GENETICS AND BIOGENESIS OF CHLOROPLASTS AND MITOCHONDRIA

Interdisciplinary Conference on The Genetics and Biogenesis of Chloroplasts and Mitochondria, Munich, Germany, August 2–7, 1976, held under the auspices of the Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse.

Editors Th. Bücher W. Neupert W. Sebald S. Werner

NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM • NEW YORK • OXFORD

Contents

Preface	v
ROLE OF CHLOROPLAST AND NUCLEAR GENES IN PRODUCTION OF CHLOROPLAST PROTEINS	
Role of chloroplast and nuclear DNA genes during evolution of fraction I protein K. Chen. S. Johal and S.G. Wildman	3
Polypeptide chains of the large and small subunits of fraction 1 protein J.C. Gray, S.D. Kung and S.G. Wildman	13
Studies on the primary structure of the small subunit of ribulose-1,5- diphosphate carboxylase C. Poulsen, S. Strøbaek and B.G. Haslett	17
Ontogeny, insertion, and activation of two thylakoid peptides required for photosystem II activity in the nuclear temperature sensitive T4 mutant of <i>Chlamydomonas reinhardi</i> F. Kretzer, I. Ohad and P. Bennoun	25
Methods for the detection and characterization of photosynthetic mutants in <i>Chlamydomonas reinhardi</i> P. Bennoun and N.H. Chua	33
Biochemical studies on a plastid ribosome-deficient mutant of <i>Hordeum vulgare</i> T. Börner, B. Schumann and R. Hagemann	41
Sites of synthesis of chloroplast membrane proteins in <i>Vicia faba</i> W. Hachtel	49
Synthesis of chlorophyll-free thylakoids in <i>Chlorella</i> after clindamycin- treatment and in a temperature sensitive mutant of <i>Chlorella</i> G. Galling	53
Genes affecting erythromycin resistance and sensitivity of <i>Chlamydomonas</i> <i>reinhardi</i> chloroplast ribosomes L. Bogorad, J.N. Davidson and M.R. Hanson	61
Genetic control of chloroplast ribosome biogenesis in <i>Chlamydomonas</i> N.W. Gillham, J.E. Boynton, E.H. Harris, S.B. Fox and P.L. Bolen	69
CONTROL OF FORMATION AND ASSEMBLY OF CHLOROPLAST CONSTITUENTS	
Cellular origins of plastid membrane polypeptides in <i>Euglena</i> S. Bingham and J.A. Schiff	79
Synthesis of the major thylakoid polypeptides during greening of <i>Chlamydomonas reinhardtii</i> Y-1 J.K. Hoober	87
Relationship bètween chloroplastic metabolism and cytoplasmic translation G. Ledoigt and M. Lefort-Tran	95
Temperature-sensitivity of chloroplast ribosome formation in higher plants J. Feierabend	99
Temperature control of chloroplast development R.M. Smillie	103
Chlorophyll synthesis and the development of photosynthetic activity W.T. Griffiths, N.L. Morgan and R.E. Mapleston	111

5.

viii

Genetic regulation of chlorophyll synthesis analyzed with double mutants in barley A. Kahn, N. Avivi-Bleiser and D. von Wettstein	119
MITOCHONDRIAL ATPase COMPLEX	
Mutation in <i>Saccharomyces cerevisiae</i> mitochondrial F ₁ leading to aurovertin resistance E. Agsteribbe, M. Douglas, E. Ebner, T.Y. Koh and G. Schatz	135
Mitochondrially encoded oligomycin-resistant mutants of <i>S. cerevisiae</i> : Structural integration of ATPase and phenotype M. Somlo and J. Cosson	143
Investigation of the oligomycin binding protein in yeast mitochondrial ATPase R.S. Criddle, C. Arulanandan, T. Edwards, R. Johnston, S. Scharf and R. Enns	151
Polypeptides encoded by mitochondrial genes in ascomycetes H. Küntzel, M.A. Marahiel, D.E. Leister and P. Nelson	159
Cytoplasmic synthesis of the dicyclohexylcarbodiimide-binding protein in <i>Neurospora crassa</i> W. Sebald, Th. Graf and G. Wild	167
Biochemical genetics of oxidative phosphorylation an approach to the reaction mechanism D.E. Griffiths	175
MITOCHONDRIAL RESPIRATORY COMPLEXES	
Analysis of the polypeptide chains of cytochrome oxidase from beef heart mitochondria C. Buse and G. Steffens	189
Partial sequence of a chloroform-methanol soluble polypeptide from <i>Neurospora</i> mitochondrial membranes W. Machleidt, R. Michel, W. Neupert and E. Wachter	195
ldentification of an assembly intermediate of cytochrome oxidase in <i>Neurospora crassa</i> S. Werner and M. Neuner-Wild	199
The assembly of cytochrome <i>c</i> oxidase from <i>Saccharomyces cerevisiae</i> R.O. Poyton and E. McKemmie	207
Structure and biosynthesis of cytochrome <i>c</i> oxidase F. Cabral, J. Saltzgaber, W. Birchmeier, D. Deters, T. Frey, C. Kohler and G. Schatz	215
Coordination of mitochondrial and cytoplasmic protein synthesis in <i>Neurospora crassa</i> W. Neupert and A. v. Rücker	231
The use of double mutant strains containing both heat- and cold-sensitive mutations in studies of mitochondrial biogenesis T. Mason, P. Boerner and C. Biron	239
Cold sensitivity of mitochondrial biogenesis in a nuclear mutant of <i>Neurospora crassa</i> R. Kientsch and S. Werner	247
Isolation and characterization of a cytochrome oxidase deficient mutant of <i>Neurospora crassa</i> K. Bruckmooser and S. Werner	253

Subunit structure and arrangement of mitochondrial cytochrome ${\it b}$ H. Weiss and B. Ziganke	259
The <i>bc</i> ₁ -complex from beef heart prepared by adsorption chromatography in Triton X-100 G. von Jagow, W.D. Engel, P. Biccio and H. Schägger	267
Complex III of yeast: Subunit composition and biosynthesis M.B. Katan and G.S.P. Groot	273
Purification and biogenesis of cytochrome b in bakers' yeast LF. Lin and D.S. Beattie	281
Biosynthesis of cytochrome c in the honey bee, Apis mellifera M. Osanai and H. Rembold	289
CHLOROPLAST DNA: GENES AND MOLECULES	
The circular diploid model of chloroplast DNA in <i>Chlamydomonas</i> R. Sager	295
On the search for a molecular mechanism of cytoplasmic inheritance: Past controversy, present progress and future outlook K.S. Chiang	305
Transmission, segregation and recombination of chloroplast genes in <i>Chlamydomonas</i> J.E. Boynton, N.W. Gillham, E.H. Harris, C.L. Tingle, K. Van Winkle- Swift and G.M.W. Adams	212
A uniparental mutant of <i>Chlamydomonas reinhardtii</i> with a variant thylakoid membrane polypeptide NH. Chua	323
Plastid distribution and plastid competition in higher plants and the induction of plastom mutations by nitroso-urea-compounds R. Hagemann	331
Structural and functional analysis of <i>Euglena gracilis</i> chloroplast DNA E. Stutz, E.J. Crouse, L. Graf, B. Jenni and H. Kopecka	339
Restriction endonuclease map of chloroplast DNA from <i>Euglena gracilis</i> P.W. Gray and R.B. Hallick	347
The location of rRNA genes on the restriction endonuclease map of the Spinacia oleracea chloroplast DNA R.G. Herrmann, HJ. Bohnert, A. Driesel and G. Hobom	351
Analysis of the coding capacity of EcoRI restriction fragments of spinach chloroplast DNA	2(1
Physical and transcriptional mapping of <i>Zea mays</i> chloroplast DNA J.R. Bedbrook and L. Bogorad	369
Studies with chloroplast DNA-plasmid hybrids from <i>Chlamydomonas reinhardi</i> JD. Rochaix	375
Replication of circular chloroplast DNA K.K. Tewari, R.D. Kolodner and W. Dobkin	379
Studies of the growth and replication of spinach chloroplasts and of the location and segregation of their DNA J.V. Possingham and R.J. Rose	387

x

MITOCHONDRIAL DNA: GENES AND MOLECULES

Mechanisms and rules for transmission, recombination and segregation of mitochondrial genes in <i>Saccharomyces cerevisiae</i> B. Dujon and P.P. Slonimski	393
Confirmations and exceptions to the phage analogy model: Input bias, bud position effects, zygote heterogeneity, and uniparental inheritance P.S. Perlman, C.W. Birky, Jr., C.A. Demko and R.L. Strausberg	405
On homozygotization of mitochondrial mutations in <i>Saccharomyces cerevisiae</i> A. Putrament, R. Polakowska, H. Baranowska and A. Ejchart	415
Genetic determination of mitochondrial cytochrome b A. Tzagoloff, F. Foury and A. Akai	419
The isolation and simultaneous physical mapping of mitochondrial mutations affecting respiratory complexes J. Rytka, K.J. English, R.M. Hall, A.W. Linnane and H.B. Lukins	427
Genetic analysis of mitochondrial polymorphic proteins in yeast M.G. Douglas, R.L. Strausberg, P.S. Perlman and R.A. Butow	435
Regulation of cytochrome oxidase formation by mutations in a mitochondrial gene for cytochrome b	
P. Pajot, M.L. Wambier-Kluppel, Z. Kotylak and P.P. Slonimski	443
Mitochondrial genes determining cytochrome b (complex III) and cytochrome oxidase function G.S. Cobon, D.J. Groot Obbink, R.M. Hall, R. Maxwell, M. Murphy,	
J. Rytka and A.W. Linnane	453
Antimycin- and funiculosin-resistant mutants in <i>Saccharomyces cerevisiae</i> : New markers on the mitochondrial DNA B. Lang, G. Burger, W. Bandlow, F. Kaudewitz and R.J. Schweyen	461
Two mitochondrial antimycin A resistance loci in <i>Saccharomyces cerevisiae</i> E. Pratje and G. Michaelis	467
Mitochondrial inheritance of mucidin resistance in yeast J. Šubík	473
Behaviour of <i>Saccharomyces cerevisiae</i> mutant resistant to Janus Green A. Kruszewska and B. Szczesniak	479
Mitochondrial mutations conferring heat or cold sensitivity in <i>Saecharomyces</i> cerevisiae	481
High spontaneous petite frequency strains of Sacabaromyaes corevisiae	101
generated in complementation tests G.D. Clark-Walker, K.M. Oakley, C.R. McArthur and G.L.G. Miklos	491
Extrachromosomal inheritance in a petite - negative yeast - Schizosaccharomyces pombe	
K. Wolf, G. Seitz, G. Luckemann, B. Lang, G. Burger, W. Bandlow and F. Kaudewitz	497
The mitochondrial genome of yeast: Organization and recombination G. Bernardi	503
The variability of the mitochondrial genome of <i>Saccharomyces</i> strains J.P.M. Sanders, C. Heyting and P. Borst	511
Restriction endonuclease mapping and analysis of grande and mutant yeast mitochondrial DNA R. Morimoto, A. Lewin, S. Merten and M. Rabinowitz	519
The control of mitochondrial DNA synthesis in yeast petite mutants P. Borst, C. Heyting and J.P.M. Sanders	525

A segment of mitochondrial DNA carrying oligomycin resistance K. Wakabayashi	535
Gene identification by coupled transcription-translation of yeast mitochondrial DNA A.F.M. Moorman and L.A. Grivell	539
Mitochondrial mutations that affect mitochondrial transfer ribonucleic acid in <i>Saccharomyces cerevisiae</i> G. Faye, M. Bolotin-Fukuhara and H. Fukuhara	547
Structure and genetics of the 2µm circular DNA in yeast M. Guerineau, C. Grandchamp and P.P. Slonimski	557
Electron microscopical analysis of native and cloned 2-µm DNA from Saccharomyces cerevisiae C.P. Hollenberg and HD. Royer	565
The study of the genetic function of <i>Paramecium</i> mitochondrial DNA using species hybrids A. Tait, J.K.C. Knowles, J.C. Hardy and H. Lipps	569
Organization and expression of the mitochondrial genome in HeLa cells G. Attardi, M. Albring, F. Amalric, R. Gelfand, J. Griffith, D. Lynch C. Merkel, W. Murphy and D. Ojala	573
Functional organization and evolution of animal mitochondrial DNA W.B. Upholt and I.B. Dawid	587
Physical map and replication of rat mitochondrial DNA K. Koike, M. Kobayashi, S. Tanaka and H. Mizusawa	593
Measurement of the relative rate of mitochondrial DNA synthesis under experimentally varied conditions D. Bogenhagen and D.A. Clayton	597
Use of antibiotic inhibitors in studies of replication and repair of animal mitochondrial deoxyribonucleic acid G.G. Gause, Jr., V.S. Mikhailov, S.I. Tomarev and R.D. Zinovieva	605
Hormonal control of mitochondrial DNA replication in maturing oocytes M. Barat, C. Dufresne, H. Pinon, M. Tourte and JC. Mounolou	613
TRANSCRIPTION AND TRANSLATION APPARATUS OF CHLOROPLASTS	
<i>In vitro</i> transcription and translation of chloroplast DNA of <i>C. reinhardi</i> S.J. Surzycki, J.A. Surzycki and R. Lutz	621
Localization of the gene coding for the large subunit of ribulose bisphosphate carboxylase on the chloroplast genome of <i>Chlamydomonas</i> reinhardi	
S. Howell, P. Heizmann and S. Gelvin	625
Characterization of the RNA compounds synthesized by isolated chloroplasts H.J. Bohnert, A.J. Driesel and R.G. Herrmann 32	629
Incorporation of ^{J2} P-orthophosphate into nucleoside 5'-triphosphates and RNA by isolated pea chloroplasts J. Bennett and Y. Milewska	637
Phylogenetic origin of chloroplast 16S ribosomal RNA D.E. Buetow, M.S. Kissil and L. Zablen	641
A sequence analysis of low-molecular-weight rRNA from chloroplasts of flowering plants T.A. Dyer and C.M. Bowman	645
Chloroplast ribosomal proteins of <i>Euglena gracilis</i> .Immunological studies G. Freyssinet, F. Morlé and V. Nigon	653

,

A chloroplast membrane fraction enriched in chloroplast ribosomes M.M. Margulies and J. Weistrop	657
The tRNAs and aminoacyl-tRNA synthetases of <i>Euglena</i> chloroplasts W.E. Barnett, S.D. Schwartzbach and L.I. Hecker	661
tRNAs and aminoacyl-tRNA synthetases in plant organelles J.H. Weil, G. Burkard, P. Guillemaut, G. Jeannin, R. Martin and A. Steinmetz	667
TRANSCRIPTION AND TRANSLATION APPARATUS OF MITOCHONDRIA	
Characterization and translation of yeast mitochondrial RNA F. Hendler, A. Halbreich, S. Jakovcic, J. Patzer, S. Merten and M. Rabinowitz	679
The mitochondrial RNAs of <i>Neurospora crassa</i> : Their function in translation and their relation to the mitochondrial genome A.M. Kroon, P. Terpstra, M. Holtrop, H. de Vries, C. van den Bogert, J. de Jonge and E. Agsteribbe	685
Dual origin of mRNA associated proteins in Ehrlich ascites mitochondria N.G. Avadhani, V.A. Aroskar, F.S. Lewis, G.J. Hansel and M.P. Wolf	697
Mitochondrial transcription in rat liver. Studies on the synthesis of	
C. Saccone, P. Cantatore, G. Pepe, R. Gallerani, C. De Giorgi and C. De Benedetto	701
Properties and purification of poly(A) polymerase from rat liver mitochondria R. Gallerani, C. De Benedetto, C. De Giorgi and C. Saccone	709
The <i>poky</i> mutant of <i>Neurospora crassa</i> A.M. Lambowitz	713
The proteins of <i>Neurospora crassa</i> mitochondrial and cytoplasmic ribosomes H. de Vries and C. van den Bogert	721
Significance of 80-S ribosomes associated with <i>Neurospora crassa</i> mitochondria R. Michel, G. Hallermayer, M.A. Harmey, F. Miller and W. Neupert	725
Comparative studies of ribosomes from mitochondria, chloroplasts and cytoplasm. Morphology and electrophoretic behavior 8.J. Stevens, JJ. Curgy, G. Ledoigt and J. André	731
Protein composition of the bovine mitochondrial ribosome T.W. O'Brien, D.E. Matthews and N.D. Denslow	741
Transfer RNAs of yeast mitochondria N.C. Martin and M. Rabinowitz	749
Isoacceptor tRNA species in yeast mitochondria. Methionine and formyl- methionine specific tRNAs coded by mitochondrial DNA R. Martin, J.M. Schneller, A.J.C. Stahl and G. Dirheimer	755
lsoaccepting tRNA _{Ser} in mitochondria from <i>Saccharomyces cerevisiae</i> : Mitochondrially coded and cytoplasmic species G. Baldacci, C. Falcone, L. Frontali, G. Macino and C. Palleschi	759
Imported tRNA: Its synthetase as a probably transport protein Y. Suyama and J. Hamada	763
Characterization of rRNA and tRNA from mitochondria of <i>Locusta migratoria</i> H. Feldmann and W. Kleinow	771
Immunological study of yeast mitochondrial phenylalanyl-tRNA synthetase J.M. Schneller, C. Schneller and A.J.C. Stahl	775
Mitochondrial protein synthesis in higher plants C.J. Leaver	779

GENERAL ASPECTS OF MITOCHONDRIAL BIOGENESIS

Mitochondriał phospholipid synthesis and the phospholipid exchange proteins K.W.A. Wirtz, R.H. Lumb, H.H. Kamp, G.M. Helmkamp, H. van den Bosch and L.L.M. van Deenen	785
Incorporation of mitochondrial membrane proteins into liposomes G.D. Eytan	793
The role of mitochondria-bound 80S ribosomes in mitochondrial biogenesis W.F. Bennett, A. Gutierrez-Hartmann and R.A. Butow	801
Studies on the synthesis of mitochondrial proteins in the cytoplasm and on their transport into the mitochondrion G. Hallermayer and W. Neupert	807
<i>In vitro</i> synthesis and transport into mitochondria of cytoplasmically translated proteins M.A. Harmey, G. Hallermayer and W. Neupert	813
Specific labelling of mitochondrially synthesized proteins in yeast cells in the absence of antibiotics W. Bandlow	819
Integration and disintegration of proteins synthesized in mitochondria HD. Hofmann, E. Hundt and B. Kadenbach	827
Synthesis of mitochondrial DNA, -proteins and -phospholipids in the young sea urchin embryo <i>Sphaerechinus granularis</i> H. Bresch	831
Inhibition of cytoplasmic protein synthesis by mitochondrial soluble factors in rat liver and Walker carcinosarcoma N. González-Cadavid, B. Dorta and A. Carmona	835
Mammalian embryos: A model for studying the dependence of growth and differentiation processes on mitochondrial biogenesis and function R. Bass	843
Unmasking of mitochondrial precursors stored in the yolk platelets of <i>Artemia salina</i> dormant gastrulae C.G. Vallejo and R. Marco	847
Screening tests for suppressors of respiratory deficient mutants in Schizosaccharomyces pombe and model for a mitochondrial partial suppression of nuclear pleiotropic strain A. Goffeau, F. Labaille, O. Mohar and AM. Colson	851
Respiration deficient mutants with intact mitochondrial genomes: Casting a wider net H.R. Mahler, T. Bilinski, D. Miller, D. Hanson, P.S. Perlman	
and C.A. Demko Assembly of the cvanide-insensitive respiratory pathway in <i>Neurosporg crassa</i>	857
D.L. Edwards, J.H. Chalmers, Jr., H.J. Guzik and J.T. Warden	865
J. Doussière, A. Adoutte, A. Sainsard, F. Ruiz, J. Beisson and P. Vignais	873
Genetic control of glycerol-3-phosphate dehydrogenase synthesis in <i>Neurospora</i> J.B. Courtright	881
Primary antimitochondrial activity of carcinogens in <i>Saccharomyces cerevisiae</i> V. Egilsson, I.H. Evans and D. Wilkie	885
Author index	893

PARTIAL SEQUENCE OF A CHLOROFORM-METHANOL SOLUBLE POLYPEPTIDE FROM NEUROSPORA MITOCHONDRIAL MEMBRANES

Werner MACHLEIDT, Rainer MICHEL, Walter NEUPERT and Elmar WACHTER Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München Goethestrasse 33, D 8000 München 2, Germany.

INTRODUCTION

A chloroform-methanol soluble polypeptide with a molecular weight of 8 500 (HP 8 500) has been isolated from the mitochondrial membrane of the nuclear mutant cni-1 of Neurospora crassa¹. Labeling studies in the presence of cycloheximide resp. chloramphenicol have shown that this polypeptide is translated on mitochondrial ribosomes. It has an unusual amino acid composition with a very high proportion of nonpolar residues (Table 1). The polarity calculated according to the definition of Capaldi and Vanderkooi² is 0.25.

Although the functional role of the polypeptide remains to be solved, studies on its primary structure have been undertaken for the following reasons:

1) The extremely hydrophobic character of the HP is suggestive of a close connection with the lipid bilayer of mitochondrial membranes. Amino acid sequence will provide information on the structural basis of this interaction.

2) The HP is used as a model for the application of solid-phase methods $^{3-5}$ to amino acid sequence analysis of hydrophobic proteins. RESULTS

1. Cyanogen bromide fragments

HP 8 500 dissolved in 80% formic acid was cleaved with cyanogen bromide (500-fold molar excess over methionine). The resulting fragments were separated by gel chromatography on Bio-Gel P-30 in 80% formic acid (Fig. 1). Incomplete cleavage of at least two of the three methionyl bonds leads to overlapping fragments in addition to the theoretically expected peptides (Table 1, Fig. 2). Peptides C (18 residues) and D (9 residues) were obtained in pure form; E_1 (4 residues) and E_2 (9 residues) were resolved by rechromatography on Bio-Gel P-2.

Peptides C, D, and E₂ were sequenced by automated solid-phase Edman degradation on aminopropyl glass after attachment via their

Fig. 1. Chromatography of the cyanogen bromide fragments on 0.8 x 150 cm Bio-Gel P-30 in 80% formic acid (1.0 ml/hr). For the detection of peptides without 280 nm absorption a differential refractometer was used (Δ RI).

TABLE 1

AMINO ACID COMPOSITION OF HP 8 500 AND ITS

CYANOGEN BROMIDE FRAGMENTS

The composition of HP 8 500 (from ref. 1) is corrected for destruction and incomplete hydrolysis. Compositions of peptides are from 24 hrs hydrolysis without any correction. Amino acids signed (+) were identified but not quantitated. N-terminal amino acids were determined by dansylation.

Amino acid	HP 8 500	В	D	E ₁	E2
Lys	2 (2.07)		1 (1.11)	1 (1.14)	
Arg	2 (1.93)	2 (2.26)			
Asp	4 (4.13)	3 (3.34)	1 (0.97)		
Thr	3 (2.53)	1 (1.26)		1 (0.90)	
Ser	5 (5.00)	2 (2.34)	1 (0.94)		2 (2.09)
Homoserine		1 (+)	1 (+)		1 (+)
Glu	5 (5.44)	2 (2.46)	1 (0.89)		2 (1.96)
Pro	2 (1.63)	1 (1.26)			
Gly	11 (11.05)	10 (10.23)	1 (1.08)		
Ala	14 (14.23)	11 (10.58)		1 (1.33)	2 (1.96)
Val	6 (6.10)	3 (2.95)	2 (1.76)		
Met	3 (3.21)				
Ile	6 (6.09)	5 (4.53)			1 (1.08)
Leu	11 (11.06)	9 (8.90)	1 (1.25)		
Tyr	2 (2.05)	1 (1.24)			1 (+)
Phe	6 (5.86)	5 (5.23)		1 (0.96)	
Total	82	56	9	4	9
N-terminal amino acid	Tyr	Gly	Val	Ala	Tyr

C-terminal homoserine lactone residues^{4,5}. The amino acid phenylthiohydantoins from the degradations were identified by GLC and chemical ionization mass spectrometry (for details see ref. 6). 35 nmoles of peptide C resp. 45 nmoles of peptide D were sufficient for sequence determination. The C-terminal tetrapeptide E_1 was sequenced both by solid-phase degradation (after C-terminal coupling with a carbodiimide⁵) and manually by the dansyl-Edman procedure. From the cyanogen bromide fragments a partial sequence for HP was deduced (Fig. 2) which was confirmed and extended by solid-phase degradation of the intact polypeptide.

Fig. 2. Partial sequence of HP 8 500. Xxx = polar residues without charge; Xxx = charged residues.

2. Automated solid-phase degradation of the intact polypeptide

Intact HP 8 500 was coupled to p-phenylene diisothiocyanate activated aminopropyl glass (DITC-glass⁵) via its two lysine residues (positions 14 and "79") in more than 90% yield. The covalently bound HP (200 nmoles) was degraded over 80 steps. The amino acid phenylthiohydantoins were determined by GLC and by computerized mass spectrometry (A. Schwab et al., unpublished) in electron impact mode. The second tyrosine was found in step 66. Residues 1 - 40 and several of the later ones were unequivocally identified (Fig. 2).

DISCUSSION

In the partial sequence so far obtained (Fig. 2), polar residues seem to occur preferentially in the N-terminal and C-terminal regions, whereas the midpart contains a long series of nonpolar residues. At least this hydrophobic segment might be located within the lipid bilayer of the membrane.

We hope to complete the amino acid sequence of HP by quantitated solid-phase degradations of the intact polypeptide as well as of the large cyanogen bromide fragment B. In the case that these degradations should leave gaps, appropriate means for a further fragmentation of the polypeptide will have to be found.

REFERENCES

- Michel, R., Liebl, A., Machleidt, W., Otto, J. and Neupert, W. (1975) Hoppe-Seyler's Z. Physiol. Chem. 356, 1595-1604.
- Capaldi, R.A. and Vanderkooi, G. (1972) Proc. Nat. Acad. Sci. U.S.A. 69, 930-932.
- 3. Laursen, R.A. (1971) Eur. J. Biochem. 20, 89-102.
- Machleidt, W., Hofner, H. and Wachter, E. (1975) in Solid-Phase Methods in Protein Sequence Analysis (Laursen, R.A., ed.), pp. 17-30, Pierce Chem. Co., Rockford, Ill.
- Wachter, E., Hofner, H. and Machleidt, W. (1975) in ref. 4, pp. 31-46.
- Wunderer, G., Fritz, H., Wachter, E. and Machleidt, W. (1976) Eur. J. Biochem., in press.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. Th. Bücher for generous support and wish to thank Miss K. Deppner, Miss H. Kummer, Mrs. G. Behrens and Mr. A. Liebl for their excellent technical assistance.

This investigation was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 51, "Medizinische Molekularbiologie und Biochemie", München.