WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Context-Aware Sentiment Detection

Albert Weichselbraun February 10, 2011

- Motivation
 - On the Need for Contextualization
 - Indicators for Missing Context
- Method
 - Context-Aware Sentiment Detection
 - Creation of Contextualized Sentiment Lexicons
 - Example
 - Cross-corpus Contextualized Sentiment Lexicons
- Evaluation
- Outlook and Conclusions

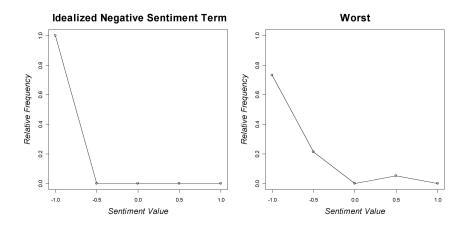
Motivation

3 / 28

- Pang et. al (2002): state of the art machine learning approaches do not unfold their full potential when applied to sentiment detection
- Lexicon-based approach
 - no labeled training corpus necessary
 - applicable across domains
 - throughput

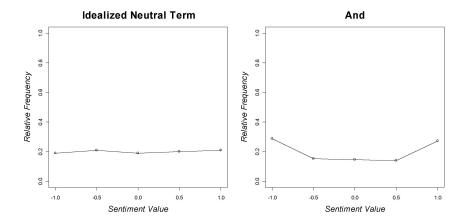
Positive	Negative
The repair of my car was satis-	I had many complaints after my
fying.	camera's repair.
This movie's plot is unpre-	The breaks of this car are un-
dictable.	predictable.
The long peace brought wealth	This peace is a lie.
and safety to the people.	

Image: A image: A

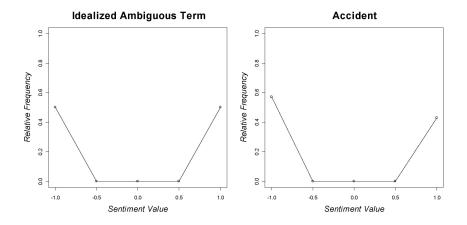


Motivation 5 / 28

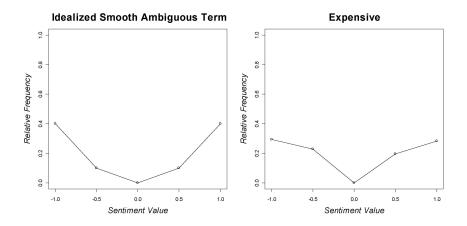
Sac



Motivation 6 / 28



Motivation 7 / 28



Sac

- Use a contextualized sentiment lexicon
 - Based on ordinary sentiment lexicons
 - Contains stable sentiment terms and ambiguous terms
 - Uses context terms for disambiguation
- Derived from online reviews (Amazon, TripAdvisor)

Refined Sentiment Detection

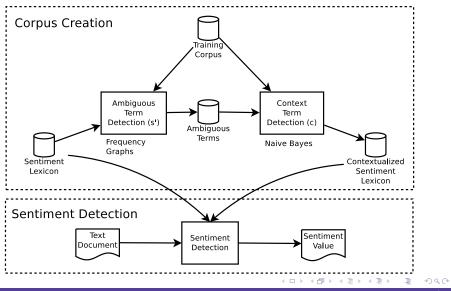
$$s_{total} = \sum_{t_i \in doc} n(t_i)[s(t_i) + s'(t_i|\mathbf{c})] \quad \text{with}$$
(1a)
$$n(t_i) = \begin{cases} -1.0 & \text{if } t_i \text{ has been negated} \\ +1.0 & \text{otherwise.} \end{cases}$$
(1b)

Context Detection

$$c = \{c_1, ..., c_n\}$$
(2a)
$$p(C_+|c) = \frac{p(C_+) \cdot \prod_{i=1}^n p(c_i|C_+)}{\prod_{i=1}^n p(c_i)}$$
(2b)

nac

Method - Contextualized Sentiment Lexicon



W

11 / 28

▶ Identify ambiguous terms (s')
→ frequency diagrams

$$\sigma_i \geq v$$
 (3)

$$\mu_i + \sigma_i \geq w \tag{4a}$$

$$\mu_i - \sigma_i \leq -w \tag{4b}$$

- ▶ Learn context terms (c) for disambiguation → conditional probabilities
- Recalculate the sentiment value of the contextualized sentiment terms

The service staff was *friendly*. They accomplished the **repair** of my car's motor very *quickly*. After driving it for another three months I can say that the motor is as *reliable* as it was before.

positive context terms	negative context terms
reliable	slowly
long-lasting	re-do
affordable	unreliable
pick-up-service	waiting
replacement-car	expensive
cooperative	cheater

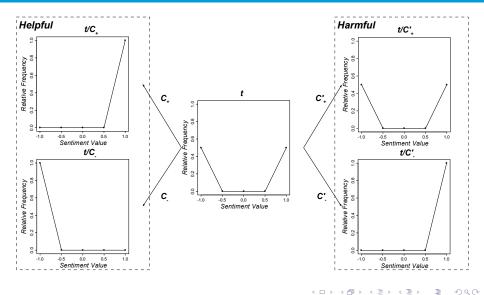
The service staff was *friendly*. They accomplished the **repair** of my car's motor very *quickly*. After driving it for another three months I can say that the motor is as *reliable* as it was before.

repair	
Context Term (c_i)	$P(C_+ c_i)$
reliable	0.80
friendly	0.70
quickly	0.65

 \Rightarrow repair is used in a positive context \rightarrow positive sentiment

Ambiguous	SV _{orig}	Example
Term		
busy	1	The hotel is located on a busy road.
complaint	-1	My only complaint would be the service.
cool	-1	Our room felt like a <i>really</i> cool European
		apartment with a rooftop terrace.
expensive	-1	The room was one of the more expensive
		hotels in Vienna but still excellent.
quality	1	Poor quality copies with one edge always
		dark.
better	1	Let's <i>hope</i> they work better .
cost	-1	Toner cost is way <i>behind</i> competitors.

イロト イポト イヨト イ

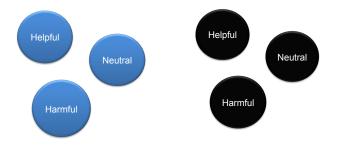


Method 16 / 28

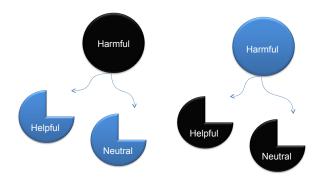
Three-step process

- Determine the helpfulness of all context terms
- Discard harmful context terms
- Merge remaining context terms into a large contextualized lexicon

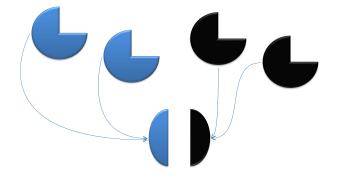
Step 1 - Determine the helpfulness of context terms



Step 2 - Discard harmful context terms



Step 3 - Merging



Evaluation - Approach

Evaluations

- 1. Comparison to a baseline
 - Do we outperform a lexicon-based approach which does not consider context?
- 2. Intra-domain sentiment detection
 - Does the removal of unstable sentiment terms has a positive effect?
- 3. Cross-domain sentiment detection
 - Determine the cross-domain performance of a *generic* contextualized sentiment lexicon.
- 4. Comparison to a machine learning approach
 - Intra-domain and cross-domain performance.

Evaluation - Setting

- Method: 10-fold cross validation
- Test corpora:
 - Equal number of positive and negative reviews.
 - Amazon: 2,500 reviews
 - TripAdvisor: 1,800 reviews

Sac

	Corpus: Amazon						
	E	Baseline	e	Con	text Av	ware	
	\overline{R} \overline{P} \overline{F}_1			\overline{R}	\overline{P}	\overline{F}_1	
Pos	0.80	0.64	0.71	0.75	0.75	0.74	
Neg	0.53	0.74	0.62	0.71	0.79	0.73	

Corpus: TripAdvisor							
Baseline Context Aware							
	\overline{R}	\overline{P}	\overline{F}_1	\overline{R}	\overline{P}	\overline{F}_1	
Pos	0.96	0.60	0.74	0.97	0.66	0.79	
Neg	0.34	0.90	0.49	0.46	0.95	0.61	

イロト イポト イヨト イ

nac

Test corpus: Amazon						
Domain-specific (Amazon) Generic						2
	\overline{R}	\overline{P}	\overline{F}_1	\overline{R}	\overline{P}	\overline{F}_1
Pos	0.75	0.75	0.74	0.77	0.72	0.74
Neg	0.71	0.79	0.73	0.67	0.77	0.72

Test corpus: TripAdvisor

	Domain-specific (TripAdvisor)				Generic	:
	\overline{R}	\overline{P}	\overline{F}_1	\overline{R}	\overline{P}	\overline{F}_1
Pos	0.97	0.66	0.79	0.89	0.74	0.81
Neg	0.46	0.95	0.61	0.66	0.87	0.75

ロト (日) (王) (王) (王) (1)

	Test corpus: Amazon					
	Domain-specific (TripAdvisor) Generic					
	\overline{R}	\overline{P}	\overline{F}_1	\overline{R}	\overline{P}	\overline{F}_1
Pos	0.76	0.67	0.71	0.77	0.72	0.74
Neg	0.58	0.73	0.64	0.67	0.77	0.72

	Domain-specific (Amazon)				Generio	2
	\overline{R}	\overline{P}	\overline{F}_1	\overline{R}	\overline{P}	\overline{F}_1
Pos	0.84	0.69	0.75	0.89	0.74	0.81
Neg	0.58	0.8	0.66	0.66	0.87	0.75

25 / 28

			Test			
			TripAdvisor	Amazon		
	TripAdvisor	\oplus	87	32		
Training	ΠΙΡΑάνισοι	\ominus	89	70		
	Amazon	\oplus	75	81		
		\ominus	60	77		

Lexicon-based approaches:

- Simple, no labelled data required
- Applicable across domains
- High throughput
- Can serve as a baseline
- Machine Learning approaches:
 - Powerful, but domain-specific
 - Require labelled training data
 - \rightarrow The introduced approach combines these advantages (cross-domain, high throughput, high performance)

- Considering context in sentiment detection
- Creation cross-domain contextualized sentiment lexicons
- Outperforms generic approaches
- Future work:
 - Different context scopes (paragraph, documents, text windows)
 - Consider other machine learning approaches