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Linear structural models are frequently used for structural 
system characterization and analysis. In most situations they 
can provide satisfactory results, but under some circumstances 
they are insufficient for system definition. The present 
investigation proposes a model for nonlinear structure 
characterization, and demonstrates how the functions describing 
the model can be identified using a random vibration experiment. 
Further, it is shown that the model is sufficient to completely 
characterize the stationary random vibration response of a 
structure that has a harmonic frequency generating form of 
nonlinearity. An analytical example is presented to demonstrate 
the plausibility of the model. 

Introduction 

Experimental identification of structural 
systems usually employs a linear model for the 
structure. The frequency response function of a 
linear system can be identified using either a 
deterministic analysis or a probabilistic 
analysis with random excitation. When the 
physical system being tested is truly linear 
then use of the linear model and analysis are 
appropriate. Further, when the system is 
slightly nonlinear a reasonable representation 
of system behavior can, in some senses, be 
established with the linear model. If the 
identified model is used for prediction of 
response or for the computation of the 
excitation that causes a specific response, then 
the analysis may, remain satisfactory as long as 
the nonlinearity effects are negligible. 

The procedures commonly used for the 
identification of the frequency response 
functions of linear systems involve averaging 
operations. For example, the stationary random 
vibration procedure for estimation of the 
frequency response function (FRF) requires the 
generation and measurement of a random 
excitation This excites structural response 
which is then measured at points of interest. 
The measured excitation is used to estimate the 
auto spectral density of the excitation; the 

excitation and responses are then used to 
estimate the cross spectral densities between 
the excitation and responses. Each cross 
spectral density is ratioed with the excitation 
auto spectral density to establish an estimate 
for the structural FRFs at the points of 
interest. Details of the procedures described 
above are given in References 1, 2 and 3. 

Modeling and identification of nonlinear 
systems, however, is not as straightforward as 
the procedure outlined in the previous paragrph. 
The literature contains many models for specific 
types of nonlinear structural systems and 
describes approaches for computing their 
responses when the excitation is defined. See, 
for example. References 4 and 5. In some cases, 
experimental techniques useful in the 
identification of system parameters are 
described. However, the difficulty with using 
such models in general applicatons is that it is 
not usually easy to ascertain that a structural 
system has a nonlinearity that is appropriately 
modeled with a specific parametric form, and it 
is usually not clear what error is introduced 
when one nonlinear model is used to simulate a 
system with a different form of nonlinearity. 
This problem has been avoided by the use of the 
Volterra model for nonlinear systems. This is a 
nonparametric model that characterizes nonlinear 
systems using higher order impulse response 
functions and their Fourier transforms. This 
type of model and its identification is 
described, for example, in References 6, 7 and 
8. The shortcoming of this model appears to be 
its inability to model frequency generating 
forms of nonlinearity. 
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The harmonic frequency generating form of 
nonlinearity is one that is commonly seen in 
practice. This form of nonlinearity is related 
to harmonic distortion of motion at frequencies 
where motion is substantial, such as modal 
frequencies. Response in a nonlinear, harmonic 
generating system often shows substantial power 
at a particular fundamental frequency, and some 
fractional level of that power at odd multiples 
of the fundamental, whether or not structural 
excitation power is applied at the higher 
frequencies. The frequencies where a nonlinear 
system shows signal content in the response are 
related to the shapes of the displacement and 
velocity restoring force functions. The 
harmonic frequency generating form of 
nonlinearity appears often in random vibration 
tests and causes difficulty in system 
characterization and test control. 

The present investigation establishes a 
model for nonlinear, harmonic generating 
systems. It is shown first that the model can 
be identified using a random vibration approach 
similar to that used in linear system analysis. 
Second, it is shown that once the system is 
identified the model can be used to establish 
the response characteristics for random 
excitation. An example demonstrates the use of 
the model. 

The Nonlinear Model and Its Identification 
through Random Vibration Tests 

The model established in this investigation 
is for a nonlinear, harmonic generating system. 
It is a model that can be used to describe the 
behavior of a structure which, for a mechanical 
reason, when excited at a particular frequency, 
executes response not only at the excitation 
frequency, but also at harmonics of that 
frequency. Many real structures display this 
characteristic. The model is established first 
and discussed briefly. Then the method for 
identification of the functions in the model 
using a random vibration test is established. 

Consider a nonlinear, harmonic generating 
system where the Fourier transform of the 
response is represented 

M n 
Z K ) = S S H.C.., ,0,.) (X(a).))J 

^ j=lk=0 J '̂  ^ •«• 

i=0,...,n (1) 

Z(u)̂ ) is the Fourier transform of the response 

at frequency iii^. X(to^ is the Fourier transform 

of the excitation at frequency w,. Ĥ (a), ,w.) is 
K J K 1 

an element in the sequence of coefficients that 
characterize the structure; the coefficients aire 
deterministic and independent of the excitation, 
and might be thought of as forming a harmonic 

generating transfer function. This model 
generates a response component, characterized by 
magnitude and phase, at frequency w^ as a 

complex valued, algebraic, power function of 
excitation components at frequencies u), , 

k-0 n. The H.: (w,, co • ) are coefficients of 

the power function. A special case of this is 
the linear excitation - response case. This 
occurs when N-1 and the Hj(a),, u)^) are zero 

except when w.-o).. After the H,(to,, to.) are 

established using measured excitation and 
response, the representation (1) can be used to 
predict the response of the structure to random 
excitation. Further, the coefficients serve as 
a descriptor of structural behavior. 

A method for establishing the H.(u),,a).j) is 

now developed. Let the excitation be a zero 
mean, stationary, normal random process, 
{X(t) , -co<t<»). Let X(ioO represent the discrete 

Fourier transform (DFT) of a segment of the 
excitation whose duration is T seconds. Let the 
excitation be defined such that all its 
frequency components are uncorrelated. Multiply 

both sides of (1) by (X'"((ji).)) , the mth power of 

the complex conjugate of X(ajn), and then take 

the expected value on both sides of the 
equation. The result is 

E(Z(a.^)(X*(a,p)"') 

M n 

' j?ik5o "J^'^'"'!^ E((X(uj^))J(x*(o.p)"') 

i=0,...,n 
£=0,...,n (2) 

This expression can be simplified. Because the 
components of the stationary excitation are 

uncorrelated, the moment E[ (X(ai, ))-̂  (X''"((jjj)) ] is 

zero except when w =0),. (The specific reason 

for this is shown in Appendix 1.) Therefore, 

E(Z(co^)(X*(u^))'") 

= S H (u^,u^) E((X(a)p)J(X*(a)^))'") 
j=l J 

1=0 n 
1=0, n (3) 



Further, the only situation where the 
expectation on the right hand side is nonzero 
occurs when j=m. (The reason for this is also 
shown in Appendix 1.) Because of this 

E(Z(u^)(X*(<op)°') 
2m, = Ĥ (a)̂ .(ô ) E(|X(o)p|^™) 

1=0....,n 
£=0,....n (4) 

At this point it is possible to conduct a 
stationary random vibration experiment. First, 

we would estimate the moments E[Z(w^) (X'" (co.)) ] 

and E[ |X((;o.)| ] using standard statistical 

techniques, and then we would ratio the results 
to obtain an estimate for the coefficient 
function H (u)n, W J ) . However, it is useful to 

establish the relation between the excitation 

spectral density and the moment E[|X((ji)n)| ], 

and to write a special expression for the 

moment E[Z(a)̂ )(X (f^p) ] before proceeding 

to estimate the H ( u ^ , W ^ ) . As mentioned 

previously, the excitation random process is a 
zero mean, stationary, normal random process. 
Let S (u)) denote the spectral density of the 

excitation, {X(t)). Then it can be shown (See 
Appendix 2.) that 

12m E(|X(«p|^") =m! T̂ " Ŝ Ĉo.̂ ) 

m=l....,M 
•£=0 n (5) 

when uT»l, and where T is the time associated 
with the DFT's (and later, with the statistical 

analyses). Note that E[jX(tOj)| ] is a function 

of the DFT time interval because Sĵ ĉo) is time 
independent. 

If the response were a normal random 
process and the correlation between the 
frequency components of the excitation and the 
frequency components of the response were known, 
then it would be possible to obtain an 
expression similar to (5) for the moment 

E[Z( u) 4 ) (X'(Wj)) ], and this expression would 

reveal a dependence of that moment on T 
However, because of the nonlinearity of the 
excitation - response relation, the response is 
not usually normally distributed, and the 
expression cannot be obtained. Nevertheless, it 
probably remains a fact that the moment 

E[Z(u).)(X (to.)) ] is a function of T , and 

this is so assumed. Specifically, it is assumed 
that 

E(Z(<..)(X*(o.£))'") = T("^^>/2 3 ^^(„.,^,^) 

i=0, n 
^=0 n (6) 

where S *n{io.Wp) is the spectral function that 

relates Z(w.) and (X^duo)) in the frequency 

domain, and, as before, T is the time over which 
the DFTs are taken. S jj-n̂co-. w-) is assumed 
time independent. "^ 

Based on (4), (5) and (6), Hjjj( w , u.) can be 

used to write a time independent, harmonic 
generating transfer function. This is 

m=l M 
i=0....,n 
•£=0 n (7) 

This function describes the harmonic generating 
character of a structural system. 

In order to establish a numerical estimate 
of (7), statistical estimates of the moments 

E(|X(u)̂ )|̂ '"] and E[Z(w^) (X*(a)p)"*] are required. 

These can be obtained using standard statistical 
procedures. The approach and formulas required 
to obtain the statistical estimate for 

E[Z(a;̂ ) (X'(o).)) ] is given in Appendix 3. 

The functions established in (7) contain a 
substantial amount of information that includes, 
but goes far beyond, the information in a linear 
FRF. In fact, the harmonic generating transfer 
functions defined in (7) could be used to 
describe how response is generated at every 
frequency given excitation at every frequency. 
When the response is characterized by Fourier 
components at n frequencies, the harmonic 
generating transfer function defined for each 

2 
value of m contains n points, therefore, when m 

2 
takes the values 1 through M, Mn items of 
information can be used to define the discrete 
functions F (w ,o) • ). For realistic values of M 

and (especially) n it is not realistic to assume 

that Mn values could be stored. Note, however, 
that in realistic situations, it is not 
anticipated that the functions "F^iit^ , W^) will 



When the excitation is 

x(t) = r Xĵ  exp(iioĵ t) (13) 

it can be shown that the first order 
approximation to the response is 

2(t) =r H(o)p Xĵ  Bxva^t) 

+ r r r H((Oj+toĵ +up H(UJ ) H(OJJ^) H(O)^) 

* ^j\^£ exp(i((o.+a)ĵ +(,ĵ )t) 

(14) 

where H(u) is the FRF function of a linear 
single-degree-of-freedom system. This formula 
includes more terms than (1), therefore (1) can 
only represent the frequency domain response in 
an approximate, limited sense, in the general 
case. However, for stationary, random vibration 
analysis, the terms in (14) where j+k-^A, and jtZ 
are unimportant and 

2(t) " L H(uj^) Xj^ exp(iuj^t) 

- E r H(3u. ) H^(uj^) X^ exp(i3u^t) 
k 

• (15) 

represents the response with all the terms 
necessary for a first order analysis. In view 
of this, the harmonic generating transfer 
functions for the first approximation to the 
Duffing oscillator are 

Hj (0.1^,00.) = H(ojj^), j=l. k=i 

-eH(u^)H2(tjj^/3), j=3. k=i/3 

0, otherwise 

(16) 

The first expression simply establishes the 
nature of the linear part of the response. The 
second term transfers excitation at frequency 
u)./3 to response at frequency w-. The moduli of 

these functions (a normalized form, in the 
second case) are plotted in Figures 2 and 3 for 
the case where 1*)̂ "̂ ' ^"0-05. The frequency 

generating nature of H,(0)^/3, w-) is apparent in 

Figure 3. 

Similar analyses are possible for higher 
approximations to the Duffing oscillator 
response and for other nonlinear systems. 

frequency, w 

Figure 2. The first expression in (16). 
FRF of a linear single-degree-of-freedoiu 
system. 

frequency, u 

Figures. The second expression in (io! 
Third harmonic generating transfCi.- IUUL. 
Lion of a Duffing oscillator. 



have substantial values at all frequency pairs 
(iOp,u.). In most situations one would expect 

substantial values when w.-u.,Suj, 5Wj, etc., and 

possibly when a).-2w-, 4iO£, etc. For example, if 

knowledge of those elements in F (co., to. ) which 

create response at w.-to. and 3(JJ„ are desired for 

m-1 and m-3, then 4n items of information need 
to be established to characterize F ( to , to. ). 

Thus, most practical situations will require a 
reasonably accomodated amount of data storage. 

nonlinear, harmonic generating system to 
stationary, random vibration excitation. The 
reason for this completeness is the fact that 
different frequency components of a stationary 
random process are uncorrelated. 

Example 

This section presents an example that 
demonstrates the use of the formulas developed 
in the previous sections. The system to be 
considered is a simple Duffing oscillator. 
Figure 1 is a schematic display of the system. 
It is governed by the nonlinear, ordinary 

differential equation 

z + 2cu z + 
n 

2 3 (D_z + ez n (11) 

Random Vibration Analysis Using the Harmonic 
Generating System Model 

Aside from basic system characterization, 
the fundamental reason for establishing the 
mathematical model defined in (1) is to provide 
the capability for random vibration analysis of 
the harmonic generating system. Given the 
coefficients H .((o, , w . ), a random vibration 

D K 1 

analysis can be easily executed. To do this, 
the complex conjugate of (1) is taken and 
multiplied times (1). Then the expected value 
is taken on both sides; the result is 

E(|Z(a,)|2) =i:i;2:rH.(a. .u.) H*(a)„,to.) 
^ j k ^ m J * ^ ^ £ m i 

* E((X(oâ ))J(X*(tOĵ ))̂ ) 

1=0,...,n (8) 

Recall that the expected value on the right hand 
side is zero except when m=k and i-y, therefore, 
the expression simplifies to 

E(|Z(u.)l2) ^ZE |H.(o)î ,03i)|̂ E(|X(uĵ )|2J) 
j k -̂  

i=0 n (9) 

Now (6) can be used to simplify the left 
hand side (using Z(w.) in place of X(to^) and 

m-1) and the right hand side, and (7) can be 
used to establish an expression for H.( to, , w-) 

that can be used above. The result is 

S^^(^.) - L L i i |Fj(.j^,a.,)|2 sJ^(.i^) 

i=0,...,n (10) 

This formula establishes a means for 
computing the spectral density of structural 
response to stationary random vibration 
excitation. The formula is complete in the 
sense that it includes all the terms necessary 
for characterization of the response of a 

where m^ is the natural frequency of the 

associated linear system, C is the system 
damping factor, e is a small positive constant, 

X denotes the excitation, z denotes the 
displacement response, and dots dene it-
differentiation with respect to time. 

h* 

mx(t) 

^> 
g_ p , 

SPRING RESTORING FORCE 

7^ 

2 ^ 3 
mto z + mez 

n 

DAMPER RESTORING FORCE = 2mta) z 

n 

MASS NORMALIZED FORCE = x ( t ) 

F igure 1. Duffing o s c i l l a t o r . 

An approximate expression for the response 
can be developed using the per turbat ion 
approach. (See Reference 4.) With t h i s approach 
i t i s assumed tha t the response can be expressed 
as an expansion in the small term e. That i s 

z ( t ) = ZQ(t) + ez i ( t ) + (12) 

(12) is used in (11), and linear equations 
etc., are developed by governing •0 • '1' 

grouping terms by coefficients of e , e , etc., 
and noting that the coefficients must equal zero 
if the components ZQ, Z , 

independent and arbitrary. 

etc. to be 



Conclusions 

The response of a nonlinear, harmonic 
generating structure to stationary, random 
vibration excitation can be represented using an 
expression that is a series of power series in 
the Fourier transform of the excitation. The 
coefficients of the power series describe the 
character of the structure. An analytical 
example shows that it can be easy to establish 
the coefficients. Further, it is demonstrated 
that the coefficient functions required for the 
nonlinear representation can be obtained 
experimentally. The magnitudes of the 
coefficients of the harmonic generating terms 
can be used to assess the degree of nonlinearity 
of a structure tested in the laboratory. 

Future investigations must demonstrate the 
usefulness of this model with experimental data, 
and must consider the use of this model when the 
excitation is not a stationary random process. 

Appendix 1 

This appendix considers {X(t),0<t<T), a 
segment of mean zero, stationary, normal random 
process with Fourier representation 

n-1 
X(t) = Z X, exp(i2Trtk/nAt), 

k=0 '̂  

where 

0<t<T 

(Al) 

Xj^ = Cj^ exp(l(!)ĵ ), k=0 n-1 (A2) 

In this expression C Q - 0 , '^n-k~'^k' k-l,...,n/2, 

are determiiiistic constants related to the 
random process spectral density, and "{"n-O, 

<i>__ĵ -({), , k-1 n/2, are uniformly distributed 

random variables on (-Tr,iT), where <(>.: and (f>, are 

independent for j^k. Reference 9 establishes 
(Al) as a valid representation for a stationary 
random process. 

It will be shown that E[X, (Xn) ] is zero 

except when k-i and j=m. Based on (A2) 

E(XJ(X*)'") = C^C^ E(exp(i(j*i^-m*_^)) 
r^j^V-^/ 

(A3) 

Because the <i'-^, k-0 n/2, are independent 

E(exp(i(j(()ĵ -m()>̂ )) 

:E(exp(i(j-m)().^), k=i 

1E(exp(ij<|,ĵ )) E(exp(-im<(,^)), k¥=l 

(A4) 

Because E[e ^]-0 for all s and all 1,̂ 0. 
all the moments in (A4) are zero except when k=J, 
and j-m, and when j-m-=0. Therefore, (A3) is 
nonzero only when k=£. and j=m. 

Appendix 2 

This appendix considers a random process 
{X(t),0<t<T), a segment of a mean zero, 
stationary, normal random process with 
autocorrelation function R„.^(T) and spectral 

density Sjjjj(a)). The moment E[|X(toj| ] will be 

evaluated where 

X ( U ^ ) = J X(t) exp(-iu)^t) dt ^^^^ 

The real and imaginary parts of X(iOn) are normal 

random variables given by 

Xĵ (td̂ ) -J X(t) cos((o^t) dt (A6) 

Xj(a)p =J X(t) sin(u^t) dt (A7) 

The random variables X (us.) and X (Wj,) have 

zero means. The variance of XD(10J) is 

E(x|(o3p) =J dtj ds R^x^^"*^^ cos(o)^t) cos(u)^s) 

(A8) 

Define the change of variables T-s-t, Y-s+t, and 
allow T to cover the interval (-<»,(») to 
establish an approximation. Then 

^(a.^)) ̂  I ^xx^"^£^ "̂  5 ^ -XX-E(X^(a),)) ^ ^ S_(u,) + - ^ S^^(O) sin(2a)^T) 

(A9) 

When a)p»l and $^^(0) is near in value to 

^xx^'^n)' ^^^^ is approximately 

E(X^(.p) = ^ S^^(.,) 

Similarly, it can be shown that 

E(x2(.p) ̂  f S^^(o,p 

E(Xj^(o)^)Xj(u^)) S 0 

(AIO) 

(All) 



Note that 

|X(u.p|2 = x2(a,p +x2(03p (A12) 

Therefore 

E(|X(u),)|2n') 

= J^C)E((x2(cop)'^- '^) E((x2(„p) '^) 

Xĵ (tOjĵ ) and X (u.) are normal random var iables 

E((X^(top)2'^) = E((Xj(to^))2'^) 

2 
:2n)l FT „ , J " 

(A14) 

Use of this expression in (A13) yields 

E(|X(a,pi2«') =„,! (TŜ (̂<0£))™ (A15) 

for WjT»l, which is the desired result. 

Appendix 3 

This appendix shows how the moment 

E[Z(oj£)(X (tOĵ )) ] - S can be statistically 

estimated. Let (Z(t)) and {X(t)) be stationary 
and ergodic, mean zero random processes. Assume 
that measured realizations of the random 
processes are available; denote these z • and x-, 

j-l.-.-.n. Divide each time series into M 

blocks of equal length N, such that MN-n. 
Denote the jth elements of the kth blocks z.ii,and 

X., , j=0,...,N-l, k=l,...,M. Multiply each data 

block by an amplitude adjusted data window, w., 

j=l N, (if desired) to obtain 

The jC is the sampling period of the measured 

data. Form products like Z.,(X^,) and average 

these over all blocks. 

^ = H J, ̂ ik(4k)™ (A20) 

This is an estimate of the moment that appears 
in (4) and (6). 
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^jk=^jk"j' j=0 N-1 (A16) 

k=l, M (A17) 

Fourier transform the time series (A16) and 
(A17) CO obtain the DFTs. 

N-1 
Z„, = At r z:, exp(-i2Tij£/N) (A18) 
^^ j=0 J"̂  

Xp, = At i; x' exp(-x2Ttj£/N) (A19) 
Ik ĵ o ^^ 

1=0,...,N-1 
k=l M 


