Photosynthesis: from Light to Biosphere

Volume III

Proceedings of the Xth International Photosynthesis Congress, Montpellier, France, 20–25 August 1995

edited by

PAUL MATHIS Section de Bioénergétique, CEA-Saclay, France

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

CONTENTS TO VOLUME III

9. ATPase, PROTONS AND ENERGY TRANSDUCTION	1
Functions and structure of the γ subunit of the chloroplast ATP synthase	
McCarty R.E., Hightower K.E.	3
Evolution of organellar proton-ATPases	
Nelson N.	7
Uni-site and multi-site ATP synthesis after covalent binding of 2 N3-ADP at a catalytic site of CF0F1	
Possmayer F.E., Hartog L., Berden J., Gräber P.	13
On light energy as limiting factor for H+-upake and ATP-generation by chromatophores from Rhodopseudomonas palustris.	19
Knobloch K., Pirner B.	
pH-dependent changes of active/inactive state equilibrium of chloroplast H+-ATPase.	
Malyan A.N., Vitseva O.I.	23
Cloning and expression of the F1 α subunit from the Rhodospirillum rubrum F0F1 ATP synthase.	
Du Z., Gromet-Elhanan Z.	27
Nucleotides at catalytic sites of CF0F1 in thylakoids.	
Seybold A.L., Gräber P.	31
Biochemical characterization of thylakoids and CF0CF1 isolated from Chlamydomonas reinhardtii	
CW15 and from atpA and atpB deletion mutants.	
Fiedler H.R., Leu S., Shavit N., Strotmann H.	35
Approaches to the problem of photophosphorylation in vivo.	
Shen Y.K., Ye J.Y., Ren H.M., Li D.Y., Wei J.M.	39
Photophosphorylation in chloroplasts and halobacteria.	
Mukohata Y., Uchikawa F., Yamada N., Katagiri I., Oshita K., Sugimura K.I., Watanabe S.,	
Sugiyama Y., Ihara K.	43
F-type and P-type ATPases in cyanobacteria : implications for energy conservation and utilization.	
Fromwald S., Dworsky A., Peschek G.A.	47
Functional expression of the β subunit of the Rhodospirillum rubrum F1-ATPase.	
Nathanson L., Gromet-Elhanan Z.	51
Generation of an intermolecular tension between CF0 and CF1 as consequence of a transmembrane electrochemical proton gradient.	
Ponomarenko S.V., Fiedler H.R., Strotmann H.	55
The ATP synthase CF0CF1 : two different types of proton flow, slipping and coupled, trigger the same conformational change in CF1.	
Fritsche O., Junge W.	59
Proteolytic cleavage of the yg subunit of membrane bound chloroplast coupling factor I.	
Hightower K.E., McCarty R.E.	63

viii

Cooperative interaction between the active sites of CF1-ATPase.	
Hochman Y., Carmeli C.	67
ATP synthase of Synechocystis sp. PCC6803 : reassembly of F1 from its recombinant subunits.	
Steinemann D., Engelbrecht S., Lill H.	71
Proton-linked transport activity across chloroplast inner envelope vesicles.	
Shingles R., McCarty R.E.	75
A patch-clamp study on the regulation of electrogenesis by protons.	
van Voorthuysen T., Dassen H.H.A., Snel J.F.H., Vredenberg W.J.	79
The influence of different Mg ²⁺ ligands on the activity of CF1ATPase : role of free ATP as true	
substrate and role of free Mg ² + as activator.	
Berger G., Girault G., Pézennec S.	83
Quantitative assay of photosynthetic ATP synthase subunit CF0 II by enzyme-linked immunosorbent	
assay (Elisa) using recombinant polypeptide for calibration.	
Tiburzy J., Zimmermann M., Berzborn R.J.	87
Crosslinking the F1-part of chloroplast ATPase in different conformational states.	
Schumann D., Bickel-Sandkötter S.	91
Energization changes the reactivities of lysine residues of the chloroplast ATP synthase γg subunit.	
Komatsu-Takati M.	95
Anion and cation channels in the thylakoid membrane.	
Pottosin I.I., Schönknecht G.	99
Ca2+ stimulation of the exchange of trinitrophenyl-ADP (TNT-ADP) tightly bound to the chloroplast coupling factor (CF1) for medium nucleotide.	
Digel J.G., McCarty R.E.	103
2',3'-0-(2,4,6-trinitrophenyl)-ADP bound on two different sites of chloroplast coupling factor ATPase covalently under photosynthetic condition.	
Hisabori T., Strotmann H.	107
ATP synthesis by co-reconstituted proteoliposomes : bacteriorhodopsin/ATP synthases.	
Pitard B., Richard P., Rigaud J.L.	111
Antimycin A inhibits QE-quenching by a protonophoric mechanism.	
Yerkes C.T., Crofts A.R.	115
The metal binding sites of chloroplast F1-ATPase studied by pulsed EPR spectroscopy.	
Buy C., Girault G., Zimmermann J.L.	119
Effects of tentoxin and analogues on ATPasic properties of CF1 and TF1.	
Pinet E., Dubart L., André F., Pézennec S., Cavelier F., Verducci J., Girault G.	123
The participation of metals in the CF1-ATPase mechanism.	
Houseman A.L.P., Bell M.K., LoBrutto R., Frasch W.D.	127
Catalytic function of a vital carboxylate residue in the beta subunit of the CF1-ATPase from	
C. reinhardtii.	
Hu C.Y., Houseman A.L.P., Morgan L., Webber A.N., Frasch W.D.	131

The structure of a transition state inhibitor of chloroplast CF1-ATPase as determined by X-ray	
absorption of vanadate.	
Sagi I., Hochman Y., Bunker G., Ophir R., Carmeli S., Carmeli C.	135
Refined measurement of the H+/ATP coupling ratio at the ATP synthase of chloroplasts.	
Rumberg B., Berry S.	139
Kinetic analysis of the proton translocating ATP synthase from spinach.	
Pänke O., Rumberg B.	143
Regulation of the Q-cycle in photosynthetic electron transport of green plants.	
Berry S., Rumberg B.	147
Sulfite interacts with the ATP synthase from chloroplasts and cyanobacteria by competition with	
phosphate.	
Bakels R.H.A., van Wielink J.E., Krab K., van Walraven H.S.	151
Δµ̃H+-regulation of F0F1 ATPase in chloroplasts and mitochondria.	
Haraux F., Diolez P., Chernyak B.V., Valerio M., Velours J., Goubern M., Sigalat C.	155
Tight proton coupling in membrane-bound CF0CF1 reactivated by high concentrations of tentoxin.	
Sigalat C., Pitard B., Haraux F.	159
Membrane permeability and energy coupling.	
De Kouchkovsky Y., Sigalat C.	163
Uni-site ATP synthesis as function of pHin and pHout catalysed by CF0CF1 reconstituted in	
proteoliposomes.	
Razaka D., Gräber P.	167
The driving force for the activation of the F-ATPase in chromatophores is not correctly estimated by	
the carotenoid electrochromic response.	
Crimi M., Fregni V., Altimari A., Melandri B.A.	171
The effect of protons on PS II photochemistry.	
Finazzi G., Forti G.	175
Molecular characterization of atpA and atpB deletion mutants induced in Chlamydomonas reinhardtii	
CW15 by chloroplast transformation.	
Leu S., Schlesinger J., Dongli H., Fiedler H.R., Strotmann H., Shavit N.	179
Demonstration of a divalent cation binding site on the β subunit of the Rhodospirillum rubrum F1-	
ATPase.	
Beermann M., Gromet-Elhanan Z.	183
On the mechanism of coupling between proton transport and ATP-ase synthesis/hydrolysis at one	
nucleotide binding site.	
Labahn A., Gräber P.	187
Modification of the reactions of the photobacterial ATP-synthase by alcohols and antibiotic	
compounds.	
Strid A.	191

ix

Effects of high concentrations of tentoxin on ATPase activity of CF1 and CF1-bound ATP synthesis.	
Mochimaru M., Yoshioka T., Sakurai H.	195
10. ORGANISATION OF THE PHOTOSYNTHETIC APPARATUS	199
	199
Organization of the electron transfer chain in purple bacteria at subzero temperatures.	201
Joliot P., Joliot A., Verméglio A. The domain structure and function of the thylakoid membrane.	201
Albertsson P.A.	207
	207
Photosystem II 3D architecture.	
Ford R.C., Collins R.P., Flint T.D., Kitmitto A., Nicholson W.V., Rosenberg M.F.,	012
Shepherd F.H., Stoylova S., Holzenburg A.	213
Supramolecular organization of the photosynthetic chain in Rhodobacter sphaeroides.	0 10
Verméglio A., Barz W., Joliot A., Joliot P., Oesterhelt D.	219
Effect of a selective depletion of acyl lipids on the light and dark phosphorylation in spinach	
thylakoid membranes.	
Siegenthaler P.A., Vallino J.	225
Photosystem II structure investigated by electron microscopy and single-particle averaging.	
Boekema E.J., Hankamer B., Nield J., Barber J.	229
Distribution, organisation and functional state of PS I, PS II and LHC-complexes in thylakoids after LF phosphorylation.	ICII
Andrée S., Spittel M., Weiss E.	233
Control analysis of electron transport in higher plant thylakoids : evidence for PS II-Cyt b6f	
microdomains in stacked membranes.	
Kirchhoff H., Weis E.	237
Control of linear electron flow by redistribution of Cyt b6f from grana to stroma lamellae in	
« state 2 ».	
Spittel M., Andrée S., Kirchhoff H., Weis E.	241
Spectral characterizations of lanthanide interactions with thylakoid membrane surfaces.	
Karukstis K.K., Kao M.Y., Savin D.A., Bittker R.A., Kaphengst K.J., Naito N.R.	245
Effect of kinetin on the organization of maize mesophyll thylakoids.	
Nyitrai P., Sarvari E., Lang F.	249
Elucidation of the role of some low molecular mass polypeptides of Photosystem I and Photosystem	
II as longwavelength chlorophyll-binding proteins.	
Ismailov M.A., Zulfugarov I.S., Asadov A.A.	253
Chlorophyll fluorescence study of chloroplasts from fatty acid desaturation mutants of Arabidopsis thal	iana.
Apostolova E., Busheva M., Tsvetkova N.	257
Changes in ultrastructure and dynamics of thylakoid membranes.	
Flint T.D., Ford J.W., Ford R.C., Holzenburg A.	261
-	

Characterization of the light induced reversible structural shances in evenal thulskeid membrance	
Characterization of the light-induced reversible structural changes in granal thylakoid membranes	265
Istokovics A., Barzda V., Lajkó F., Simidjiev I., Garab G.	265
The electrical properties of the thylakoid membrane and its partitions (« brush borders ») in relation	
to energy supply.	0/0
Vredenberg W.J., Bulychev A.A., van Voorthuysen T., Snel J.F.H.	269
High performance separation of PS II membrane proteins.	
Vater J., Heinze K., Kablitz B., Friedrich K., Salnikow J.	273
Growth analysis of the brown alga Laminaria abyssalis (phaetophyta).	
Reis K., Yoneshigue-Valentin Y., Hall D.O., Dos Santos C.P.	277
Organization of the photosynthetic membrane of the primitive alga Mantoniella squamata.	
Hecks B., Wilhelm C., Trissl H.W.	281
On structural alterations of the CPI- and LHCPI-complexes in Nicotiana tabacum in dependence on	
the CO2-content of air	
Makewicz A., Radunz A., Schmid G.H.	285
Molecular structures and optical properties of aggregated forms of chlorophylls analyzed by means	
of magnetic circular dichroism.	
Kobayashi M., Nozawa T., Wang Z.Y., Konami H., Mimuro M.	289
The nature of bacteriochlorophyll a in green sulfur bacteria.	
Francke C., Amesz J.	293
Characterization of Photosystem II subunits from the cyanobacterium Synechocystis sp. PCC 6803.	
Ikeuchi M., Inoue Y., Vermaas W.	297
EDC crosslinking studies of PS II in grana membranes.	
Collins R.F., Flint T.D., Holzenburg A., Ford R.C.	301
Free chlorophyll effects on variable fluorescence.	
Marder J.B., Caspi V., Raskin V.I.	305
Orientation control of reconstituted photosynthetic reaction center (RC) in liposomal membrane by	
using a cross-linked complex of RC and cytochrome c.	
Ueno T., Hara M., Miyake J., Fujii T.	309
Binding of ATP and GTP to the PS II-P protein of the OEC complex.	
Gal A., Zer H., Herrmann R.G., Ohad L.	313
Formation and characterization of 2D crystals of spinach PS II.	
Nakazato K., Toyoshima C., Enami I., Inoue Y.	317
Characterization of a 12 kDa phosphoprotein from spinach thykaloids.	
Lindhal M., Carlberg I., Schröder W.P., Andersson B.	321
Further characterization of the newly discovered 6.1 kDa protein of the Photosystem II reaction	521
center.	
Shi L.X., Funk C., Irrgang K.D., Schröder W.P.	325
Functional studies of the newly discovered 6.1 kDa protein from spinach thylakoids.	525
	220
Funk C., Shi L.X., Schröder W.P.	329

Cryo-electron microscopy of Photosystem II : towards a high-resolution structure.	
Stoylova S., McPhie P., Flint T.D., Ford R.C., Holzenburg A.	333
Photosystem II : three-dimensional (3D) structure and oxygen evolution.	
Holzenburg A., Collins R.P., Flint T.D., Kitmitto A., McPhie P., Rosenberg M.F.,	
Shepherd F.H., Stoylova S., Ford R.C.	337
Use of perfusion chromatography for the rapid isolation of thylakoid kinase enriched preparations.	
Gal A., Zer H., Roobol-Boza M., Fulgosi H., Herrmann R.G., Ohad I., Andersson B.	341
Antimycin binding sites in sub-thylakoid vesicles derived from different structural domains of the thylak membrane from spinach chloroplasts.	oid
Stefansson H., Albertsson P.A.	345
Exposure of various thylakoid protein epitopes to trypsin and to monoclonal antibodies.	
Plambeck C., Reuter R.A., Berg S.P.	349
Photoinduced surface charge density changes in pea, Chlamydomonas reinhardtii thylakoids and Plectone boryanum spheroplasts.	ema
Doltchinkova V., Georgieva K., Chaneva G.	353
Protein phosphatase of spinach thylakoid membranes : effectors, membrane location and association	
with cytochrome bf complex.	
Andersson B., Vener A.V., Carlberg I.	357
Biochemical characterization of LHCII-PS II complexes associated with and lacking the 33 kD	
subunit.	
Nield J., Hankamer B., Zheleva D., Hodges M.L., Boekema E.J., Barber J.	361
Biochemical characterization and structural analysis of monomeric and dimeric photosystem II core preparations.	
Hankamer B., Morris E., Zheleva D., Barber J.	365
Localization of the extrinsic proteins of Photosystem II by electron microscopy.	
Rosenberg M.F., Flint T.D., Shepherd F.H., Holzenburg A., Ford R.C.	369
Investigation of the process of ordered 2D array formation in spinach Photosystem II - enriched	
grana.	
Kitmitto A., Holzenburg A., Ford R.C.	373
Photosystem II activity of whole leaf and unicellular algae in organic solvent.	
Darszon A., Srivastava A., Strasser R.J.	377
Characterization of Chl-protein complexes isolated from the red algae Gracilaria verrucosa.	
Casazza G., Barbato R., Sperandei M.	381
Homogeneous bundle sheath and mesophyll thylakoids can be isolated following mechanical treatment	
of leaf tissue.	
Teicher H., Scheller H.V.	385
Cyanobacterial Photosystem II stability. Effect of N-trimethygiycine.	
Miksovska J., Sopko B., Sofrova D.	389

	Am
Functional photosystem I without long-wavelength fluorescence emission in a low-light grown	
greening mutant of the green alga Scenedesmus obliquus.	
Schiller H., Hühn M., Klingelhöfer S., Dau H., Senger H.	393
Isolation and characterization of grana and stroma lamellae membranal fractions. Possible role for Photosystem II in the stroma lamellae.	
Kopf Z., Malkin S.	397
Investigating the protective role of phosphorylation for PS II complexes.	
Kruse O., Zheleva D., Hankamer B., Barber J.	401
Localization of subunits in PSI, PS II and in a PS II/light-harvesting-supercomplex.	
Kruip J., Bald D., Hankamer B., Nield J., Boonstra A.F., Barber J., Boekema E.J., Rögner M.	405
Elimination of polyunsaturated lipids affects the structure of photosynthetic membranes.	
Debreczeny M., Szalontai B., Gombos Z., Zsiros O., Tasaka Y., Murata N.	409
Redox dependent protein phosphorylation as a fundamental feature of bioenergetic membranes in cyanobacterial thylakoids, purple bacterial chromatophores and mitochondrial inner membranes.	
Struglics A., Allen J.F.	413
Thylakoid fragmentation by detergents during leaf development.	
Wilhelmova N.	417
Penetration of light in photosynthetic membranes of spherical symmetry.	
Gapinski J., Paillotin G., Leibl W., Gibasiewicz K., Breton J., Dobek A.	421
11. EXPRESSION AND REGULATION OF GENES: PROKARYOTES	425
The pufX protein of Rhodobacter sphaeroides is required for efficient ubiquinone/ubiquinol exchange bet the reaction center and the cytochrome bc1 complex.	ween
Barz W.P., Venturoli G., Francia F., Melandri B.A., Verméglio A., Oesterhelt D.	427
Molecular factors that control gene expression in a filamentous cyanobacterium.	
Houmard J., Schyns G., Jia L., Sobczyk A., Liotenberg S., Campbell D., Tandeau de Marsac N.	433
Rhodobacter capsulatus as a model phototroph for studies on nitrogen gene regulation and	
cytochrome biogenesis.	
Kranz R., Cullen P., Bowman W., Goldman B.	439
PsbA-2 gene expression in D1 polypeptide mutants of Synechocystis sp.PCC 6803.	
Mulo P., Aro E.M., Mäenpää P.	445
Construction of a RecA deletion strain of Rhodopseudomonas viridis for site-directed mutagenesis.	
Chen I.P., Michel H.	449
Chen I.P., Michel H. Tn5469 mutagenesis of chromatic adaptation genes in Calothrix sp. strain PCC 7601.	449
	449 453
Tn5469 mutagenesis of chromatic adaptation genes in Calothrix sp. strain PCC 7601.	
Tn5469 mutagenesis of chromatic adaptation genes in Calothrix sp. strain PCC 7601. Kahn K., Mazel D., Houmard J., Tandeau de Marsac N., Schaefer M.R.	
Tn5469 mutagenesis of chromatic adaptation genes in Calothrix sp. strain PCC 7601.Kahn K., Mazel D., Houmard J., Tandeau de Marsac N., Schaefer M.R.A foreign phytoene synthase gene modifies the photosynthesis rate of Synechococcus.	453
 Tn5469 mutagenesis of chromatic adaptation genes in Calothrix sp. strain PCC 7601. Kahn K., Mazel D., Houmard J., Tandeau de Marsac N., Schaefer M.R. A foreign phytoene synthase gene modifies the photosynthesis rate of Synechococcus. Windhövel U., Gatzek S., Böger P. 	453

xiii

xiv

Transcriptional factors which control hydrogenase synthesis in Rhodobacter capsulatus.	
de Sury d'Aspremont R., Toussaint B., Elsen S., Colbeau A., Vignais P.M.	465
Oligonucleotide-directed complementation of a lethal deletion within the large hydrophilic domain of C	P47.
Clarke S.M., Eaton-Rye J.J.	469
The thioredoxin gene, trxA from the unicellular cyanobacterium Synechocystis sp. PCC 6803 is	
regulated by light.	
Navarto F., Florencio F.J.	473
Sigma70-like transcription factors involved in circadian expression of the psbA1 gene in the cyanobacter Synechococcus sp. PCC 7942.	erium
Tsinoremas N.F., Ishiura M., Tanaka K., Liu Y., Takahashi H., Johnson C.H., Kondo T.,	
Golden S.S.	477
A possible role of 154-base pair nucleotides located upstream of ORF440 on CO2 transport of Synecho PCC 6803.	xystis
Katoh A., Sonoda M., Ogawa T.	481
Nitrogen regulation of the genes involved in nitrate and carbon assimilation in the cyanobacterium Synechococcus sp. PCC 7942.	
Suzuki I., Sugiyama T., Omata T.	485
Regulation of D1 polypeptide synthesis in Synechocystis 6803.	
Tyystjarvi T., Mäenpää P., Aro E.M.	489
Deletion of a light-harvesting complex II (LHII) gene of Rhodospirillum molischianum DSM119	
leads to the expression of LH3.	
Sauer P., Lottspeich F., Michel H.	493
Alterations of the photosynthetic apparatus in a Synechocystis sp. PCC 6803 ORF184 mutant.	
Wilde A., Schubert H., Hartel H., Börner T.	497
The use of site directed mutagenesis in the analysis of complementary chromatic adaptation.	
Kehoe D., Grossman A.	501
Cloning and characterization of sec and ffh genes from the cyanobacterium Synechococcus	
PCC 7942.	
Nakai M., Nohara T., Sugita D., Endo T.	505
Reactivation of Photosystem II by nitrate in Synechococcus PCC 7942.	
Sivapathasundram S., McColl S.M., Evans E.H.	509
Some studies with mutant strains in which specific genes encoding subunits of photosystem I were inactivated.	
Nakamoto H.	513
Comparison of the level of psbA, psbD and psbB transcripts in psbO-less, psbH-less mutants and	
wild type of Synechocystis sp. PCC 6803.	
Friso G., Barber J.	517
Genetic evidence for the light regulation of the Synechocystis PCC 6803 ferredoxin-NADP+ oxidored (FNR) expression.	ictase
van Thor J.J., Matthijs H.C.P., Hellingwerf K.J., Mur L.R.	521

Molecular characterization of cyanobacterial RNA-binding proteins : structures of 12RNP1 and	
12RNP2 genes from Synechococcus sp. strain PCC 7942.	
Sugita M., Sugita C., Sugitra M.	525
Mutagenesis of the psbA1 gene in Synechocystis 6803.	0.20
Salih G.F., Wiklund R., Jansson C.	529
In vivo degradation pattern of the psbA transcripts in the cyanobacterium Synechocystis 6803.	525
Eriksson J., Ghebremedhin H., Jansson C.	533
Use of the LabSpecTMVNIR-512 spectroradiometer for in situ spectroscopy of single colonies.	555
	537
Wiggli M., Ghosh R., Bachofen R.	551
12. EXPRESSION AND REGULATION OF GENES: EURKARYOTES	541
Chloroplast control of nuclear gene expression.	
Gray J.C., Sornarajah R., Zabron A.A., Duckett C.M., Khan M.S.	543
Multiple mechanisms regulate transcription in plastids of higher plants.	
Allison L.A., Levine S.J., Maliga P.	551
Regulation of rDNA transcription during chloroplast development.	
Lerbs-Mache S., Baeza L., Diederich L., Iratni R.	557
Regulation of psbD-psbC transcription by blue light and ultraviolet-A radiation in higher plant chlorop	lasts.
Christopher D.A.	563
Glutathione regulates differentially expression of genes encoding glutathione reductase and CuZn-super dismutase in Scots pine needles.	roxide
Karpinski S., Wingsle G.	567
Developmental regulation of light-independent transcription of nuclear- and plastid-encoded	
chloroplast proteins in Scots pine.	
Karpinska B., Karpinski S., Krol M., Hällgren J.E.	571
CND41 : a novel chloroplast-nucleoid DNA-binding protein.	
Nakano T., Murakami S., Shoji T., Yamada Y., Sato F.	575
ATP-dependent effects on redox regulation of chloroplast protein synthesis.	
Cheng L., Allen J.F.	579
Location and nucleotide sequences of the rye chloroplast genes coding for Photosystem I and	
Photosystem II polypeptides.	
Kosolov V., Chaika M.	583
Short promoter regions are sufficient to mediate circadian expression of tomato LHC genes in	
transgenic tobacco.	
Piechulla B., Merforth N., Dreesmann D., Schäfer U.	587
Cis and trans factor(s) of a light-responsive promoter of psbD/C gene cluster in wheat plastids.	
Tsunoyama Y., Nakahira Y., Shiina T., Toyoshima Y.	591
Characterization of paraquat-resistant mutants of Chlamydomonas reinhardtii.	571
Kitayama K., Kitayama M., Togasaki R.K.	595
and array and a Amanda array	575

x٧

A state of the flower region of the shlare-last DNA selectory (see D)	
Analysis of the 5'-upstream region of the chloroplast RNA polymerase gene (rpoB).	500
Inada H., Seki M., Morikawa H., Nishimura M., Iba K.	599
Expression of the rpoB gene at an early stage of leaf development is essential for chloroplast	
development in rice. Kusumi K., Mizutani A., Nishimura M., Iba K.	603
	003
The regulation of the Arabidopsis fad7 gene promoter in transgenic tobacco plants.	607
Nishiuchi T., Nakamura T., Abe T., Kodama H., Nishimura M., Iba K.	607
Chlorophyll fluorescence assay as a sensitive and quantitative method for screening kanamycin	
resistant tobacco plants.	<i></i>
Eu Y.J., Lee M.H., Chang H.S., Rhew T.H., Lee C.H.	611
Development of a novel selection method for phosphinothricin-resistant plants according to its effects	
on photosynthesis and photorespiration.	
Chung B.C., Song J.D., Lee M.H., Lee H.Y., Lee C.H.	615
Organ-specific expression of O-acetylserine(thiol)lyase in Arabidopsis thaliana.	
Barroso C., Vega J.M., Gotor C.	619
Possible roles of light-responsive psb promoters in regulation of turnover of PS II proteins.	
Baba K., Satoh J., Nakahira Y., Shiina T., Toyoshima Y.	623
Effect of ageing on expression of photosynthesis-related genes in pine needles.	
Shinohara K.	627
Differential expression of genes for the NAD(P)H-plastoquinone-oxidoreductase in mesophyll and	
bundle sheath chloroplasts of the C4-plant Sorghum bicolor suggests a functional role of the enzyme	
in cyclic electron transport.	
Kubicki A., Funk E., Westhoff P., Steinmüller K.	631
DNA-binding proteins mediate interaction of nucleoids with envelope membrane in developing	
plastids.	
Sato N., Misumi O., Joyard J., Douce R.	635
Photosynthetic redox poise, not irradiance, regulates LHCII apoprotein and cab mRNA abundance in	
green algae.	
Maxwell D.P., Laudenbach D.E., Huner N.P.A.	639
Chloroplast genome structure of unicellular green alga Chlorella vulgaris C-27.	
Tsudzuki J., Nakashima K., Ito M., Tsudzuki T., Horihata M., Satoh K., Yoshinaga K.,	
Wakasugi T., Nagai T., Kapoor M. Sugiura M.	643
Pdk gene expression in transgenic C4 plants.	
Rosche E., Chitty J.A., Taylor W.C.	647
Molecular study of a light-harvesting apoprotein of a chrysophycea : Giraudyopsis stellifer.	
Passaquet C., Lichtlé C.	651
Tissue specific alternative splicing of H-protein of glycine decarboxylase in C4 Flaveria species.	
Kopriva S., Cossu R., Chu C.C., Bauwe H.	655

Redox-dependent petB mRNA turnover in pea chloroplasts.	
Alexciev K., Tullberg A.	659
The construction and analysis of a disruption mutant of psbH in Chlamydomonas reinhardtii.	
Ruffle S.V., O'Connor H., Cheater A.J., Purton S., Nugent J.H.A.	663
Nuclear genes required for the biogenesis of the cytochrome b6f complex in Chlamydomonas	
reinhardtii.	
Turner M., Gumpel N., Ralley L., Girard-Bascou J., Wollman F.A., Purton S.	667
Response of thylakoid membrane proteins during shade-adaptation in Silene dioica.	
Vinnell M.P., Raines C.A., Baker N.R.	671
The characteristics of light dependence of the transcript levels of proteins involved in photosynthesis	
in rape plants.	
Wild-Peters L., Kehl K., Teuber I., Wild A.	675
Screening for mutants deficient in state transitions using time-resolved imaging spectroscopy of chlorop fluorescence.	ohyll
Allen J.F., Dubé S.L., Davison P.A.	679
Nuclear control of the expression of the chloroplast pet genes in Chlamydomonas reinhardtii.	
Girard-Bascou J., Choquet Y., Gumpel N., Culler D., Purton S., Merchant S., Laquerriere F., Wol F.A.,	lman 683
RNA editing in atp A and atp F transcripts from tobacco : occurrence of silent editing in chloroplasts.	
Tsudzuki T., Hirose T., Fan H., Suzuki J.Y., Wakasugi T., Kössel H., Sugiura M.	687
Organization of the light-responsive cis-elements of tobaco psaDb gene.	
Yamamoto Y.Y., Kondo Y., Nakamura M., Obokata J.	691
In vivo and in vitro analysis of translation of psbA transcripts in tobacco chloroplasts.	
Hirose T., Sugita M., Sugiura M.	695
Acid-labile, histidine phosphoproteins in chloroplasts and mitochondria : possible candidates for	
Redox sensor kinases.	
Allen J.F., Davies P.N., Forsberg J., Hakansson G., Tullberg A.	699
Regulatory elements involved in the expression of nuclear genes for plastid proteins.	
Bolle C., Herrmann R.G., Oelmuller R.	703
Genetic transformation of cowpea (Vigna unguiculata L. Walp) by A. tumefaciens using cotyledons	
as explants	
Gnanam A., Muthukumar B., Mammen M., Veluthambi K.	707
13. PROTEIN TRANSLOCATION AND ASSEMBLY	711
Unexpected diversity of routing processes for nuclear-encoded thylakoid proteins and its phylogenetic i	impact.
Herrmann R.G., Karnauchov I., Dörfel P., Altschmied L., Pakrasi H., Klosgen R.B.	713
Molecular analysis of CtpA, the carboxyl-terminal processing protease for D1 protein of	
Photosystem II, in higher plants and cyanobacteria.	
Pakrasi H.B., Oelmüller R., Herrmann R.G., Shestakov S.V.	710

xvii

Pakrasi H.B., Oelmüller R., Herrmann R.G., Shestakov S.V. 719

xviii

The protein import machinery of chloroplasts.	
Soll J., Seedorf M.	725
Functional domains of the ferredoxin transit sequence involved in chloroplast import: the role of	
specific regions in the recognition of envelope membrane lipids.	
Weisbeek P., Demel R., van't Hof R., de Kruijff B., Pilon M.	731
Epistatic effects in thylakoid protein synthesis : the example of cytochrome f.	
Wollman F.A., Kuras R., Choquet Y.	737
Characterization of PsbW, the only nuclear-encoded component of the Photosystem II reaction center complex.	
Lorkovic Z.J., Schroeder W.P., Pakrasi H.B., Irrgant K.D., Herrmann R.G., Oelmüller R.	743
Translocation of cytochrome f across the chloroplast thylakoid membrane.	
Mould R.M., Knight J.S., Bogsch E., Gray J.C.	747
Characterization of cDNA for pea chloroplast SecA.	
Kapazoglou A., Gray J.C.	751
Thylakoidal protein transport by the Sec-dependent pathway : the involvement of ΔpH .	
Mant A., Robinson C.	755
The heterologous import of a precursor-protein into isolated chloroplasts directed by a bipartite	
transit sequence.	
Brandt P.	759
Characterization of a transport-competent FAD-containing precursor of chloroplast ferredoxin-NADP+ reductase synthesized in Escherichia coli.	
Serra E.C., Krapp A.R., Feldman M.F., Ottado J., Ceccarelli E.A., Carrillo N.	763
Specificity of processing enzymes in chloroplasts of Chlamydomonas reinhardtii.	
Rufenacht A., Boschetti A.	767
Recognition signal for processing protease on D1 precursor protein of PS II reaction center.	
Yamamoto Y., Taguchi F., Satoh K.	771
Barley mutant Chlorina-104 cannot import LHCA2 into chloroplasts under restrictive growth.	
Meyer D.U., Knoetzel J., Grimme L.H.	775
Tryptophan 167 in loop C of the CP47 protein is required for the stable assembly of functional Photosys II in reaction centers.	stem
Wu J., Bricker T.M.	779
Carboxyl-terminal processing protease for D1 precursor protein in spinach.	
Inagaki N., Mori H., Fujita S., Yamamoto Y., Satoh K.	783
Detection of the P-subunit of the CIp-protease in chloroplasts.	
Wess-Wichert C., Altenfeld U., Johanningmeier U.	787
Structure-function of the D1 polypeptide in Synechocystis 6803.	
Wiklund R., Salih G., Gerez C., Jansson C.	791
Thylakoid protein translocation by the ΔpH -dependent transporter is not accompanied by a large	
increase in membrane conductivity.	
Teter S.A., Theg S.M.	795

The protein translocation system of cyanobacteria.	
Barbrook A.C., Packer J.C.L., Howe C.J.	799
Import of the PsaF Photosystem I protein from Chlamydomonas reinhardtii into both chloroplasts and mitochondria.	
Franzen L.G., Dahlin C., Hugosson M., Nurani G., Glaser E.	803
Electrostatic interactions are involved in the assembly of PsaD into photosystem I.	
Minai L., Nechushtai R.	807
Roles of Sec proteins in protein transport within chloroplasts.	
Endo T., Nohara T., Goto A., Nakai M.	811
Resolution of thylakoid polyphenol oxidase and a protein kinase.	
Race H.L., Davenport J.W., Hind G.	815
Synthesis and assembly of the D1 protein in isolated thylakoids and chloroplasts.	
van Wijk K.J., Bingsmark S., Aro E.M., Andersson B.	819
Mechanism of replacement of the D1 protein in Photosystem II and localisation of assembly	
intermediates.	
van Wijk K.J., Andersson B., Aro E.M.	823
The inhibition by Cu2+ of the import of polyphenol oxidase into chloroplasts.	
Sommer A., Ne'eman E., Koussevitzky S., Hunt M.D., Steffens J.C., Mayer A.M., Harel E.	827
Purification and characterization of the carboxyl terminal processing protease of the D1 protein of Photosystem II from Pisum sativum.	
Magnin N., Hunt A., Camilleri R., Thomas P., Ridley S., Bowyer J.	831
Cations control the association of a stroma protease to thylakoids. Involvement of the proteolytic	
activity in « low-salt »-induced grana unstacking and pigment-protein complex organization?	
Tziveleka A.L., Argyroudi-Akoyunoglou J.H.	835
Isoprenylated proteins in spinach thylakoid membranes.	
Shipton C.A., Parmryd I., Dallner G., Andersson B.	839
Accumulation of translational intermediates of D1 protein in pea chloroplasts in the dark.	
Kuroda H., Satoh K.	843
The assembly of the light-harvesting complex I in Rhodobacter capsulatus.	
Meryandini A., Brand M., Drews G.	847
Neutral aminopeptidases in dark- and light-grown and greening Euglena gracilis.	
Young B., Erdos G., Buetow D.E.	849
An analysis of precursor protein binding and translocation into carotenoid-deficient plastids.	
Dahlin C.	853
Studies on the assembly of the oxygen-evolving complex from subunits newly imported into isolated	
intact chloroplasts.	
Hashimoto A., Yamamoto Y., Theg S.M.	857
Rapid degradation of mistargeted OEE33 in the chloroplast stroma.	
Halperin T., Adam Z.	861

xix

Elimination of PS II-H phosphorylation in Chlamydomonas reinhardtii does not affect PS II assembly or function.

Cheater A.J., O'Connor H.E., Ruffle S.V., Nugent J.H.A., Purton S.	865
14. BIOSYNTHESIS OF TETRAPYRROLES; LIPID METABOLISM	869
Roles of envelope membranes in plastid development and cell metabolism.	
Joyard J., Block M.A., Dorne A.J., Rolland N., Douce R.	871
Evidence for two different pathways for the formation of isocyclic ring E of bacteriochlorophyll a in Rhodobacter sphaeroides and Roseobacter denitrificans using 18O-labelling and mass spectrometry.	
Рогта R.J., Schäfer W., Katheder I., Scheer H., Gad'on N., Drews G.	881
Light stress proteins (ELIPs); the intriguing relatives of cab gene family.	
Adamska I.	887
Light-dependent protochlorophyllide oxidoreductase, phytochrome and greening in Arabidopsis	
thaliana	
Frick G., Apel K., Armstrong G.	893
Evolutionary relatedness of the bacteriochlorophyll and chlorophyll biosynthetic pathways.	
Bauer C.	899
Blue-light regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomor reinhardtii.	nas
Matters G.L., Beale S.I.	905
Photoregulation of chlorophyll and carotenoid synthesis during plant development.	
Tripathy B.C.	911
Effect of the growth light intensity and N2O on the photosynthetic apparatus in Chlorobium tepidum.	
Gerola P.D., Miller M., Cox R.P.	917
Regulatory mutation affecting chlorophyll biosynthesis in Chlamydomonas reinhardtii.	
Chekunova E.M., Yaronskaya E.B., Shalygo N.V., Averina N.G., Chunayev A.S.	921
Influence of light, 5-aminolevulinic acid, homocysteine and dipyridyl on magnesium-chelatase	
activity and porphyrin accumulation in plants.	
Averina N.G., Yaronskaya E.B., Rassadina V.V., Shalygo N.V., Walter G.	925
A novel pathway of chlorophyll biosynthesis that operates in de-etiolated plants of Arabidopsis	
thaliana.	
Lebedev N., van Cleve B., Armstrong G., Apel K.	929
Changes in the biosynthesis and catabolism of the polyamines in isolated plastids during the	
chloroplast photodevelopment.	
Andreadakis A., Kotzabasis K.	933
Tetrapyrrole synthesis in leaves and roots of a barley albina mutant with extremely low amount of	
plastid glutamyl-tRNA.	
Walter G., Müller A., Hoffmann P., Börner T.	937

Expression patterns of chloroplast genes involved in light-dependent chlorophyll synthesis in	
liverwort cells.	
Takio S., Satoh T.	941
Integration and turnover of Photosystem II pigment.	
Raskin V., Fleminger D., Marder J.B.	945
Short-wavelength protochlorophyllide forms and their phototransformation in the epicotyl of pea	
(Pisum sativum).	
Böddi B., Ryberg M., Sundqvist C.	949
Photosynthesis and light energy dissipation in senescing leaves of grass mutants blocked in	
chlorophyll degradation.	
Souriau N., Hauck B., Gay A., Foyer C., Thomas H.	953
Biotin enzymes in higher plants.	
Alban C., Baldet P., Dehaye L., Job C., Jullien J., Job D., Douce R.	957
Genetic analysis of protochlorophyllide reduction in the cyanobacterium Plectonema boryanum.	
Fujita Y., Takagi H., Hase T.	961
Chloroplast synthesis may be a phosphoinositide-mediated event.	
Lyman H.	965
Effects of CeCI3 on the Chl-protein complexes of cucumber chloroplasts in relation to Fe2+.	
Chu Z.X., Mu M.H., Wang F.Z., Shao H.X.	969
Localization of the membrane bound $\Delta 12$ desaturase in Synechocystis sp.PCC 6803.	
Mustardy L., Los D., Gombos Z., Murata N.	973
Porphyrin degradation by a plant soluble fraction.	
Yoshida K., Böger P.	977
Characterization and some properties of pheophorbidase from Chenopodium album.	
Watanabe K., Tsuchiya T., Masuda T., Ohta H., Takamiya K.I., Shioi Y.	981
Substrate specificity studies of reaction center proteins P700, CP47, CP43, D2 and D1 for binding of chlorophyll.	
Eichacker L.A., Helfrich M., Rüdiger W., Müller B.	985
Contribution of lipids to PS II.	
Sato N., Sonoike K., Tsuzuki M., Kawaguchi A.	989
Evidence for light-independent synthesis and turnover of Chl a in a mutant barley lacking Chl b.	
Walmsley J., Adamson H.	993
Hydrogenation of chlorophyll alcohol side chain and its role on photosynthesis.	
Shibata M., Tsuyama M., Kitagawa Y., Kobayashi Y.	9 97
Biosynthesis of isoprenoid chains of chlorophylls and plastoquinone in Scenedesmus by a novel	
pathway.	
Schwender J., Lichtenthaler H.K., Seemann M., Rohmer M.	1001
Chlorophyll formation in the Lip1 mutant of pea.	
Sundqvist C., Seyyedi M., Timko M.P.	1005

xxi

xxii

Spectral heterogeneity of the photoinactive protochlorophyllide in dark-grown bean leaves and pine cotyledons. Schoefs B., Bertrand M., Franck F.

Schoefs B., Bertrand M., Franck F.	1009
Role of NADPH : protochlorophyllide reductase in photoprotection of newly formed chlorophyllide.	
Schoefs B., Franck F.	1013
Study of UV-B effect on photoactive protochlorophyllide complexes photoconversion.	
Eullafroy P., Juneau P., Popovic R.	1017
Genes for Mg-chelatase subunits in wild type and mutants of barley.	
Petersen B.L., Stummann B.M., Jensen P.E., Willows R.D., Vorthknecht U., Kannangara G.C.,	
von Wettstein D., Henningsen K.W.,	1021

Index of names

1025

THE PROTEIN IMPORT MACHINERY OF CHLOROPLASTS.

Soll, Jürgen and Seedorf, Matthias Botanisches Institut, Univertät Kiel Am Botanischen Garten 1-9, D-24118 Kiel, Germany

1. Introduction

The vast majority of plastid localized protein are nuclear encoded, synthesized in the cytosol and imported into the organelle in a posttranslational event (1, 2). The polypeptides are synthesized in the cytosol in general with an NH2-terminal extension, called pre- or transitsequence which is responsible for targeting, i.e. recognition of the proper organelle, and for keeping the precursor protein in a conformation which allows binding and translocation (2,3). The plastid directing presequence is cleaved off in the stroma by a stromal processing protease. After cleavage proteins are assembled into functional active units, or further sorting and transport signals are revealed, e.g. for translocation across the thylakoids, and start a new round of membrane translocation (4). Major chloroplast protein components, e.g. the small subunit of Rubisco, ferredoxin, LHCP, plastocyanin and the subunits of the oxygen evolving complex have been suggested to use the same recognition and translocation systems localized in the chloroplasts envelope membranes. The data indicate that one general import machinery exists in the plastid envelope membranes which is responsible for the bulk import of proteins into plastids (2, 3). Alternative pathways for a number of proteins exists and have been described, but these are mostly localized in the envelope membranes (5). This report will describe, how components of the chloroplast import machinery were identified in recent years, what might be their functions and how this could be regulated.

2. Results

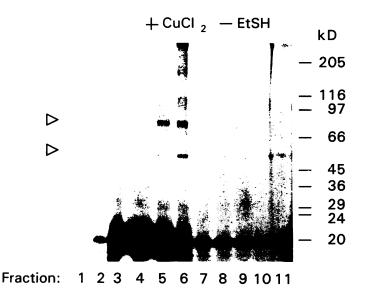
Protein import into chloroplasts can experimentally be devided and halted at different steps. In the absence of exogenous ATP a precursor protein binds preferentially to protease sensitive chloroplast surface component, but remains in a completely protease accessible location (6). Upon raising the ATP concentration between 10-50 μ M the precursor becomes forwarded into the translocation apparatus which renders the precursor partially protease protected (7, 8). Raising the ATP concentration above 100 μ M

⁷²⁵

P. Mathis (ed.), Photosynthesis: from Light to Biosphere, Vol. III, 725–730. © 1995 Kluwer Academic Publishers. Printed in the Netherlands.

results in increasing yields of import. 1-3 mM ATP are sufficient for maximal import yields (9). Precursor protein import is also impaired or comes to a stop at 0°C even in the presence of ATP. These experimental manipulations have resulted in a number of well described translocation intermediates, which can be used to identify the envelope membrane components with whom the precursor protein interacts at a given *in vitro* condition (8, 10).



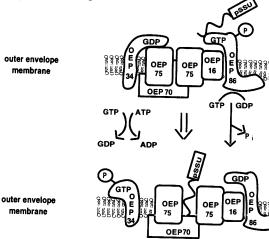

Figure 1. Chloroplasts bound preSSU can be crosslinked to envelope proteins by CuCl₂. A) Intact chloroplasts either not treated or treated with the protease thermolysin (Th_{pre}, as indicated) were incubated with preSSU at 50 μ M ATP for 5 min. Chloroplasts were reisolated and treated with 1 mM CuCl₂ for 5 min (when indicated). Crosslink products were analysed by SDS-PAGE under non reducing conditions and fluorography. B) Four crosslink experiments as in A, lane 4, were carried out in parallel. Chloroplasts were reisolated, pooled and solubilised by 0.5 % digitonin. Immunoprecipitation was carried out, using a preimmune- (PIS) or immune-serum to OEP75 (anti OEP75). The precipitate was analyzed by SDS-PAGE under reducing conditions and fluorography.

2.1 Identification of import machinery components by chemical crosslinking. Perry and Keegstra (6) have used a label transfer (¹²⁵J) thiol cleavable crosslinker bound to preSSU to label envelope proteins in close vicinity to the precursor proteins. Their studies showed that the outer

envelope protein OEP86 interacts with preSSU very early in the translocation process, while in the presence of ATP OEP75 became the preferentially labelled target. OEP86 is a protease sensitive constituent of the outer envelope while OEP75 is very protease resistent (11, 12). We have used the thiol oxidant $CuCl_2$ as a crosslinker (13). Upon oxidation by CuCl₂ the thiol groups can form inter- and intramolecular disulfide bridges (14, 15). The redox status of thiol-groups seems important for a productive precursor protein import process (16) and it was possible to show that protein import into chloroplasts is reversibly inhibited upon CuCl₂ oxidation (13). Indeed, when pea chloroplasts were incubated with preSSU at 50 μ M ATP and subsequently treated with 1 mM CuCl₂ several crosslink products could be detected (Fig. 1A). One crosslink product at a molecular size between 90-95 kDa was especially prominent. This radiolabelled crosslink product could be immunprecipitated specifically with an antiserum against OEP75 but not with the preimmune serum (Fig. 1B). The OEP75-preSSU disulfide bridge was formed neither in the absence of CuCl₂ nor under conditions which favour import, i.e. 3 mM ATP or which inhibit a precursor chloroplast interaction, i.e. when chloroplasts were pretreated with protease (Fig. 1A). These data show that thiol groups of preSSU and OEP75 are exposed during their interaction and in such close physical proximity that they can form a covalent connection via a disulfide bridge upon oxidation with CuCl₂. CuCl₂ can thus be used a "zero Å" crosslinker. Non cleavable chemical crosslinkers have been used in a number of studies and lead to the identification of further proteins, e.g. OEP62 (17), OEP45, OEP34, OEP24 and OEP15 (18), which could be involved in precursor protein import into chloroplasts. The molecular size of the OEP's was an estimate after substraction of the size of the precursor protein used and might not reflect exactly the correct size of the target protein. In another study translocation intermediates of the chimeric protein precursor OEE1-DHFR generated after chemical cross-linking were and and COimmunoprecipitation with specific antibodies shown to interact with OEP70 (an hsc70 homologue), OEP44 and the inner envelope protein IEP97 (19).

2.2 Isolation of the envelope localized import machinery and description of the constituents. Purified right-side out outer envelope membrane vesicles isolated from pea chloroplasts were solubilized by digitonin and fractionated by sucrose-density centrifugation. This procedure resulted in the enrichment of a membrane protein-complex which interacted specifically with preSSU in the presence of ATP but not with SSU (20). Furthermore translocation intermediates detected in intact chloroplasts were also found in this import complex after protease treatment. This indicated that not only a functionally active receptor but that also part of the translocation apparatus was retained actively in this isolated membraneprotein complex (8, 20). Furthermore preSSU can be crosslinked to OEP75 in the isolated complex by CuCl₂ (Fig. 2) corroborating our conclusion that the isolated envelopes and the import complex represent bonafide systems to study early events in protein translocation into chloroplasts (8, 20). Another labelled product at 50 kDa could represent a crosslink with OEP34, but was not further analyzed (Fig.2).

Major constituents of the isolated import complex are OEP86, OEP75, OEP70, OEP34 and OEP16 (8, 10, 20). OEP86 is very sensitive to exogenous added protease (11, 21). In addition FAB fragments of


Figure 2. PreSSU interacts with OEP75 in the isolated import complex. Purified pea chloroplast outer envelope membranes were incubated with [³⁵S] labelled preSSU at 50 μ M ATP (8). Membranes were recovered by centrifugation through a sucrose cushion, washed once and solubilized with digitonin (8). The mixture was separated on a linear 5-20 % (w/v) sucrose density gradient and fractionated from the top (fraction1) into 11 aliquots. Each sample was treated with 1 mM CuCl₂ for 30 min and further analysed by SDS-PAGE under non reducing. A fluorogram is shown.

antibodies to OEP86 could inhibit binding and import of preSSU into chloroplasts (21). Taken together these data indicate that OEP86 functions as a receptor for precursor proteins. The gene coding for OEP86 was isolated recently (21, 22) and it was demonstrated that OEP86 has specific and separate binding sites for ATP and GTP (21, 22, 23). Furthermore OEP86 is posttranslationally modified by ATP dependent protein phosphorylation (24), indicating a highly regulatable process of receptorprecursor protein interaction (25).

The gene coding for OEP34 was also recently cloned (22, 23). OEP34 represents a new type of GTP-binding (26) which shows outside the conserved GTP-binding domains no further homology to any known protein except to the NH₂-terminal 30 kDa of OEP86 (21, 22). OEP34 is anchored into the outer envelope membrane by a carboxyterminal hydrophobic domain, while most of the polypeptide including the GTP-binding motifs pertrude into the cytosol (23). In *E.coli* overexpressed and partially purified OEP34 exhibits GTPase activity (23). When outer envelope membrane proteins are separated on SDS-PAGE in the absence of mercaptoethanol or DTT a covalent association between OEP75 and OEP34 can be detected which is reversible by a reductant (23). In the presence of CuCl₂ a high

molecular weight complex is formed which contains as major constituents OEP86, OEP75 and OEP34 (13). OEP34 contains only one cysteine in its primary amino acid sequence. From the data mentioned above it can be concluded that OEP75 and OEP34 interact directly via thiol groups while OEP86 interacts with OEP75 but not with OEP34 via thiol groups or disulfide bridges. As deduced from the crosslinking data (6) and from the sequence data (12) OEP75 might represent part of the primary translocation pore. Due to the close interaction of OEP75 with OEP34 it can be envisioned that OEP75 is regulated by the GTP-binding properties of OEP34. We have also isolated the gene coding for OEP16 (Pohlmeyer and Soll, unpublished) which forms a major crosslink product with preSSU (18). The coding sequence for OEP16 shows no obvious sequence similarity to anv other known proteins. OEP16 and OEP34 are like OEP86 posttranslationally modified by ATP-dependent proteinphosphorylation (23, 24, Soll, unpublished). In addition the sequence data known sofar for components of the outer envelope translocation machinery show no homology to other proteins, indicating that a new translocation apparatus for plastids was developed during evolution. This seems especially due in comparison to constituents of the import machinery of the second semiautonomous cell organelles in plant cells, i.e. mitochondria. Mitochondria seem to import preproteins by a similar mechanism in plants, fungi and animals which is not influenced by guanosin-nucleotides or posttranslational modification.

Together these data lead to a mechanistic model of precursor protein import which is unique to plastids (Fig. 3).

Figure 3. Hypothetical model of protein import into plastids. A chloroplast destined precursor protein, e.g. preSSU, interacts in an high affinity binding mode with OEP86. This could require either a guanosin nucleotide exchange or phosphorylation. To enable the precursor protein to move further in the translocation process the receptor-precursor protein affinity has to be changed by guanosin nucleotide exchange or dephosphorylation. In addition the productive interaction between the receptor and the translocation machinery might require one of the above mentioned

posttranslational modifications. The major constituent of the putative translocation pore OEP75 could be regulated via an GTP-GDP-exchange at OEP34 and change the open-close properties of the putative pore or its affinity to the precursor protein. The function of OEP16 is sofar unknown. OEP70 might function to keep the precursor in a translocation competent conformation or to pull the preprotein across the membrane.

Acknowledgements: This work was supported in part by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie.

References

- 1 Chua, N.-H. and Schmidt, G.W. (1979) J. Cell Biol. 81, 461-483
- 2 de Boer, A.D. and Weisbeek, P.J. (1991) Biochim. Biophys. Acta 1071, 221-253
- 3 Keegstra, K., Olsen, L.J. and Theg, S.M. (1989) Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 471-501
- 4 Robinson, C. and Klösgen, R.B. (1994) Plant Mol. Biol. 26, 15-25
- 5 Soll, J. and Alefsen, H. (1993) Physiol. Plant. 87, 433-440
- 6 Perry, S.E. and Keegstra, K. (1994) Plant Cell 6, 93-105
- 7 Olsen, L.J., Theg, St.M., Selman, B.R. and Keegstra, K. (1989) 6724-6729
- 8 Waegemann, K. and Soll, J. (1991) Plant J. 1, 149-158
- 9 Theg, St.M., Bauerle, C., Olsen, L.J., Selman, B.R. and Keegstra, K. (1989) J. Biol. Chem. 264, 6730-6736
- 10 Waegemann, K. and Soll, J. (1993) in the Molecular Mechanisms of Membrane Traffic (Morré, D.J., Howell, E. and Bergeron, J.J.M., eds) NATO ASI Series, Vol. H 74, pp. 101-104, Springer, Berlin, Germany
- 11 Waegemann, K., Eichacker, S. and Soll, J. (1992) Planta 187, 89-94
- 12 Kessler, F., Blobel, G., Patel, H.A. and Schnell, D.J. (1994) Science 266, 1035-1039
- 13 Seedorf, M. and Soll, J. (1995) FEBS Lett. 367, 19-22
- 14 van Iwaarden, P.R., Driessen, A.J.M. and Konings, W.N. (1992) Biochim. Biophys. Acta 1113, 161-170
- 15 Kobashi, K. (1968) Biochim. Biophys. Acta 158, 239-245
- 16 Pilon, M., de Kruijff, B. and Weisbeek, P.J. (1992) J. Biol. Chem. 267, 2548-2556
- 17 Cornwell, K.L. and Keegstra, K. (1987) Plant Physiol. 85, 780-785
- 18 Alefsen, H., Waegemann, K. and Soll (1994) J. Plant Physiol. 144, 339-345
- 19 Wu, C., Seibert, F.S. and Ko, K. (1994) J. Biol. Chem. 269, 32364-32271
- 20 Soll, J. and Waegemann, K. (1992) Plant J. 2, 253-256
- 21 Hirsch, St., Muckel, E., Heemeyer, F., von Heijne, G.V. and Soll, J. (1994) Science 266, 1989-1992
- 22 Schnell, D.J., Kessler, F. and Blobel, G. (1994) Science 266, 1007-1012
- 23 Seedorf, M., Waegemann, K. and Soll, J. (1995) Plant J. 7, 401-411
- 24 Soll, J., Berger, V. and Bennett, J. (1989) Planta 177, 393-400
- 25 Soll, J. (1995) Botanica Acta 108, in press
- 26 Bourne, H.R., Sanders, D.A. and McCormick, F. (1991) Nature 349, 117-127