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NASCENT POLYPEPTIDE CHAINS ON MITOCHONDRIAL RIBOSOMES 
AND THEIR INTEGRATION INTO THE INNER MITOCHONDRIAL 
MEMBRANE 

R. Michel and W. Neupert 

I n s t i t u t für P h y s i o l o g i s c h e C h e m i e u n d P h y s i k a l i s c h e 

B i o c h e m i e d e r Universität, 8 0 0 0 München 23 G o e t h e ­

s t r a s s e 3 3 , F e d e r a l Repüblic o f Germany. 

L i t t l e i s known about the mechanism how mitochon­

d r i a l t r a n s l a t i o n products are transferred from t h e i r 

s i t e of synthesis to t h e i r s i t e of function, i . e . from 

the mitochondrial ribosomes into enzyme complexes of 

the inner mitochondrial membrane (1-4). The pe c u l i a r 

nature of the mitochondrial t r a n s l a t i o n products may 

play a d i s t i n c t r o l e i n th i s process. Therefore we ha-

ve studied some properties of mitochondrial t r a n s l a ­

t i o n products before and a f t e r t h e i r i n t e g r a t i o n into 

the membrane. 

RESULTS. 

P r o p e r t i e s o f n a s c e n t t r a n s l a t i o n p r o d u c t s o n m i t o ­

c h o n d r i a l r i b o s o m e s . After l a b e l l i n g whole N e u r o s p o ­

r a c e l l s with radioactive amino acids i n the presence 

of cycloheximide (CHI), i t i s possible to i s o l a t e mi­

tochondrial ribosomes i n which the nascent peptide 

chains are r a d i o a c t i v e l y l a b e l l e d , whereas the riboso-

mal proteins are not. This i s due to the f a c t , that 

the proteins of mitochondrial ribosomes are formed at 

the CHI s e n s i t i v e cytoplasmic ribosomes (5-7). By this 

way, we have an experimental System i n which the nas­

cent t r a n s l a t i o n products of mitochondria can e a s i l y 

be i d e n t i f i e d and analysed. 

A) Mitochondrial ribosomes carrying nascent peptide 

chains. 

F i g . 1 shows the r e s u l t of density gradient c e n t r i -

fugation of mitochondrial ribosomes from c e l l s exposed 
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Fig. 1. Sucrose density gradient centrifugation of mitochondrial ribosomes with 
radioactively labeled nascent peptide chains. A: Optical density pattern (260nm); 
B: Radioactivity pattern; C: Specific radioactivity related to absorbance at 260 
nm. Cells were incubated with cycloheximide (100 ug/ml) for 2.5 min, [

J
H]leucine 

was added (1 uCi/ml) and after 1.5 min the cells were rapidly cooled to 0° C. Mi­
tochondrial ribosomes were isolated and subjected to gradient centrifugation (9). 
Fraction 1 is top, and fraction 60 bottom of the gradient. 

Fig. 2. Effect of incubation of mitochondrial ribosomes in AMT buffer at 37° C 
on the distribution of radioactivity in the sucrose density gradient. Mitochon­
drial ribosomes were labeled as described in Fig. 1. They were kept at 37° C in 
AMT buffer (0.1 M N H 4 C I , 10 mM MgCl2, 10 mM Tris-HCl, pH 7.5) for the time pe-
riods indicated in the figure. In the case of the radioactivity associated with 
the wall of the centrifuge tube the radioactivity in the control sample (8250 
counts/min) was subtracted from a l l values. 
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NASCENT POLYPEPTIDE CHAINS ON MITOCHONDRIAL RIBOSOMES 

to a pulse of radioactive leucine i n the presence of 

CHI, In the o p t i c a l density pattern ( F i g . 1A) the peak 

of the monomeric ribosomes i s prominent. A considera-

b l e amount of polymeric ribosomes (ca. 45 % of t o t a l 

ribosomes) i s present. In the l a b e l l i n g pattern ( F i g . 

1B) monomeric, dimeric and higher polymeric ribosomes 

also can be distinguished. However, the majority of 

the r a d i o a c t i v i t y (ca. 85 %) i s found associated with 

polymeric ribosomes. Accordingly, the s p e c i f i c r a d i o ­

a c t i v i t y , related to A260nm ( F i g . IC) i s about f i v e 

times higher i n the polymeric ribosomes. This d i f f e r -

ence i n s p e c i f i c r a d i o a c t i v i t y of monomeric and poly­

meric ribosomes suggests, that monomers are not mere-

l y breakdown products of polymers. This i s i n contrast 

to cytoplasmic ribosomes, where monomers and polymers 

have the same s p e c i f i c r a d i o a c t i v i t y a f t e r short p u l ­

se l a b e l l i n g . 

The amount of t o t a l r a d i o a c t i v i t y i n the polymer 

region i s subject to large a l t e r a t i o n s which depend 

on the preparation conditions of the ribosomes. How­

ever, the less the amount of r a d i o a c t i v i t y i n the po­

lymer region i s , the more r a d i o a c t i v i t y appears i n the 

p e l l e t of the gradient. The y i e l d of r a d i o a c t i v i t y at 

the monomer i s rather constant. This leads us to sup-

pose that the polymeric ribosomes have a high tenden-

cy to aggregate. 

In order to test t h i s , mitochondrial ribosomes we­

re kept i n Mg containing buffer at 37° C for d i f f e r -

ent time periods and then subjected to gradient cen-

t r i f u g a t i o n . In F i g . 2 the r a d i o a c t i v i t y found i n the 

d i f f e r e n t f r a c t i o n s of the gradient i s shown. Düring 

the time period of incubation the r a d i o a c t i v i t y asso­

ciated with the monomer remains constant a f t e r a 

s l i g h t i n i t i a l decrease. In contrast, the r a d i o a c t i ­

v i t y at the dimer and higher polymers decreases 

strongly. The r a d i o a c t i v i t y disappearing from this r e ­

gion does not appear at the top of the gradient, but 

can be traced i n the p e l l e t and at the wall of the 

centrifuge tube. 

This s e l e c t i v e tendency of polymeric ribosomes to 

aggregate and form heavy p a r t i c l e s gives r i s e to the 
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Fig. 3. Treatment of mitochondrial ribosomes with ribonuclease. Ribosomal sus-
pensions in AMT buffer were kept at 0° C for 60 min with and without pancreatic 
ribonuclease, and then subjected to gradient centrifugation. o—o : radioacti­
vity; : absorbar.ce at 260 nm. A, control (without ribonuclease); B, 1 jg/ml 
ribonuclease; C, 4 ug/ml ribonuclease; D, 20 ug/ml ribonuclease. 
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Fig. 4. Gel electrophoretic analysis cf radioactively labeled nascent peptide 
chains associated with mitochondrial polymeric ribosomes. A, Ribosomes dissolved 
in 0.1 M Tris-HCl, 0.5 % SDS, pH 8, and kept for 1 h at 37° C; B, Ribosomes dis 
solved as in A, plus 20 ug/ml pancreatic ribonuclease. 
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NASCENT POLYPEPTIDE CHAINS ON MITOCHONDRIAL RIBOSOMES 

question whether the polymeric ribosomes are r e a l mes-

senger-ribosome complexes or aggregates themselves. 

Treatment with ribonuclease i s one way to test t h i s . 

Cytoplasmic polymeric ribosomes are already converted 

to monomers to a considerable extent by incubation 

with 0.5 ug/ml ribonuclease f o r 60 min at 0° C. This 

conversion i s c o m p l e t e at a concentration of 20 yg/ml 

ribonuclease. In contrast, the o p t i c a l density pattem 

of mitochondrial ribosomes i s not changed by incuba­

t i o n with corresponding ribonuclease concentrations 

( F i g . 3). Also no change i s observed i n the r a d i o a c t i ­

v i t y pattern. This suggests that mitochondrial poly­

meric ribosomes are aggregates. In agreement with this 

i s the O b s e r v a t i o n t h a t a f t e r t r e a t m e n t of i s o l a t e d 

mitochondria with puromycin, aggregation of ribosomes 

is almost completely a b o l i s h e d , Therefore i t appears 

that nascent chains are responsible for th i s aggrega­

t i o n . Similar observations and conclusions were made 

by Ojala and A t t a r d i (8). 

B) Properties of nascent t r a n s l a t i o n products. 

On the basis of these findings we are led to con-

clude that the peptide chains on mitochondrial r i b o ­

somes have c e r t a i n p e c u l i a r p r o p e r t i e s . This i s under-

l i n e d by the Observation that these peptides i n the 

form of peptidyl-transfer-RNA cannot be separated from 

the ribosomal proteins by treatment with phenol, un-

less SDS i s present. If SDS i s removed from SDS solu-

b i l i z e d ribosomes, the nascent peptides become inso-

l u b l e . 

In order to further elucidate these p r o p e r t i e s , i t 

was examined whether the nascent peptide chains can 

be removed from the mitochondrial ribosomes as pepti-

dyl-puromycin and as peptidyl-tRNA. To control the ex-

perimental setup, f i r s t cytoplasmic ribosomes were 

tested. In this case, treatment of ribosomes with pu­

romycin, GTP and G-factor leads to the release of the 

nascent chains i n a soluble form. A l s o , upon exposure 

of cytoplasmic ribosomes to EDTA, d i s s o c i a t i o n into 

subunits and release of peptidyl tRNA occurs. In con­

t r a s t , when mitochondrial ribosomes are treatedwith 

puromycin, GTP and G-factor, the radioactive nascent 
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Fig. 5. Gel electrophoretic anaiysis of radioactively labeled nascent peptide 
chains associated with mitochondrial monomeric ribosomes. A, Ribosanes pretreated 
as described for Fig. 4A; B, Ribosomes dissolved in 0.1 M phosphate buffer, pH 11, 
and kept for 1 h at 37° C; C, Ribosomes pretreated as described for Fig. 4B. 
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NASCENT POLYPEPTIDE CHAINS ON MITOCHONDRIAL RIBOSOMES 

chains disappear from monomers and p o l y m e r s i n the 

gradient, however t h e y are not released i n a soluble 

form, but are found at the wall and i n the p e l l e t of 

the tube a f t e r c e n t r i f u g a t i o n . Treatment with EDTA 

disso c i a t e s the mitochondrial ribosomes but the radio-

active chains remain associated with the large subu-

n i t s and with r i b o s o m a l structures which c a n n o t be 

c l e a r l y i d e n t i f i e d on the b a s i s of t h e i r S e d i m e n t a t i o n 

behaviour. They probably represent aggregates of the 

large subunit (9). I t appears from these observations 

that the nascent chains on mitochondrial ribosomes are 

not watersoluble but aggregate i n aqueous Solutions. 

For further anaiysis of the nascent chains the r i ­

bosomes were dissolved i n SDS containing buffer and 

subjected to gel electrophoresis i n the presence of 

SDS. This was done separately for poly- and monomeric 

ribosomes. When nascent chains on cytoplasmic r i b o s o ­

mes were studied they showed a scattered d i s t r i b u t i o n 

of apparent molecular weights (AMWs). No s i g n i f i c a n t 

d i f f e r e n c e between chains of monomeric and polymeric 

ribosomes i s seen (9). In F i g . 4A gel electrophoresis 

of r a d i o a c t i v e l y l a b e l l e d chains on mitochondrial po­

lymeric ribosomes i s shown. The AMWs also appear to 

be quite spread here. F i g . 4B represents the d i s t r i ­

bution a f t e r treatment of the SDS s o l u b i l i z e d polyme­

r i c ribosomes with ribonuclease. This was done to de-

grade p e p t i d y l tRNA which might s t i l l be present a f ­

ter incubation of the ribosomes at pH 8 and 37° C f o r 

one hour. The minor changes compared to F i g . 4A and 

the Observation that tRNA on this gel migrates corres-

ponding to an AMW of ca. 15,000 suggest that hydroly-

s i s of the peptide-tRNA bond has already occurred to 

a large extent. 

In F i g . 5A an e l e c t r ö p h o r e t i c S e p a r a t i o n of c h a i n s 

associated with mitochondrial monomeric ribosomes i s 

presented. A peak with an AMW of 27,000 i s prominent 

i n a ddition to a double peak with an AMW i n the ränge 

of 8,000 - 12,000. I f the ribosomes are immediately 

subjected to gel electrophoresis a f t e r having been 

d i s s o l v e d , mainly the f i r s t peak i s present. Prolong-

ed incubation of the ribosomes r e s u l t s i n a decrease 
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of the f i r s t peak and i n an increase of the second 

one. At pH 6 this process i s slower than at pH 8, and 

at pH 11 ( F i g . 5B) i t i s f a s t e r . Treatment of SDS so-

l u b i l i z e d ribosomes with ribonuclease causes the d i s -

appearance of the 27,000 AMW peak. At the same time 

the double peak with the lower AMW increases ( F i g . 5C). 

Since determinations of AMWs are d i f f i c u l t or even 

impossible i n the low molecular weight ränge by gel 

el e c t r o p h o r e s i s , gel chromatography was ca r r i e d out. 

The chains on the monomeric ribosomes are eluted from 

the column (Sephadex G 200) together with the marker 

cytochrome e. Af t e r digestion with t r y p s i n smaller 

products appear. These are eluted together with the 

marker leucine. The chains at the polymeric ribosomes 

show a very s i m i l a r behaviour. 

These result s suggest that the 27,000 AMW peak re-

presents peptidyl tRNA and that the peptides have AMWs 

of 8,000 - 12,000. This i s substantiated by the O b s e r ­

vation already mentioned that transfer RNA migrates 

with an AMW of about 15,000. 

On the basis of the r e s u l t s obtained by gel chro­

matography, the AMW of the polymer product i s i n the 

same ränge as that of the monomer product. This can 

only be reconciled with the electrophoretic data, i f 

we assume that on the gel the polymer chains aggrega­

te e i t h e r with each other or with the hydrophobic gel 

m a t e r i a l . This again would be i n accordance with the 

se l e c t i v e tendency of polymeric ribosomes to aggrega­

t e . 

T r a n s l a t i o n p r o d u c t s a f t e r i n t e g r a t i o n i n t o t h e 

membrane. What do the t r a n s l a t i o n products on the 

monomeric ribosomes which display a rather uniform 

AMW represent ? I f they are completed t r a n s l a t i o n p r o ­

ducts, then i t should be possible to f i n d them i n the 

mitochondrial membrane. To follow this question, Neu­

r o s p o r a c e l l s were l a b e l l e d under the following con-

d i t i o n s : CHI was added to the c u l t u r e , a f t e r 2%5 min 

radioactive leucine and a f t e r further 2 min a chase 

of unlabelled leucine was given. Af t e r 45 min the 

c e l l s were cooled, mitochondrial membranes were pre-

pared and subjected to gel electrophoresis. The d i s -
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F i g . 6. Gel electrophoretic anaiysis of mitochondrial membranes after pulse label-

ing with radioactive leucine in v i v o in the presence of cycloheximide. After 2.5 

min preincubation of t t e u r o s p o r a c e l l s with cycloheximide, a 2 min pulse of [-*H]-

leucine was given, followed by a chase of unlabeled leucine. In (A) the c e l l s were 

immediately cooled after having given the chase, in (B) the chase lasted for 45 min 

at growth temperature (25° C). 

Fig . 7. Gel electrophoretic anaiysis of mitochondrial membranes after pulse label-

ing with [-̂ H] leucine in v i v o in the presence of cycloheximide followed by a 1 h 
chase at different temperatures. The temperature during chase is given in the figure. 
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t r i b u t i o n of r a d i o a c t i v i t y on the gel i s shown i n F i g . 

6B, Peaks are prominant at AMWs of 36,000, 27,000 and 

18,000, and a small one at about 12,000. I f a l l these 

protein bands were o r i g i n a l t r a n s l a t i o n products, then 

we would have to conclude that we do not recover com-

plet e d t r a n s l a t i o n products on the monomeric ribosomes. 

However, i f we stop the l a b e l l i n g procedure immedia-

tely a f t e r having added the chase, a quite d i f f e r e n t 

l a b e l l i n g pattern of the membrane i s observed ( F i g . 

6A). A large part of the r a d i o a c t i v i t y co-migrates 

with cytochrome a or i s even f a s t e r . The high mole-

cular weight peaks are present only to a low extent, 

the 18,000 AMW peak to a s i m i l a r extent as a f t e r a 

long chase. The background i n the high molecular 

weight region i s very high and i t looks l i k e low mo­

lec u l a r weight material i s t a i l i n g . The t o t a l radioac­

t i v i t y i n the membrane does not change, so i t mustbe 

conluded that a conversion of t r a n s l a t i o n products 

with lower AMWs to such with higher AMWs takes place 

in the membrane. I f chase times i n between those shown 

i n F i g . 6 are in v e s t i g a t e d , a gradual s h i f t of the 

r a d i o a c t i v i t y i s observed. 

This process was studied i n a further experiment. 

L a b e l l i n g was performed here as described f o r . F i g . 6, 

with the modification that a f t e r giving the chase, 

the culture was divided into four equal portions and 

these were rapidly adjusted to 0, 12, 22 and 37° C, 

res p e c t i v e l y . Incubation at these temperatures was 

carri e d on for one hour. F i g . 7 shows the l a b e l l i n g 

patterns of the mitochondrial membrane. A chase per­

formed at 0° C does not change the l a b e l l i n g pattern 

of the unchased c e l l s ( c f . F i g . 6A). At higher tempe­

ratures the conversion takes place. It i s the f a s t e r 

the higher the temperature i s . 

DISCUSSION. 

1. The rather uniform apparent molecular weight of 

the nascent chains at the mitochondrial monomeric r i ­

bosomes may have two possible reasons: a) It i s an ar-

t i f a c t , because nascent chains are cut down to a cer-

t a i n length; b) the monomers carry completed chains. 
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P o s s i b i l i t y a) does not appear to be l i k e l y , since no 

i n d i c a t i o n for such a breakdown was found under the 

d i f f e r e n t conditions of i s o l a t i o n and Separation of 

mitochondria and ribosomes. Furthermore, the observed 

conversion of t r a n s l a t i o n products i n the membrane 

could explain that no larger peptide chains are found 

at the mitochondrial ribosomes. 

The presence of completed Polypeptide chains at 

the monomeric ribosomes i s related to the problern, how 

mitochondrial t r a n s l a t i o n products reach the inner 

membrane. They are obviously so hydrophobic that i t 

seems highly improbable that they are released from 

the ribosomes into the matrix i n a soluble form. So 

we can speculate that the ribosome leaving the messerr 

ger-RNA does not immediately release the product and 

d i s s o c i a t e , but rather dissociates only a f t e r having 

transported the completed chain to the membrane. For 

discussion of the a l t e r n a t i v e mechanism that r i b o s o ­

mes are bound to the inner membrane, see r e f . 9. 

2. Experiments presented here suggest that the mi­

tochondrial t r a n s l a t i o n products found i n enzyme com-

plexes such as cytochrome a a ^ 9 cytochrome b9 and ATP­

ase (10-13) are not o r i g i n a l t r a n s l a t i o n products, but 

are rather generated by conversion of peptides with 

lower apparent molecular weights. A f t e r pulse l a b e l ­

l i n g , the mitochondrially synthesized subunits of cy­

tochrome a oxidase appear i n the enzyme protein with 

a time course s i m i l a r to that described f o r the 

36,000, 27,000 and 18,000 AMW peaks i n the membrane 

(14). It i s possible that for each subunit this con­

version process i s the rate l i m i t i n g Step. 

3. It i s concluded i n this report that mitochondrial 

t r a n s l a t i o n products exhibit a strong hydrophobic cha-
r a c t e r . This i s substantiated by amino acid analyses 

of subunits of cytochrome c oxidase formed inside the 

mitochondria (15). On the basis of these data we are 

led to suggest that i n mitochondria a System of trans-

c r i p t i o n and t r a n s l a t i o n had to be maintained ( i f we 

follow the endosymbiont theory) or had to be created 

( i f we follow some other theory (l6)> because the 

t r a n s l a t i o n products are so hydrophobic that they can-
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not be transported through the cytoplasm and the i n -

t e r c r i s t a e space. They rather have to be delivered to 

the inner membrane d i r e c t l y , i . e . from the matrix s i -

de. 
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