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ECONOMICS OF A CONCEPTUAL 75 MW HOT DRY ROCK GEOTHERMAL ELECTRIC POWER STATION 

bY 

Hugh Murphy, Robert Drake, Jefferson Tester,* and George Zyvoloski 
Los Alamos National Laboratory 

Mai l  Stop 3981 
10s Alamos, New Mexico 87545, U.S.A. 

Abstract 

Man-made , Hot Dry Rock (HDR) geothermal ' energy reservoi  r s  have 
been invest igated f o r  over ten  years. As e a r l y  as 1977 a research- 

' s ized reservo i r  was created a t  a depth o f  2.9 km near the Valles 
Caldera, a dormant volcanic complex i n  New Mexico, by connecting two 
wel ls  with hydraul ic fractures. Thermal power was generated a t  ra tes  
o f  up t o  5 MW(t) and the reservo i r  was operated f o r  near ly a year w i th  
a thermal drawdown less  than 10°C. A small 60kW(e) e l e c t r i c a l  genera- 
t i o n  u n i t  using a b inary cyc le  (hot geothermal water and a low b o i l i n g  
po in t  organic f l u i d ,  R-114) was operated. I n te res t  i s  now worldwide 
w i t h  f i e l d  research being conducted a t  s i t e s  near Le Mayet de 
Montagne, France; Fa1 kenberg and Urach, Federal Republic o f  Germany; 
Yakedake, Japan; and Rosemanowes quarry i n  Cornwall, United Kingdom. 
To assess the commercial v i a b i l i t y  o f  f u tu re  HDR e l e c t r i c a l  generating 
stat ions,  an economic modeling study was conducted f o r  a conceptual 75 
MW(e) generating s t a t i o n  operating a t  condi t ions s i m i l a r  t o  those 
p reva i l i ng  a t  the New Mexico HDR s i te .  The reservo i r  required f o r  75 
MW(e), equivalent t o  550 MW o f  thermal energy, uses-at  l e a s t  9 wel ls  
d r i l l e d  t o  4.3 km and the temperature o f  the water produced should 
average 230'C. Thermodynamic considerations i nd i ca te  t h a t  a b inary 
cyc le  should r e s u l t  i n  optimum e l e c t r i c i t y  generation and the best 
o r g a n i c  f l u i d s  a r e  r e f r i g e r a n t s  R-22, R-32, R-115 o r  R-600a 
(Isobutane). The break-even bus bar cost o f  HDR e l e c t r i c i t y  was com- 
puted by the l eve l l zed  l i f e - c y c l e  method, and found t o  be competit ive 
with most a l t e r n a t i v e  e l e c t r i c  power s ta t i ons  i n  the U.S. 

* Massachusetts I n s t i t u t e  o f  Technology, Cambridge, Massachusetts, 
U.S.A. 



INTRODUCTION 
The basic idea i n  ex t rac t i ng  energy from hot d ry  rock i s  t o  form a man- 

made geothermal reservo i r  by d r i l l i n g  i n t o  high-temperature, low permeabi l i ty  
. rock. A c i r c u l a t i o n  loop i s  then formed by connecting a second d r i l l  ho le  t o  

the  f i r s t  by hydraul ic f r a c t u r i n g  and fo rc ing  water t o  sweep heat from the 
rock i n  the f ractured region between the wellbores. The hot  water produced a t  
t he  surface may be used f o r  generating e l e c t r i c i t y ,  space heating, o r  other 
d i r e c t  uses. Research has been conducted by the Los Alamos National Labora- 
t o r y  a t  a s i t e  ca l l ed  Fenton H i l l ,  on the f l ank  o f  a a dormant volcanic 

complex, t he  Valles Caldera, i n  Northern New Mexico (Fig. 1). I n i t i a l  feas i -  
b i l i t y  studies were conducted by creat ing a small reservoir ,  ca l l ed  Phase I, 
i n  b i o t i t e  granodiori te, a hard c r y s t a l l i n e  rock, a t  a depth o f  2.9 km, where 
the  temperature was 190OC. Reservoir t e s t i n g  r e s u l t s  are reported i n  d e t a i l  

elsewhere', but  t he  major conclusions are summarized as follows. 
(1) Resistance t o  f l o w  was low enough t h a t  the power required t o  pump 

the water through the f ractures and wel ls  was only  a small f r a c t i o n  
o f  the thermal power extracted from the rock, 

(2) Rate o f  water loss due t o  permeation o f  the rock surrounding the  
f ractures was approximately 10% o f  t h a t  c i r cu la ted  through the frac- 

tures. 
(3)  Heat ex t rac t i on  cha rac te r i s t i cs  o f  even the small Phase I reservoi r  

were s u f f i c i e n t  t h a t  3 t o  5.MW(t) o f  heat were produced f o r  more 
than 9 months w i th  a decl ine o f  production temperature o f  only 8 O C .  

(4)  Q u a l i t y  o f  water c i r cu la ted  through the reservo i r  was good, w i t h  a 
pH o f  6.5 2 0.5 and a t o t a l  dissolved so l i ds  content o f  3000 ppm. 

(5) Seismic a c t i v i t y  was negl ig ib le ;  microearthquakes associated w i t h  
heat ex t rac t i on  measured less than minus one on the extrapolated 
Richter scale. 

I n t e r e s t  i s  now world-wide and f i e l d  research i s  being conducted i n  the 

Federal Republic o f  Germany, France, Japan and the  United Kingdom. I n  t h e  
U.S. f u r t h e r  work continues w i t h  a new reservoir ,  Phase 11, which w i l l  be 

created a t  the Fenton H i l l  s i t e  also. D r i l l i n g  o f  t w o  new wel ls  t o  a depth 
o f  4.3 km, where the rock temperature i s  325OC, was completed i n  1982 and a re- 

se rvo i r  capable o f  sustaining a thermal power o f  35 M W ( t )  f o r  a t  l eas t  10 

years i s  being developed by creat ing m u l t i p l e  f ractures i n  the rock between 
the two wells. This new reservo i r  i s  intended as a prel iminary demonstration 
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Fig. 1. 
Location map o f  Los Alamos National Laboratory HDR d r i l l  holes. 

of commercial v i a b i l i t y  of e l e c t r i c i t y  generation from HDR reservoirs,  and 

serves as a b u i l d i n g  block reservo i r  such t h a t  the much l a r g e r  reservo i rs  
required f o r  generation o f  s i g n i f i c a n t  amounts o f  e l e c t r i c a l  power can be 
created by repeating the Phase I1 unit.  The present economic study i s  based 
p rec i se l y  on such a scaled-up design, and thus i t  d i f f e r s  from the pioneering 

studies o f  Tester e t  a l e 2  and Cummings e t  a lO3,  which were generic i n  nature, 
ra the r  than de ta i l ed  analyses o f  s p e c i f i c  reservoirs. 

Design o f  the Phase I 1  reservo i r  i s  summarized i n  the fo l lowing sect ion 
and then scaled t o  a s i ze  capable o f  75 MW(e) o f  e l e c t r i c i t y  generation. The 
succeeding sections summarize power generation thermodynamics and economics. 

RESERVOIR DESIGN 
The goal f o r  the Phase I1 reservo i r  i s  t o  produce thermal power o f  35 

M W ( t )  w i th  no more than 20% drawdown i n  10 years. From one-dimensional heat 

.conduction theory and using thermal t ransport  propert ies f o r  c rys ta l  1 i ne  

rock, it can be shown tha t  an e f f e c t i v e  heat t ransfer  area o f  approximately 
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6 2  . .  
1 x 10 m i s  required. This area requirement represents one s ide o f  a f rac -  

t u r e  only and could be s a t i s f i e d  by one s ing le f racture,  o r  several p a r a l l e l  
fractures. A s ing le  f rac tu re  would require, i f  c i r c u l a r ,  a radius o f  580 m, 
which i s  beyond the f r a c t u r i n g  technology so f a r  demonstrated i n  HDR reser- 
voirs. Consequently, the conservative philosophy has been adopted t h a t  t he  

Phase I 1  f ractures w i l l  not be much la rge r  than t h a t  created i n  the e a r l i e r  
Phase I reservoir ,  which had an e f f e c t i v e  heat-transfer area o f  about 50,000 
m2, as e s t a b l i s h e d  by i t s  thermal-drawdown c h a r a c t e r i s t i c s .  F r a c t u r i n g  
c a p a b i l i t i e s  w i l l  be expanded f o r  the Phase I 1  reservoir,  so i t  i s  planned t o  
create f ractures about 50% larger. Consequently, approximately 15 such frac- 
tures w i l l  be required f o r  a t o t a l  o f  one m i l l i o n  m 

Because the hor izontal  earth stresses a t  depth are usual ly  smaller than 

2 

t h e  v e r t i c a l ,  o r  overburden stress, f rac tu re  planes are expected t o  be v e r t i -  

cal. I n  order, then, t o  accommodate 15 f ractures w i t h  reasonable hor izonta l  
separation distance between fractures, i t  i s  necessary t o  deviate the we l l s  
from the v e r t i c a l  d i r e c t i o n  i n  the hot downhole region, as shown i n  Fig. 2. A 
wel l  deviated too f a r  from the  v e r t i c a l  i s  impract ical  because i t  becomes 
d i f f i c u l t  t o  center and set casing, and even more d i f f i c u l t  t o  run logging 
tools, As a compromise, an angle o f  35' was chosen. 

To avoid excessive heat-extraction de te r io ra t i on  because o f  thermal 
interference between the fractures, they must be ho r i zon ta l l y  separated by 

approximately two times the thermal d i f f u s i o n  distance, F, where K i s  the 
rock thermal d i f f u s i v i t y  and t i s  time. For 10 yr  the required separation i s  
35 m, which f o r  15 f ractures requires a t o t a l  hor izontal  distance o f  about 500 
m. Af ter  t u rn ing  the wel ls  t o  35" from ve r t i ca l ,  the wel ls  were d r i l l e d  t o  a 
depth o f  4.3 km. The v e r t i c a l  distance between wel ls  was maintained a t  
approximately 360 m as intended, The t o t a l  heat energy over the temperature 
i n t e r v a l  50 t o  260°C o f  a cy l i nde r  o f  rock 360 m i n  diameter and 535 m long i s  

16 3.2 X 10 

volumetric source o f  heat from such a cy l inder  could provide energy a t  t he  
r a t e  o f  103 MW(t) .  

Results o f  more r e a l i s t i c  ca lcu lat ions i n  which the w a t e r  i n jec ted  t o  
ex t rac t  t he  rock heat i s  confined t o  the  fractures, so t h a t  heat must be i n -  
e f f i c i e n t l y  conducted through the rock t o  reach the water, are presented i n  

c 3. Over a 10-yr period, w i t h  100% water sweep e f f i c i ency ,  an i dea l  

4 



Fig. 3. These computations are based upon p a r a l l e l  equi-distant f ractures i n  

which the i n t r a - f r a c t u r e  water sweep e f f i c i e n c y  was 70% and the thermal draw- 
down was l i m i t e d  t o  20%. The e f f e c t s  o f  buoyancy, which can o f ten  enhance 
sweep e f f i c i ency  i n  v e r t i c a l  f ractures was neglected because experience i n  the 
Phase I reservo i r  suggests t h a t  buoyancy i s  unimportant w i t h  normal operat ing 
procedures. 

Figure 3 i l l u s t r a t e s  an expected resul t :  f o r  a given number o f  f rac- 
tures one can produce more power, i.e., r a t e  o f  energy, i f  one reduces the  
expected l i f e t ime .  But un l i ke  the theory f o r  an ideal ,  volumetric source o f  

heat, the conduction theory f o r  a f i n i t e  number o f  f ractures does not  r e s u l t  
i n  a f ixed, t o t a l  energy. For example, f o r  say 10 fractures, one can ex t rac t  

25 MW f o r  10 yr, a t o t a l  energy o f  250 MW-yr, o r  one can ex t rac t  18 MW f o r  20 
yr, a t o t a l  energy o f  360 MW-yr. I n  the second case the thermal boundary 

layers spreading i n t o  the  rock from the f rac tu re  surfaces propagate fur ther ,  
so t h a t  the e f f e c t i v e  reservo i r  volume i s  larger. These boundary layers 
propagate proport ionately t o  the square root  o f  time, so i t  i s  not su rp r i s ing  
t h a t  the r a t i o  o f  t o t a l  energies f o r  the two cases, 1.44, i s  very close t o  the 

square roo t  of two, the r a t i o  o f  the l i f e t imes .  I n  the extreme o f  very many 

60 1 1 
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NUMBER OF FRACTURES 

Fig. 2. Fig. 3. 
Proposed Phase I I f r ac tu re  system. E f f e c t  o f  l i f e - t i m e  and number o f  

f ractures on thermal power. 
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fractures, so t h a t  the spacing between them i s  small, t he  thermal boundary 
l aye r  thickness qu ick l y  a t t a i n s  a value equal t o  the spacing between f rac-  
tures. I n  t h i s  case the thermal in ter ference between f ractures i s  severe, and 

i n  f a c t  the energy per f rac tu re  i s  l i m i t e d  by the t o t a l  energy o f  the volume 
of rock between fractures. I n  the  l i m i t  o f  many fractures, t he  rese rvo i r  
approaches the ideal  volumetric source model. This i s  observed i n  Fig. 2; 

when the number o f  f ractures exceeds 25, the thermal power no longer increases 
with number o f  fractures, and the maximum power f o r  a IO-yr l i f e t i m e  i s  
exact ly  twice t h a t  o f  a 20-yr l i f e t ime .  

A su i tab le  heat production r a t e  can be obtained by varying e i t h e r  the 
number o f  f ractures o r  the l i f e t ime .  Focusing on t h e  IO-yr r e s u l t s  f o r  
example, 35 MW(t) could be extracted w i t h  15 fractures; but  45 MW(t), on ly  30% 
more power, requires near ly twice as many fractures. Fractur ing i s  expensive, 
SO increasing power by increasing the number o f  f ractures soon runs counter t o  
the  law o f  d iminishing returns. Consequently i t  was decided t o  keep the  
number o f  f ractures i n  a reasonable range, say 10 t o  20 fractures. Turning 
now t o  the question o f  l i f e t i m e s ,  compare two cases w i t h  the same number o f  

fractures, but q u i t e  d i f f e r e n t  l i f e t imes :  (1) IO-yr l i f e  w i th  15 fractures,  
and, (2) 20-yr l i f e  w i t h  15 fractures. I n  the f i r s t  case 35 M W ( t )  w i l l  be 
produced, whereas 23 MW(t), some 33% less, w i l l  be produced i n  the second 
s i tuat ion.  A c lea r  t rade-of f  o f  power-level vs l i f e t i m e  i s  presented. For a 
fixed-, t o t a l  generating capacity the second s i t u a t i o n  w i l l  requi re  33% more 
reservo i rs  and 33% more wells. D r i l l i n g  i s  expensive, so a t  today's h igh 

i n t e r e s t  ra tes the yea r l y  cost o f  amort izing the ext ra wells, even though over 
a longer period, i s  more than amortizing, i n  the f i r s t  s i tuat ion,  a lesser 
number o f  wel ls  over a shorter period. Xn other words, the present value o f  
fu ture heat production i s  low when i n t e r e s t  ra tes are high. 

Therefore it was decided t o  adhere c lose ly  t o  the o r i g i n a l  Phase I 1  
reservo i r  design, i .e., t o  consider a bui ld ing-block rese rvo i r  o f  16 f ractures 
capable o f  providing 37 M W ( t )  over 10 yr. This design i s  ra ther  conservative 
because it disregards the bene f i c ia l  e f f e c t s  o f  addi t ional  f r a c t u r i n g  due t o  
c o o l  ing- induced thermal  s t resses,  which were demonstrated i n  Phase I . 
Furthermore, reuse o f  the wells, f o r  example, by deepening o r  s ide-tracking 

then i n t o  v i r g i n  rock, was not considered. I n  theory a new bui lding-block 

reservo i r  could be produced by d r i l l i n g  an addi t ional  hor izonta l  length of 535 
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' .  
m, which, a t  an angle o f  35O, requires an addi t ional  d r i l l i n g  o f  940 m. How- 

ever, as a consequence o f  the near ly exponential dept h-cost re1 a t  i on discussed 

l a t e r ,  the cost o f  deepening a 4.3-km-deep wel l  on ly  940 m i s  70% o f  the cost 
o f  d r i l l i n g  a new wel l  from the surface t o  approximately 4.3 km. While an 
economic argument could thus be made t o  deepen e x i s t i n g  wells, nevertheless 
the conservative view was adopted t h a t  t he  o l d  wel ls  may have suffered some 
damage over a IO-yr period, and it was assumed t h a t  new wel ls  would be 
d r i l l e d .  The s i t u a t i o n  w i t h  regard t o  sidetracking, o r  deviat ing, a wel l  i n t o  
l a t e r a l l y  adjacent rock i s  more d i f f i c u l t  t o  evaluate. Despite the great 

d i f f i c u l t y  and expense experienced whi le  s idetracking Fenton H i l l  wel ls  GT-2 
and EE-3, one would assume t h a t  i n  a commercially mature HDR i ndus t r y  such 
costs could be s i g n i f i c a n t l y  decreased; and a program o f  research i n  t h i s  area 
i s  recommended. However, the outcome o f  such a program could not be a n t i c i -  

pated here, so again, i t  was conservatively assumed t h a t  completely new we l l s  
would be d r i l l e d .  

Scal ing up t o  75 MW(e1 

As shown i n  the next section, the net e f f i c i e n c y  o f  convert ing thermal 
power t o  e l e c t r i c a l  power i s  low, and consequently the Phase I 1  building-block 
reservo i r  w i l l  generate on ly  6.5 MW(e); 12 such reservoirs, a t o t a l  o f  192 

fractures, would generate 78 MW(e). It w i l l  be necessary t o  derate the system 
by 2 t o  3 MW(e) t o  provide dry  cooling, r e s u l t i n g  i n  a nominal 75 MW(e) 
system. Figure 4 shows t h a t  twelve bui ld ing-block reservo i rs  could be created 
by d r i l l i n g  nine wel ls  i n  the pat tern shown. No actual reservo i r  could be 

created i n  q u i t e  so ideal ized a manner as presented i n  Fig. 4. While i t  i s  
un l i ke l y ,  fo l lowing i n i t i a l  explorat ion, t h a t  a completed HDR w e l l  could ever 

be a complete f a i l u r e ,  some we l l s  may have t o  be abandoned before completion 
due t o  unforeseen d i f f i c u l t i e s .  Furthermore, it may not be possible t o  f rac-  
t u r e  a l l  the wel ls  a t  the frequent i n t e r v a l s  desired. To account f o r  these 

d i f f i c u l t i e s ,  i t  was assumed i n  t h e  f o l l o w i n g  c a l c u l a t i o n s  t h a t  f o u r  
addi t ional  wells, a 44% contingency factor,  would have t o  be d r i l l e d ,  and, as 
discussed l a t e r ,  a contingency o f  150% i s  appl ied t o  f r a c t u r i n g  t ime and costs. 

It w i l l  be observed t h a t  each reservo i r  f r a c t u r e  i n  Fig. 4 i s  a square, 
o f  length S@on each side, where S i s  the spacing between w e l l s ,  and the 

~ ~ 1 1 s  are a t  opposite corners. I n  contrast  the Phase I 1  f ractures w i l l  l i k e l y  

7 



10 AND FROM 

FRACTURt SV 

Fig. 4. 
Conceptual nine-well HDR reservoi r f o r  75 (MW( e) generating p lan t  . 

2 resemble c i r c l e s  o f  diameter S. The area o f  each c i r c l e  i s  nS /4 whereas the 

area o f  the square i s  S /2, i.e., only 64% as large as the c i r c l e .  Recall 

however t h a t  the water sweep e f f i c i e n c y  of the c i r c l e  was only 70%. While the 
sweep e f f i c i e n c y  o f  the square w i l l  not  a t t a i n  loo%, i t  c e r t a i n l y  w i l l  be 
considerably greater than 70% because the wel ls  are located a t  t he  extremes o f  
each square i n  the-corners. Thus the e f f e c t i v e  heat- t ransfer areas o f  the 
c i r c l e s  and squares should not d i f f e r .  s i g n i f i c a n t l y ,  and furthermore, some 
contingency f o r  addi t ional  heat t rans fe r  area was provided above i n  the cont in-  
gencies for additional we1 1s and fractures. 

2 

THERMODYNAMICS 
Consider an i n f i n i t e  number o f  revers ib le  heat engines each generating 

an i n f i n i t e s i m a l  amount o f  work SW and r e j e c t i n g  heat a t  t he  temperature To. 
i n  In teg ra t i on  over the temperature range T t o  then y i e l d s  the maximum 
9f 

1 work, .L o r  the change i n  a v a i l a b i l i t y ,  AB. 

6 
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. .  

where AH and AS are the enthalpy and entropy changes. One can then develop 

an approximate expression f o r  the maximum Carnot cyc le  e f f i c i ency ,  max. . 
,in 

where fi i s  the mass f l ow  r a t e  through the reservo i rs  and C i s  the s p e c i f i c  

heat o f  the water. I n  eq (2) a l l  temperatures must be expressed as absolute 
quant i t ies.  In the l i m i t  o f  a per fect  power conversion process Tout = To: 
therefore n:ax reduces to:  

gf P 

gf 

Using an average temperature o f  23OOC f o r  Tin as stated e a r l i e r  and a heat 
r e j e c t i o n  temperature, To, equal t o  the average ambient a i r  temperature, ap- 
proximately 3OC, nc f s  0.27. 

Next we must address the question o f  the proper u t i l i z a t i o n  ef f ic iency,  

nu, t o  use t o  obtain the ove ra l l  conversion e f f i c i ency ,  nu.nc . Two ques- 
t i o n s  ar ise:  f i r s t ,  what i s  the optimum thermodynamic e f f i c i ency ,  and second, 

how close t o  t h i s  thermodynamic optimum should one operate for  economically 

optimum condi t ions t o  p reva i l ?  The thermodynamically optimum nu depends on: 

gf 

max 

1. power cyc le  f l u i d  choice 
2. geothermal f l u i d  temperature 
3. ambient temperature, 
4. mechanical e f f i c i e n c i e s  f o r  the tu rb ine  and the power cyc le  

feed pump, w i t h  the usual assumptions being nturbine = 0.85 and 
r 

npump = 0.80 
5. approach temperatures i n  t h e  p r i m a r y  heat  exchanger and 

condenser system, (pinch po in t  AT'S) .  
A s ing le  f l u i d  organic b inary cycle, as shown i n  Fig. 5, i s  t he  best choice, 

ra ther  than, say, a d i r e c t  f lash ing cycle, because: (1) i n  semi-arid locat ions 
l i k e  New Mexico water consumption should be minimized by avoiding f lash ing 

L J L ; ~ . ~ ,  (2) water should not be used as the working f l u i d  i n  the power cycle 

9 



TURBINE-GENERATOR 
/ COOLING TOmR 

REINJECTION 
WELL 

Fig. 5. 
B ina ry - f l u id  cyc le  generating system. 

I w a u s e  o f  i t s  low vapor densi ty a t  temperatures below 35OC, and (3) t he  t u r -  
6 

hino exhaust end areas are too large when water i s  the working f l u i d .  

Typical b inary cyc le  u t i l i z a t i o n  e f f i c i e n c i e s  are shown i n  Fig. 60 For the 
expected geothermal f l u i d  temperature o f  230°C, maximum nu's would range from 

50 t o  65% depending on the choice o f  working fluid.' l  This range o f  outs has 
not only been documented i n  previous work,6-8 but i t  also agrees w i th  Pope e t  

a l e g  and Eskesen" who give a range o f  52 t o  55% f o r  3 binary f l u i d s :  i so -  
butane, isopentane, and propane. 

The second question i s  the more controversial  one. How close t o  t h i s  
maximum nu can a real ,  economically feasible, cyc le  be operated? As pointed 
out by Mi lora and Tester' and Pope e t  al. , '  the cost o f  producing t h e  water 

( d r i l l i n g  wells, etc.), r e l a t i v e  t o  the cost o f  convert ing the heat t o  elec- 

t r i c  power (heat exchangers, pumps, turbines, condensers, etc.) i s  c r i t i c a l  i n  
determing how close t o  t h i s  optimum one operates. For the 75 MW(e) HDR gen- 

e r a t i n g  s t a t i o n  the reservo i r  development costs are 1.5 times the conversion 
onllinment costs, so the maximum nu r e s u l t i n g  w i t h  s u p e r c r i t i c a l  operation and 

AT'S of 10-15OC would be near-optimal from an economic standpoint. This i s  t o  
be contrasted, to  r e s u l t s  f o r  a hydrothermal resource , where o,, = 40 t o  45% 

f o r  s i t ua t i ons  where the r a t i o  o f  w e l l  costs t o  t o t a l  equipment cost i s  less 
than 50%. Based upon these discussions we assume an operating economic o f  
35% on average. 

9 

Therefore, the net thermal conversion e f f i c i e n c y  i s  15%. 
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Fig. 6. 
Geothermal u t i l i z a t i o n  e f f i c i e n c y  nu as a funct ion o f  geothermal f l u i d  tempera- 
t u r e  f o r  optimum thermodynamic operating conditions. A condensing temperature 
o f  2 6 . 7 O C  was used w i t h  a 10°C approach t o  an average ambient temperature o f  
1 6 . 7 O C .  A 10°C minimum approach on the primary heating side was also used 

and . .  
Tester) 6 

with an 85% tu rb ine  and 80% feed pump ef f ic iency,  (adapted from Mi lora 

ECONOMICS 
Costs o f  generating e l e c t r i c i t y  are d 

(1) operating and maintenance (0 & M) costs, 
vestment. 

0 & M Costs 

vided i n t o  two  broad categor 

and (2)  costs due t o  c a p i t a l  

These expenses stem from water consumption, maintenance o f  wel ls  

es: 

i n -  

and 
piping, reservo i r  f ractur ing,  a u x i l i a r y  power requirements f o r  pumps and fans, 
revenue and property taxes, insurance, and personnel salaries. . A major 
expense i s  f o r  makeup water due t o  permeation and leakage from the f ractures 
t o  the surrounding rock dur ing reservo i r  heat extract ion,  as w e l l  as addi t ion- 
a l  water losses dur ing fracturing. Based upon previous reservo i r  tests ,  t he  
average water loss over a ten year l i f e t i m e  f o r  a 75 MW(e) reservo i r  w i l l  be 
~ U U  000 m per year. Unlike normal o i l  and gas wells,,  i n  which wel ls  are 
sporadica l ly  fractured and are f a r  apart, HDR wel ls a r e  close together and 

11 
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each wel l  w i l l  be f ractured many times. Under these circumstances t h e  

u t i l i t y ,  o r  operator o f  the HDR reservoir ,  may f i n d  it more economical t o  pur- 
chase f r a c t u r i n g  equipment and maintain an on-s i te  f r a c t u r i n g  crew f o r  f rac-  
tur ing,  ra ther  than rent  such services. 

Fol lowing ea r l  i e r  experience i n  the Phase I reservo i r  f ractures w i l l  be 
made w i t h  ordinary water, although i t  i s  possible t h a t  small amounts o f  addi- 
t i v e  may be included t o  reduce f r i c t i o n  losses as wel l  as t o  decrease permea- 
t i o n  losses. A t  Fenton H i l l  i t was found t h a t  upon the cessation o f  pumping 

and f ractur ing,  t he  f racture faces are %el f-propped" due t o  asper i ty- to-  

asper i ty  contacts. Therefore proppants i n  the  f r a c t u r i n g  f l u i d  were no t  
required, r e s u l t i n g  i n  considerable cost savings, but t h i s  may not be the case 

for the Phase 11 reservoir.  Ear ly Phase I 1  hydraul ic f r a c t u r i n g  operations 
have been more d i f f i c u l t  than expected, and are not necessari ly representative 

of f u tu re  operations. However using these ea r l y  attempts as a pessimist ic 
case basis, pumping rates o f  up t o  0.1 m / s ,  pressures o f  50 MPa , and t o t a l  
i n j e c t i o n  volumes o f  15,000 m o f  water may be required t o  create each f rac-  
ture. This would require 2 days o f  round-the-clock pumping, and al lowing t ime 
f o r  maintenance and repairs,  approximately one week might be required f o r  each 

fracture.  Consequently, the 75 MW(e) system could requi re up t o  4 years of 

f r a c t u r i n g  and, al lowing a 150% contingency, as much as 10 y r s  may be re-  
quired. However, t h i s  i s  not as alarming as i t  f i r s t  seems and i t  may be more 

pessimist ic than i s  ac tua l l y  the case. I n  the  e a r l i e r  reservo i r  design ca l -  
cu la t ions we assumed tha t  a l l  f ractures were avai lab le a t  the beginning o f  

operations and subsequently were slowly drawn down. However, the net thermal 
energy i s  the same i f  a fewer number of f ractures i s  avai lab le t o  begin with, 
and are drawn down more rap id ly ,  u n t i l  t he  next ser ies o f  f ractures i s  
created, and so for th .  

Thus, f r a c t u r i n g  might be a continuous operation; as o l d  f ractures draw- 
down, new ones w i l l  be created. I n  actual  operation most o f  t he  wel ls  could 

be i n  use, while, f o r  example, two we l l s  are out o f  service f o r  f ractur ing.  A 
permanent crew o f  about 12 people w i l l  be required f o r  operating the f rac -  

t u r i n g  pump and workover r i g ,  cost ing approximately $350,000 per year, o r  
about 0.06 cents per kWh. Assuming no water recovery from the f r a c t u r i n g  opera- 

t'ons and a schedule o f  about 20 f ractures per year, about 300,000 m of water 
per year w i l l  be required f o r  fracturing, The t o t a l  water requirement i s  thus 
_ - A  .! - * - A  3 
Ld..,,4,ubGu t o  be about 1,100,000 m per year. Its cost w i l l  be h igh ly  s i t e  

3 
3 

3 
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speci f ic ,  but  even i f  it i s  assumed that such la rge  usage does not permit com- 
mercial rates, and the u t i l i t y  must pay rates s i m i l a r  t o  the t y p i c a l  small 
business i n  the  area, t he  yea r l y  cost would s t i l l  be only $580,000, o r  0.1 

. cents per kWh. Fuel costs f o r  operating f r a c t u r i n g  pumps are estimated t o  be 
$416,000 per year, o r  0.07 cents per kWh. Total 0 & M costs are summarized i n  
Table I. Addit ional  d e t a i l s  can be found i n  reference 12. 

Capi ta l  Costs 

Capi ta l  expenses consis t  o f  geophysical explorat ion and s i t e  acqu is i t i on  

costs, surface p lan t  costs, wel l  d r i l l i n g  and completion costs, and cost o f  
f r a c t u r i n g  equipment. Surface plant, wel l  d r i l l i n g  and f r a c t u r i n g  equipment 
are by f a r  t he  most important c a p i t a l  costs and are summarized below. 

Surface Plant  Costs. 
power capacity, C 

.Fol lowing Tester e t  al.,' the cost per kW o f  e l e c t r i c a l  
wi thout dry  cooling, i s  taken as 

P' 

= 977 - 2.15 TD (1978$) cP 

where TD i s  the design surface temperature. For TD = 230°C, and escalat ing 

for  i n f l a t i o n  a t  15% per year f o r  1979, 1980 and 1981, and a t  6% f o r  1982 and 
1983, the  cost per kW(e) i n  1983 d o l l a r s  i s  $825. The 15% i n f l a t i o n  f a c t o r  i s  
very xonservat ive;  j n f l a t i o n  o f  f i x e d  non-residential equipment has only been 

TABLE 1 
OPERATING AND MAINTENANCE COSTS FOR A 75 MW(e) HDR POWER STATION 

cost, - Item cents per kWh 

Water 0.1 

Pump1 ng 0.07 

Revenue and Property Taxes, and Insurance 0.2 

Personnel 0.16 

M i  scel 1 aneous 0.1 - 
Total 0.63 
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7% f o r  1978 t o  1981.13 Add t o  t h i s  cost another $100 f o r  d ry  cool ing con- 

d e n s e r ~ ~ ~  and the t o t a l  surface cost i s  $925 per kW(e), inc lud ing engineering 
and i n s t a l l a t i o n .  

~ i r +  I 1  i n g  and Completion Costs 

D r i l l i n g  costs are estimated from actual Fenton H i l l  costs and are 
guided fu ther  by the average costs o f  onshore o i l  and gas we l l s  d r i l l e d  t o  
comparable depths. Figure 7 presents average costs o f  onshore o i l  and gas 
we l l s  d r i l l e d  i n  the  U.S. based upon 1979 data. l5 Well costs increase 
dramat ica l ly  w i t h  depth; over the depth range o f  1 t o  4 km the data i n  Fig. 7 
can be f i t t e d  with a s t r a i g h t  l i n e ,  imply ing t h a t  costs increase exponent ia l ly  

w i t h  depth. Also shown f o r  comparison are the actual  costs o f  d r i l l i n g  and 
completing the four  deep geothermal wel ls  a t  Fenton H i l l ,  as wel l  as t he  

" learn ing and disaster- f ree" costs which, as described below, are bel ieved t o  
be more representative o f  future, more commercially mature HDR d r i l l i n g .  A l l  
cos ts  i n  Fig. 7 are presented i n  1983 dol lars.  Fol lowing Carson and Lin16 an 

Depth (km) 

Fig. 7. 
Wel l  costs. 
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average o f  17% year l y  escalat ion fac to r  was taken f o r  d r i l l i n g  costs from 1972 
t o  1981. For 1982 and 1983 the escalat ion was taken as O X ,  r e f l e c t i n g  the 
severe contract ion o f  d r i l l i n g  demand i n  these years. 

Cost data f o r  Fenton H i l l  wel ls  GT-2, EE-1, EE-2, and EE-3 are summar- 
ized i n  Table 11. Both the  costs a t  the t ime o f  completion, as wel l  as re- 
stated 1983 costs are shown. For each wel l  we a lso present the costs taken 
from Fig. 7 for  the average o i l  and gas wel l  d r i l l e d  t o  the  same depth. Refer 
t o  the t a b l e  heading, Rat io o f  1983 Actual Cost t o  Oil/Gas Average, where i t  

can be seen t h a t  t he  older wells, GT-2 and EE-1, cost  about f i v e  times the  

o i l / gas  average, whereas EE-3 cost four  times the  average, and EE-2 cost only 
two times the average. Thus, d r i l l i n g  has s i g n i f i c a n t l y  improved a t  Fenton 

H i l l ,  i n  the sense t h a t  HDR wel l  costs are approaching those o f  o i l / gas  

average costs. This i s  more apparent when one observes that  GT-2 and EE-1 
were d r i l l e d  near ly v e r t i c a l l y ,  with no d i rec t i ona l  d r i l l i n g ,  whereas EE-2 and 
EE-3 were d i r e c t i o n a l l y  d r i l l e d  a t  an angle o f  35' from the v e r t i c a l  f o r  t he  
bottom 2.5 km. This convergence o f  HDR and o i l  and gas wel l  costs was foreseen 
i n  Ref. 17. For very deep wel ls  HDR costs can a c t u a l l y  be lower than conven- 

t i o n a l  o i l  and gas wel ls  because use o f  expensive d r i l l i n g  muds and f l u i d  
addi t ives can be avoided i n  hard c r y s t a l l i n e  rocks. 

Having shown t h a t  HDR d r i l l i n g  i s  improving w i t h  experience, consider 
f u r t h e r  improvements t h a t  may l i e  i n  t h e  fu tu re  by r e f e r r i n g  again t o  Table 

I I ?  t h i s  t ime t o  the column headed "Learning and Disaster Free Costs." These 
costs are actual  costs from which are subtracted costs due t o  delays f o r  
experiments and "disasters." It i s  important t o  note t h a t  these are - not the 
same as " t rouble f ree" costs. Wells w i l l  always have the usual unavoidable 
troubles, but i n  de r i v ing  costs t o  which HDR d r i l l e r s  might aspire we sub- 
t rac ted  costs due t o  experiments t h a t  need not be reported and "disasters" 

t h a t  one might reasonably expect t o  avoid as d r i l l i n g  matures and the  number 
of HDR wel ls  increases. As examples, f o r  GT-2 the costs f o r  the continuous 

cor ing experiments, stuck pipe, and subsequent washovers were subtracted. For 
EE-1 the cost o f  26 days o f  experiments a t  2 km, and the  excessive t ime l o s t  
i n  l oca t i ng  the bottom of the hole i n  re la t i onsh ip  t o  GT-2, an a r t  which we 
seem t o  have mastered i n  E€-2 and €E-3, was subtracted. For EE-2 the casing 
ccillapse cost, which may have been caused by a simple miscount o f  casing 
i n i n t s ,  was subtracted, and f o r  EE-3 the cost due t o  the prolonged f i s h i n g  j o b  
aliu 3uLsequent s idetracking was removed. - Not subtracted were the costs of 
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. .  
more t y p i c a l  troubles: losses o f  c i r cu la t i on ,  t w i s t o f f s  and the  more usual 

f i s h i n g  jobs, and d i rec t i ona l  d r i l l  motor and t o o l  fa i lures.  Nor, o f  course, 
were the costs of reaming, cementing, c i r cu la t i ng ,  inspection, logging, and 

casing subtracted. 
The r a t i o s  o f  these " learning and disaster- f ree" costs t o  average 

o i l / gas  costs are presented i n  Table 11. Wells GT-2 and EE-1 have r a t i o s  o f  

3.5 and 2.9, whereas EE-2 and EE-3 are 1.8 and 2.5, respectively. I n  view of, 
once agafn, the marked improvement wi th the l a s t  two wells, we adopt t h e i r  
average rat ios.  The actual average cost r a t i o  was 3.2, and the " learning and 

d isaster  f ree" average r a t i o  was 2.2. We propose, f o r  the purpose o f  e s t i -  
mating fu tu re  costs, t h a t  the n ine we l l s  i n  a commercially mature, 75 MW(e) 
system can be d r i l l e d  f o r  2.7 t imes the o i l / gas  average. This i s  exact ly  mid- 
way between the average actual and the "disaster f ree" ra t ios.  I n  other words 

it i s  conservatively assumed t h a t  no f u r t h e r  progress w i l l  be made i n  d r i l l i n g  
technology; t h a t  only by d i n t  o f  many repe t i t i ons  one-half the disasters t h a t  
occured e a r l i e r  can be avoided. The o i l  and gas equivalent costs o f  EE-2 and 
EE-3 i n  1983 are $6.4 x lo6, per Table 11. Mu l t i p l y ing  t h i s  by 2.7 r e s u l t s  i n  
the average cost o f  an HDR wel l  pa i r ,  $17 x 10 . Consequently a nine-well  , 

6 75-MW(e) system w i l l  requi re  $77 x 10 , and al lowing a contingency f o r  four 
addi t ional  wells, as discussed e a r l i e r ,  the t o t a l  i s  $111 x 10 . 

6 

6 

Drill- Total Depth 
ing Cola- Along the 
Tine plet ion Yellbore 

Yell fMor.) Date - La 

0 - 2  8 10/74 2.93 
7 

E L 1  5 10/75 3.06 

EE-2 13 5/80 4.66 

€E-3 15 8/81 4.25 

TABLE I 1  
DRILLING AND COMPLETION COSTS 

Ratio. 
ACtuJl Colt. 1983 
M i l l i ons  of OiI/Gas Av. ACtuJl Learning- Ratio. Learn- 
Dollars Cost., Mil- Cost L Disaster- Ing L Disaster 

A t  Comp. t o  1983 D i l / Q s  Mi l l i ons  t o  D i l / G ~ s  Major Disaster 
T h e  198f  Dollars o f  $ 1983 Avg. Average Events 

Escalated l i ons  of To Free Cost, Free Cost 

- -  
.Stuck' dr i l l  pipe, 1.9 5.7 0.94 6.1 3.3 3.5 

Washover Required. 

2.3 5.9 1.1 5.4 3.2 2.9 Erptr. a t  2 km, 

1.3 8.5 3.6 2.3 6.3 1.8 Colhpred casing. 

Major f i s h  Job. 
and sidetracking. 

surveying erptr. 

11.5 11.5 2.8 4.1 6.9 2.5 - - 
Avg, A l l  Yells 4.5 Avp. All Wells = 2.7 

Avg. LE-2 t €E-3 3.2 Avg. €E-2 EE-3 * 2.2 

*Orill~np Cost Escalatlon taken as 17% per year through 1981, 0% thereafter. 
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Fractur ing Equipment Costs 

The cost o f  f r a c t u r i n g  
completion r i g  (comparable t o  

pumps i s  estimated18 t o  be $9 m i l l i on .  A w e l l  
a f u l l  s i ze  d r i l l i n g  r i g ,  but  w i t h  a smaller mud 

c i r c u l a t i o n  and handling system) w i l l  be required f o r  zone i s o l a t i o n  so t h a t  
fractures can be i n i t i a t e d  i n  selected in terva ls .  The r i g  w i l l  be required t o  
operate t o  depths o f  4.5 km with 9 cm d r i l l  p ipe and w i l l  cost  approximately 
$6 m i l l i o n  i f  purchased new. This p r i c e  includes d r i l l  p ipe and c o l l a r s  and 
does not account f o r  today's depressed pr ices f o r  used r igs.  Allowance must 
a lso be made f o r  t h e  possible use o f  expensive downhole i s o l a t i o n  techniques 

such as cemented packers o r  perforated l i n e r s  which could t o t a l  as much as $12 
m i l l i on .  Total  f rac tu re  equipment costs thus range from 15 t o  27 m i l l i o n  

dol lars ,  but the average, $21 m i l l i o n ,  i s  used i n  the economic estimates 
below. 

Table I11 summarizes a l l  c a p i t a l  costs. HDR power s tat ions are cap i ta l -  
intensive, requ i r i ng  $2,750 per kW(e) of i n s t a l l e d  capacity. Two items alone 
account f o r  84% o f  cap i ta l  costs: d r i l l i n g  and wel l  completions (54%), and 
surface p lan t  costs (30%). I n  amort izing the c a p i t a l  costs a d i s t i n c t i o n  must 
be made between the wel ls  and f r a c t u r i n g  equipment, which have a useful  l i f e  
of only 10 yr, and the other, longer- l ived costs. Typical surface p lan t  equip- 
ment has a useful l i f e  o f  30 yr, so the p lant  can be used f o r  more than one 

TABLE. I11 
CAPITAL COSTS OF 75 MW(e) HDR STATION, 1983 DOLLARS 

Total  Cost Cost per kW(e) Fract ion - I tem (m i l l i ons  o f  $ )  $ o f  cost 

Geophysical Explorat ion 4.4 58 0.02 
S i t e  Acquis i t ion & Development 0.5 7 
Dry Cooling Heat Rejector 7.5 100 0.04 
Other Surface Plant Costs 62. 825 . 0.30 

Well D r i l l i n g  and Completions 111. 1,480 0.54 

0.10 
Tot a 1 206. 2,750 1 .oo 

- 280 - 21 0 Fractur ing Equipment - 
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HDR reservo i r  system. I n  fact, since the great advantage o f  HDR i s  i t s  

a b i l i t y  t o  e x p l o i t  the earth's heat i n  near ly any type o f  formation, sub- 
sequent reservo i rs  could be developed immediately adjacent t o  the f i r s t  

. system, so not on ly  can the surface p lant  be reused, it need not even be 
IllU v ed . 
Break-even Bus B a r  Costs o f  E l e c t r i c i t y  

The actual  cash f l ow  r e s u l t i n g  from operating any e l e c t r i c  p lan t  w i l l  
vary over i t s  l i f e t ime .  The c a p i t a l  expenditures w i l l  be made before produc- 

t i o n  s t a r t s  and then the i n t e r e s t  payments, dividends, and re tu rn  o f  c a p i t a l  
t o  investors w i l l  take place over t ime i n  a manner depending on the method 
chosen f o r  f i nanc ia l  cap i ta l  retirement. Likewise, operating and maintenance 
expenses may vary; i n f l a t i o n  w i l l  a l t e r  absolute l e v e l s  o f  costs and revenues; 
and tax payment schedules may be changed by accelerated depreciat ion ru les  and 
e x p l o i t a t i o n  o f  various tax incentives. So the actual  yea r l y  costs o f  e lec- 

t r i c i t y  production w i l l  not be constant and i t  becomes d i f f i c u l t  t o  d i r e c t l y  
compare the costs o f  competing p lants  o r  technologies. The so lut ion t o  t h i s  

problem i s  t o  use the " leve l ized l i f e - c y c l e  cost," so t h a t  p lants  based on 

d i f f e r e n t  technologies, l i f e t imes ,  f inancing schemes, etc. can be d i r e c t l y  
compared by l i f e - c y c l e  cost. A p a r t i c u l a r  format f o r  implementing t h i s  method 
i s  found i n  BICYCLE - A Computer Code f o r  Calculat ing Level ized Li fe-Cycle 
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Because an HDR s t a t i o n  i s  so cap i ta l  cost intensive,  the most important 

parameter f o r  cost estimates i s  t h e  i n t e r e s t  r a t e  on investment. A nominal 13% 
i n t e r e s t  r a t e  f o r  both bonds and equi ty was assumed here. This r a t e  i s  approx- 
imately 2% higher than current r a t e s  o f  re tu rn  i n  the  U.S. e l e c t r i c  u t i l i t y  
industry, and it r e f l e c t s  the r i s k i e r  nature o f  the HDR indust ry  as i t  would 

be perceived by i n i t i a l  investors. The nominal i n t e r e s t  rate,  5,  consists o f  
a " rea l "  component, r, the t r u e  re tu rn  on invested capi ta l ,  and the i n f l a t i o n  
rate, p. The long term 
U.S. i n f l a t i o n  r a t e  i s  6%'l, so a nominal 13% i n t e r e s t  r a t e  r e f l e c t s  a " rea l "  
i n t e r e s t  r a t e  of 6.6%, and i t  i s  t h i s  r e a l  r a t e  which determines constant 
d o l l a r  bus bar costs. The only  reason f o r  inc lud ing the i n f l a t i o n  r a t e  i n  the 
ca l cu la t i on  a t  a l l  i s  t h a t  it does have t a x  e f f e c t s  which chanae f i n a l  revenue 

Costx. 

These rates are re la ted  as (1 + i) = (1 + r ) ( l  + p). 

u 

requirements s l  i gh t l y .  22'23 (It was found t h a t  i f  i n f l a t i o n  was zero the bus 

h > r  c o r t  was reduced by only 0.6 mills/kWh, whereas r a i s i n g  i n f l a t i o n  t o  11% 
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increased bus bar cost by 0.6 mills/kWh.) Figure 8 shows l e v e l i r e d  bus bar 

costs as a funct ion o f  rea l  i n t e r e s t  rates, and the  s e n s i t i v i t y  o f  HDR costs 
t o  i n t e r e s t  r a t e  i s  r e a d i l y  apparent. 

C,...,arison With Conventional Power Stat ions 

Table I Y  summarizes U.S. cost cha rac te r i s t i cs  o f  a number o f  t y p i c a l  
generating stat ions. A l l  ca lcu lat ions were performed w i t h  the  l eve l i zed  cost 

method, a "real"  i n t e r e s t  r a t e  o f  4.596, and an i n f l a t i o n  r a t e  o f  6% so t h a t  
the f i n a l  bus bar costs can be d i r e c t l y  compared. The only  exception i s  t h a t  
t h e  HDR base case assumes a less favorable rea l  i n t e r e s t  rate, 6.6%. However, 
a lso shown i n  the t a b l e  i s  a ca l cu la t i on  f o r  an HDR system w i t h  a mature 

r i i rancial  structure,  so t h a t  r-4.5%. For the fue l  burning p lants  we f i r s t  
show a bus bar cost assuming that present fue l  pr ices w i l l  remain unchanged. 

A second set o f  costs i s  also shown t o  i nd i ca te  how expected f u e l  p r i c e  
increases w i l l  a f f e c t  the cost o f  e l e c t r i c i t y  f o r  these stat ions. For coal- 

f i r e d  steam stat ions,  f o r  example, resu l t s  are shown f o r  a current cost o f  $25 

. .  
I 1 

Real Interest Rate (%) - 

Fig. 8. 
Level ized HDR e l e c t r i c  p lant  bus bar cost as a funct ion o f  r e a l  i n te res t  r a t e .  
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per ton, but even today actual  costs vary f rom a low o f  $15 t o  $50 per ton  i n  
t h e  USA. The ant ic ipated fu tu re  t y p i c a l  cqst  was taken as $40 per ton, a 
p r i c e  which many s tat ions are paying already. Fuel costs are a s i g n i f i c a n t ,  
even the dominant, f ac to r  i n  bus bar pr ices f o r  f ue l  burning plants. For 
example, a t  $25 per ton, the coal cost alone represents 1.1L per kWh, and a t  
$30 per barre l  the cost o f  o i l  represents 5.0$ per kWh. Most importantly, HDR 

system costs do not depend on fue l  prices, so t h a t  HDR's r e l a t i v e  economic 

p o s i t i o n  can only  improve i n  the face o f  r i s i n g  rea l  f ue l  costs f o r  conven- 
t i o n a l  power stat ions. The s t a b i l i t y  o f  the HDR cost i s  a dual benef i t :  t o  
u t i l i t i e s  i n  t h e i r  c a p i t a l  financing, and t o  consumers i n  t h e i r  use o f  the 
f i n a l  product . 

Referr ing t o  Table IV, the HDR stat ion,  even w i t h  less favorable 
i n t e r e s t  rate, i s  already lower i n  cost  than petroleum-using p lants  o f  any 

type: 4.9$/kWh compared t o  6.3C f o r  o i l - f i r e d  steam, and 7.6#/kWh f o r  diesel-  
e l e c t r i c .  HDR i s  roughly competit ive now w i t h  gas tu rb ine  peaking uni ts ,  
4.9$/kWh compared t o  4.3$/kWh, and i s  expected t o  f u r t h e r  improve i t s  pos i t i on  

r a p i d l y  as gas deregulat ion r e s u l t s  i n  dramatic gas p r i c e  increases i n  the  

U.S. So on ly  coal and nuclear stat ions, a t  3.4 and 3.6$/kWh, are expected t o  
be cheaper than HDR stat ions,  but t h e i r  pos i t i on  i s  expected t o  deter iorate 
w i t h  fu r the r  fue l  p r i c e  increases. 

DISCUSS I O N  AND CONCLUSIONS 
It i s  concluded t h a t  a 75 MW(e) HDR generating s t a t i o n  can s e l l  e l e c t r i c -  

i t y  a t  the bus bar f o r  4.9 cents per kWh and "break even", i.e., pay i t s  debts 
and 0 & M costs, s a t i s f y  tax l i a b i l i t i e s ,  and s t i l l  r e tu rn  13% per year t o  i t s  
investors. This HDR bus bar cost i s  based on ca lcu lat ions assuming a rea l  
r a t e  of re tu rn  o f  6.6.%, about 2% higher than h i s t o r i c a l  U.S. e l e c t r i c  u t i l i t y  
levels.  A mature HDR indus t r y  w i t h  rates o f  re tu rn  a t  more normal l e v e l s  

would have a bus bar cost  o f  4.2C/kWh. HDR costs are dominated by c a p i t a l  

expenses, which amount t o  87% o f  t he  t o t a l  cost. The c a p i t a l  cost, i n  turn,  
i s  dominated by j u s t  two items, surface p lan t  equipment, and the d r i l l i n g  and 
completion of wells. The surface p lan t  equipment, inc lud ing dry cooling, com- 
pr ises 34% o f  the c a p i t a l  cost and, accordingly, 30% o f  the bus bar cost. The 
d r i l l i n g  and completion costs comprise 54% o f  c a p i t a l  and 47% o f  the bus bar 
cost, consequently any percentage increase o r  decrease i n  d r i l l i n g  costs i s  

< 
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* 

immediately re f l ec ted  as about one-half t h a t  percentage change i n  bus bar 
cost. 

D r i l l i n g  costs were assumed t o  be s i m i l a r  t o  those recent ly  experienced 
i n  the  d r i l l i n g  o f  the  Phase I1 reservo i r  a t  Fenton H i l l ,  New Mexico. Despite 
Ihe expected commercial maturation o f  HDR d r i l l i n g  it was assumed that  conven- 
L ima1  r o t a r y  d r i l l i n g  would be used, w i t h  no f u r t h e r  technica l  improvements, 
t h a t  on ly  one-half the  "disasters" t h a t  b e f e l l  EE-2 and EE-3 could be avoided, 

and that near ly  50% ex t ra  we l ls  would be required f o r  contingency. These are 
extremely s t r ingent  assumptions -- i n  the  comparison o f  HDR costs t o  coal- and 

o i l - f i r e d  costs we make comparisons t o  technologies t h a t  have matured over 60 
years, bu t  deep, hard rock d r i l l i n g  i s  s t i l l  i n  i t s  in fancy and much improve- 
ment can be expected even i n  ro ta ry  d r i l l i n g .  I n  the  longer view, new means 
of d r i l l i n g ,  f o r  example impulse and thermal spa l l a t i on  methods, may o f f e r  

even more s i g n i f i c a n t  cost  savings. A ha lv ing  o f  geothermal d r i l l i n g  costs, 
which would simply make them comparable t o  o i l  and gas d r i l l i n g  costs, would 

TABLE I V  
COMPARISON OF ELECTRICITY GENERATING COSTS I N  LEVELIZED, CONSTANT 1983 DOLLARS 

Type o f  
Generating Sta t ion  

Hot Dry Rock 
Gmthermal 

Coal F i red  Steam 

O i l  F i red  Steam 

* Nuclear LWR 

6as Turblne 

Diesel E l e c t r i c  

Capi ta l  Cost Fuel 
Appl k a t  i on _(f/kW o f  Capacity1 cost  

Baseload $2300 

Baseload 1100 

None 

$25/ton 
$4O/ton 

Baseload 725 $3O/BBL 
fSO/BBL 

Baseload 1500 f25/lb U308 
$75/lb U308 

Peaking 230 $ 2.721mcf 
$ 5.OO/mc f 

Peaklng 340 $30/BBL 
$5O/BBL 

Levelized Bus Bar 
Cost (C/kWh) 

4.9* 
4.2** 

3.4 
4.1 

6.3 
9.7 

3.6 
4.2 

4.3 
7.3 

7.6 
12.0 

*Base Case, 6.6% rea l  i n te res t  rate. 
**Using mature industry cap i ta l  s t ruc tu re  and rea l  i n te res t  r a t e  = 4.5% t o  make plant-independent 
parameters i den t i ca l  t o  other generating s ta t ions  l i s ted .  

Sources o f  Input data: Refs. 21, 24, 25, and 26. 
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. 

put  the bus bar cost of HDR a t  only 3.7 cents per kWh, near ly as cheap as coal 

f i r e d  steam o r  nuclear LWR stat ions a t  current f ue l  prices. 
HDR costs were based upon reservo i r  heat ex t rac t i on  cha rac te r i s t i cs  

measured i n  the Phase I reservoir.  On the one hand they are conservative i n  
that  i t  was assumed t h a t  future fractures are l i m i t e d  t o  a diameter no greater 
than 360 m, merely 20% greater than the one demonstrated i n  the Phase I reser- 
vo i r ;  t h a t  only about one-third o f  the t o t a l  heat o f  t he  reservo i r  volume 
would be extracted; and t h a t  the bene f i c ia l  e f fec ts  o f  thermal stress cracking 
were negl ig ib le .  Furthermore i t  was assumed t h a t  even when t h i s  s m a l l  f r ac -  

t i o n  o f  the t o t a l  heat was extracted, the wel ls  would be completely abandoned 
-- the  p o s s i b i l i t y  of mining heat from adjacent regions o f  rock by e i t h e r  

deepening the wel ls  o r  s idetracking was ignored. On the  other hand the eco- 

nomic ca lcu lat ions assumed that the  reservo i r  w i l l  be developed i n  the  manner 

present ly intended f o r  the Phase I1  reservoir.  Each bui ld ing-block reservo i r  
must have 15 f r a c t u r e s  w i t h  t h e  r e q u i s i t e  h e a t - t r a n s f e r  area and f l o w  
capacity. This i s  c l e a r l y  a formidable task, and represents one o f  the most 
important technical  tasks remaining i n  the  HDR development project .  
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