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ABSTRACT 
Visual techniques provide an intuitive way of making sense of the 
large amounts of microposts available from social media sources, 
particularly in the case of emerging topics of interest to a global 
audience, which often raise controversy among key stakeholders. 
Micropost streams are context-dependent and highly dynamic in 
nature. We describe a visual analytics platform to handle high-
volume micropost streams from multiple social media channels. 
For each post we extract key contextual features such as location, 
topic and sentiment, and subsequently render the resulting multi-
dimensional information space using a suite of coordinated views 
that support a variety of complex information seeking behaviors. 
We also describe three new visualization techniques that extend 
the original platform to account for the dynamic nature of micro-
post streams through dynamic topography information landscapes, 
news flow diagrams and longitudinal cross-media analyses. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfaces – 
interaction styles. I.3.6. [Computer Graphics]: Methodology and 
Techniques – Interaction Technique. 

General Terms 
Algorithms, Measurement, Design, Human Factors 

Keywords 
Social Media Analytics, Microposts, Contextual Features, News 
Flow, Dynamic Visualization, Information Landscape  

1. INTRODUCTION 
The ease of using social media channels has enabled people from 
around the world to express their opinions and propagate local or 
global news about virtually every imaginable topic. In doing so, 
they most often make use of short text messages (tweets, status 
updates) that we collectively refer to as microposts. Given the 
high volume, diversity and complex interdependency of social 
media-specific micropost streams, visual techniques play an in-
creasingly important role in making sense of these novel data 
sources. Visual techniques can support analysts, journalists and 

marketing managers alike in taking the pulse of public opinion, in 
understanding the perceptions and preferences of key stakehold-
ers, in detecting controversies, and in measuring the impact and 
diffusion of public communications. This is particularly true for 
domains that pose challenges through their global reach, the com-
peting interests of many different stakeholders, and the dynamic 
and often conflicting nature of relevant evidence sources (e.g., 
environmental issues, political campaigns, financial markets). 

To support such scenarios across application domains, we have 
developed a (social) media monitoring platform with a particular 
focus on visual analytics (Hubmann, 2009). The platform enables 
detecting and tracking topics that are frequently mentioned in a 
given data sample (e.g., a collection of Web documents crawled 
from relevant sources). The advanced data mining techniques 
underlying the platform extract a variety of contextual features 
from the document space. A visual interface based on multiple 
coordinated views allows exploring the evolution of the document 
space along the dimensions defined by these contextual features 
(temporal, geographic, semantic, and affective), and subsequent 
drill-down functionalities to analyze details of the data itself. In 
essence, the platform has the key characteristics of a decision 
support system, namely: 1) it aggregates data from many diverse 
sources; 2) it offers an easy to use visual dashboard for observing 
global trends; 3) it allows both a quick drill-down and complex 
analyses along the dimensions of the extracted contextual fea-
tures. We briefly report on the overall platform in Section 3. 

The platform has been originally designed to analyze traditional 
news media, but from early 2011 we have adapted it to support 
micropost analysis, taking advantage of the robust infrastructure 
for crawling, analyzing and visualizing Web sources. The multi-
dimensional analysis enabled by the original design of the portal 
is well suited for analyzing contextual features of microposts. 
However, the visualization metaphors did not properly capture the 
highly dynamic nature of micropost streams, nor did they allow 
cross-comparison between social and traditional media sources. 
Our latest research therefore focuses on novel methods to support 
temporal analysis and cross-media visualizations. In sections 4, 5 
and 6 we describe these novel visualizations. 

2. RELATED WORK 
With the rise of the social networks (Heer, 2005), understanding 
large-scale events through visualization emerged as an important 
research topic. Various visual interfaces have been designed for 
inspecting news or social media streams in diverse domains such 
as sports (Marcus, 2011), politics, (Diakopoulos, 2010; Shamma, 
2009; Shamma, 2010), and climate change (Hubmann, 2009).  
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Researchers have emphasized different aspects of extracting 
useful information including (sub-)events (Adams, 2011), topics 
(Hubmann, 2009), and video fragments (Diakopoulos, 2011). Vox 
Civitas, for example, is a visual analytic tool that aims to support 
journalists in getting useful information from social media streams 
related to televised debates and speeches (Diakopoulos, 2010). In 
terms of the number and type of social media channels that are 
visualized, most approaches focus primarily on Twitter, while 
streams from Facebook and YouTube are visualized to a lesser 
extent (Marcus, 2010). We regard these three channels as equally 
important and visualize their combined content. 

To reflect the dynamic nature of social media channels, some 
visualizations provide real-time updates displaying messages as 
they are published, and also projecting them onto a map – e.g., 
TwitterVision.com or AWorldofTweets.frogdesign.com. Given the 
computational overhead, however, real-time visualizations are the 
exception rather than the norm, since most projects rely on update 
times anywhere between a few minutes and a few days. 

Visual techniques render microposts along dimensions derived 
from their contextual features. Most frequently, visualization rely 
on temporal and geographic features, but increasingly they exploit 
more complex characteristics such as the sentiment of the microp-
ost, its content (e.g., expressed through relevant keywords), or 
characteristics of its author. Indeed, user clustering as seen in 
ThemeCrowds (Archambault, 2011) or geographical maps (e.g., 
(Marcus, 2011), TwitterReporter (Meyer, 2011)) are must-have 
features for every system that aims to understand local news and 
correlate them with global trends. Commercial services such as 
SocialMention.com and AlertRank.com use visualizations to track 
sentiment across tweets. During the 2010 U.S. Midterm Elections, 
sentiment visualizations have been present in all major media 
outlets from New York Times to Huffington Post (Peters, 2010). 

Fully utilizing contextual features requires the use of appropriate 
visual metaphors. In general, social media visualizations rely on 
one of the following three visual metaphors:  

 Multiple Coordinated Views, also known as linked or tightly 
coupled views in the literature (Scharl, 2001), (Hubmann, 
2009), ensures that a change in one of the views triggers an 
immediate update within the others. For example, the inter-
face of Vox Civitas uses coordinated views to synchronize a 
timeline, a color-coded sentiment bar, a Twitter flow and a 
video window which helps linking parts of the video to rele-
vant tweets (Diakopoulos, 2010). Additionally, (Marcus, 
2011) use the multiple coordinated views in their system 
geared towards Twitter events and offer capabilities to drill 
down into sub-events and explore them based on geographic 
location, sentiment and link popularity.  

 Visual Backchannels (Dork, 2010) represent interactive 
interfaces synchronizing a topic stream (e.g., a video) with 
real-time social media streams and additional visualizations. 
This concept has evolved from the earlier concept of digital 
backchannel, referring to news media outlets supplementing 
their breaking news coverages with relevant tweets – e.g., 
during political debates or sport games (Shamma, 2010). 
However, additionally to the methods described in Hack the 
Debate (Shamma, 2009) and Statler (Shamma, 2010), tools 
that use the visual backchannel metaphor display not only the 
Twitter flow that corresponds to certain media events such as 
debates, but also a wealth of graphics and statistics.  

 Timelines follow the metaphor with the longest tradition, 
well suited for displaying the evolution of topics over time. 
Aigner et al. present an extensive collection of commented 
timelines (Aigner, 2011). The work by Adams et al. (Adams, 
2011) is similar to our approach as it combines a color-coded 
sentiment display with interactive tooltips. 

Beyond understanding micropost streams, a challenging research 
avenue compares the content of social media coverage with that of 
traditional news outlets. Cross-media analysis based on social 
sources is a relatively new field, but promising results have been 
published recently. In most cases comparisons are made between 
two sources such as Twitter and New York Times (Zhao, 2011), 
or Twitter and Yahoo! News (Hong, 2011). (Zhao, 2011) com-
pares a Twitter corpus with a New York Times corpus to detect 
trending topics. For the New York Times, they apply a direct 
Latent Dirichlet Allocation (LDA), while for Twitter they use a 
modified LDA under the assumption that most tweets refer to a 
single topic. They use metrics including the distribution of catego-
ries, breadth of topics coverage, opinion topic and the spread of 
topics through re-tweets, and show that most Twitter topics are 
not covered appropriately by traditional news media channels. 
They conclude that for spreading breaking world news, Twitter 
seems to be a better platform than a traditional medium such as 
New York Times. Hong et al. compare Twitter with Yahoo! News 
to understand temporal dynamics of news topics (Hong, 2011). 
They show that local topics do not appear as often in Twitter, and 
they go on to compare the performance of different models (LDA, 
Temporal Collection, etc). (Lin, 2011) conducts a study on media 
biasing on both social networks and news media outlets, but is 
focused only on the quantity of mentions. While these studies 
highlight differences between social and news media, they typi-
cally lack visual support for monitoring diverse news sources. 

3. ACQUISITION AND AGGREGATION 
OF CLIMATE CHANGE MICROPOSTS  
Climate Change is a global issue characterized by diverse opin-
ions of different stakeholders. Understanding the key topics in this 
area, their global reach and the opinions voiced by different par-
ties is a complex task that requires investigating how these dimen-
sions relate to each other. The Media Watch on Climate Change 
portal (www.ecoresearch.net/climate) addresses this task by 
providing advanced analytical and visual methods to support 
different types of information seeking behavior such as browsing, 
trend monitoring, analysis and search.  

The underlying technologies have originally been developed for 
monitoring traditional news media (Hubmann, 2009) and have 
recently been adapted for use with social media sources, in partic-
ular micropost content harvested from Twitter, YouTube and 
Facebook. Between April 2011 and March 2012, the system has 
collected and analyzed an estimated 165,000 microposts from 
these channels. To support a detailed analysis of the collected 
microposts, we use a variety of visual metaphors to interact with 
contextual features along a number of dimensions: temporal, 
geographic, semantic and attitudinal. A key strength of the inter-
face is the rapid synchronization of multiple coordinated views. It 
allows selecting the relevant data sources and provides trend 
charts, a document viewing panel as well as just-in-time infor-
mation retrieval agents to retrieve similar documents in terms of 
either topic or geographic location. The right side of the interface 
contains a total of four different visualizations (two of which are 
being shown in Figure 1), which capture global views on the 
dataset. In addition to the shown semantic map (= information 
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