use this symmetry to cancel certain radiative corrections to 
our theory, enabling us for instance to fix mass ratios to all orders in perturbation 
theory. There is hope that eventually a supersymmetric theory will be able to 
explain the huge gap between the weak interaction scale, i.e. 100 GeV, and the 
energies at which one will no longer see the difference between the strong and 
the weak force, roughly 1 0 M — 10 1 7 GeV. Of course, it may turn out that nature 
has populated the intermediate region of energy scales. In this case it may be 
that fiupersymmetry will find its experimental verification not in particle physics, 
but in other areas such as nuclear physics'" or in solid state physics, \a systems 
which at their critical point can be described as superconformal field theories in 
2 dimensions. 

But let us be optimistic and believe in the concept of grand unification. Then 
we notice that we have to deal with physics uncomfortably close to the Planck 
scale, JO 1 9 GeV, where we expect gravity to become an important force on micro-
scopic scales. Our distress arises from the realization that the theoretical tools we 
used so successfully to describe physics up to the weak scale fail fundamentally 
when applied to gravity. At low energies this does not bother us too much, since 
we may always argue that we have set up only an effective theory valid at low 
energies and that the ultraviolet infinities that arise and are thrown out in the 
process of renormalization deserve their fate because they are just an artifact of 
an approximation scheme which breaks down at very high energies. 

At grand unified scales, however, we have lost most of of room we need to 
sweep such difficulties under the rug. Also, if we treat gravity as an ordinary 
quantum field theory, we run into severe problems: instead of alleviating it ac-
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tually worsens the set of problems associated with renormalization. 

First attempts to solve this puzzle used a Fermi-Bose symmetry of gravity -
supergravity.'" The old problems did not plague these theories as seriously as they 
had pure gravity, but they persisted. It was the realization that supersymmetric 
string theories could provide finite, consistent quantum theories of gravity"1 that 
finally saved the day. 

These theories now provide at least one class of theories that has a chance 
of encompassing the theory of the world. Moreover, string theories are strikingly 
beautiful, and in the absence of any experimental evidence for their validity 
for some time to come, this has to be regarded as one of the main reasons for 
their attractiveness as a description of nature. At the moment, there is of couse 
an immense interest in bringing strings into contact with the observed world, 
and to give an example, efforts are under way to calculate the electron mass in 
orbifold compactification models.'" A whole new industry has sprung up, called 
superstring inspired models,'" that seeks to bridge the gap between what is known 
about strings at the Planck scale ind the physics at the weak scale we hope to 
explain. However, no model has yet emerged that yields a satisfactory connection 
between Planck scale physics and the standard model of electroweak and strong 
interactions at 100 GeV. 



2. Model Building 

In the absence of a sufficiently successful top-down scenario of descibing 
physics, we are urged to find our way from the bottom up. Actually these days 
it is from the Z° up. 

This is the process of building models: Explore the consequences of plausible 
assumptions about the structure of the world at energies higher than the weak 
scale and predict the consequences for experimentally accessible physics. At first 
we will invariably generate a great number of candidates for the mode! that 
best represents nature; this number may then be cut down by new experiments. 
However, many hypotheses which seem plausible a priori may be discarded or 
highly constrained by combining existing data with theoretical analysis. Chapter 
II. provides an example of this. I analyze the consequences of the assumtion that 
nature organizes itself in a way predicted by a quite general class of supergravity 
models, such that at the weak scale we would see just a minimal supersymmetric 
extension of the standard model, but with Tour families instead of the observed 
three. Does the weak scale emerge without introducing new uncomfortably large 
dimjjnaionless numbers? Are we at liberty to organize the model in a way that 
it looks almost unified at very high energies? 

Questions like these already place quite substantial restrictions on our model, 
and we expect the upcoming experiments SLC, LEP and SSC to cither verify or 
(more probably) kill it. 

Chapter II. consists of work done in collaboration with Mirjam Cvetic and 
has appeared in print.1'' 
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3 . S u p e r s t r i n g B 

In contrast to the models mentioned above, string theories will not be defini­
tely verified or falsified very soon. Also, the constraints imposed by demanding 
internal consistency - flniteness and freedom of anomalies,'"' do not reduce the 
number of allowed models to just one or very few, as was hoped early on. This 
hope was based on the fact that initially only a very small number of Calabi-Yau 
manifolds, which parametrize the low energy limit of string theories, was known. 
However, the great interest in these manifolds led to the rapid discovery of a 
large number of them, and each of these manifolds may serve as an approximate 
compactification of the superstring. 

But then, there are quite a few aspects of string theory that are not well un­
derstood, and among them we find in particular the question of what mechanism 
selects the correct ground state of string. This is a question one ought to ask 
in an off-shell setting of string theory, and almost all aspects of this 'string field 
theory' are currently the object of research. The free theories are now known 
and are described in section III., although some problems remain in the Ramond 
sector of closed superstrings. Various proposals for the interactions have been 
brought forth, and at the moment it is far from clear whether they are equiv­
alent and in which approach actual calculations can be performed. Again, in 
the absence of experimental knowledge we have substituted aesthetic arguments 
and searched for a formulation of the free string theories which looks elegant and 
pretty. From a unified point of view wc tried to construct covariant actions for 
all the free string fields . I do not claim complete success here, but let the reader 
judge which parts of chapter III. satisfy these requirements. 

This chapter is based on the work of ref. 9, done in collaboration with T. 
Banks, D. Friedan, E. Martinec and M. Peskin. 
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II. A LOW-ENERGY SUPERGRAVITY MODEL 



1. Preliminaries 

Locally supersymmetric gauge theories'" provide an attractive way of link­
ing, though not truly unifying gravity with other forces of nature. It is very 
intriguing that JV = 1 supergravity (SG) in ten dimensions {d = 10) arises'" 
as an effective field theory of superstrings,'3' which naturally incorporate grav­
ity. Dimensionally reduced N = 1 SG models in d = 4 are therefore promising 
candidates for the effective theory which crosses the desert between the physics 
at the grand unification mass scale and the physics at presently accessible en­
ergies. Those theories are very attractive because they provide the most sat­
isfactory mechanism for spontaneous breaking of local supersymmetry (SS).'" 
Realistic scenarios have been based on specific grand unified groups,'" the left-
handed electroweak symmetry SU{2)L X f/(l)y i'"""1 and the left-right symmet­
ric group SU(2)L x SU(2)R x U[1)B-L"°'"] • In these models the electroweak 
symmetry breaking is induced by the soft SS breaking terms which arise from 
the spontaneous breakdown of local SS. Mass parameters in these terms are of 
the order of the gravitino mass m 3 / 2 which therefore sets the weak scale, i.e., 
MW = 0 ( m 3 , 2 ) . t w ' " * 

If the soft SS breaking parameters do not evolve substantially from their ini­
tial values at iig = 0(Mpi), one cannot break St/(2)j,x E/(l)y at the tree level of 
the Higgs potential unless one is willing to introduce a highly unattractive Higgs 
singlet chiral superfield. Here HR is the renormalization scale and Mpi is the 
Planck mass where local SS is broken. However, it is reasonable that the renor­
malization of these parameters is substantial and that it is this renormalization 
which at lig = 0 (Mw) triggers the spontaneous symmetry breaking (SSB) of the 
electroweak symmetry. In the heavy top scenario '''"•'° l a large Yukawa coupling 
of the top quark is responsible for this SSB. The Coleman-Weinberg scenario"" 
uses the idea that the parameters at Mw leave the vacuum expectation values 
(VEV's) of the Higgs fields undetermined at the tree level of the potential unless 

* lb Ref. 11 m 3 / 3 sets the scale of the right-handed vector boson. 
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one also includes radiative corrections of the Coleman-Weinberg type' 1 in the 
effective potential. In this case one ends up with s. light Higgs particle in the 
mass spectrum. 

Here we study the effects of additional heavy families on the low energy N = 1 
SG theory in d = 4 with the gauge group: 

G = Sr / (2) L x U(1)Y x SU[3)C . (1.1) 

We assume the desert between Mw and the grand unification mass scale MG 
as well as perturbative values of the dimensionless parameters throughout this 
region. In particular we investigate the evolution of all the parameters according 
to the renormalization group equations (RGE's) when in addition to the usual e-, 
/i- and r-families one has a heavier fourth family, consisting of the r',b' and t\ with 
larger Yukawa couplings. Based on the mass pattern of the first three families 
it is a plausible hypothesis that the fourth family is a few times heavier than 
the third family. Therefore we assume that at Afc the Yukawa couplings hyp 
for the fourth family are at least a few, i.e., > 3, times larger than the Yukawa 
coupling of the top quark. Our Higgs sector is the minima) one with two SV(2)[, 
doublet fields Hi. j . For an appropriate choice of parameters, either the heavy 
top' or the Coleman-Weinberg scenario is realized, and we find distinctive mass 
spectra for both cases. It turns out that the latter is phenomenologically more 
attractive, giving rise to superparticles whose mass is within reach of experiments 
under construction. We therefore concentrate on the Coleman-Weinberg scenario, 
always keeping in mind that there is an alternative. 

A supersymmetric model with additional heavy families may arise from family 
unification models or from the E% x E& heterotic string theory. u Therefore an 
analysis of the influence of such additional families may have implications for the 
low energy phenomenology of such theories. 

f In the cue of more than four families we lose asymptotic freedom for the strong interaction! 
and 53 diverges below MG. 
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In the non-supersymmetric theory based on the gauge group G a careful 
study"" of the RGE's has shown that the Yukawa couplings of heavy families 
approach an infrared-stable fixed point determined by the gauge couplings.'"'"' 
As we shall see the supersymmetric case shows similar features (see r.Uo Ref. 17). 
This in turn implies that the mass parameters of the theory evolve in a specific 
way, constraining the theory at the weak scale. Thus, the nature of the SSB 
pattern and the particle spectrum exhibit characteristic features which tightly 
constrain, 

This chapter is organized as follows. In Sec. 2 we specify the model and the 
assumptions and fix the notation. We devote Sec. 3 to a study of the renormal­
ization group evolution of the parameters presenting the numerical results and 
explaining them via the approximate analytic solution. In Sec. 4, the SSB pat­
tern of the electroweak symmetry is investigated ; the low energy mass spectrum 
is presented in Sec. 5. A summary is given in Sec. 6. For the sake of complete­
ness we write down the complete set of the RGE's for our model in Appendix A. 
The approximate analytic solution is presented in Appendix B. 
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2. The Model 

In this section we shall describe in detail the model and the assumptions used 
in the analysis. 

Desert Hypothesis 
We assume the group G of Eq. ( l . l ) to be the gauge symmetry of the theory 
between the weak scale Mw — 100 GeV and the grand unification scale Ma = 2 • 
10l®GcV. This enables us to study the undisturbed evolution of parameters over 
a wide range of energies from Mc down to Mw . This allows certain parameters 
to reach an infrared fixed point to a good accuracy as [IR —» Mw, independent 
of their initial values. 

Local SS is broken at Mpi ~ 10 1 8GeV, thus giving rise to the soft SS breaking 
mass parameters. We ignore the renormalization of these parameters between 
Mpi and Ma. In that way the number of the initial values of the free parameters 
in the theory does not proliferate. 

Perlurbative Unification 
We assume that all the dimensionless parameters have perturbative values be­
tween Mw and MQ. We are then allowed to analyze the RGE's using only 
one-loop beta functions. 

Particle Content 
We work with chiral superfields which transform under SU[2)i Ki/(l)rX Slf(i)c 

as follows: 

(EL)/ = ( 2 , - | . l ) i (£fl) / = (1.1.1) (2-la) 

(C?L)/= (2, i , 3) ; (£ /«) /= ( 1 - | , 3 ) (DR){ = (1, | , 3) (2.16) 

# i = ( 2 - | , l ) ffj = ( 2 , | l ) . (2.1c) 

Here / = 1,2,3,4 denotes the family index. The fourth family therefore trans­
forms in the same way as the first three families. The Higgs superficlds (2.1c) 
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are the minimal set for the supersymmetric extension of the standard model. 

Svptrpotcntial 
The most general renormalizable superpotential consistent with the particle con­
tent (2.1) has the following form: 

g = ERTBEleHt + URTUQICHI + D f l r D Q£et f , + nHftHi . (2.2) 

and Tep.D are Yukawa matrices. Family indices are sup-
0 1 

- 1 0 
Here £ = 

pressed. 

We neglect flavor-charging effects and therefore set the off-diagonal elements 
°f ^EfJ,D t o z e r ° - The Yukawa couplings of the fourth family are assumed to be 
much larger than those of the other families. 

[TE.V,D)** S hB,v,D » (YE,U,D)H ; t = 1,2,3 (2.3) 

However, [TE,VJ>)^> * = 1,2,3, are not neglected in the RGE's. Out of the 
many examples we have analyzed on the computer, we pick five with initial 
values h% > h%E « (3 to 20)• (r£,) 3 3 sa (0.5 to 3.0) at JIG in order to display the 
typical behavior of the relevant solutions of the P.GE's in graphs. 

Soft Supcrtymmctry Breaking Terms 
In addition to the supersymmetric part of the Lagrangian we include the most 
general soft SS breaking terms as they arise from the spontaneous breakdown of 
SG. These terms are of the following form: 

Cs = I, + Csi + Csi (2.4) 

where 
3 ' - < 

£« = - £ ">A.A0A0 (2'*«) 

tsi = -[En(mErB)EltHl + UK{muTv)QleH2 + DR(mDTD)QT

LtHi 
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+ mH,i*Hl(H2] (2.51.) 

Csi = - [El™BLEL + E\,mlRER + Qlm^QL + Dn

mD*DB 

+ VRmvRVR + ffjmif.Hi + H\m\,H2\ . (2.5c) 

The fields here denote the scalar components of the appropriate superfields. The 
subscript a = 1,2,3 refers to the gauge group U(1)Y, SU(2)J, and S£/(3) c , 
respectively and again we have suppressed the family indices. The mass matrices 
{mB,V,D * FE,V,D) and mE,.,En,Qi.,Un.DR

 a r e chosen to be flavor diagonal. Here 
mHi> n*H3

 a n < ^ m / fc denote the three mass parameters of the Higgs fields H\p. 

In order to get as close as possible to the experimentally determined values 
for the gauge coupling constants as extracted from Ref. (18), we set 

| 9? = gl = 9°, = 90 = 0.96 (2.6) 

at Mc = 2 • 10 1 0CcV. This value is determined to about 1% to 2% by integrating 
the RGE's for our particle content. We also assume that at Ma the soft SS 
breaking mass parameters have the following symmetry: 

m>, = mx, = my, = m" (2.7a) 

mtr, = m%, (2.76) 

m£ = mu = mo = mo (2.7c) 

m f f . = "»H, = m k = mEn = mQi = m l n = m D . = m 3 / 5 • < 2 - 7 i ) 

Gere m^ 3 and mo are naturally of the order of the gravitino mass rn3/2, while 
the gaugino mass mj is a free parameter, which can be smaller than m 3/2. This 
pattern of soft SS breaking mass parameters emerges from the hidden sector 
mechanism, which spontaneously breaks the local SS at Mp\\ by assumption 
the pattern persists down to Mo-



Table I 

Examples for typical initial values of the parameters at Ma = 2.10 1 6 GeV 
which ensure the proper spontaneous symmetry breaking pattern | {H°) | « 
| (JBJ) | a 123 GeV. 

A& *& A°£ "»3/2 mo »*. "•X M 
w 5 3 1 100 30 70 5 668 
w 5 3 1 100 30 70 50 908 
w 2 1 0.5 100 20 40 5 232.6 

w O.S 0.5 0.3 40 20 30 30 85 
M 3 3 1 200 200 200 200 3050 

The results are obtained by using the numerical solutions. Here h \ V D denote 
the Yukawa couplings for the fourth family, n0 is the mass parameter of the 
superpotential (see Eq. (2.2)), m° and m3/7 are the gaugino mass, and the 
gravitino mass, respectively while m ^ and mo denote the soft supersymmetry 
breaking mass parameters defined in Eq. (2.7b) and (2.7c). All the masses are 
in GeV. 
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3. Evolution of the Parameters 

The coupling constants and the masses of our model evolve from the unifi­
cation scale Ma to the weak scale Mw according to the renormalization group 
equations (RGE's) given in Appendix A. Their solution for the gauge couplings 
and gaugino masses are examined in Sec. 3.1. Results for the parameters of the 
superpotential and for the soft SS breaking mass parameters are presented in 
Sec. 3.2 and 3.3, respectively. 

3.1 G a u g e P a r a m e t e r s and a n Approx ima t ion Scheme 

The solution of the RGE's foT the gauge couplings and gaugino masses with 
initial conditions (2.6) and (2.7a) is of the following form: 

a 
« ? = i - 2 ( ¥ * ; f + i ) . F « ( 3 - I Q ) 

' K - 2 ( 2 ; ; - 5 ) ^ ™ 
JL. 

" l-2(2N,-9)g3

at 

and 

(3.1c) 

2 
m A . = ™ S % i '= 1.2.3 (3.2) 

Here t is related to the icnormalization mass scale fiR in the following way: 

t = J-tnm. (3.3) 

and Sj denotes the number of families. If TV/ > 4 we lose asymptotic freedom for 

the strong interactions and g3 diverges below Ma- This fact allows us to restrict 

our study to Nf — 4. 



[GeV] 
Flg.l 

Gauge couplings in the case of four families 

We can now use the running, o/s as parameters of other RGE's Mid numeri­
cally integrate those equations to find the evolution of other parameters, We hare 
done that for a wide range of initial values and obtained accurate data for many 
examples. Unfortunately, the computer fails to give us adequate information 
regarding the generality of these results. 

In our efforts to prove that we did not miss any phenomenologicaliy attractive 
example in some corner of parameter space we found a way to obtain approximate 
analytic solutions for the RGE's (see Appendix B). They enable us to analytically 
relate parameter values at Mw to those ac Ma and thus to understand the 
computer results. 

From Eqs. (3.1) one sees that g\ and a| evolve slowly changing at most by a 
factor of two between MQ and Mw One may then expect to obtain a reasonably 
good approximate solution of the RGE's for other parameters if one sets for all 
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HR: 

9i = WtobtR = Mw) +9°i\ i = 1,2,3 (3.4) 

m A = , p ^ M + 1 J m 0 i ; t = 123_ ( 3 5 ) 

where J,- = 0.55, 0.81, 1.09 and mXt - 0.62m$, 0.73 i i$, 1,31 m$ for i = 1,2,3, 
respectively. One also has g\ •« g\ 3 and g\ usually appears in the ftGE's with 
a smaller coefficient than g\3. In most cases we ate allowed to neglect g\ and 
fffm][ compared to g\$ and g | 3 m I \ » respectively. In the approximate solution 
for the soft SS breaking mass parameters of the theory we performed an expansion 
in («[/ — hn)/{hu + ho) and neglected h^ in comparison with h[/,n'< these two 
approximations are justified by the evolution of hE,u,D »* given in Sec. 3.2. This 
will allow us to obtain to an accuracy of less than 10% the approximate analytic 
solution for the mass parameters n (see Eq. (2.2)), "»«-,«, and {"tf)Llvn Px)**< 
which are important in determining the nature of the SSB pattern. For the 
sake of completeness the approximate anal; .c solution for other relevant mass 
parameters are stated in Appendix B. However, our approximations are generally 
good only to an accuracy of 10% to 30%. In all cases we use the analytic estimates 
only to explain and substantiate the numerical results. 

3.2 Parameters of the Superpotcntial 

The evolution of the Yukawa couplings for the fourth family hs,u,D is gov­
erned by the RGE's (A.5), (A.6) and (A.7), respectively. The numerical results 
for typical initial values of h^y D at Mc are presented for hfjtD and kg in Fig. 2 
and Fig. 3, respectively. From those plots one sees that htj and ho approach the 
some values ~ 1.1 at Mw to an accuracy of 10%, whiie the value of fte decreases 
as MI —< Mw. This behaviour is quite independent of k j j , as shown by Bagger, 
Dimopoulos and Masso'"1 . In particular, we find that as long a s / i j u k j , ^ 0.5, 
one obtains the same fixed point for any ratio of the two. In order to explain 
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these observations we obtained the following approximate analytic expression for 
hV,D,Ew-

ftp 
1 - X 1 + »£(£*)]•"••(«[*»' (3,60) 

hn = 1 - X •Miij^T *°H% m)D}« 

*•*[©" fc#)p<"HWIfe»])] 
where 

X = Xoexp(14j Jl) ,Xo = 1 - f j 

(3.6c) 

(3.7c) 

(3.7*) 

*S(T» ' + 3 ' 0 " = ̂  <3-T<> 

^={-Tf/f[(i) l" ,(^f)]3/7r (-> 
and t is defined in Eq. (3.3). Here 0 refers to the initial values of parameters at 

Mo and fli.i.s denote the average values for the gauge couplings defined by Eq. 

(3.4). Equations (3.6a,b) show that hu and ho approach the same infrared fixed 

point:* 

lim hv,D = 5 = 109 • (3.8) 

One sees that at /IR = 100 GeV, X/Xn is a very small quantity, i.e., X/XQ = 
0.031 <. 1. Therefore, even for ZQ a 1 the correction terms in Equs. (3.6) are 
small and our approximation should make sense. We then find just as in our 
numerical solutions that as long as h ^ n j , > 0.5, the Yukawa couplings ft^.c 
assume their asymptotic values (3.8) at Mw to an accuracy of 10%. From Eqs. 
(3.7a,b) as well as from the numerical solution one also sees that this result 
persists even in the case hy » /i^, as long as hp *£ 0.5. For comparison, (1^)33 
is of order 0.15 for the top quark with a mass around 40 GeV. This implies that 
(IV)j3 contributes to RGE's only as a small correction to the leading contribution 
from hu,Dt and the top mass becomes a free parameter of the model. 

On the other hand from (3.6c) one sees that he decreases as pn -* JWjv and 
it has the infrared fixed point hs — 0. However, this value is not reached at 
My/ because [ (X/Xo) 1 - "] 3 ' ' ~ 0.75 ~ 0(1). Instead we can obtain an estimate 
h\(iiR = Mw) = Min(ti%,tf) x 0(\). In Figs. 2 and 3 we also plot the 
approximate formulae (3.6) (dashed line) for hyp and AE, respectively. One sees 
that these solutions are in good agreement with the numerical results. 

The evolution properties of hn^D also justify the approximation that in the 
analytic solution for the evolution of the soft SS breaking mass parameters we 
performed an expansion in [kg - b?D)l(ltfj + fcji) and neglected fts in comparison 
with hu,p-

The Yukawa couplings of the first three families are small compared to g = 
1.09, i.e., [TE,U,D)U •« 9 where »' = 1,2,3. They have the characteristic feature 
that whei. ftR -+ Mw< (TE)H decrease, while (r^cl.'i increase. 

* Of course, this is not a fixed point in the exact sense ' , because the gauge couplings 
do run. However, because IJ.? run slowly and gj <£ $}. 3 at Mw, Eq. (3.8) is a good 
approximation. 
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Exact solution for the evolution of hv (solid line) 
and ho (dotted line), the Yukawa couplings for the up-
and down-quarks of the fourth family. The dashed 
line denotes the approximate analytic solution for h = 
[hu + ho)/2. The initial values for hv,D at Mg are 
taken from examples (a-d) of Table I. 

From Eq. (A.8) we see that the mass parameter M decreases and approaches 
the infrared fixed point /» = 0. However, at iig — JVfvf > p need not reach the fixed 
point, especially when vo is large compared to the other mass parameters and 
fcu,D u e n o t much larger than 0(5). This argument is supported by analyzing 
the form of the analytic estimate (B.4), which is in good agreement with the 
fu)> numerical solution as seen in Fig. 4. In Sec. 4 we show how the possibility 
that ii does not reach the infrared fixed point at 100 GeV allows us to break 
SV[2)L x U{l)y down to U{l)em at HR = 100 GeV without contradicting known 
phenomenology. 
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Evolution of A c the Yukawacoupling for the lepton 
of the fourth family. The numerical and approximate 
analytic solution are plotted with the solid and dashed 
line, respectively. The values for the Yukawa couplings 
at Mo = 2 • 1 0 l s GeV are chosen from examples (a-d) 
of Table I. 

3.3 Soft Supersymmetry Breaking Mass Parameters 

The RGE's for the soft SS breaking mass parameters are complicated (see 
Appendix A). We are especially interested in the infrared behavior of those pa­
rameters which are relevant for the proper breaking of SU(2)L X V(l)y down 
to t / ( l ) e m . These are the mass parameters m/f,, m2

Hl and m*H:> which appear 
in the terms with the doublet fields J/i,2, only (see Eqs. (2.5b,c)). However, we 
shall also comment on the evolution of other SS breaking parameters which are 
relevant for the particle mass spectrum of sleptons and squarks. 

From Eq. (A.12) one sees that the value of m^ decreases as HR -t Mw and 
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Fit.a 

Numerical solution (solid line) and approximate an­

alytic solution (dashed line) for fi, the mass parameter 

of the auperpotential (see Eq. (2.2)). The initial values 

for KE,U,D and it at Ma are chosen from the set (a), (c) 

and (d) of Table I. 

its value at Mw depends linearly on its initial value mj^ at M$. This behavior 
can also be seen from the analytic solution (B.5a). Since m°H does not appear 
in the evolution equations for other mass parameters its value is not restricted; 
thus m//g remains a free parameter of the model. 

The RGE's (A.21,22) for m ^ l H ] together with the RGE's (A.18,19,20) for 
T"1ql,uK,Dn—"le squark masses for the fourth family reveal that neither m ^ H j 

nor mgL,[/ii,Dii approach an infrared fixed point for nonzero gaugino masses. 
The parameters mj^ „ decrease, while mg ^ « increases as ILR —»• Mw- The 
numerical evolution for m)juHt and "igt,u„,D, i s P l o t t e d in Fig. 6 and Fig. 7, 
lespectively. From Fig. 6 one sees that on the scale m a ^ the mass parameters 
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Numerical solution (solid line) and approximate an­
alytic solution (dashed line) for mjf.,, (see Eq.(2.5b)). 
The initial v&iucs for the parameters at Ma are from 
examples (a) and (b) of Table 1. 

m]il and mjf approach the same value as HR —» Mw even if at Mo one has 
M/ 5* *S> a n < ^ ^B ~ " (*)• This ' s a consequence of the fact that as p.R —* Mw p 
/tu and ho assume the same fixed point value and kg decreases. Also, in the 
RGE's Aj£ appears with a smaller coefficient than the one In front of Apy/). The 
latter arises from the color degrees of freedom. Therefore if one takes hu ss tip 
and Ai£ a 0 the RGE's for m2

Hl and m%t become equivalent (see Appendix A) 
and then the evolution of these two parameters is the same. 

At this point, two comments are in order. Firstly, a splitting of mjf, and m ^ 

does exist and we can enhance it by choosing hj, and h°D such that fcry(') and 

ho(t) are different as long as possible. In practice, this means setting fcjjf a 3.0 

and hjj » 0.5. Secondly, even if (m>

Hl - "»//,)/("•«, + m / f a ) is quite small, we 
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may choose WI3/2 large enough so that mj^ - "i/fi ** m H ' • Of course, this requires 
ttij/j a> m>y, and on the computer we obtain rn3/t > 200 GeV, depending on 
h°u,h°D. 
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Numerical solution for the evolution of m*H (solid 
line) and mj^ (dotted line) (see Eq. (2,5c)) for the val­
ues at Ma given in (a) and (b) of Table I. The dashed 
line denotes the approximate analytic solution for m V = 
(m^+mJ,3)/2. 

From Figs. 6,7 we also see that at us. « 100 GeV, m2

Hi H l are negative while 
mQi.,VR,DK a r e strictly positive. This can be understood by examining the RGE's 
for nijii/f, and mQiltf«,Z)«• ^ e ' u s assume first that the gaugino masses are zero. 
In this case the relation between the beta functions for m?Hl H t and m?,^ UR D R is 
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Numerical solution for the evolution of m?, (solid 
line), mfjR (dotted line) and m j ^ (dot-dashed line), 
corresponding to the squark masses of the fourth fam­
ily. The approximate analytic solution for m | = 

2 [ m C i + i(mux

 + mD*)] i s P ' o t t e d w i t n t t l e dashed 
line. The initial values of the parameters are taken from 
examples (a) and (b) of Table I. 

the following: 

3 d a 2 ° ° 2 N . r% (3.9) 

Since ^ "»#,,#,, > Ji m%i,UR,Uc *' f ° " o w s that ™?HUH, decrease at a larger rate 
than m>Q[ U R D R and therefore m J , l H j < m^tVriDR for all fiR < Mc- On the 
other hand we see from Eq. (B.6) that 

\ fair. + »&,) + m Q t + 5 ("4> + mDR) * mtf.,ff, + 2 m Q t , u B , D B "• ° (3-10) 



as IIR -* Mw- This implies that at Mw, ">ff„ft a _ 2 m Q t , t / „ , D B

 a n * therefore 
the Higgs masses m ^ g are necessarily negative while the squark masses are 
positive. This feature persists even in the case of nonzero gaugino masses because 
the beta function for mqLpBlDn B e t s "» additional negative contribution from 
gluino masses and it is therefore even smaller than the beta function for m # ( Hi-

The above analysis is explained quantitatively by using the approximate an­

alytic solutions (B.5b,c) for n»2r,,ft 4 n ^ (B.8b,c) for »»^4 >r/ J 1 p« which are pre­

sented with the dashed line in Fig. 6 and Fig, 7, respectively. From the analytic 

estimates one can also obtain the following quantitative values for m'Hi flj at A% 

as a function of initial values of mass parameters: 

j H l r . + «&,) « -O-aSmJ^ - 3.86m° J . (3.11a.) 

Here Z0 and ho are defined in Equs.(3.7b). The result that for any fey.ftj, > 0.5, 
at MU = 100 GeV the splitting is small on the scale of m | , t , and the average 
mass square is negative and of order of the gravitino and/or gaugino masses has 
strong implications for the nature of SSB of SV{2)L X V(l)r. We discuss this in 
Sec. 4. 

For the sake of completeness we also mention the evolution of the other soft 
SS breaking parameters for the fourth family. The values for mo,D Increase as 
fin —» Mw and they approach the same value -» 1.8m*. This behavior can also 
be seen from the analytic estimate (B.Sa). 

From Eq. (A.13) one sees that the value of mg decreases as fig —» Mw- If 

*£ = 0(g) and m°E > m°Ei,E n it may be the case that at HR ~ 100 GeV one 

ends up with m j ^ g , < 0 (see Eqs. (A.16,17)). In this case the solution which 

preserves U[l)cm is a saddle point, because the slepton masses are imaginary. 
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n,.e 
The trilinear soft supersymmetry breaking parame­

ter mtt (solid line) and mj> (dotted line) carrspanding 

to the squarks of the fourth family (see Eq. (2.5b)). The 

dashnd line presents the approximate analytic solution 

for m + = [my + mp)/2. The values of the parameters 

at Mo are chosen from examples (a) and (b) of Table I, 

One may avoid such a pathological behavior by choosing the initial conditions 

h% £ 0(g) and/or m% S m | t £ „ . 

We briefly comment on the evolution of the soft SS breaking mass parame­

ters for the first three families. The mass parameters (mE,u,D * TE,U,D)H, « = 

1,2,3, are small compared to mE,u,D * nE,U,D because the Yukawa couplings 

(rE,t/,o),i,i = 1,2,3, are smaller than ft£,u,D. The slepton and squark masses 

for the first three families ( n>E x,,a,,g t,[/„,D„)»' ' = 1.2,3, evolve with a negative 

beta function which is in the leading order proportional to the product of the 
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Numerical solution for m£, the trilinear soft super-
symetry breaking mass parameter corresponding to the 
slepton of the fourth family (see Eq.(2.5b)). The ini­
tial parameters at Ma are from examples (a) and (b) of 
Table I. 

squares of gaugino masses and gauge couplings. Therefore at HR - 100 GeV 
these masses are in'general m | „ + 0(m$ 3 ) . 

For all the above mass parameters we obtained the numerical solution. How­
ever, since their numerical values are not essential for determining the nature of 
the SSB pattern, we do not present them. 
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Numerical solution for m^L (solid line) and m\R 

(dotted line), the slepton masses of the fourth family 
(see Eq.(2.5c)). Parameters at MQ are taken from ex­
amples (a) and (b) of Table I. 

4. Spontaneous S y m m e t r y Breaking 

The fixed point behavior of large Yukawa couplings determines to a large 

extent the magnitude and the . ynimetry pattern of the mass parameters in our 

model. In this section we study the implications for the spontaneous breakdown 

of Si/(2)j1 x V{l)x as they arise from the structure of the Higgs potential. 

The SSB pattern should be compatible with the low-energy phenomenology, 

therefore it should ensure Max\{H\), {W\)\ = 0 [Mw) while the VEV's of other 

scalar fields must be sera. Here the superscript 0 denotes the neutral component 

of the field. For the sake of further discussion we shall give here the part of the 



tree level potential which depends on the Higgs fields if 1,2 fields, only:* 

VTL = K , + ^Jf l f f l i + {r»k + H*)HlHi - nmn>(Hi(H2 + h.c.) 

gl ^(EtuHi - H\uHtf + & (tfftf, - HtBj)* . (4.1) 
o=l 

The mass parameters p, rojf, and ">#,,«, are defined in Eqs. (2.2), (2.5b) and 
(2.5c), respectively, r a are Pauli matrices and e = 1V5. 

Let us first consider the heavy top' scenario of SSB. In Ref. (24] Hall shows 
that if VTL >s bounded from below and its minimum breaks 5(7(2) x U[l), one 
obtains 

For sufficiently small mg-a we find | mJ,, - mjj,. | > m | 0 as a necessary condition 
for the heavy top' SSB pattern. A numerical study shows that Its realization 
requires m3/1 > 200 GeV (see also Eq.(3.11b)). In addition, / j 0 has to be chosen 
quite large (> 3m 3 / 2 ) , while mj!fs and mo must be kept small (< 50 GeV), 
otherwise we get transfered into a Coleman-Weinberg scenario with large 1113/2. 
We commment on the problems one then runs into at the end of section 5. The 
larger m 3 / j is chosen the more freedom one has with mjf and mo. The scenario 
necessitates introducing a rather large mass hierarchy that poses a formidable 
problem for model building. It leads to a distinctive mass spectrum, which we 
will discuss in section 5. 

» All the squarka and sleptani should have sero VEV's. In the Higgs potential those fields 
appear in the bilinear combination, and therefore the extremum equations are trivially 
latiified. We ahall prove later that audi a VEV pattern for iquarka and sleptona also 
satisfies constraints for the minimum-

Now, let us look at the case with m3/z as 1O0 GeV. Since then the RGE's 
lead to approximately equal values of m?H and mjf at PR — 0(Mw) (see Eq. 
(3.11)), the minimization of VTL yields the VEV pattern: 

l<*?}|-K*?>l = */a. (") 

This pattern is correct up to order ( m ^ - "ft. 1)/(»'ft 1 + ">•%,) & 10% (see also 
Fig. 6). 

The potential VTL as a function of the real VEV H is then given by: 

VTL = l. mlS1 (4.4a) 

where 
m l = j ( m Hi + mH,) + **' ~ l*""H, I • (4.46) 

Obviously, if m j > 0 the system has a minimum at H = 0, while for mj < 0, 
VTL is unbounded from below. In such a situation one has to include quantum 
corrections to the tree level Higgs potential VTL. This may be achieved by re­
garding mji as a function of H, i.e., m j = m^(ixft = H), or by improving the 
potential a la Coleman-Weinberg. We thus observe that m 3 / 2 determines the 
nature of the SSB of SU[2)L X C(l)y down to V(l)cm; the SSB is necessarily 
radiative for m3i2 < 200 GeV , i.e., quantum corrections to the tree level Higgs 
potential determine the magnitude of H. 

The stable minimum of the potential occurs at the scale HR where m^ -v 0 
and H = 0(nft). From Eq. (3.11) one observes tl» at HR = Mw, "ft,,!?, a r e 

negative and large, i.e., of order of the gaugino and/or the gravitino mass. Also, 
It approaches the fixed point value zero (sec also Eq. (B.4)). Therefore, mj is in 
general negative and large. This implies that the radiative SSB of SU(2)L X V{l)y 
takes place too early in the renormalization group evolution, i.e. at UR > Mw, 
yielding H = 0 (MA) 3» M v . This of course contradicts H -• 245 MeV which 
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is obtained from the experimentally observed W± and Z°-boson masses. This 
implies that without cartful adjustments of the mass parameters at Ma, this 
scenario is not consistent with low energy phenomenology. 

In order to obtain a realistic SSB pattern one has to choose Mo = lt[/tjt — Ma) 
in such a way that m^ffifl = B) assumes a value close to zero, i.e., my < 
0{m\,m3/j) at Mw- From the expression (4.4) for m\ and analytic estimates 
for is, ma, and m%uIll as given in (B.4), (B.5a) and (B.5b,c), respectively, one 
obtains the following constraint on fio in terms of the initial values h0 = [h^ + 
ki))/2> m ° > "»o. m t f , """i n» 3/ 2 (see Eqs. (2.7)): 

Ho *» 2.85 (ho)"/? ^0.2Smll2 + 3.86 mf + 0.25ml,, + O.SmH,) (4.5a) 

with m H , being the value at Mw • In order to obtain the desired SSB pattern 
and to avoid the tuning of parameters one has to choose the following relations 
among the parameters at M$: 

kU,D S 5 i J*o ̂  3"»3/s . ">° £ 0(m3/i) . (4.56) 

Also, m$ra has to be adjusted to ensure mjf, •« m^ at the weak scale. If we relax 
any of the above constraints we have to introduce additional mass hierarchies in 
the model. Different typical initial values of the parameters at Mg which yield 
m% " 0 at Mw are also obtained by using the numerical solution and are given 
in Table I. These values are in good agreement with the bounds (4.5) which were 
obtained from the analytic estimates. To our knowledge there does not exist any 
model that satisfies naturally the constraint iia >b 3 m 3 / j . For example theories ' t o 1 

starting from a superpotential containing only dimensionless couplings cannot 
accommodate heavy families. 

In the following we shall present the form of the quantum corrections to Vpi. 
and the minimization of the total potential. In the case when H is larger than 
the soft SS breaking masses one can use the mass independent renormalization 
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and sum all the powers of the leading logarithms. In this case one obtains the 
so-called renormalization group unproved potential which is of the following form: 

VT = \ml[m = H)Bi . (4.6) 

In the leading logarithm approximation, VT has the following form: 

VT = \ •»! (*R = jtuiB1 + VLL (4.7) 

where 

<""!'= IeV««& 
At HR = 0(Mw) one may actua'ly encounter a situation when H is of order 

of the largest soft SS breaking mass parameters. In this case the leading loga­
rithm formula (4.7) is changed quantitatively and assumes the following Coleman-
Weinberg form: 

V$ = \ml{M = »LL)H*+Vcw (4.6) 

where 

and 

1 6 , r I s ? "cur 8 ithw) 

rpi.a = m | + + \ h2II2 ± ^Jm%_ + ±tfB*(m+ - i«ignm«J» (4.11a) 

h = H u + h D (4.116) 

m + = ^L±^2. (4.11-0 



mk = 2 "h^l (mo*+">v*) (4.11d) 

The free parameter nCw is related to nLL in such a way that Vcw is identical 
to Vj,t when H is much larger than the soft SS breaking masses. In expression 
(4.10) we have included only the leading contribution to Vcw- All the parameters 
in V^i and Vcw arc taken at the renormalization scale ULL. 

Potential 

Hj.B 

400 SOD 
H[0eV] 

Potentials VT, V} and V$ given by Eqs. (4.6), (4.7) 
and (4.9) as functions of H = 2| (flf) | » 2| ( # £ } |. The 
sc-le fiiL is chosen to be 7 TeV. For aesthetical reasons 
we subtract a constant from V? and Vf so that Vr, 
V£ and K| have the same value at H = 10 GeV. The 
initial values of parameters are taken from example (a) 
of Table I. 

We choose nib to be a few TeV. Then we may safely assume the mass in-
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dependent RGB's between fiLL and Mc while the leading logarithm potentials 
V£ or V£ still provide a good approximation at Mw We compare Vr, Vjs and 
Vj in Fig. 11, The location of the minimum is different in each case. However, 
this difference is not very significant, it can be countered by changing the initial 
value of the parameters at Ma by a few percent. We may neglect the difference 
between VT, v£ and V£ safely, since the two-loop corrections are expected to be 
of order 10%. The minimization of Vj- yields a local minimum for the values of 
the parameters at Mc given in Table I. We have checked numerically that this 
minimum is also the global minimum. 

This version of our model (a heavy fourth family and the top quark having 
mass around 40 GeV) is very different from the models of Rets. [7-9,19] with 
three families only and a heavy top quark mass (<S 65 GeV). I;, those models the 
large Yukawa coupling ( r y ) 3 3 of the top quark determines mj, a to be negative at 
Mw while mj, is still positive at Mar. Therefore the electro-weak symmetry is 
broken already at the tree level of the Higgs potential with the pattern (Hi) ss 
245 GeV, (Hi) » 0. In our case the Yukawa couplings of the fourth family 
Ar/,p > 0.5 are the dominant ones and they determine the pattern of SSB while 
the contribution from (IVJaa is only a small correction. 
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5 . M a s s S p e c t r u m 

We compute the mass spectrum by diagonalizing numerically the tree level 
mass matrices with renormalization group improved parameters. Formulae for 
the masses are readily obtained form the Lagrangian described in Sec. 2 and 
have been given in the literature. , w | 

Heavy torf scenario 
In the heavy top' scenario our results coincide with what one would expect from 
a simple extension of three family models *'*' . For the fourth family quarts one 
obtains the BDM bound (Bagger-Dimopoulos-Masso1"'"') mu>mD < 205 GeV. 
Of course, previous bounds on the top mass no longer apply. It becomes an 
arbitrary parameter of the model. The only superparticles which can be naturally 
light are the gluino.photino and an additional neutralino which is mostly a fe°, 
as well as a chargino, a mixture of h~ and iu + . The lightest Higgs has a mass 
close to the electroweak gauge bosons. All the other superpartnera have masses 
dictated by m 3 / j la 300 GeV and are therefore safely out of range of detection 
by present experiments and those in construction. 

Coleman- Weinberg scenario 
If we assume the Coleman-Weinberg mechanism to be operative, the neutral 
Higgs mass matrix calculated from the tree level potential with renormalization 
group improved parameters has an imaginary eigenvalue. We replace it by the 
square root of the curvature of the potential Vj- (see Eqs. (4.6), (4.7) and (4.9)) 
at its minimum. Examples of mass spectra generated in that way are presented 
in Figs. 12. 

Our model predicts the quark masses of the fourth family. In Sec. 3 we have 
seen that the Yukawa couplings ky and hD approach the same fixed point g = 
1.09 at the weak scale. Since the only possible spontaneous symmetry breaking 
pattern is | (Hi) \ a \ (H?) | = 123 GeV, we obtain up- and down-quark masses of 
135 GeV to an accuracy of 10%. From the approximate analytic solution (3.6c) 
for the evolution of HE we derive the approximate inequality /i£ < 0£5g and 

we get an upper bound on the mass of the fourth lepton of 90 GeV. In most 
examples this mass is below 50 GeV. 

Since SU(2)L X V(l)Y is broken radiatively, one neutral Higgs fields ends up 
light, i.e., in the range of 20-40 GeV. 

In our model we are able to accommodate photino masses m~ = 0-40 GeV. As 
m~ rises the unpleasant mass hierarchy M/m3/s > 3 at Ma becomes even larger, 
as we easily see from Eq. (4.5). The model therefore prefers m~ < 10 GeV. This 
in turn implies gaugino masses tax, S 75 GeV. 

Barring any further fine-tuning of parameters all the other superparticles 
acquire masses of order m3/2. The radiative symmetry breaking mechanism we 
employ decouples the value of (Hi) from that of m 3y 2 . This is illustrated by 
examples (a) and (e) of Table I and Figs. 12a and 12b where we have chosen 
ftJ3/a = 100 GeV and m3/3 ='-200 GeV, respectively. In principle it is even 
possible to shift the masses of the superpartners of the ordinary particles Into 
the TeV region. Apart from an increasingly difficult tuning of parameters we 
then have (Hi) /m 3 y 2 « 0.1 and two-loop effects must be taken into account. 
Also, since we may have m ^ - mjf = O^rrtfy), we are faced with the formidable 
problem of the Coleman-Weinberg analysis of a potential that is stabilized by 
quantum corrections in more than one direction. 

It is also interesting to observe that for the case with m 3 / j = 200 GeV the 
mass of the lightest neutral Higgs field can be larger than the mass of Z° boson 
(see Fig. 12b). This differs from the results of Ref. [21] where the lightest neutral 
Higgs field cannot be heavier than Z° even in the case of radiative SSB. However, 
in our example the relation (H) < m3/2 is different from the assumption of Ref. 
[21] where the soft supersymmetry breaking parameters are all of order or smaller 
than Mw • 
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Mass spectrum 

, : - ~ = 
„. n 11111111 i n 

Mass spectrum 

^ i n 111 H i! 111 
Particle mass spectrum of the model. The initial 

values of the parameters are chosen from examples (a) 
and (e) of Table I, for Fig. 12a and Fig. 12b, respec­
tively. 
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6. Summary 

We have studied a standard model in the context of N = 1 supergravity when 
a heavy fourth family is present. The theory has a minimal set of Higgs fields 
with the two Hi&js doublets. The fourth family is a replication of the first three 
families with the same gauge transformation properties, but its Yukawa couplings 
hvD a t MG are chosen to be large, i.e., > 0.5.* We also assume that a desert 
extends between Mw = 100 GeV and MQ = 2.10 1 6 GeV and that dimensionless 
parameters are perturbative through this region. 

First we studied systematically the evolution of all the parameters of the 
theory from Ma down to Mw. We obtained the numerical solution which was 
illuminated by the approximate analytic solution. The Yukawa couplings and 
certain other mass parameters of the theory have an interesting infrared behavior: 
(i) the Yukaw&couplings ny and hg for the up and down quarks of the four family 
approach the same infrared fixed point g ~ 1.1, (ii) the masses mjj and nip of 
the Higgs fields Hj and H? decrease and approach a negative value which is of 
order of the gravitino or gaugino mass, with a splitting which is smaller by a factor 
of 10 and (Lii) the mass parameter /i in the superpotcntial approaches the infrared 
fixed point 0. For m 3 / 2 < 200 GeV the fact that m]{i « m ^ < 0 at HR = Mw 
forces the spontaneous symmetry breakdown of the electroweak symmetry to 
occur in an interplay between the tree level Higgs potential and its quantum 
corrections. The spontaneous symmetry breaking pattern is then {Hi) » (rYj). 
However, in order to obtain {Hi) a 123 GeV one has to choose unnatural initial 
values of the parameters at MQ\ )1Q £ Sm3/2, hfyg & 5, m$ £ 0(m3/2) ™1 
m ^ has to be chr:cn so that |mj/J < mPUi at Mw For m 3 / 2 > 200 GeV we 
get {Hi) w 0 , ( / i 2 / ~ 245 GeV, provided fo > 3m 3 / s and m°lla, ma <C m 3 / 2 . It 
remains to be seen whether these constraints can be derived from a grand unified 
theory. 

» The results persist for any h°u D > 0.5, even in the case h j » h°D M long as h"D > 0.5 ~ (2 
to 3) ( r ^ ) 3 3 . Here ( r j ) 3 3 is the top quark Yukawa coupling at Ma. 
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Our model with a heavy fourth family and the top quark mass around 40 

GeV is different from the models of Refs.[7-9,19| with three families only and 

a. heavier top quark (> 65 GeV). In those models the SSB of the electro-weak 

symmetry takes place already at the tree level of the Higgs potential yielding the 

pattern {Hj) a; 245 GeV, {Hi) « 0. 

Our model also imposes interesting restrictions on the particle mass spectrum. 
In the heavy top' scenario, the fourth family quark masses have the BDM"*' 1" 
bound of 205 GeV. The lightest neutral Higgs has a mass around mw. Only the 
gluino, photino, wiggsino and one other neutralino can be naturally light, while 
all the other superparticlea acquire masses exceeding 150 GeV. In the Coleman-
Weinberg scenario the up and down quarks of the fourth family have the same 
mass 135 GeV to an accuracy of 10%, while the mass of the lepton has an upper 
bound of 90 GeV. Because of the radiative nature of the spontaneous symmetry 
breaking one ends up with one relatively light neutral Higgs field with a mass 
below 50 GeV. The gluino masses tend to be light, i.e., below 75 GeV. Masses of 
other particles, except fermions of the first three families, are in general in the 
region of 100 GeV. 

We conclude that the large Yukawa couplings of the fourth family have strong 
implications on the low energy structure of the standard model within N — 1 
supergravity. They determine the spontaneous symmetry breaking pattern and 
restrict the particle mass spectrum. 
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A p p e n d i x A . Renormal izat ion Group Equat ions 

In the following we present the renormalization group equations for the model 

described in Sec. 2. They have been partially given in the literature.'"'"' We 

have derived them by calculating the infinite parts of the one-loop diagrams 

in the superfield and' component field formulation of the most general renor-

malizable softly broken super-Yang-Mills theory with chiral matter fields. The 

regularization method employed was dimensional reduction which is equivalent 

to dimensional regularization for our purposes. The difference between the two is 

proportional to e = (4 — d) and hence has no effect on the residues of the simple 

poles in «. Higher poles do not appear in a one-loop calculation. 

Recently an independent evaluation using the effective potential approach 

has been given in Eef. [23J, with identical results. 

In the following equations we regard Tgjgjg, ["*E,V,D X ^E,U,O) »nd 
m%c Bi,,Qc,Dn,Vn a s *23trices with family indices. S is defined to be 

S = ~m2

Hl + m2

Hl - trmgL + trm%„ + trm^ + trm^ - 2trm$,n , (Ala) 

and 

( = _L_ / n£L 
16JT ! Ma 

while Nf denotes the number of families. 

Gauge couplings 

j t S i = [2N,-B)gl (A3) 

| 93 = ( 2 J v 7 - 9 ) 9 | . (A4) 
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Yukawa couplings 

^ TE = r£(<r r E r E t + 3<r r D i V - 39? - 3s!) + 3 r E iVr £ (AS) 

I r » = TD (tr r E r E t + 3 i r r^iV - ? Sl

2 - zs\ - ~ si) 

+ 3r / j r^r D + r D r ( , , r u (A.6) 

i IV - r„ (sir r^r^t _ H 9 ? _ 3s* _ w ^ 

+ 3r t fr t ;*rtr + ri;rij,rD (A7) 

The supertummctric mass parameter n 

~^ = M(3ir TvTu* + UTTDTD1 + tr TETB* - a\ - 3sl) (4.8) 

Gaugino masses 

I mx> = 2 (f Nj + 0 mA' *' (A9) 

^ m A j = 2 ( 2 W / - S ) m j j 9 | (A10) 

^ m j , = 2 ( 2 J V / - 9 ) m A , f l | ( A l l ) 

The Mass parameter of the bilinear eo/t term 

#">H* = 2trrBi[mETB)+6trrDHmDrD)+6trru*(mt,rv)-?m>,tgi-6m1.,Sl 

(A12) 

Mass parameters of the trilinear soft terms 

21 (rriETB) = 4 r £ r £ , ( m B r E ) + h{mEVB)^E^B 

+ ( m E r £ ) (trI" E r E < - l - 3 i r r D i y - 3s? - 3ffjj) 

+ ZTB [trVE^rriBVE) +3trTD^mDFD) - 3m A l s, 2 - 3 m j l : , s 2 ] (A13) 

j t [mulv) = iTuVu\muTu) + 2rVr D

t('*Dr.D) 

+ 5(mvrv)T^ru + (m [ fr [;)r.0 trc 

+ (m^rt,) f 3 « r r p r t f t - H 9 J _ 3 j 2 ~ y s i ) + 2IV [str'Vtmt/IV) 

- y m * . S i - 3»">,92 - - j - "»*,»!] ( A H ) 

muTjj) 

+ HmD\ D^D^TO + (mDTD)Yv*Yv 

+ (mpr„)(3lrrj>ri>' + Ir VETS'1 - jffi - 3ff! - y ff!) 

2 r D [ t r r £ t ( m £ r E ) + 3 i r r D

, ( m o r D ) - g m A l 9 ? 

Soft mass squares 

; m S l = r E ' r E m E t + m E t r E

f r E + 2 ( m E r E ) ' ( m E r E ) + 2m1

HirB

iTs 

(A16) 

dt1 

z r ^ m ^ r E + [ - 2 s 2 | m M | 2 - 6a 2 |m A , | ! - ff?S] 1 

4 < = 2 r E T £

r m E B + 2 m £ j ! r E T E

r + 4 ( m E r E ) ' ( m E r E ) T 

*" (A17) 

+ 4 m J , | r E T E

T + 4 I V m E [ r E + [ -8 s 2 |m A l | 2 + 2g?S|l 
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+ 2m2

BlTu^u + 2 r D ' m ^ r i , + STu^^lu (,4.18) 

+ 2{mDTD)\mDTD) + 2(mvTv)^mvTu) 

+ [~ I r f t o J * - 6 9 ? | m J s | 3 - f y ] K , | s + | r f s ] l 

| " # „ = 2mhHra'T„T + 2 I V l V r m f / l l + Am^Tu'T^ + iT0'm%Tv

T 

+ i[muTuYlmvTvf + [ - f 3 ? | m j l | J - f Hl™*.l 2 " f »? s ] l 

(A19) 

^ m j , . = 2m*DllTD'VD

T + 2 r D * r c

T m 5 , „ + im*HtrD'TD

T +4TD'm^LTD

T 

+ 4( m D r c ) - ( m j 3 r D ) r + [ -1 rf|ra,,|» - f 92K.P + ? 9 ; s]i 
(X.20) 

- m ? , , = Z m ^ r l - j s l V + 3 t r r D r B t ) 

+ 2 t r (m£^£)(mE^B) t + 6 t r ( m c l , o ) ( m B ^ D ) , 

(A21) 

+ 2(f r c t m ^ + m| . r ) rE» + 6tr r p ( m ^ + mj , j r D t 

- 2 j ? | m » 1 | I - 6 f l ? K , | 3 - S l

I 5 

- £ " " ] , = 6 m | , ! 1 t r r v r ^ + 6 t r ( m [ , ^ l , ) ( m u r ^ J ) , 

M (A.22) 
+ 6 * r I V ( m ^ + mfr j r i / t - 2 9 = | m A | | s - e ^ K , ! " + , f 5 

Here 1 denotes the identity matrix with respect to the family indices. 
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A p p e n d i x B . A p p r o x i m a t e A n a l y t i c S o l u t i o n 

We give the approximate analytical solution for the relevant parameters of 

the model. The approximations are justified in Sec. 3 and are of the following 

form: 

[Te,uj))n = hE,v,D » (VE/I,D)U i >' = 1,2,3 (fi.lc) 

gs = \{gi(nR = Mw)+gY\ ; 1 = 1,2,3 ( s . i i ) 

mXi = \\9^^L + l ] m l ; , = 1 , 2 , 3 [B.U) 

Here [TB,OJ>)H denote the Yukawa couplings for the i " family while 01,3,3 m d 
m*ii»ai*i **• t n e 8 a u S e Couplings and the gaugino masses for U(l)y, SU{2)t. 
and SU(3)C gauge groups, respectively. The renormalization mass HR spans the 
range form the unification scale Ma down to the weak scale Mw- We use the 
following notation 

X = X 0 exp(l49 2 t ) , X 0 = 1 - | j (B.26) 
"0 

_ft& + fcj, _ h& - h° p , 
* o - — 5 — • ^ - f t T T ^ ( B ' 

^-{»jf/?[sr(^)rr >̂ 
Subscript 0 denotes the values of parameters at jz^ = Ma-
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Yukawa couplings of the fourth family h.E,u,D 

h> - ff 
5/'1 

*-A[-»[ifi^)]" 
*-*[(ir(̂ r'w 

(B.3a) 

(fl.36) 

(B.3c) 

Mass paramti^tsr î of the $upcrpotcntiai 

*-«[(8(T=#)r«»H*> ^ 
When evaluating the evolution of soft SS breaking parameters we neglected hn 

in comparison with hyp and expanded in (hu — hp)/{hu + hp). 

Mass parameters mj{s, m ^ and m ^ 

• » * = mfc - | [m - W» - ( m A - ^ m*, ) A. ( £ ) ] 

+ f J ~ | [(1 - Xo) (m - mi) + XomA to ( | 0 J (fl.Sa) 

-?*K(fe?)r 
x ^ - E 0 + m « f a ( J ) + 5 [ m + - m o + * » & ( £ ) ] ' } 

(B.Sc) 

m f l + = 2 = -j m 3/2 + 7 " ™ 

m | , _ . m f r - m k 

(S.6) 

where 

S = ( n 4 - m S ) 

- ^ - ^ ] ^ o p + m i ^ n ( | ) ] , n g ) } 

and 

i»A = f j f f j m ^ + 3 » | m A J / ( y 9 j + 3 S | j (B.7o) 

™2 = [ f 9l < + %!<] / (j «i + Sfc») (fl.76) 

« 2 = [ " « K - 1 s j m j , ] / ( £ „• + a r f ) . (fl.Te) 

Here parameters m ^ ^ D J J refer to the mass parameters corresponding to the 
fourth family. Subscript 0 denotes again the values of the corresponding param­
eters at Mo. Thus, man2, mo and m° are the parameters defined in Eq. (2.7) 
and Eo = Zm\,r 

Soft supersymmetry breaking mass parameters mu.o and Wg^.r/,,,0,, corre­
sponding to the fourth family 

mu^mD = mx + j ^ | [(1 - X0)(m0 - mx) + X0mx&i ( } j | ) W » ) 

Mass parameters m* and m 2 are defined in Eqs. (B.7). 
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III. FREE STRING FIELD THEORY 1. Overview 

Why do we want to learn about string field theory ? We have grown ac­

customed to thinking about physics at a fundamental level in terms of quantum 

field theory, So, whenever a new candidate for a replacement appears, one ought 

to check whether there is an appropriate correspondence, such that the usual 

picture of quantum field theory emerges at least in the limit where we know that 

it describes nature. I believe string theory to be just such a candidate, and that 

its connection to quantum field theory should be made explicit. Of course, this 

has been done at the level of scattering amplitudes"" long ago, and we know 

how to formulate string field theory on the light cone."" However, this formal­

ism does not lend itself easily to calculations, and our experience with light cone 

field theories leads us to believe that a covariant formulation will be clearer and 

simpler to calculate with. This should hold particularly for problems that require 

off-shell amplitudes, such as that of finding cosmologies] solutions or determining 

the structure of the Higgs sector. Also, since string theories encompass gravity, 

there should be a generalization of the equivalence principle, and on the light cone 

this is probably impossible to find. At the level of practicality, we would like to 

find a Feynman diagram technique for strings, that would render the integration 

over their moduli spaces straightforward, if possibly tedious. 

The revival of string theories was accompanied by progress" 0 '"" 3 0 ' 2 '" on 

the most pressing issues, the construction of gauge invariant interactions of 

open'"'"'*'" bosonic and closed'"'*'" bosonic string fields and supersymmet-

ric string field theory However, a complete and unified picture has not yet 

emerged and an efficient calculus is still missing. 

As one step towards that goal we present the gauge invariant free string 

field theories, i.e. the open ahd closed bosonic, Neuveu-Schwarz (NS) and Ra-

mond (R) string field theories. We fix them to the Feynman-Siegel and to the 

light cone gauge and obtain the known physical degrees of freedom, together 

with the appropriate Faddeev-Popov (FP) determinants 1"' . Into the center of 

51 



our formulation we put 2-dimensional BRST-invarianee, with a natural calculus 
of differential forms arising from the creation and annihilation operators of 
worldsheet ghosts. We obtain a simple formulation of free string field theory, in 
which the gauge invariant kinetic energy operator for open bosonic strings con­
sists just of the 2-dimensional BRST charge g. 1""-"-'' We find that worldsheet 
and spacetime statistics are related and that the GSO projection eliminates fields 
with the wrong spacetime statistics, such as physical vector particles behaving 
like fermions. 

The chapter is organized as follows: First we introduce the calculus of forms 
mentioned above and decompose Q into differential operators acting on forms. 
Then we present open bosonic strings in a formulation equivalent to that of ref. 
23, , but simpler due to the introduction of additional auxiliary Gelds and the 
use of differential form language. We gauge Ex explicitly to the Feynman-Siegel 
and to the light cone gauge in a fashion that easily generalizes to other string 
theories. We continue with a discussion of closed bosonic strings. In this case 
we modify the kinetic energy operator, changing the worldsheet BRST charge 
Q into another operator Q closely related to Q that also satisfies Q J = 0. In 
addition, we require that our string fields be singlets under rotations on the 
worldsheet. This constraint may be deVived'"1 from an extended theory as an 
equation of motion, and we show how this is done. Now, in order to work 
out the NS sector of superstring field theory, one simply supersymmetrizes the 
differential forms obtained previously. In the R sector we encounter complications 
which originate in the zero mode structure of the string. As in the closed string 
case, we circumvent this problem by introd«..ing a kinetic operator Qg that 
satisfies Q^ = 0 and is built out of pieces of Q. Yamron'"' has proposed a 
gauge invariant action that properly includes all the zero modes, and we gauge 
fix this theory to the action based on QR. The last section will be devoted to 
closed superstrings. The construction of gauge invariant actions in the NS/NS 
sector is straightforward and for the NS/R and R/R sectors proceeds with the 
Q- method. In the R/R sector, this formulation requires an externally-imposed 

sz 

dynamical constraint. This is a shortcoming of our theory. Nevertheless, all of our 
string field actions are quantum-mechanically complete: in the light-cone gauge 
we recover the known physical spectra, without generating dynamical ghosts. 

We adhere to the conventions of ref. 35, as far as the mode decompsition and 
the (anti)commutators of quantum fields on the world sheet are concerned. 

53 



2. The String Exterior Derivative and the BRST Charge 

We define a string field to be a functional of the 2-dimensional quantum fields 
I M (z) , the reparametrization ghosts c(z) and b[z) and, in the case of superstring 
theories, their superpartners ^[z), "t{z) and /?(z), with z = exp{r + io) for an 
Euclidean metric on the world sheet: 

|*) = *[i",i/''',c)o,0,<r]|n) 
(2-1) 

= 0(io) + ia^A^xo) + C" 1T(IO) + • • • |fJ) 

Here |fl) is the vacuum state satisfying <£„|fi) = 0 for all annihilation operators 
<t>n in the theory and xfc is the center of mass coordinate of the string. Of course, 
for bosonic strings there is no dependence on the world sheet fermion ^"(z) and 
the ghosts i(z] and /}(z) , and for closed strings we have to add in S"(z) , ^"(z) 
and so on. The mode expansion of 0 , i and 0 is in integer powers of z for the 
Neveu-Schwarz case, and in half-integer ones for Ramond boundary conditions; 
for example 

« 12 (R) (2.2) 

{<#.**> = «*+*,o'»'"' ; -!"" = *'<t<7(- + + + •••+) . 

We distinguish the indices of ij>, -y and j3 from those of x, c and t by dotting 
them. The zero modes of the 2-dimensional fields deserve our special attention: 
we define |fl) such that 

|fi) = H 9 K ) (2.3) 

where |w) is the vacuum wavefunction for all the nonzero modes and, in the case 

of the .Ramond superstring the zero modes of W, while the wavefunction for the 
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ghost zero modes is denoted hy \wg). These states have the properties 

(w|w) = 1 
(2.4) 

Hlc<V5) = i 

and 

*(>K) = A>K) = 0 (2.5) 

For comparison with ref. 35 , where the S£(2)-invariant vacuum |0) is used, note 
that 

|fl) = cM0) (2.6) 

for open bose strings , 

|n) = c 1 | g 6 c = 0 , O p 1 = - l ) (2.7) 

for NS strings and 

| n ) = c 1 l g t e = 0 , ^ 7 = - i ) (2.8) 

in the R sector of superstrings. 

For closed strings we drop all the zero modes, and instead we introduce a set 
of auxiliary modes e° and 6o which have the same anticommutators as c° and oo, 
and a vacuum state |fl) with properties equivalent to (2.4) and (2.5) . A more 
detailed account of the zero modes in the Ramond sector is given below. 

We find it useful to first expand *|fi) in ghost operators: 

*[z,lM,6,7,/J|fn) = {"Poll,*! + C»i)o(*,^l + C-"9N[x,ili\ + . . . 

+ C~N- • • • C-N-B-M. • • • B.Ml <bu>~u-N1...Nk\xM 

+ - } | n ) . 
(2.9) 
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where 

(NS) 
C~N e {e-'.-T*} ,B-N e {b-n,0-i} ,n S Z ,ii e y + » (2.10) 

(R) 

The summations run over the indices appropriate for the string field under con­
sideration. 

We say that «->»... e-">6- m . • • - fc_mjWm'-""•„,.. . J O ) is a (J) form and , in 
the case of NS or R strings, C _ J V ' • • • B_M,W r M ,-* tjv 1...N,|tI) is a (J) superform. 
Forms are conveniently classified by their ghost number g, which we define as 
follows: 

s|n) = o 

?('") = ffb*) = 1 » (2,11) 

The ghost number operator defined in this way is not hermitian; it satisfies 
g' = 1 - 3, but it acts on forms in a particularly simple way: a (J) form has 
ghost number g = b—a. Note that a general form does not include any ghost zero 
mode. The zero modes play a special role and are therefore treated separately. 
String fields will in general contain zero modes, even if they have definite ghost 
number. For example, the fields that appear in the gauge invariant action are 
(£) and ('J 1) forms, for k e N 0 . They form a string field |*) = (<A + c 0u)|n) of 
ghost number 0, which means g{4>) = 0 and 9(77) = — 1. We will sec that in the 
gauge fixed theory all possible forms appear. 

Now, let us turn to the BRST charge on the world sheet. It is given by: 

1 "-*% 
(2.12) 

Q = e—Ln + c% - £Y-*Gft 

& 4 2 K 

where normal ordering is implied, the summations extend over Z o r Z + j and 
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FNMK are the structure constants of the (super-)Virasoro algebra 

l^n.iml = Fnn!'L)l + rn6n+mfl = (n - m ) Z m + „ + r „ i „ + m | 0 

I£» ,G*]= J U * G j 

With rjv we denote the central charges: 

J g » ( » J - i ) (b! 

r* = T (" S •J> 

; ( 5 n - m ) G „ + A 

osonic strings) 
(superstrings) 

(2.13) 

(2.14) 

and with la the Regge intercepts: 

' 0 = ' 

-1 (Bose) 

-1/2 (NS) 
-U/16 (R) 

(2.15) 

One can show that Q 2 = 0 precisely when the spacctime dimension is 26 for the 
bosonic strings and 10 for the superstrings. 

If one separates the terms in Q according to their zero mode content and 

their action on forms, one obtains 

Q = d + S + c<>K -2b0 fy ~-y0F + -0o I - - W & o (2.16) 

6 takes (°b) forms into ("j') forms, whereas d maps (J) forms into ( 6 ° , ) forms. 
))• converts a (J) form into a (J",1) form. It serves as an index lowering operator 
on our differential forms. J. is its supersymmetric complement. The differential 
operators d and 6 used here are very similar, but not exactly equal to those of 
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ref. 23. The difference lies in their normalization. 

K = V™1 + Nc + Nt + N1 + Nff, (2.17) 

is the Laplacian already encountered in ref. 23. The operators %>C|/3,7 ore the 
ghost mode equivalents of LQ. They count the sum of indices of i,c,/3 and 1 
respectively. Note that the terms in Q containing V and /?<> are present only 
in the Ramond sector of the superstring- They contain the 2-d supersymmetric 
completion of the c° and bo terms in Q. Since worldsheet supersymmetry is 
explicitly broken by the NS boundary conditions on fermions, they do not appear 
in the BRST charge for the NS sector. The Dirac-Ramond operator 

F = GJf1*' + other terms (2.18) 

is the square root of K in the same sense in which ^ + m \i the root of the 
Klein-Gordon operator D + m 2 , and satisfies F2 = K. Now, Q 2 = 0 implies 

d 5 = <S2 = D 

dS + Sd = 2K^+^Fl ( 2 1 Q ) 

[ f . » ] - - j i 

and all the other (anti-) commutators are zero. (2.19) implies 

d6 + 6d = F{F 4 + JJ. F) (2.20) 

We will use this identity extensively in our treatment of the Ramond string. For 
the open bosonic string, (2.19) is just the algebra laid out in ref. 23, apart from 
a different normalization. The scalar product between two string fields $ and $ 
will now bw written as 

(*|*) = (01***10) (2.21) 

With respect to this scalar product d is the adjoint of 6"t while KtFtfy and [ are 
selfadjoint operators. 

5S 

3 . T h e O p e n B o s o n i c S t r i n g 

The formulation of Banks and Peskin1"1 of the open bosonic string can be 
written in terms of the differential operators we just defined (note the change 
in the normalization, of d, £, K and ^ with respect to ref- 23). A form of the 
open bosonic string theory considerably simpler than the original formulation of 
refs. 23-25 was independently discovered by Rcstuccia and Taylor, Witten,'*'1 

Ramond, * Neveu, Nicolai and West, "' and Aratyn and Zimerman. 

This simplified form of the theory has the virtue of bearing a much closer 
resemblance to Witten's interacting theory of open bose and fermi strings. 
The action is written as 

S = - | ( * | < 3 | « ) (3.1) 

with 

|*) = * |n) = (* + c0i»)|fJ) (3.2) 

a general string field of ghost number 0. We obtain the following obvious gauge 

invariance: 

« . | * ) = Q\B), 

g(E) = -i, 

which has the following successive redundancies: 

Sa\B) = Q\G) 

S„\G) = Q\H) { 3 . 4 ) 



Expanding (2.1) in ghost zero modes yields 

and the gauge transformations read 

M =[d + 6)e - 2 v i 

(3.6) 
smn =/ f f - (d+s)e. 

The t transformation of 4 displayed here is the gauge symmetry Identified in refs. 
23-25. 

The action presented in refs. 23-25 may be obtained from (3.1) by gauge-
fixing some of the auxiliary fields which this action contains. In order to do 
that, we should recall from ref. 23 the concept of a maximally symmetrized 
form. Consider the coefficient <t>M'"M'N,...N^ as a tensor with upper and lower 
indices, separately antisymmetrized. Imagine lowering the upper indices and 
then projecting the full set of indices onto combinations of definite symmetry. 
Because of the separate antisymmetrization, one may find only representations of 
the permutation symmetry corresponding to Young tableaux with two columns. 
The maximally symmetrized combination is defined to be the combination in 
which the second column is as long as possible, that is, in which as many lower 
indices as possible are symmetrized with upper indices, and vice versa. In a 0-
form such as <j>, with equal numbers of upper and lower indices, the maximally 
symmetrized component is that in which every upper index is symmetrized with 
a lower index in the process of Young symmetrization. In general, maximally 
symmetrized forms with 9 > 0 are annihilated by V, and form the kernel of this 
operator. 
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Let us, then, partially gauge-fix (3.5) by imposing v |^) — 0- The resulting 
Fadeev-Popov determinant is nondynamical. Since D- commutes with d and 6, 
we can see that [d + £)\$) is a maximally symmetrized 1-form; thus, only the 
maximally symmetrized component of |n) couples to the remaining components 
of |<£). Since \n) is in any event nondynamical, we can freely drop (or integrate 
out) the other components, leaving only the maximally symmetrized one. This 
component is annihilated by ft, an operator encountered previously in ref.23. We 
define it as follows: 

M = r • • » ( N S ) . 
(*) 

Then, on string fields not containing zero modes, H),ft[ = nc + n., — nj — n# = 5, 
where n* is the number operator for the modes of ^ = b,c,/3,i. In particular, 
for maximally symmetized forms of negative ghost number ft is proportional to 
the left inverse of •(! : in our case f||l |n) = |IJ). Using this relation to integrate 
out this last piece of |n), we find at last 

S = - | ( * | X | « ) + \{t\(d + f)t{d + S)\4,), (3.8) 

which is the action of ref. 23, written in OUT new conventions. Our gauge-fixing 
left the residual gauge invariance: 

*.|*) = (<* + *) | 0 , (3.9) 

where |c) has ghost number —1 and is restricted to be maximally symmetrized; 
this is precisely the gauge invariance of refs. 23-25. If we now use the results 
of ref. 26, we see that one can show the equivalence of S in (2.1) to the open 
bosonic string in the light cone gauge'101 and to Siegel's covanant gauge fixed 
action1'" . 
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In order to go to the Fcynman-Siegel gauge, however, it is not necessary to 
take the above route. There is a shortcut, discovered by Witten1"' : the gauge 
fixing condition &o|*) = |IJ) = 0 leads to the gauge fixed action 

(3.10) 

(3.11) 

The ghost part possesses a gauge in variance of its own: 

6a\E,) = Q\G) 

* o | £ , ) = 0 

which we may fix by requiring ba\B,) = |fl,) = 0. Then 

S,l = - | ( * l « l * ) + \[E,ME,) - |(G,|6o|GfB) (3.12) 

The process continues and we finally end up with 

S,S = -\W'°m) + \(0,\cOK\<,) - \{*,\c°K\(,) + •••] (3.13) 

where g(4>) = 0, g(B,) = 1, 9 («,) = - 1 , 9(K„) = 2„ s ( f t ) = - 2 , ••-. This, of 
course, constitutes exactly the field content and the form of the action found by 
Sicgel1*" . The BRST invariances are 

(3.14) 

6DH$T\4>) = (d + f)\u) 
ODJIST|^J = 0 

OB«ST|C(J) = 0 , 
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replacing the gauge in variance of ]$), 

6n«ST\ts) = {d->-6)\(;g) 

*onsr|fj) = 0 
(3.15) 

« 0 « 5 T | 8 S ) = 0 , 

replacing the gauge invariance of \EG)> and so on. The £ transformation of tj> 
displayed here is the gauge symmetry identified in refs. 23-25. 

Let us now discuss the gauge-fixing of (3.1) to the light-cone gauge. The 
action of the open string in the light-cone gauge is given by 

Su, = - i f > | K | &) , (3.16) 

where 4>t contains only transverse states. To characterize these states, let us 
denote the light-cone components of ct^ by 

KN = o+ , MN = <*x . (3.17) 

With this notation, the transverse states are those which include no K, M, B, 
or C creation operators acting on |0). We must, then, show that all states other 
than the transverse states may be removed from (3.1) by a choice of gauge. To 
do this, we will use a counting argument similar in form to the one developed in 
ref. 26 to discuss the gauge fixing of the action of refs, 23-25. (The reader who 
finds this argument a bit sketchy should consult ref. 26 for a more discursive 
presentation.) 

Represent the classes of states we must gauge away as: 

K'CMrB'\0) , (3.18) 

where p, q, r,s denote the number of creation operators of the given type which 

acton \0),p+q+T+s = M > 0. Since at any given mass level, H has a maximum 
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value, we can confine our attention to states with a fixed value of J/, beginning 

at the maximum, and sequentially remove all of these states from (3.1). We can 

remove these fields without generating Fadeev-Popov determinants if we shift by 

terms in (3.6) which involve no factors of p~. We will, in fact, use only terms in 

(3.6) involving (d + S). We will only need to consider the term in d of the form 

d = C-N-p+MN + . . . (3.19) 

and the term in 6 of the form 

6 = Cw .p+Af_jv + . . . ; (3.20) 

we may imagine, then, that d simply converts a K to a C and S simply converts 
a B to an M. 

As a simple illustration of the use of these rules, let us discuss the counting of 
gauge parameters for states with )J = 1 and 2. For states with it = 1, the only 
gauge parameters are of the form B|o). These suffice to gauge away all states in 
\<j>) of the form M[0). The remaining states in |«1) which we need to eliminate 
are those of the form K\o). These states appear together with the states M|o) 
in the first term of (3.5), but this terni has been removed by our choice of gauge. 
The only remaining place that the states iC|o) appear is in the cross terms of 
(3.5); since d converts a K to a C, this state can overlap with states fl|o) in |fj). 
This matrix element uses only the term (3.19) in d, which contains no p~. Thus, 
the states K|o) act as Lagrange multipliers to eliminate the states B\o) in |»j). 
Thus, we have exactly the gauge freedom we require to eliminate all states with 
JV = 1. 

The analogous argument for >/ = 2 illustrates some complications found at 

higher levels. The states in \<j>) and |IJ) which must be eliminated have the form 

K'\0) , KM\0) , Af 2 |0) , KB\0) , MB\o) , BC\o) . (3.21) 
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The gauge parameters in |e) and \$) have the form 

JfB|0), MB\0), fl*|0) . (3.22) 

In addition, we must consider the gauge parameters of the gauge parameters, 

which characterize the redundancies in (3.22). These are states in |G), of the 

form 

B 2 | 0 ) . (3.23) 

It is useful to think of these multiplets of states as components of tensors whose 
indices run over all positive integers. The commutation relations of these opera­
tors place restrictions on these tensors: B2\0) is antisymmetric in its indices, and 
M710) is symmetric. Thus, we can use (3.23) to gauge away the antisymmetric 
part of MB|o) in (3.22); the remaining symmetric part of this multiplet can 
gauge away the states M ! | o ) in (3.21). KB\<0) in (3.22) can gauge away KM|0), 
and -B!|0) in (3.22) can gauge away the antisymmetric part of MB\0) in (3.21). 
The remaining states in (3.21) are either Lagrange multipliers or are eliminated 
by Lagrange multipliers: K2\0) eliminates the symmetric part of MB\o), and 
KB\0) eliminates BC\6). 

Let us now generalize this counting argument to all levels. As a first step, we 

must reduce the full set of gauge parameters in \E) to those parameters which 

cannot be gauged away by higher-level gauge transformations. Consider, for 

example, the components of \E) of the form 

KPCV'tfJ+1|0) . (3.24) 

Some of these components can be removed by acting with S on components of \G) 

of the form KrCM'~iB''+1\d). These components have their own redundancies, 

corresponding to the states KPC«Mr-3B,+310), and so forth. The nonredundant 

components of \E) can be identified as follows: Operators Mr form an r-index 
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symmetric tensor with indices in the set of values of N (N > 0). Similarly, oper­

ators B* form an s-index antisymmetric tensor. It is convenient to project states 

with both M's and B's onto states of definite (mixed) permutation symmetry, 

labeled by Young tableaux. For example, M*B3\o) belongs to 

m 
(3.25) 

Since we will be seeing many products of this form, let us refer to a Young tableau 

of r symmetrized boxes as {r}, a tableau of J antisymmetrized boxes as (s{, and 

a tableau with a. row of r boxes above a column of s boxes as (r/s). In this 

language, (3.25) reads 

{4} X [3] = (5/2) + (4/3) . (3.26) 

One can then see that states (3.24) in \E) contain M's and fl'a in the representa­
tion (r/s) + (r - 1/a +1) . Their redundancies belong to (r - 1/s +1) + (r - 2 / s+2) . 
The redundancies of the redundancies belong to (r - 2/s + 2) + (r - 3/a + 3). 
Continuing until one runs out of W o , and then resolving the net effect of these 
parameters, one finds that the nonredundant component of the gauge parameters 
in (3.24) have M'e and B'a combined to the symmetry (r/s) . 

We will act on |*) with these symmetry motions in a different way depending 
on wheti;~J- or not r > p. If r > p, act £ on the nonredundant components of 
(3.24) to remove states of the form (3.18). The piece of (3.18) which remains 
has M's and B'n symmetrized according to (r + 1/s - 1), so that the full set of 
operators displayed has the character 

{p} * !?] * (/ + 1/i - 1) . (3.27) 

If r < p, decompose {p} x [o] -» (p + 1/j - 1) + (p/q). Act S on the [p + 1/j - 1) 

component to remove states of the form K"CMrB°\0). Act d on the (p/g) 
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component, to remove states of the form i f , " 1 C « + 1 M , - 1 B ' + 1 | 0 ) . The effect of 
this transformation is to reduce each group of states KpCMrB'\o) with r < p 
to the structure: 

(p/q) x (r + 1/a - 1) + (p/q) x (r/s) = {p/q) x {r} x [s\ . (3.28) 

Now let us examine the form of (3.1) that we have obtained. We have gauged 
away all states with q — s — 0, r > p. Thus, the states with q = 3 = 0, 
r < p cannot appear in the first, diagonal term of (3.5). They can only appear 
in the off-diagonal terms involving (tf 4- £), using a d to Convert it to the struc­
ture i fP~ 1 C 1 Af r |0) , which has a nonzero matrix element with states <f the form 
KrMp~lBl\0). As in our simple examples above, the terms with g = $ = 0 
act as Lagrange multipliers which eliminate terms with 5 = 1 . After the gauge 
transformations described In the previous paragraph, both sets of states have 
been reduced to the multiplet (p/0) x {r}, so all of the remaining states of the 
form (3,18) with q = 0 t a = l t and r > p are eliminated. Now the states with 
<j = 0, s = l , r < p appear only as Lagrange multipliers for the states with 
g = 1, 4 = 1, r > p, Comparing the representations into which these have been 
projected, we see that all of these states are eliminated. The pattern continues 
until all components of | $ ) have either been removed or have acted as Lagrange 
multipliers to remove others. 

In comparing this argument to that of ref. 26, the reader should note that 
here we find no nondynamjeal component fields in addition to the transverse 
fields. Al! unwanted components of |$) disappear. It is never necessary to use 
the fact that the |*>) components are purely auxiliary. This last feature is essential 
for generalizing this argument to the theories we will consider in Section 6. 
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4. The Closed Bosorric String 

It is possible to construct a gauge invariant theory of closed strings along 
the lines of the previous section- However, just enlarging the index space to 
include barred operators and replacing Q in (3.1) by the BRST operator for the 
closed string does not work. The physical spectrum has to obey the algebraic 
constraint K — K' = 0, and this condition is not a consequence of the Ansatz. 
The complications arise from the zero mode structure of the ghosts. We may 
circumvent these difficulties by just dropping all the zero mode dependence of 
the string fields and introducing instead two formal operators bo and e° with the 
same algebra as 6o and c° : 

W 2 = (?)> = M W ? } = i . (4.i) 

Then, let us define the vacuum to have a structure analogous to the open string 
case, eq. (2.4). We build ail our string fields on this vacuum, and impose the 
constraint 

( i f - ; ? ) | * ) = 0 . (4.2) 

Henceforth we will work in the subspace of string fields obeying this condition. 
Now replace Q by 

Q = c<>[K + TC) + d + i + d + 6-2b<i(ll+1) (4.3) 

Then it is easily verified that Q 2 = 0 and therefore 

Sc = - i ( * | Q | * ) (4.4) 

with |$) = \<j>) + c°|«) is gauge invariant just, like in the open string case. Note 
that the constraint K~K commutes with all the operators we encountered in our 
discussion of the open string as well as with their barred counterparts. Therefore, 
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the gauge fixing procedures to the Feynman-Siegel gauge and to the light cone 
gauge can now be taken verbatim from the section on open strings. Again we find 
Siegel's gauge fixed action'20' , but without the Lagrange multipliers that enforce 
K — K . This constraint, even though it is algebraic, is one of the constraints 
one encounters when first-quantizing the closed string, and hence it should be 
regarded as an equation of motion for second-quantized string fields. Therefore 
we would like to find a formulation of closed string field theory that leads to this 
equation of motion. This has been done by Ballestrero and Maina'"' and we will 
describe their construction in the following. 

For that purpose, let us change our notation from barred and unbarred 
operators o and o to the linear combinations a* = l / \ /2 (o ± a) . Also, let 
Z> = d + 5 + d + I. Then the BRST charge is 

Qc = Q + Q = c"+K+ + cD-K- + 17-26+ v

+ - 26Q v ~ . (4.5) 

We keep the complete zero mode structure and build out of a linear combination 
of the ghost zero mode states |i*>„) ® |u>,)> c°|u v) ® \JSe), J°|wj) ® |uJt), and 
c°?>\u)g) ® |SJ„) a vacuum state |f) a) that satisfies 

c o - | n B ) = 0 , 6 0

+ | f l t ) = 0 (4.6) 

and 

(n,| c°+^in,,) = I. (4.7) 

Explicitly, |fl e) = c 0 _ |wj) 8 |u7„) , and we build string fields on the vacuum state 
|fl) = |w) ® |n„) . Then the action 

S = j i | [ ( * | [ 6 j , Q e ] | « ) + (*|Q,K-|E) - (E |K-Q e | * ) ] (4.8) 

is gauge invariant under 

*J«) = Qc\t) 
(4.9) 

*JS) = I*)-
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Now, let us chow the equivalence of (4.8) to (4.4) - We use the components of 
|A) that do not satisfy K~ = 0 to fix the partial gauge K"~|E) = 0. This leads 

a nondynamical Fadeev-Popov determinant, which we may normalize to 1. In 
other words, we do not generate ghosts by this procedure. The |E)-dependent 
terms in the action vanish and if wc now expand |$) in the ghost zero modes, 

|«) = 0 + V2c°+>J + ~ 6 0 - X + c 0 + b 0 -* ) |n ) , (4.10) 

we obtain 

(4.H) 

This action has exactly the form we wanted to get: the fields |i/>) and |x) arc 
Lagrange multipliers enforcing K~ = 0, and if we integrate them out, we obtain 
precisely (4.4) in component form, as one easily recognizes by comparing (4.11) 
With (4.4) and (3.5) . 
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5. Neveu-Schwarz Strings 

One obtains the Neuveu-Schwarz sector of the superstring by a straightfor­
ward supersymmetrization of the bosonic string. In the construction of super-
forms (2.9) we now sum over dotted and undotted indices. Our forms then differ 
from the ones found in supersymmetry textbooks 1"' only by the rule [c",'y"] = 0, 
whereas the standard choice reads {dxn,d6ji} = 0. 

A general field |$) now contains as expanison coefficients tensor fields of 
different statistics. In 

I*) = {jdi l + ^ . ^ l - i l j c l i l - i H e W 
(5.1) 

-afLiVuM + f ^ . W ) + ... }|fl) . 

let us choose Ap{x) to be bosonic, since we wish to describe spacetime bosons in 
the NS sector. Then |4) must be a Grassmann-valued form. For the ghost field 
c[x) and the antighost c[x) this works out nicely, since they have fermi statistics. 
However, the fields x ( i ) , V)i(*)i and T^(x) are also assigned Grassmann values, 
even though the corresponding forms have ghost number 0, and the fields are 
therefore physical. They have integer spin and then clearly the wrong statistics. 
We will have to project out these unwanted fields. In |$) , they arise as expansion 
coefficients of products of creation operators with an even number of creation 
operators {* £ {ttJiVi/5i»}>A £ N - j . Obviously, the projection to use is just 
the good old GSO one 1" 1 , 

Paso = (-)«*+^+'"+» = 1. (5.2) 

The remarkable correlation between two-dimensional and space-time statistics 

first appeared in Siegel's papers' 1 0 ' on the gauge-fixed bosonic string theory. The 

observation that the GSO projection must be made in order to preserve the cor­

rect statistics of fields in the Neveu-Schwarz-Ramond theory has also been made 
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by LtClair."' For properly GSO-projected string fields it iB now straightforward 
to supersymmetrize the preceding two sections. We simply use instead of the 
operators Q ,Q and Qc their natural extensions to the NS sector. The ghost 
Zero mode structure is the same as before, and therefore all the manipulations 
go through as described above. 

The Nevcu-Schwarz-Ramond theory contains three types of closed strings, 
those with Neveu-Schwaxz boundary conditions for both left- and right-movers, 
those with Ramond boundary conditions for one set of modes, and those with 
Ramond boundary conditions for both left- and right-moving modes. The sectors 
Of the first and third type lead to bosonic string states; however, it is convenient to 
treat the third type together with the fermionic strings. We are ready, though, to 
write the action for the first sector. In fact, this action is exactly (4.4) , with the 
bosonic string operators d, 6, K, 4 replaced by their Neveu-Schwarfccounterparts 
and with a GSO projection applied independently to the left- and right-moving 
components of each form. This projection does not affect the proof of gauge 
invarianceor the process of gauge-fixing, both of which proceed exactly as above. 
By replacing only the left-moving operators by Neveu-Schwarz operators, while 
keeping the right-moving operators those of the bosonic string, we find a free 
field action for the bosonic states of the heterotic string.'"' 
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6. Ramond Strings 

In the Ramond sector, things get a little more complicated due to the exis­
tence of 2ero modes in the fermion sector on the worldsheet. In particular, in 
addition to c° and to there now exist ghost zero modes 7° ,A with bose statis­
tics. Also, we have to cope with the zero modes of ^(x). We do this by splitting 
the 10 fermionic operators Vo >rito 5 creation and 5 annihilation operators. The 
ground state is then 32-fold degenerate, and for Euclidean spacetime we denote it 
as the spinor |a) 6 16 + 16 of SO(10). An even number of -Vs generates the 16, 
i.e. lefthanded spacetime spinors, while applying ^o's an odd number of times 
yields the 16, which describes righthanded particles. The vacuum with respect 
to the 0o's is then the highest weight state of the 16 of SO(10), and the W 
zero modes act on it as T-matrices. If we represent the operators ijift in matrix 
form, we will implicitly multiply all operators with worldsheet fermi statistics 
with (—)"*> = T 1 1 in order to maintain the proper anticommutation relations. 
The hermiticity properties of the BRST-chargc and its components follow from 
ret = r T T * and are given by . , 

gt = r°Qr°, F' = r ' jsT 0 , S = r°«r°, . . . (6.L) 

Note that for SO(10) the spinor representations are complex, while in Minkowski 
spacetime, i.e. for SO(l,9), these representations may be chosen to be real Ma-
jorana spinors. 

As in the Neveu-Schwarzsector the GSO projection ensures the proper space-
time statistics of the component fields. For example, in c^der to define a general 
string field 

l*0) = {«°+A"+-- |n) (6.2) 

with uniform statistics, we have to project £a such that it has definite spacetime 
helicity. The choice we make then requires rja to have the opposite helicity. 
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Therefore the GSO projection must fix the sign of 

P 0 so = ( - ) ' " + ' " + ' , ' , (6-3) 

where the number operators include the zero modes. When we choose to -.?*ork 

in the r-representation of the ^ zero modes, we simply replace their contribution 

to Poso by r" . 

In order to write down an action for R strings, we employ the same trick 
we used for dosed bose strings. We drop all the ghost zero modes and replace 
them by c° and bo. We modify Paso accordingly and are again able to contruct 
a nilpotent operator 

Q- = &(-),F + d + <S - 4 o ( - K ( f tf + # F). (6.4) 

The operator (—)̂  is inserted to make Q anticommuting. By definition it anti-
commutes with any 2-d Geld with fermi statstics, and hence it may be chosen to 
be identical to Paso • Our Ansatz for the Ramond action is then 

S = - ^ | ( * | 5 . | » ) . (6.5) 

where | * s ) = ($S° + a V ) |flj is a g-0 string field that sit: fies Paso = 1 and 
(*| = |*)+r° . 

This action has the gauge invariancc SB |<fr) = (Vt-7t *£), wli.jre 5 is now a 
spinor-valued ff = - 1 field. By directly applying the steps ! M ; om (3.10) to 
(3.13) , this action can be gauge-fixed to the Feynman-Siegel gauge 

8„ = - - ^ @ | > . ] * ) , (6.6) 

where now |^) is a general Pa,a = +1 form in the space of nonzero modes. 

Using the arguments given for the descent to the light-cone gauge, (6.6) can also 

be gauge-fixed to the form 

where |^ () is a transverse state. From this formula, one can then easily reach 
the light-cone gauge action by integrating out the components of \ij>t) satisfying 

r+|*i) = o. 

Written in components (after performing the zero mode algebra), the action 
(6.7) takes the form 

S = -4{(«|FU) + (r? | f v + v J? | f,) 
(6.8) 

{4\d + 6\t,) - (fj\d + 6\<l,)}. 

Note that in this expression, unlike the bosonic string actions, the auxiliary field 
|r?) has become dynamical. This turns out to have no effect on the gauge-fixing 
of the action by the methods of Section 3; our arguments there did not make 
use of the explicit form of the term quadratic in the auxiliary field. However, 
it is interesting to note that this feet docs play a rote in more conventional, 
component-by-componcnt covariant gauge-fixing. As a concrete example, let us 
consider the first excited mass level. The components of |î ) at this level are the 
vector-spinor coefiicicnts of the states oifi^O) and !/iH,[0); these have opposite 
chirality and thus can form a massive spin-| field. In fact, after redefining these 
component fields appropriately, one recovers the action for a gravitino made mas­
sive by compactifying a spin-1 field in 11 dimensions on a circle. The conventional 
covariant quantization of this field would bring in 3 massive spin-| ghosts, the 
third being the Niclsen-Kallosh ghost.'"'"' The Fcynman-Siegel gauge action for 
the Ramond string contains only two massive ghosts. But (6.8) also contains, at 
this level, two dynamical components of |TJ), corresponding to the states 6-i|o) 
and 0_i|o); these have opposite chirality and combine to form a massive spin-j 



fermion with normal statistics. This fermion precisely compensates the Nielsen-

Kallosh ghost. 

We have now reached an understanding of how the physical Ramond spectrum • 

may be generated by a covariant field theory. What we are still lacking is a c/ear 

picture of the ghost zero modes. We expect that the reduction of the zero mode 

space to c° and bo bears some resemblance to the case of closed bose strings. 

However, in the Ramond sector this problem is substantially more difficult: not 

only is the Hilbert space infinite dimensional, being generated by the commuting 

operator 1°, but in addition there exist an infinite number of inequivalent copies. 

These copies are called 'bose seas' and are characerized by integers M. All -»* 

with n < M act on the Af-vacuum as creation operators, and the remaining y 

annihilate it. For on-shell states Friedan, Martinec and Shenker'"1 have shown 

the equivalence of all the bose seas, in the sense that scattering amplitudes for 

physical states may be evaluated in any one of them, and the result is independent 

of the bose sea chosen for the computation. This proof does not hold for off-shell 

states, and we are left with the so-called bose sea problem: how do the bose seas 

enter the field theory and what does the reduction to (6.8) look like? 

A partial answer to this question has been eiven by Yamron'"1 , who con­

structed a free field theory in one bose sea. We will describe his formulation 

briefly and gauge fix his action to (6.8) . First, let us discuss some properties of 

the bose ghost zero modes. They satisfy ft0,0o] = 1, and we will work in the 

bose sea where M — 0. Its vacuum |wj) is annihilated by 0o and therefore the 

zero mode Hilbert space H is the space of functions of •70. The vacuum state is 

represented as the constant function 1', and 0o acts like a derivative: 0o = -6\,o. 

The inner product of H must be defined in such a way that 0a is antihermitian: 

(«i| = fdi". This implies 

M « f r o ) k ) = 1 • (6.9) 
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The Ansatz for the action is 

S = - . 7 2 (*|GQ|*) , (6.10) 

where Q is the BRST charge (2.16) and G is an operator that acts like a metric. 
In order to obtain a nonzero inner product, G must contain the function £(7°), 
and since we want a 6rst order action, a factor c° should appear. The gauge 
invariance 

6,|*) = Q\E) (6.11) 

is obvious if {G, Q} = 0. Yamron has constructed a metric satisfying all these 
requirements. In our convention it reads 

G = c ° E Tz^T-J)! (-» W a £ + 1 *h°) = 2c°S(W°)2 + 8 « ) • < 6 - 1 2 ) 

A comparison of (6.12) with (2.16) shows that the terms in Q that contain 60 
do not appear in S . Consequently, the string field components which contain c° 
are projected away by G. Then the expansion of | t ) in ghost zero modes has the 
form 

I*) = W + 57% + (V) 2 Ao + (Vl 'Ai + {n0)4A» + . . .)|fJ), (6.13) 

and the gauge parameter \E) may be written as 

|B) = £ EmhTift) + f > ^ V r i n ) • («•") 

We now use the gauge parameters D„, n > 0 to set A„ = 0, n > 0. The corre­

sponding gauge transformations are 

«|A„) = - j | / ? » ) - 2 l H i > B + l ) , (6.15) 

and we see that the corresponding Fadeev-Popov determinant is algebraic, so 

that no dynamical ghosts are generated. If one now performs the 7°-algebra in 
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(6.10) , then S reduces exactly to (6.8) , and we have arrived at our original 
formulation of open Ramond strings. 

The fermionic closed string theories can be constructed along the same basic 
lines. The closed strings with Ramond left-movers and Neveu-Schwarz right-
movers can be written for string forms satisfying the constraint (4.2). Define 

Q = c° {-)rF + d+S + d + S -be [-)r{F v + v F + Fj + $F) . (6.16) 

Then the appropriate action is given by (6.7), where now |$ ) is a string form built 
on the product space of left- and right- movers, GSO projected independently in 
each subspace. The fermionic heterotic string action is constructed in the same 
way, using the bosonic string operators to build the right-moving subspace. 

Finally, we turn to the closed superstring theory corresponding to Ramond 
boundary conditions for both left- and right- movers. In this sector, our simplis­
tic treatment of the zero modes breaks down. We have been able to construct a 
quantum-mechanically complete theory, but this theory has two defects. First, 
it requires a constraint which, in a general frame, is dynamical. Second, it re­
quires that part of the GSO projection be done after quantization rather than 
before. Despite these defects, we are encouraged to present this formulation be­
cause does generalize the formal structure we have set out for the other strings, 
and because it continues our formulation of the other closed superstrings in a 
suggestive pattern. 

The basic fields in this sector will be string fields carrying two Dirac indices 
and satisfying the condition 

{F-F)\0) = 0 . (6.17) 

Since F2 = K, this condition implies (4.2). However, while (4.2) is a purely 
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algebraic condition, this condition contains time derivatives of \0\. Choose 

Q = ^> + {d + i + d+5)- h{F(F v + v F) + F(JJ + ~$T)) . (6.18) 

where bo, c° satisfy (4.1) and have odd GSO parity with respect to both the 
left-moving and the right-moving GSO operators ?„,„ and Pa,a. Define 

I*) = (W + ^WJln) , (6.i9) 

and 

(B| = ( B | r ° F . (6.20) 

Then the gauge-invariant action for this sector may be written 

S = i ( f | Q | f l ) . (6.21) 

\B) should be restricted to have the correct statistics: Pasa • Pasa — 1. However, 
if we apply at this point the separate conditions Pasa — Paso — 1, the chirality 
conditions do not match and (6.20) vanishes. Note that the closed superstring 
charges that we have defined (eqs. (4.3), (6.16), (6.18)) fall into a simple pattern. 

Despite the fact that the constraint (6.17) is dynamical in a general frame, we 
can quantize this system straightforwardly by observing that, in the light-cone 
frame, (6.17) becomes a set of nondynamica) relations. To make this point clear, 
we will discuss in a very explicit way the quantization of the massless level of this 
string. This level contains antisymmetric tensor fields, and so one would suspect 
that it should have a gauge invariance. In our formulation, however, there is no 
gauge invariance; the required reduction of degrees of freedom is implemented by 
the dynamical constraint. (The constraint (5.10) looks suggestively like a gauge-
fixing condition for a Duffin-Kemmer Lagrangian.) The light-cone quantization 
of the remaining levels will then fa'iaw by analogous manipulations, after fixing 
of the light-cone gauge for the osciltatojs in the mt-iiner of Section 3. 
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Choose the following representation of the V matrices: 

-(:-f)-(.^ :).-(:•_;). -
where ^5 are a set of real symmetric Dirac matrics of 0(8). Express the massless 
level of \0) as b = 0T°; b transforms under Lorentz transformations like a Dirac 
matrix. The action (6.21), restricted to this level, takes the form 

S = i t r [ r 0 b T r ° b ] . (6.23) 

Decompose b in the basis of eq. (6.22), as follows: 

- C::;) • (6.24) 

On the massless level, P = —Jz j>, so (6.17) may be written: 

J* = - b jf. (6.25) 

Let p = p'-yj. Then the full content of (6.25) is expressed by the relations: 

v V b ! = - \ /2p+b T - [p,b_] , 
(6.26) 

V2p+b+ = v/2p-b- - {p \b r } . 

Use these equations to eliminate b; and b+ in (6.23). Then b T may be seen to 
be auxiliary and can be integrated out. This reduces (6.23) to the form 

S = H b ^-] • (6-27) 

If one now imposes the chirality conditions on b_ which follow from G = G = 1, 
we are let with a theory of a doubly chiral 0(8) bispinor. This is the correct 
physical content for the massless section of the Ramond/Ramond closed string. 

To generalize this discussion to higher mass levels of the string, we need two 
observations. First, the light-cone gauge-fixing procedure of Section 3 still allows 
us to remove all states with longitudinal, timelike, and ghost excitations. Then 
the quantization procedure reduces to the treatment of the explicit Dirac indices. 
On higher levels, (6.17) equates two massive Dirac operators. The mass terms 
always couple two different field components which have opposite chirality but 
the same GSO parity. Thus, each massive Dirac operator may be written as the 
action on a pair of Dirac spinors of the operator 

( t ? + A f T M ) , (6.28) 

where Tjvf anticommutes with the T .̂ (If these massive equations follow by 
dimensional reduction, in the manner suggested by Siegel and Zwiebach,1'' i ' M = 
r 1 1 . ) Then the analysis of the previous paragraph can be repeated for every 
massless level by treating the mass term in (6.28) as an extra component of the 
transverse momentum. This demonstration completes our formulation of free 
field theories, which can be explicitly gauge-fixed to the known physical spectra, 
for all of the known strings and superstrings. 
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