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A, PRINCIPLE OF MOLECULAR PUMPING 

In principle, the molecular pump consists of an open-ended 

channel bound in part  by a moving surface which has a component of 

velocity in the direction of the channel. Because of their thermal 

motion, the gas molecules collide with the moving surface resulting 

in an induced molecular flow along the channel. 

illustrated in Figure 1. 

consists of either a rotating cylinder o r  disk. The moving surface 

must be held as closely to the stationary par t  of the boundary a s  is 

mechanically feasible in order to minimize leakage. 

This principle is 

In actuality, the moving surface usually 

Induced flow occurs for viscous conditions as well as molecular, 

although the theory differs for the two cases. The distinction between 

"molecular" and "viscous" flow concerns the mean f ree  path of the gas 
molecules and the dimensions of the channel. The separation between 

the molecular and the viscous regions can be specified in te rms  of the 

Knudsen number which is defined as the ratio of the mean f ree  path of 
the gas molecules to the largest dimension of the channel. 

By definition, the molecular region o r  molecular flow obtains 
when the Knudsen number is much greater than one and the viscous 

region or viscous flow when the Knudsen number is much l e s s  than one. 

The region between molecular and viscous flow, i. e., Knudsen numbers 
around one, is called the transition region. 

- 1 -  
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Dushman (4) gives a very good summary of molecular pump work 

done in the f i rs t  quarter of this century, This work is also reviewed by 

A. A. Reiman (20). A bibliography of molecular pump work is included 

at the end of this report. 

The idea of the molecular pump was first developed by Gaede (6 )  
in 1912. 
The rotating part  consisted of a bronze cylinder with twelve grooves cut 

in it, the clearance between the external surface of the rotor and the in- 

terior of the housingbeing of the order of 0.1 mm. 

the circumference was occupied by teeth attached to the housing. 

engaged closely with the grooves in the cylinder, the clearances being 
something like 0. 3 mm both radially and axially. 

connected to the two ends and the high vacuum to the center. 

cessive cor,responding pairs  of grooves were connected to function as 
successive stages of pumping. A particular pump constructed and tested 

by Caede had a cylinder radius of 5 cm, with the four grooves next to the 
high vacuum 0.6 c m  wide and 2 . 5  cm deep, and the eight remaining 

grooves 0.15 cm wide and 1.4 cm deep. Operating at speeds of 12,000 
rpm, pressure ratios of 200,000 were obtained with a fore-pressure of 
1 mm. 

A schematic of the Gaede molecular pump is shown in Figure 2A. 

A small fraction of 

These 

The fore-vacuum was 

The suc- 

Gaede made an approximate theoretical analysis of the molecular 

He combined the molecular and viscous regions into one equation pump. 
and used the phenomena of slip to accomplish a smooth theoretical 

transition between the two regions. 

reduced to the form 
F o r  the molecular region the equation 

vrL 

1 ,  exp - ( K H  - PZ 
-p1 d Q = Kv- S d r  

~ ~ ~~ ' Numbers in ( ) refer to art icles and books cited in the bibliography. 

- 3 -  
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B. Holweck Pump 
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FIGURE 2 

SCHEMATICS OF EARLY MOLECULAR PUMPS 
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where 

Q = pumping speed - liters/sec 

K = constant involving the physical dimensions of the pump 

r 
s = width of groove 

d r depth of groove 

L = length of groove 

M = molecular weight of gas 
T = temperature. 

v = peripheral speed of rotor 

Although Caede discussed both the effect of curvature of the path 

and the case where vr i s  large compared with the thermal velocities of 
the molecules, the above equations include neither of these effects. 

Likewise, the c ross  leakage and cross  pumping were calculated for a 
spiral groove by Gaede but were not implicitly included in the above 
results, Fo r  the viscous region, Caede's equation reduced to the form 

where 
p = the viscosity of the gas 
d = depth of the groove. 

Although Gaede considered a pump with a smooth cylinder and a 

grooved housing, Holweck was the f i rs t  to fully investigate such modi- 
fications. 

helical grooves, one right-handed and the other left-handed, cut in the 
housing from each end and converging at the center. 

having the grooves in the housing meant that a greater part  of the surface 
a rea  of the working path was stationary and, thus, the drift velocity of the 

molecules wa6 less than half the peripheral velocity of the rotor in con- 
trast to the Gaede pump where the drift velocity was nearly the mean 

surface speed of the rotor. 

The Holweck pump, shown in Figure 2B, consisted of two 

Unfortunately, 

However, the peripheral speed of the Holweck 

- 5 -  
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pump corresponded to the f u l l  radius of the rotor and furthermore the 

drift velocity could be made to approach one-half the peripheral speed 

of the rotor by making the grooves wide and shallow. In the Holweck 

pump as in the Gaede pump, the fore-vacuum was at the ends and the 
high vacuum at the center with the depth of the grooves decreasing from 

the center outward. 

Holweck ( 8 ) ( 9 )  constructed and tested pumps with various groove 

dimensions. 

between the rotor and housing was of the order of 1 mil. 

obtain at running speed of about 4500 rpm a vacuum of 0.75 x loe5 mm 

against fore-pressures of 40-80 mm, resulting in pressure ratios of the 
order of lo7. 

The radius of the cylinder was 7 . 5  c m  and the clearance 

He was able to 

Siegbahn (22) developed a disk type molecular pump. This pump 
had performance characteristics similar to those above. 

against a fore-pressure of several mm Hg and a vacuum of the order of 

speeds were l e s s  than 100 m/sec. 

It could operate 

m m  was obtained. In all of the pumps discussed above, the peripheral 

Although molecular pumps a r e  apparently manufactured on a 
limited scale in Europe, very few United States references were found. 

Jacobs (10) recently analyzed the same problem as Gaede, using 

Knudsen' s Law for the diffusion of the gases in the molecular region. 

Although his results have the same form as Gaede' s, his methods were 
in e r r o r  and the paper appeared to contribute nothing new. Jacobs as- 
sumed that the cross-leakage had the same form as the back diffusion. 

A group sponsored by the Atomic Energy Commission of France, 

G. Mongodin, F. Prevot, C. Mercier, and P. Benoist (18)(16)(17), has 

investigated the use of the molecular pump as a pumping stage in ser ies  

with a diffusion pump. In this manner the high vacuum system could be 

isolated from the diffusion pump oil and a much lower ultimate pressure 

obtained. 

heavy gases faster than light gases. 

by the French group was the cyclotron. 

Furthermore, the molecular pump has the advantage of pumping 

The particular application mentioned 

- 6 -  
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Mongodin and F. Prevot (18) reviewed the approximate analysis 
They point out that these results a r e  valid only for rotor of Gaede. 

velocities much l e s s  than the thermal velocities of the gas  and make note 

of the neglect of the curvature of the path. 

sults had the same limitation as Knutlsen' s Law; i. e . ,  the diameter of the 

pumping path must be small in comparison with both the M F P and dis- 

tance in which a considerable change occurs in the density of the gas.  
Cross-leakage and cross-pumping between grooves must a1130 be considered 

and are most difficult to estimate. 

Furthermore, Gaede' s re-  

The only attempt to make an exact analysis of the molecular pumps 

(neglecting cross-leakage and cross-pumping) has been made by Mercier 

and Benoist (16). 

than the molecular velocities as well as taking into account the curvature 
of the path. 

Beams (1) has described a molecular pump design which circum- 

They considered the case of rotor velocities greater 

vents a serious problem which is inherent in all of the above mentioned 

pump designs. 
pressure of any lubricant that may be used in supporting the rotor. His 

design also enables one to bake-out the rotor and pump housing between 

runs. To obtain these features he has supported the rotor magnetically, 

thus eliminating a bearing and bearing lubricant. The rotor and pumping 
groove plate are enclosed in a g lass  housing so that after the support and 
drive coils are removed the housing rnay be covered by an oven and baked 

out. 

That is the pressure limitation imposed by the vapor 

- 7 -  
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SECTION I1 

APPROXIMATE THEORY O F  HOLWECK TYPE P U M P  

A. MOLECULAR REGION 

The general design to be considered is illustrated in Figure 3 
and consists of a stationary helical pumping groove cut inside a cylindrical 

bore and a closely fitting smooth cylindrical rotor spinning concentrically 

inside this housing. 

the groove cut in the rotor, as illustrated in Figure 4. However, a close 

examination of the physical principles of molecular pumping does not in- 

dicate that such a design would be more efficient. 

the simpler rotor is preferred. 

An obvious alternative to this design is a pump having 

The former design with 

Following the procedure used by Gaede and more recently by 

Mongodin and Prevot (18), approximate analytical expressions have 

been obtained for the pumping speed and ultimate pressure ratio of the 

Holweck type pump. 

the pumping was considered to occur through a short groove. 

gas  flow from one end of the pumping; section to the other was considered 

to consist of 3 separate flows: 1) the flow induced in the grooves by the 

moving surface of the rotor; 2) the 'back diffusive flow down the grooves 
due to the pressure gradient; and 3) the diffusive flow between the 

grooves through the clearance between the rotor and the lands. 

The curvature of the channel was neglected and 

The net 

These 

flows are designated in Figures 3 and 5 as q 1' qD$ and qD1 $ 

re spec tiv el y . 
The flow induced by the moving surface of the rotor through the 

cross-sectional area, A ,  of the pumping channel i e  given by 

where p = gas density - 
v = average induced velocity of the gas molecules 

A = cross-sectional a r ea  of the channel. 

dong  the, grooves 

a" - 8 -  



g 

Gi 
Q 

a 
B 
Li 

A. END VIEW 

c 

p2 
Q U 
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C. OEVELOPEMENT O F  PUMP GROOVE 

SHOWING THE INDIVIDUAL GAS FLOW COMPONENTS 

FIGURE 3 
PUMP DESIGN TO BE CONSIDEREO 
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The quantity, v , represents the average drift velocity of the 

gas  molecules in the direction of the grooves. If we assume that the 
reflection at the walls is diffuse, then the molecules coming from the 

stationary walls will have only the Maxwellian velocities distributed by 

the cosine law and will contribute nothing to the average drift velocity. 

On the other hand, those molecules coming from the moving surface will 
have the velocity of that surface superposed on their thermal velocities 

and will give r i se  to a drift velocity proportional to the scaler product 

of the velocity of the wall and a unit vector in the direction of the groove. 

Thus, the average drift velocity of the gas  in the grooves will be given 

by the product of the above scaler product and the probability that a 
molecule comes from a moving wall. 

is simply the ratio of the width of the moving wall of the channel to the 

total perimeter of the channel. 

It is reasonable that this probability 

Therefore, 

- s  v = v c o s e ,  

where 
C = perimeter of the pumping channel 

9 = the angular pitch of the helical groove 

v = peripheral velocity of the rotor 

S = width of the top of the channel. 

(4) 

The back diffusive flow, q,, , produced by the pressure gradient 
in the channel was considered to obey Knudsen' s equation for molecular 
flow through a long straight tube (See Appendix A). Thus, 

a where 

J" - 12 - 



A = cross  sectional area of the channel 

C = perimeter of the channel 

M = molecular weight of the gas  
T = temperature 

R = universal gas constant 

P = pressure 

fi = length measured along the groove in the direction 
of inc r easing pres  sur e. 

il 
ij The axial diffusive flow, qD1 , across the lands between the 

It grooves is limited by the clearance between the rotor and lands. 

was assumed that a Knudsen type equation could be used to represent 

this flow and, hence, it would be expressed in the same form as q,, . 
Thus, 

il 
G1 
Ll 

and 

Since the two leakage paths extend between the same total 

pressure difference, then 

3 
Thus, as a f i rs t  approximation, it is reasonable to assume that I 

Li 
dP' 

L L 
d P  * I  nw 

- -  dd '  = -  - 
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where 

L = total length of groove 
L' = total length of lands parallel to the axis 

n = number of turns of the helical groove 

w = width of a land. 

Substituting equation (8) into equation (7), one obtains 

A I  %L 
E =  

A'C' nw 
(9) 

The area,  A' , is the projected a rea  of the clearance between 

the rotor and the housing and is given approximately by 

where 

D = diameter of the rotor 

h = radial clearance between rotor and housing. 

Likewise, the perimeter of this axial flow channel is the c i r -  
cumference of the rotor, plus the circumference of the housing and , 
for small clearances, can be simply written a s  

C' = ~ I T D  . (11) 

Substituting expressions (10) and (1  1) into equation (9), the 

factor, E, takes the form of 

h2vD C L 
A22nw 

E =  

The net mass flow, Q, through the pump will be the algebraic 

sum of the flows given in equations (3) ,  ( 5 )  and ( 6 ) ,  giving 

il" - 14 - 
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Id where pressure has been substituted for density, assuming an ideal 

gas.  
It is convenient to group the constants such that equation (13) 

can be written as 

13 

il 

Conservation of mass  requires that Q be independent of J! 
and if the groove is uniform, a and p a r e  constant. 
can be readily integrated, giving 

Thus, equation (14) 

The net mass  flow, Q , becomes 

where 
P = P 1 a t Q  = O  

= P a a t 1  = L .  

When Q = 0 , one obtains the ultimate pressure ratio 

This latter equation provides a simple means of correlating experiment 

with theory without requiring a measurement of the pumping speed, Q. 

- 15 - 
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1 

Substituting for  CY and p from equation (14) and for from 

equation (4), the ultimate pressure ratio can be written a s  

il 
'1 

It is sometimes convenient to write equation (18) in te rms  of a dimen- 

sionless velocity, q , which is the ratio of the peripheral speed, v , 

il 

of the rotor and the mean thermal velocity, vo , of the gas molecules, 

so that 

V V n = -  = 
' v  

0 $2 R T 
J 8 M  

By combining equations (18) and (19), the temperature, T , and 

molecular weight, M , a r e  eliminated from the expression for the 
ultimate pressure ratio. 

B. HIGH SPEED EFFECTS 

d 

Ll 

At very high rotor speeds, there a r e  several effects which may 
limit the validity of the above analysis. 

1. The Rate at Which Gas Can Enter a Pump. 
- 

The product, v A  , in the induced flow equation, equation 

(3) represents the volumetric displacement of a given pump at a given 

speed. 

and the speed of the rotor. 

speed of the rotor, it would seem that the pumping speed of a pump (for 

a given area,  A) is only limited by the rotor speed one can attain. 

Obviously, this cannot be true because it is not too difficult to operate 

It is a characteristic of the size and shape of the pumping groove 

Since ? is proportional to N , the rotational 

- 16 - 
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a pump so that ;A is greater than the rate at which gas molecules can 

diffuse across  thc entrance a rea  of the pump. 

This limitation of the pumping speed by diffusion at  the entrance 

can be readily determined from kinetic theory. 

molecules crossing unit a rea  per  second toward one side due to their 

thermal velocities is 1/4 nvo, where n is the density of the molecules 

and vo is the mean molecular speed. 

The total number of 

F rom kinetic theory 

v 0 = 2 j - r .  

Hence, the pumping speed limit set  by thermal diffusion, Qtd , will be 

where 

A = entrance area of the groove perpendicular to the axis e 
of the rotor. 

The rotor speed, vc , at which the pumping rate is equal to 
the thermal diffusion limit can be determined by equating the right-hand 

sides of equations (2) and (22) and substituting.for 7 

C A 
v C = *DNc = - A e E% s c o s e  

in terms of the dimensionless velocity, q , the limiting speed is 

e C A  - % - 4 S A c o s 8  

d" - 17 - 
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2. Deviation of the Molecular Velocities from a Maxwellian 

Distribution. 

The analysis in Section 11, paragraph A, assumed that the 

velocities of the gas  molecules did not differ appreciably from a 

Maxwellian distribution. 

rotor peripheral velocities much l e s s  than the thermal velocities. 

Generally, molecular pumps a r e  operated at  velocities well above the 

mean thermal velocities of the gas  molecule. 

expect equation (20) to be valid for q '5: 1 . 

However, this assumption is valid only for 

Hence, one should not 

3. 

The cylindrical symmetry of the system will give r i se  to a 

Effect of the Curvature of the Pumping Groove. 

radial variation in the gas  density over the cross-sectional a rea  of the 
groove. 

to increase with the speed. 

This effect is a function of the rotational speed and is expected 

The present work reported herein has not considered the high 

speed effects listed above and, hence, the results should be applied with 

caution. 

pump has been done by Mercier (15). 

q > 1, as well as taking into account the curvature of the path. 
sults for the ultimate compression ratio of a Gaede type molecular pump 

has the form 

The only attempt to make an exact analysis of the molecular 

He has considered the case where 

His re -  

p2 
P1 
- = :  

where 
K1 = 
D =  

- 
ho - 
a =  

r 9 

constant which depends on the dimensions of the pump 

diameter of the- rotor 

clearance between pump and groove bottom 

angular length of the groove. 

Some curves published by Mercier for the Gaede pump a r e  shown 

in Figure 6. 
the uncorrected curve. 

His  exact analysis, equation (25), can be compared with 

The importance of the high speed effects is 

- 18 - 
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quite apparent and it is reasonable to expect these effects to be equally 

important for  the Holweck pump. 

should be made for  the Holweck pump if reliable design is to be expected. 
It appears that a similar analysis 

C. MOLECULAR PUMPING BY A RECTANGULAR GROOVE 

For a rectangular groove with dimensions as shown in Figure 3, 

the following substitutions a r e  required for  equations (18) and (10): 

A = Sd , and 
C = 2 ( S  + d )  , 

where 

S = width of the groove 

d = depth of the groove. 

Hence, we obtain 

nDLh2 (S + d )  
E =  D 

nwSZdZ 

, 

It should be noted that the effective length of the pumping 
groove is not the length of the center line but is less by the distances 

which the bar r ie rs  terminate before the center line at the entrances 

to the end chambers. This correction is illustrated in Figures 3C and 7. 

D. MOLECULAR PUMPING BY A SEMI-CIRCULAR GROOVE 

For a semi-circular groove, the substitutions for equations 

( 2 0 )  and (11) a r e  

A = 1/2 sr2 J 

C = ( r r  t 2 r )  , 
where r equals the radius of the cross-section of the groove. 

- 20 - 
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, and 2( 2 t a ) h 2 D L  
E =  

a n w r 3  

(31) 
r - n a D  

tan8 L =  cos e 
As can be seen from Figure 7, the termination of the semi- 

circular groove is l e s s  well defined than the rectangular groove. 

bar r ie r  for the semi-circular groove terminates more gradually and, 

in effect, has l e s s  end correction. 
of the groove length for the semi-circular case was chosen as half the 

distance from where the wall would terminate in the rectangular case 

and where the center line of the groove stops. 

The 

Somewhat arbitrari ly,  the correction 

It is interesting to  note that in the limit of small values of E the 

theoretical value of In (-) p 2  for a semi-circular groove of radius r 
ult 

is 1.27 times greater than it is for a rectangular groove of d = r, 
s = 2r .  

approaches 0.92. 
length of the grooves in the two cases. 

For  large values of E , the advantage is reversed and the ratio 

These comparisons neglect the differences in effective 

E. VISCOUS REGION 

We shall define the viscous region to include all pressures  where 

the mean free path of the gas  molecules is l e s s  than the shortest rotor- 

to-wall distance. 

correspond to the radial clearance, *h. 
tance from the rot 
f ree  paths and the molecules will undergo many intermolecular collisions 

when passing from the rotor to the stationary walls. 

In the designs to be considered, this will generally 

Under these conditions, the dis -  

to the bottom of the groove will be several mean 

- 22 - 
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The same components of flow occur in  the viscous pump as in 

the molecular pump but the equations of flow a r e  different. 

The induced flow is produced by the gas  being dragged along with 

the rotor by the viscous shearing forces; i t  may be written as 

qI = P Y A .  (32) 

The form for the inducedflowis the same as for the molecular region 
but again to express is not a simple matter. To do this accurately, 
one must obtain the velocity distribution over the cross-sectional a r ea  

at a given point along the groove, while taking into account the ratio of 

specific heats of the gas, the Mach number of the flow, and the boundary 

conditions imposed by the shape of the groove. At high rotor velocities, 
there is another effect to consider which occurs both in the molecular 

and the viscous regions. This is the radial pressure gradient (radial 

with respect to the axis of rotation of the rotor) created by the centrifugal 

field in the spiral groove. At present the correction for this radial pres-  
sure gradient appears to be an unpromising mathematical chore. 

until a more accurate relationship is available, the same expression for  

v as used in the molecular case will be adopted here (which intuitively 

seems not to be too bad an approximation). 

So 

- 

Kennard (11) gives the equation for the viscous flow of a gas through 
a circular capillary, which may be written in te rms  of mass  flow as 

where 
p = the viscosity of the gas  
a = the radius of the capillary. 

(33)  

For  non-circular channels, an approximate correction may be 

supplied to equation (33) by introducing a quantity called the hydraulic 

radius. 

divided by the wetted perimeter of the cross-section , 
The hydraulic radius is defined by Murphy (19) as the area 

- 23  - 



A = -  area 
perimeter C ' H =  

For  a circular cross-section, this becomes 

(35) H = z ,  a 

so that in te rms  of the hydraulic radius, equation (33) may be written as 

(36) - - H Z A P M  dP 
' D -  2 p R T  

Thus the differential equation for net pumping in the viscous region 

becomes 

Q = t ( l  E v )  qD * 
V 

or  more specifically 

(37) 

( 38) 
H z A  P M  d P  Y A P  - (1 t E ~ )  - - 2 p  R T m  Q = -  

v R T  
This may be abbreviated as 

Q V = CYP - (1 t P,Pw # ( 39) 

4 7 - 7  RT 

dP 

where 
- H ~ A  M 

(40) 
M -  
R T  a! =- v A  . 

Upon integrating equation (39) and substituting the boundary 
conditions, P = PI, at .Q = 0, and P = Pz , at Q = L, one obtains 

V 
Q 

Q 

Pa -- 
P I - -  

) a  

a! Q 

V 

a!L - -  I n (  
a! 

P2 - P1 = 
(1 t E v )  Pv 

a! 
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When Qv -+ 0, equation (41) becomes the ultimate pressure 

difference in the viscous region 

(42) 

(43) 

For  a rectangular cross-section, this becomes 

- 2 N a D  C L pcos 0 ( p 2  - Wult - * 
(1 t e ) d 2 S  

V 

(44) 

or  for a semi-circular groove, 

c 16(2 + a) N D L p c o s 0  
c (p2 - Wult 

(1 + e v )  a r  2 

!I1 The symbols N, D, C, L, d, S, and r have the same meaning as 

in the molecular region, and the same corrections to L apply here. 

But e v  is different because of the different form of the diffusion equation-; 
I - J  argument used to arr ive at equation (9) ,  one obtains following the same 

- - 
E v  (45) 

( H ' ) ~ A '  L - - ( A')3 GZ L a 

HZALt ( C t ) 2  A3 L' 

which, for a rectangular groove, becomes 

(46) 
- - sDh3(S t d)'L 

S3 d3 n \. , 

I - J  and for a semi-circular groove 

2 m . 3  (2t I T ) 2 ~  

2 4  IT r n w  

'7 

(47) 
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APPENDIX A 
DIFFUSIVE FLOW IN THE MOLECULAR REGION 

Knudsen (21) gives the equation for molecular flow of a gas  

through a long straight tube of non-circular cross-section as 

Q = 8 3 & AP 6 (grn/sec) , 

where A P  is the pressure difference over the length of tube L, A is 

the cross-sectional area,  and C the circumference of the tube. The 

quantity p1 is the density of gas  at unit pressure,  which, for an ideal 

gas  is given by 

M 
RT P1 = - 

r e  sult n sever Smoluchowski (23) disagrees with thi 1 points, 
and he derives a general expression for molecular flow in the following 

form: 

GT K (gm/sec) , 1 
L Q =  

6-T 
where A P ,  L and p1 have the same meaning as above, but K is a 
double integral that must be evaluated for every different tube shape. 

It is defined by 

where 7 is a chord forming an angle Q! with the normal to the element 

of parameter ds  . 
Smoluchowski gives the form of K for  a tube having a rectangular 

cross-sectionof sides a and b as 

I1 crs - 26 - 
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azbln($ t , , / T - ) + a b 2 1 n { % t  d-) -:(az+bzf'2+$(a3tb3) 1 . 
K was evaluated by Mayo of our laboratory for a semi-circular 

tube of radius R and obtains 

8 2 
3 K = 3 R3 ( T - - } ~  

As Smoluchowski points out, his equation differs from Knudsen' s 

in that he does not obtain an explicit dependence on the tube circumference 

as does Knudsen. 

for the coefficient of the pressure gradient than one obtains using Knudsen' s 

equation. 

The ratio of the flows obtained from Smoluchowski! s equation, Qs , and 

that obtained from Knudsen! s equation, Qk , a r e  tabulated below for 
several forms of tube cross-section. 

Also his integral coefficient K gives different values 

In general, Smoluchowski' s equation gives la rger  values of flow. 

Type of Cross -Section 

Circle 

Square 
Semi -c ircle 

Q S 4  

1 

1.12 

1.29 

Neither of these equations applies strictly to the molecular flow 

in the pumps discussed herein. 

1) 
molecular pumps are helices; 2) these equations assume a constant 

gas density over the cross-sectional area at a given point, but the cylin- 

drical molecular pumps dc not guarantee such a density gradient due to 
the effect of the centrifugal force field around the rotor; 3) finally, these 

There are several reasons for this: 
These equations a r e  for straight tubes, but the flow channels in the 

equations assume a Maxwel!.ian' velocity distribution for the gas molecules 

but there will be many instances where the molecular pumps will be run 

at  such high speeds that a true Maxwellian distribution does not exist. 

J" - 27 - 
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In view of these facts, the theory in this report was developed using the 
simpler of the two foregoing equations; namely, the Knudsen equation. 

An exact treatment of this problem was considered beyond the scope of 

the present work. 
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APPENDIX B 
OPTIMIZATION O F  THE DESIGN OF A EIOLWECK MOLECULAR 

P U M P  WITH RECTANGULAR GROOVES 

The equation for the ultimate pressure ratio for a pump with a 

single rectangular groove is (See Section 11, paragraph C,  equation (25)) 

In Pz/Pl = (bLcos  e) / (  (1 - E )  d)  

where 
b = 3q/4 = ( 3 N a D ) / 8  d 2 R T  / a M  

L = (nad/cos8)  - (5/tan e)  

E = (h3 IT D(S t d )  L )  /(S'd2nw) 

N = speedin rps  

D = diameter of the rotor 

R = gas  constant 

T = temperature 

M = molecular weight 

d = depth of the groove 

S = width of the groove 

h = clearance between rotor and pump 

n = number of turns the groove makes 

w = width of the land as projected on the axis of the pump 

8 = angle between the groove and a plane perpendicular 
to the axis of the pump. 

If, instead of a single groove, the pump has g parallel grooves with land 
Width, w' , then the total number of groove turns, n' , will be 

- '29, - 
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nl = n g ,  
where 

In order to write n in terms of 8 ,  let 

K = nI rDtan8 ,  

where K is the perpendicular length of the pump, 

and hence 

n = K/TOtan8.  

If S is written as 

S = Ad, 

then 

n'w' = K [  1 - (hdg/ . r rDsin e)  ] , 

L = ( l / s i n 0 ) ( K - X d c o s 0 )  , 

sin 0 

The parameter g appears in the denominator of E because the 

denominator is a measure of the leakage back down the channel a d  that 

leakage is directly proportional to the number of channels. 
Making these substitutions and simplifying 

= b/X. 

To minimize X with respect to d, A, g, and 9 , four equations 
must be solved simultaneously. 

optimum value of A was determined by numerical substitution. 

This proved rather difficult so the 
The other 

- 30 - 



tan B(K-Xd cos e) - d tan e( - A  cos e) ( k t  1) nDh2 - 
(K-kd cos e)2 g K c o e  8' 

6X/Sd= 
3d2 k 

= 0 .  2d- nD si:@ 

s D  sin d*( 1 - +) 

i 
1 

variables were handled in the usual manner. 

respect to g; 

Fi r s t  minimizing with 

I d  2Xdg 
sD sin 8 1 -  

= 0 ,  (B3) 
h +  1) sDh2  

h2Kd2 cos 8 
SX/Sg = - ( 

n D  h d g  s in8  l2 
whence 

nD s in8  
= 2 d h  

respect to d Likewise, minimizing with 

The part  of the second te rm which is in brackets reduces to 2/d3 when 

the value of g from equation (B3) is substituted. Hence, D 
= 0 .  K tan 8 - 2 n D h 2 ( h t  1) 

A' g d3 K cos 8 (K - Adcos8)2 D 
Eliminating g from this equation and solving for d gives 

il 2hK d =  

il Finally, minimizing with respect to 0 ; 

- s ine -% cSc2e 6X - d secZ 0(K- hdcos e) -d tan e( Ad sin e) 
T -  

(ht 1)nDh2 - 
(K - A ~ c o s ~ ) ~  

LI 
il 
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6X 6-8 reduces to Using equations (B3) and (B4), 

Xdcos 8 f l d c o s  8 sin' 8 - 2 K  sin' 8 = 0 .  

Eliminating d and solving for 0 gives 

tan3 8 = dl(X + 1)  (h/K) . (B6) 

The positive sign in equation (B5) is used when the substitution for  
d is made for equation (B6). 
for 0 .  

The negative sign gives a negative value 

Once D, K, and h have been specified, the optimum value of 
can be determined by using the values of g, d, and 8 from equations 

(B3), (B5), and (B6) in equation (B2) and substituting several values of h . 
This procedure has been applied to four different pumps, one 1.5" dia., 
two of them 3" dia., and one 6" dia. These results a r e  given in Tables 
IV and V.  When these pumps a r e  constructed, the values of g must be 

whole numbers and may vary slightly from the optimum values. 

these pumps is not expected to yield values of In Pz/P1 greater than 60 
per  cent of the theoretical values. 

The theoretical pumping speed has been calculated for the 6" 
diameter pump by the equation (See Section 11, paragraph A, equation(l.6)). 

On the basis of previous experimental data, the performance of 

Q (mass flow) = ult 

(3) - 1 
ult 

where g = number of grooves, 

and 

The pumping speed in l i ters  per second is 

- 32 - 



TABLE B1 
OPTIMIZATION OF PUMP PARAMETERS 

p2 In- 
P1 K in. D in. h in. A d in. S in. e g X 

3.00 3.00 5.0 x . 5  

3.00 3.00 5.0 x low2 1 

3.00 3.00 5.0 x lom2 2 

3.00 3.00 5.0 x 3 
3.00 3.00 5.0 x 4 

3.00 3.00 5.0 x lo-' 5 

3.00 3.00 5.0 x 6 

3.00 3.00 5.3 x 7 
W 3.00 3.00 5.0 x 10 
I 

W 

v=375 m/sec 

.697 .348 13'40' 3.19 . 1249 4.75 

.440 ,440 16'0' 3.00 .lo51 5.65 

,306 .612 18'50' 2.41 .0973 6.08 
.247 ,741 21' 0' 2.28 .0948 6.25 
.213 .892 22'50' 2.14 .0946 6.25 

. 190 .950 24'15' 2.03 .0963 6. 15 

.173 1.04 25' 27' 1.95 .0975 6.08 

1.07 26'35' 1.97 .0997 5.95 ,153 
. 132 1. 32 29'15' 1.75 ,1047 5;67 

I 

3.00 3.00 2.5 x lo-' .5 .426 ,213 10°551 4.18 ,0611 9.68 
3.00 3.00 2.5 x 1 .290 ,290 12'48' 3.59 .OS09 11,6: 
3.00 3 . 0 0  2.5 x 2 .203 .406 15'27' 3.05 ,0455 1 3 . 0  

3.00 3.00 2.5 x 3 .166 .498 17'1' 2.76 .0441 13.4 

3.00 3.00 2.5 x lo-' 4 .145 .580 18'28' 2.57 .0437 13.6 

3.00 3.00 2 . 5 ~  5 ,130 .650 19' 39' 2.44 .0438 13.5 

3.00 3.00 2 . 5 ~  lo-' 6 . 119 .714 20'40' 2.32 .0441 13.4 

3.00 3.00 2 . 5 ~  7 .llO .770 21'36' 2.25 .0444 13.3 

3.00 3.00 2 . 5 ~  lo-' 10 .0931 .931 23'51' 2.05 .0458 12.9 



TABLE B2 
OPTIMIZATION OF PUMP PARAMETERS 

p2 
d in. S in. 6 g X 1 n K  K in. D in. h in. h 

1.00 
1.00 
1.00 

1.00 

1.00 

1 ..oo 
i. 00 

1.00 

1.00 

w 1.00 
I 1.00 

I 

rp 

1.50 
1.50 

1.50 
1.50 

1.50 
1.50 

1.50 
1.50 

5. o 10-3 
5. o x 10-3 
5. o 10-3 

5. o 10-3 

5. o 10-3 

5.0 10-3. 

5.0 10-3 

5 .  o 10-3 

. 5  
1 

2 

3 

4 
5 

6 

7 
1.50 5.0 10-3 i o  

1.50 5.0 10-3 20 

1.50 5.0 x lom3 15 

. lo30 

., 0704 

.0494 

.0409 

,0357 
.0322 

.0297 

.0276 

.0235 

0193 

.0168 

.0515 

0704 

,0988 

.f22 

. 143 

.161 

. 178 

,193 

,235 

.290 

.336 

9' 15' 7. 32 

10'49' 6.26 

12'58l 5.34 

14'28' 4.78 
15'42' 4.46 
16'45' 4.21 

17'38' 3.99 

18'28' 3.85 
20'27' 3. 50 

23"' 3.19 

25' 2 '  2.97 

v=375 m/sec 

.030 19.7 

.0247 23.9 

.0218 27 .2  

,0210 28.2 

.0206 23.7 
,0205 29.0 

.0205 29.0 

.0205 29.0 

.0208 28.4 

.OE14 27.7 

.0222 26 .7  

4.00 6.00 1.0 x 10-2 

4.00 6.00 1.0 x 10-2 

4.00 6.00 1.0 x 10-2 

4.00 6.00 1.0 x 10-2 

4.00 6.00 1.0 x 10-2 

4.00 6.00 1.0 x 
4.00 6.00 1 . 0  x 10-2 

4.00 6.00 1.0 x 10-2 

4.00 6.00 1.0 x 10- 

.5 
1 

2 

3 

4 

5 

6 
7 

10 

.262 

. 180 

. 128 

. 106 

,0933 

.0845 

,0781 

.0731 

.0628 

. 131 

. 180 

.256 

.318 

.373 

.422 

.469 

.512 

.. 6 28 

7' 22' 

8' 39' 

10' 19' 

11' 36' 

12' 35' 

13' 27' 

14' 12' 

14'51' 

16' 30' 

9.24 .0177 31.0 

7.89 .0146 37.6 

6.58 .0129 42.5 

5.97 .0123 44.7 

5.50 .0120 45.7 

5.19 ,0119 46.2 

4.93 .Oil9 46.2 

4.72 .0118 46.5 

4.26 ,0119 46.2 
4..00 6.00 1.0 x 10-2 15 . w a  .783 18'41' 3.83 .0121 45.5 
4.00 6.00 1 .ox  10-2 20 ,0461 .922 20'22' 3.56 .0124 44.2 
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where p1 is the density of the gas  a t  pressure PI. 
pump with 

For  the 6 inch 

TNE = v = 3.75 x io4  cm/sec 

S = .512 inches 

d = .0731 inches 
and g = 5 .  

For  the above parametric values, the maximum value of In - 
Table V is 46.5, hence 

from 
P1 

- Q = 1 1 . 3 ~  [ 1.57 x 10'' - - ~2 ] liters/sec. 
P1 P1 

If In ( g)ult is reduced to 60 per cent of the maximum theoretical 

value, i . e . ,  2 7 . 9 ,  then 

il 

'1 

Ll 

il 

The equations (B10) and (B11) a r e  plotted in Figures B1 and B2, 

respectively. 

In Figure B3, the values of 9, d, X, a', and g for the 6 inch 

pump have been plotted as a function of h ,  where 

a !RT h2d2 cos 8 
a' z N n D M  =-e ' 

il" " 35 - 
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FIGURE BI. Pumping Speed Performance of o 6 
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FIGURE 83. Optimization of Holweck Type Molecular Pump \ r .  



The pumping speed is a maximum when Cy’ is a maximum, and the 

pressure ratio is a maximum when X is a minimum. 

illustrates, the maximum pumping speed and maximum pressure ratio 

occur at about the same value of h , in a region where both a r e  rela- 

tively insensitive to x .  
a specified clearance h ,  diameter D , and axial length K , it is not 

necessary to sacrifice pumping speed for  ultimate pressure ratio or  

vice versa.  

As Figure B3 

Therefore, in designing a molecular pump with 
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