Trinity University Digital Commons @ Trinity

Understanding by Design: Complete Collection

Understanding by Design

6-2019

Evaluating Functions and their Domain and Range - 8th/9th grade Algebra

Melanie R. Webb *Trinity University*, melanierwebb@gmail.com

Follow this and additional works at: https://digitalcommons.trinity.edu/educ_understandings Part of the <u>Education Commons</u>

Repository Citation

Webb, Melanie R., "Evaluating Functions and their Domain and Range - 8th/9th grade Algebra" (2019). Understanding by Design: Complete Collection. 418. https://digitalcommons.trinity.edu/educ_understandings/418

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): melanierwebb@gmail.com. For information about the series, including permissions, please contact the administrator: jcostanz@trinity.edu.

Unit 1: Functions

	Stage 1 Desired Results				
ESTABLISHED GOALS	Transfel	r			
A.2 Linear functions,	Students will be able to independently use their	r learning to			
equations, and	Create a function machine that illustrates a situ	uation and after determining and			
inequalities. The student	expressing the domain and range numerically a	and verbally. Students will analyze the			
applies the mathematical	function, evaluating at important values, and e	expressing in various representations.			
process standards when	Meaning	g			
using properties of linear	UNDERSTANDINGS	ESSENTIAL QUESTIONS			
functions to write and	Students will understand that				
represent in multiple		Why is it helpful to have several			
ways, with and without	Functions can be represented in a variety of	different representations of the same			
technology, linear	ways. Different representations can give	function?			
equations, inequalities,	different information at a glance, serving a				
and systems of equations.	different purpose.	Why is it considered functional to			
The student is expected to:		have outputs with different inputs			
A.2(A) determine the	Being able to interpret various	but not vice-versa?			
domain and range of a	representations and analyze the				
linear function in	relationships can assist in understanding the	How can functions describe real-			
mathematical problems;	independent or dependent values within the	world situations, model predictions			
determine reasonable	relationship and whether there is cause and	and solve problems?			
domain and range values	effect.				
for real - world		How does identifying the restriction			
situations, both	Numbers have meaning. It is important to	on the domain and range of a			
continuous and discrete;	attach the meaning to values given in the	function further our understanding of			
and represent domain	equation and the resulting ordered pairs. the function?				
and range using	Many real world functional valationships can	Why does is matter to be able to link			
Inequalities.	Many real world functional relationships can	Why does is matter to be able to link			
A.12 NUMBER UNU	be represented by equations. Equations can	nurposes could this serve?			
ctudent annlies the	be used to find the solution of given real-	purposes could this server			
mathematical process					
standards and alaphraic	Students will know	Students will be skilled at			
methods to write, solve.	Definition of a function (for every input	A Identifying functions using			
analyze, and evaluate	• Definition of a function (for every input,	 Identifying functions using various methods 			
equations, relations, and	Other Vecabulary Domain Pange	Various memous.			
functions. The student is	 Other Vocabulary, Domain, Nange, Discrete Continuous 	 Vehical Line rest (Graph) Y cannot repeat with different 			
expected to:	Discrete, continuous Domain and range are the inputs and	Vc (Table Manning)			
A.12(A) decide whether	• Domain and range are the inputs and	 Evaluating functions given the 			
relations represented	and dependent variables of an equation.	innut			
verbally, tabularly,	 All functions are relations not all 	 Stating domain and range of a 			
graphically, and	relations are functions	relation using inequalities or			
symbolically define a	 Real world data can often be modeled 	lists			
function.	with a function	 Attributing meaning to values in 			
A.12(B) evaluate	 Functions can be written in various 	an equation given a situation.			
functions, expressed in	forms, including graphs, tables and	 Identifying Independent and 			
function notation, given	equations, and representations can be	Dependent Variables			
one or more elements in	translated from one to another.	Represent and describe			
their domains.	 Eunctions are a mathematical way to 	functions			
	describe relationships between two				
	quantities that vary.				

		Stage 2 - Evidence							
CODE	Evaluative	Assessment Evidence							
(M or T)	Criteria								
		PERFORMANCE TASK(S):							
	Creaters	Chudoute will exects a function machine for a real world even	alo of a function. From						
т	Create a	Students will create a function machine for a real-world exam	Students will create a function machine for a real-world example of a function. From						
1	runction.	discrete, explaining how they know. The students will determine	ne a reasonable						
	Explain key	domain and range and express appropriately according to the	situation, either as a						
	features of	list or inequalities. They will then use the domain and range to	express the relation of						
	their functio	n. the situation in two or more representations, and evaluate the	e function at the						
		extrema. The students will need to describe WHY the situation	n is a function and give						
	Evaluate	an anecdote that would then eliminate this possibility.							
	function								
	values.	OTHER EVIDENCE:							
IVI	Dotormino	Pretest Evit Tickota							
	what would	Exit fickets Pon Quiz							
	break the	Warm-Ups							
	function.	Homework							
		Quiz							
	Test								
		Stage 3 – Learning Plan							
		Pre-Assessment							
	10 ques	tion grade level pre-test (TEKS A.2A, A.12A, A.12B). Students given a	nswers after to monitor						
CODE	their ow	in progress. Use MAP data (or something similar) to check prior grad	e level understanding.						
		1 prior knowledge TEKS could include, but are not inflited to TEKS 8.	5G, 0.7A, 0.0A.						
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Learnin	z Activities	Progress Monitoring						
			(e.g., formative data)						
Α	Vocabu	ary from Unit: Domain, Range, Function, Relation, Evaluate,							
	Continu	ous, Discrete, Representation, Mapping, Ordered Pairs, Graph,	Vocabulary could also						
	Equatio	n, Function Notation, Independent Variable, Dependent Variable,	be included in pre-						
	Linear, I	Nonlinear Function, Vertical Line Test	test too gauge						
	Ctudout		students' language						
	Student	Idents take the pretest and grade themselves so they can track their knowledge.							
	vocabul	ary words to review before beginning the unit.							
	Vocasai								
	Student	s can work with the vocabulary in whichever way you have built							
	into you	into your classroom, but some ideas may be Frayer Model or a Categorical							
	Diagram	Diagram to cluster like words together. You may also develop a quizlet for							
	student	s study use.							
	Davi 1	Function or Not							
	Warm -	Function of NOL							
	vending	machine work? What makes a vending machine "functional" and							
	when w	ould a vending machine be dysfunctional?							
М	Discussi	on – Vending machines work because if you press B2, you							
	hopeful	y know what you're going to get. Say B2 is a Snickers bar, and C4 is							
	a Butter	fingers – each input has exactly one output. If Snickers are							
	popular	you can press either B2 OR B3, so the same output can have							

multiple inputs. If you press B2, it shouldn't drop more than just a Snickers. The candy that drops *depends* on the buttons you input. **EQ Focus** – Why is considered functional to have outputs with different inputs but not vice-versa? New Vocabulary – Function, Relation, Mapping, Ordered Pairs, Graph, Exit Ticket – allow Independent and Dependent Variable, Vertical Line Test students to use their **Lesson** – Using the example of the vending machine, the students will go notes, straight through mathematical examples and non-examples and determine if they forward function or are functions. Then they will decide on the rule or notes to write to help not with a few them remember. Then they will create one example of a function within different the four representations (Ordered Pairs, Table, Map, and Graph), representations. Μ Activity – Discuss with your group and think of two other examples of Could make functions in the real world, like a vending machine. Share out. electronic. Independent Practice – Homework, practice identifying functions from various representations. How would you describe a function to a younger middle school student? How would you describe a function to your parent? 10. 11. 12 х Y -31 5 -4 -3 7 6 1 -2 Or McGraw Hill Textbook Page 51, #1 – 8, 20 – 25, 27 – 32, 46, 47, 49, 50, 55, 59 Pre-Read for Day 2 Option: https://www.mathsisfun.com/sets/function.html **Day 2** – Evaluate Functions Warm – Up – Simplify Expressions using the order of operations. Potential Rough Spot **Discussion** – Evaluating Functions is like simplifying expressions, but you – Evaluating when are linking an input with an output, or an x- value with a y-value. The your input is an important thing to realize, is you are substituting a value in where x is. Fun expression. Make "Nuggetizer" video of a function machine: sure Students https://www.youtube.com/watch?v=VUTXsPFx-qQ understand EQ Focus – Why does is matter to be able to link inputs with outputs? distributive property What real world purposes could this serve? and combining like New Vocabulary – Domain, Range, Evaluate, Function Notation, terms. Independent and Dependent Variable **Lesson** – To evaluate functions, you plug your input value in for x (or your domain element) to find your output value for y (or the corresponding Having answers element of the range). Function Notation is a way to identify relationships available on practice within an equation. allows student to Activity - Evaluate Function Practice Owl. Review problems where the check their own input is an expression. understanding as the Independent Practice - McGraw Hill Textbook Page 51, #11-19 odds, 33go. 43 odds, 51, 57

А

А

A

А

Μ	 Day 3 – Evaluate Functions Many Ways Warm – Up – Evaluating Functions - If evaluating functions is pairing an input to its corresponding outputs, you can do so with an equation, table of values, or graph. Discussion – Where do we see our new vocabulary used in our warm-up? When it tells me to find the range, given the domain, what does that mean? EQ Focus – How can functions describe real-world situations, model predictions and solve problems? New Vocabulary – Domain, Range, Evaluate, Function Notation, Independent and Dependent Variable 	Common Misconceptions – If given the output, some students settle for only one input. Double check this understanding on graphs.
Δ	Lesson – Sometimes you are expected to find the input when given the output. How do you do this in a graph or equation?	
~	Activity – Evaluating Functions in Many Ways (Odds) in partners or tables.	This homework could
Μ	Independent Practice – Homework: Evaluating Functions in Many Ways (Evens), Pre-Read <u>https://www.mathsisfun.com/sets/domain-range-</u> codomain.html and <u>https://www.mathsisfun.com/sets/intervals.html</u>	be good to collect to check students' understanding.
	Day 4 – Domain and Range	
-	Warm – Up – Go over Pre-Reading links, or have students do in pairs at	
Α	beginning of class. Also, available notes in McGraw-Hill Algebra 1 Textbook	
	Discussion – What representations work best for discrete functions?	Potential Rough Spot
Α	Which work best for continuous? Are there some representations that work for both?	 Students may need review of inequality
	EQ Focus – How does identifying the restriction on the domain and range of a function further our understanding of the function? New Vocabulary – Domain, Range, Discrete, Continuous Lesson – Depending on whether is it discrete or continuous determines what method we use to express the domain and range	symbols and what they mean. Use the You Try!
A	Activity – Students read the inequality statements or lists with a partner and write in words what it means. Then they find and write the corresponding graph that matches that domain and range. Independent Practice – Domain and Range HW and watch video in preparation for tomorrow: https://www.youtube.com/watch?v=p4nJCpO_8zs	opportunity for informal feedback.
Ν	Day 5 – Domain and Range in Context Warm – Up – Review words that mean Domain (x-value, independent variable, input) and Range (y-value, dependent variable, output) Discussion – What are your take-aways from the YouTube video? EQ Focus – How does identifying the restriction on the domain and range of a function further our understanding of the function?	Students are uncomfortable when it comes to the gray area that happens with domain and range in context.
IVI	real numbers if we're talking about number of tickets being sold at the dance? Would you include less than zero if the range is about your grade on a test? Activity – Domain and Range Situation to Graph Match from Supporting	Exit Ticket Domain and Range Evaluation
Т	STAAR Achievement: Algebra I from Region 4 (Not included in UbD) Independent Practice – Imagine the Possibilities from <u>Supporting STAAR</u> Achievement: Algebra I from Region 4 (Not included in UbD)	from <u>Supporting</u> <u>STAAR Achievement:</u> <u>Algebra I</u> from Region 4

	Day 6 – Domain and Range in Context	
	Warm – Up – When is a situation a function and when is it not?	
М	Discussion – How can we determine the domain and range without a	
	visual aid?	
	EQ Focus – How does identifying the restriction on the domain and range	Leave room for
	of a function further our understanding of the function?	multiple
	Activity – Students practice finding domain and range given situations.	representations of
Т	This will be a stretch for some as they may have to think of the relationship	contextual domain
	with an equation or make a table to describe what is happening.	and range.
	Independent Practice – Finish Be Reasonable. Review Notes. Lesson	
	Review in McGraw-Hill Textbook page 65, #59 – 74, page 70, #3, 6, 8, 15	
	Day 7 – Quiz/Intro to Performance Task	
	EQ Focus – How can functions describe real-world situations, model	
M/T	predictions and solve problems?	
	Independent Practice – Think of a real world function that you can use	
	for your performance task tomorrow.	
	Day 8 – Performance Task/Review	Provide Feedback in
	Warm – Up – Go over quiz. Focus on common misconceptions.	small groups to
	Discussion – Use a situation or two from "Be Reasonable" to explain	review quiz and
Т	purpose and procedure of Performance Task.	discuss situations fro
	EQ Focus – How can functions describe real-world situations, model	Performance Task.
	predictions and solve problems?	
	Activity – Performance Task	
Т	Day 9 – Performance Task/Review	
	Give students time to work on Performance Task.	
	Independent Practice – Optional Reviews:	
	Complete any unfinished practice from the week.	
	Evaluate Functions Coloring Activity	
IVI	Walk-Around Poem Review:	
	<pre>https://docs.google.com/presentation/d/iAvssj-imozvq_z/cyxo- ty/lokytetw0Hd2705W/bEaKw/edit2usp=sharing</pre>	
	Quizlet Options for Domain and Range	
т	Desmos Function Card Sort	
-		
	Day 10 – Unit 1 Test Functions	

This course is Pre-AP so though the Readiness standard A.2A specifies for linear functions, domain and range for various functions and non-functions are used.

As of 2019, Spring Branch ISD is using Algebra 1 Textbook by McGraw-Hill Education.

Works Cited

Bolen-Abbot, Shelley, et al. Engaging Mathematics: Algebra 1. Vol. 2, Region 4 Education Service Center, 2017.

Carter, John A., et al. *Texas Algebra 1*. McGraw-Hill Education, 2015.

Create Custom Pre-Algebra, Algebra 1, Geometry, Algebra 2, Precalculus, and Calculus Worksheets, <u>www.kutasoftware.com/</u>.

Desmos Classroom Activities, teacher.desmos.com/.

"STAAR Released Test Questions." 20 June 2019, tea.texas.gov/student.assessment/STAAR_Released_Test_Questions/.

Unit 1 Performance Assessment: Functions

Come up with a real-world example of a function. You may either research to find one, or you may create your own. Then, complete the following tasks.

<u>Part A</u>: **Design** a function machine (like the Nuggetizer Video), that identifies how the output is related to the input according to the situation you choose from the list provided.

Situation:

Your function machine should be designed on a sheet of 8 x 11 white computer paper. It should include an input, the function (expression or equation, algebraically or verbally), and the output. **Determine** the domain and range and include on your mini-poster design.

Part B: Is your function discrete or continuous? Justify your response:

<u>Part C</u>:

Choose two or more **representations** (Map, Ordered Pairs, Graph, Equation, or is there another way?) to show your function numerically:

Representation 1:	Representation 2:

Justify your choices for these representations:

Part D: **Explain** verbally *why* this situation is a function within the context of the situation:

Create an example of a hypothetical situation in this context that would cause this situation to be a non-function, then explain whether your hypothetical would be possible in the real world. Why or why not?

<u>Part E</u>: **Evaluate** the function at 5 different points. Identify the independent and dependent variables.

x:	Process/Relationship	y:

Part F: How can functions describe real-world situations, model predictions and solve problems?

Rubric for Unit 1 Functions Performance Assessment. (Max point value for section given in parenthesis)

	Developing	Proficient	Advanced	Notes/Comments
Part A 50% Function Machine Domain and Range	Function Machine is not included. Domain and range not included or incorrect. The function is expressed verbally or numerically incorrectly. Input and output are given and output is calculated incorrectly. (25)	Function Machine is included and situation is a function. Domain and range are included and correct based on the developed function. The function is expressed verbally or numerically correctly. Input and output are given and output is calculated correctly. (40)	Function Machine is included and function is unique. Domain and range are included and correct based on the developed function. The function is expressed verbally and numerically correctly. Input and output are given and output is calculated correctly. (50)	
Part B 10% Discrete or Continuous	Either does not correctly determine whether the function is discrete or continuous OR does not give sound justification. (5)	Correctly determine continuous or discrete, and gives sound justification. (8)	Correctly determine continuous or discrete, and gives sound detailed justification. (10)	
Part C 10% Multiple Representations	One or more of the representations are left out or expressed incorrectly. Justification is not given for why these representations were chosen. (5)	Two representations are chosen with justification. Both representations are expressed correctly. (8)	Two representations are chosen with detailed justification. Both representations are expressed correctly. (10)	
Part D 10% Explain Function	Explanation is incoherent or does not show that student understands definition of a function. (5)	Explanation is given correctly and directly. Awareness of what makes a function is apparent. (8)	Hypothetical goes above and beyond. Explanation shows deep understanding of definition of a function. (10)	
Part E 10% Evaluate	Function is incorrectly evaluated two or more times. (5)	Function is correctly evaluated at no less than four different points. (8)	Function is correctly evaluated at five different points. Choice of inputs are restricted to reasonable values given the context. (10)	
Part F 10% Write it!	The Essential Question is not answered. (5)	The Essential Question is answered. Correct grammar is used. (8)	The Essential Question is answered with detail and in depth. Correct grammar is used. (10)	

Unit 1 Functions Pre-test

THIS IS A PRE-TEST: <u>YOU ARE NOT EXPECTED</u> TO KNOW EVERYTHING ON THIS TEST.

A.2A

- 1. What are the domain and range of f(x) = -37?
- 2. Determine the domain and range for the relation $\{(2,5), (-1,3), (0,-1), (3,3), (-4,-2)\}$.

D: _____

R: _____

- R: _____
- 3. Determine the domain and range of the function:

4. The daily cost of hiring a plumber, y, to work x hours on a repair project can be modeled using a linear function. The plumber charges a fixed cost of \$80 plus an additional cost of \$45 per hour. The plumber works a maximum of 8 hours per day.

For one day of work, what is the range for this situation?

A.12A

- 5. Determine whether the relation $\{(2, 3), (-1, 3), (0, 4), (3, 2), (-2, 3)\}$ is a function.
- 6. Determine whether the relation is a function.

Explain how you know.

7. Which representation shows y as a function of x?

	×	У	
_	-1	0	
C	-1	5	
	-1	10	
	-1	15	

	×	y.
D	-4	-8
	0	3
	1	2
	-4	10

8. If f(x) = 5 - 2x, find f(-15).

9. Consider the function g(x) = -3x - 4. If the domain value is selected from the set $\{-8, -2, 0, 3\}$, which of the following is a corresponding range value?

A. 18 B. -10 C. -13 D. -5

10. If $f(x) = (x-2)^2 - 4$ and g(x) = 3x - 1, which statement is true?

A. f(0) = g(3) B. f(-1) = g(2) C. f(2) = g(1) D. f(6) = g(0)

How did you do?

	Α.	2A			A.12A			A.12B	
1	2	3	4	5	6	7	8	9	10
	/4 =		x 100	/3	=X	100	/3	=X	100

Record your results on your data Algebra tracker under Pre-Assessment. Complete the Pre-Assessment Reflection Questions.

Answers:

1. D:
$$\mathbb{R}$$
 R: $y = -37$
2. D: $\{-4, -1, 0, 2, 3\}$
R: $\{-2, -1, 3, 5\}$
3. D: $-9 < x \le 2$
R: $-6 \le y < 3$
4. $80 \le y \le 440$

- 5. It is a function
- 6. It is a function, it passes

the vertical line test.

- 7. A
- 8. 35
- 9. C
- 10. B

 Algebra Pre-AP/GT
 Period _____
 Date _____

Unit 1 Functions Data Tracker Developing < 70%			% 7	0% ≤ Profici	ent < 90%	% Adva	nced ≥ 90)%
		ssment	ent Formative Post			st-Assessment		
	TEKS	Percent	D, P, A	Percent	D, P, A	Percent	D, P, A	\checkmark
A.2(A) determ and dis	determine the domain and range of a linear function in mathematical problems; ine reasonable domain and range values for real-world situations, both continuous crete; and represent domain and range using inequalities	IS						
A.12(A) symbol	decide whether relations represented verbally, tabularly, graphically, and ically define a function							
A.12(B) heir do	evaluate functions, expressed in function notation, given one or more elements in t mains							
	Pre-Assessment Reflection:	•	•	· ·		•		
1.	What are your current areas of strength?			Developing	<u>;</u> 69	% or less	Red	
				Proficient	70	% – 89%	Yellow	
2.	What are your current areas of growth/ where do you need to focus? Why?			Advanced 90		% - 100% Green		۱
3.	How can you use the proficiency scale to determine your next steps? Are you ready for are you focusing on?	r the advan	ced cont	ent or profic	ient con	tent? What	specifica	lly
1.	What are your new areas of strength?							
2.	What did you do to develop your areas of growth? (Self-directed learning time, working wi	ith teachers,	/ peers, et	c.)				
3.	Where are you now on the proficiency scale?							

Name _____

Readiness Standard: (A.2A) Determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both continuous and discrete; and represent domain and range using inequalities							
I KNOW & UNDERSTAND HOW TO							
Advanced	 extend my learning or apply it in creative ways. € Mapping diagram € Graphs € Verbal situations 	€ Discrete data The total cost in dollars to buy shoes for players on a soccer team can be found using the function c= 49.95s+10.25, where s is the number of shoes bought. There are at least 11 players but no more than 18 players on the soccer team. Create a graph that shows the domain and range for the function of this situation.	€ Continuous Data The total cost of renting number of miles the car car rental charges a dow for each mile driven. Cha and drives 55.6 miles. Co the domain and range fo	a car is a function of the is driven. The owner of the n payment of \$21 and \$0.05 arlie rents a car for 2 days onstruct a graph that shows or this situation.			
Proficient	solve problems involving the domain and range of a linear function € Mapping diagram € graphs € Verbal situations	find domain and range of a linear function using a Mapping diagram $X \qquad f(x)$ $\boxed{\begin{array}{c}1\\1\\3\\4\\7\end{array}}$	find domain and range of a linear function using a graph What is the range of the function graphed on the grid?	find domain and range of a linear function from a verbal description A flower delivery van can carry a maximum weight of 180 lbs. Each vase of flowers weighs 2.2 lbs. The total flower weight is a function of the number of vases on the van. What is the greatest value in the domain for this situation?			

Algebra Period_____

FUNCTION NOTES

A function is a relation where each ______ has exactly one _____. (x can not repeat)

Use the definition above to decide if the following are or are not functions and explain why.

Oudened meine			
Ordered pairs	{(-1, 3), (0, -4), (1, -7)}	{(-2, -1), (3, 7), (-2, 4)]	{(6, 3), (5, 2), (2, -3), (12, -12)}
Function Rule:	a function because	a function because	a function because
Tables Function Rule:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccc} x & y \\ -1 & 3 \\ 0 & -4 \\ 1 & -7 \end{array} $	$ \begin{array}{c ccc} x & y \\ -2 & -1 \\ 3 & 7 \\ -2 & 4 \end{array} $
	a function because	a function because	a function because
Mappings Function Rule:			$ \begin{array}{c} -7 \\ -7 \\ 13 \\ 5 \\ \end{array} $
	a function because	a function because	a function because
Graphs Function Rule:		a function because	a function because
	a function because		a runction because

Create a Function (or NOT)

A ______ is a relation where every ______ (X) has exactly one ______ (Y).

Below, create your own functions in each representation. Then create non-functions in each representation. Check with a buddy when you're finished.

	Functions	Not Functions
Ordered Pairs		
Tables	X Y	Х Ү
Mapping Diagrams		
Graphs	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

EVALUATING FUNCTIONS

Warm up - Simplify the following expressions

1) $5 + (16 + 2) \div 3$	2) $(2)^3 + 5(2)^2$	3) $2(-4)^2 + \frac{1}{3}(-3)^3$

Nuggetizer video: <u>https://www.youtube.com/watch?v=VUTXsPFx-qQ</u>

Vocabulary

Domain - set of all ______ valuesRange - set of all ______ valuesy = 2xy = xInputOutputInputOutputInputInputInputInputInputInputInputInputInputInputInputInputInputInputInputInput

y = x - 8		
Input	Output	

<i>y</i> =		
Input	Output	

FUNCTION NOTATION

Equation: y = 2x + 8 Function notation: f(x) = 2x + 8

How do we say this?

To evaluate a function means to find the ______ for a specific ______.

Example: $f(x) = x^2$ and g(x) = 6x + 7 find:

- 1) f(5) 2) 2g(-4)
- 3) f(-5) + 64) f(-2) + g(q + 1)

EVALUATING FUNCTION PRACTICE

Using function f and function g, evaluate at the given points. Find your answer in the picture and color it the designated color.

f(x) = -2x - 3 and $g(x) = x^2 + 5x$ find:

1) RFD		2) BLUE	3) YELLOW
.,	f(-1)	f(6)	a(2)
)(1))(0)	g(2)
4) BLUE		5) YELLOW	6) GREEN
,	q(-3)	a(-2) + 2	f(0) - 7
	5		
7) RED		8) GREEN	9) PURPLE
	f(4y)	3g(y)	f(y+2)

Evaluating Functions Warm Up

Given $g(x) = -\frac{1}{3}x + 3$, create a Given $h(x) = \frac{1}{2}x^2 - 2x$ and the table of values that represent the domain of $\{-2, 0, 4, 6\}$ find the inputs and outputs.

 $\boldsymbol{g}(\boldsymbol{x})$

x

range.

Algebra Period_____

Given $h(x) = \frac{1}{2}x^2 - 2x$ and the domain of {-2, 0, 4, 6} find the range.

Given the graph of f(x), find f(0)

4

Name___

Evaluating Functions Warm Up

Given $g(x) = -\frac{1}{3}x + 3$, create a table of values that represent the inputs and outputs.

x	$\boldsymbol{g}(\boldsymbol{x})$

Name: _

Algebra PreAP/GT_____

Evaluating Functions in Many Ways

10) Given this graph of the function $f(x)$,	11) Given this graph of the function $f(x)$,
find:	find:
a) $f(-4) =$ b) $f(0) =$ c) $f(2) =$ d) $f(5) =$ e) x when $f(x) = 2$ f) x when $f(x) = 0$	a) $f(6) = $ b) $f(2) = $ c) $f(0) = $ d) $f(5) = $
	e) x when $f(x) = 1$
12) Denise decides to study abroad in France. She has to exchange her dollars for Euros. The following function describes the exchange rate between dollar and Euros. f(d) = 0.75d Find f(200) What does this mean in words?	13) The profit from selling <i>s</i> number of t- shirts is described by the following function: p(s) = 8s - 500 Find p(70) What does this mean in words?
14) The value of a car is given by the following function: v(t) = 20000(.90)t	15) Daniel's income for the fall semester is described by the following function: f(h) = 1000 + 9h
Find v(1)=	Find f(320)
What does this mean in words?	What does this mean in words?
16) If you are given the function $f(x) = \frac{1}{3}x^2 - \frac{1}{3}x^2$	$\frac{2}{3}x + 10$, what kind of values should you choose
to create a table?	-
Fill in the table with corresponding values	s of your choice.
X	
f(x)	

Domain and Range Notes				
<u>Domain</u> = Value	s of Independe	NT VARIABLE	<u>range</u> = values o	F DEPENDENT VARIABLE
Definitions :	Domain	The set of al	I	values of a relation
	Range	The set of al	l	values of a relation
What do domain and range look like for different representations? TRY IT.				
	Ordered pairs		Mappi	ng Diagram
{(-1, 1 Domain: Range:	1)(-2,2)(4,-4)(7, -7)} -	X 9 -6 4 8 7	Domain: Range:
	Table		Discr	ete Graph
X Y 0 9 8 3 2 6 1 4	Domain: Range:			Domain: Range:

Algebra PreAP:___

What we've seen so far is **DISCRETE**. **Discrete** domain and range are given as LISTS.

However, if the relation is connected, the relation is **CONTINUOUS**. In this case, domain and range are given as INEQUALITIES. Look at the least and greatest values for each axis then write **sentences** that explain the domain and range of the following.

Name:

Now using your sentences, write the inequality statements.

Domain inequality statement:	Range inequality statement:

TRY IT! Find the Domain and Range for the following CONTINUOUS functions!

D:	D:
*What do the open circles indicate?	*What would the arrow indicate?
D: R:	D: R:

Domain and Range Practice

Read the domain and range statements with your partner and write in words what it means. Then find and write the letter of the corresponding representation. Determine if it is discrete or continuous.

Domain: $-4 < x \le 3$	Domain: {-1, 0, 1, 2}	Domain: $\{-3, -1, 5, 0, 2, 7, 5, 8\}$		
In words:				
Range: $-5 < y \le 2$ In words:	Range: {-1, 0, 1}	Range: {8}		
Matching Letter				
discrete or continuous	Matching Letter	Matching Letter		
	discrete or continuous	discrete or continuous		
Domain: {0, 1, 2, 3, 4}	Domain: R In words:	Domain: {1, 2, 3, 4}		
Range: {0, 1, 2, 4}	Range: $y \ge -4$ In words:	Range: {12}		
Matching Letter	Matching Letter	Matching Letter		
discrete or continuous	discrete or continuous	discrete or continuous		
Domain: R In words:	Domain: $x \le 5$ In words:	Give the domain and range for the remaining map.		
Range: R	Range: $y \le 2$	D:		
In words:	In words:	R:		
Matching Letter	Matching Letter	Matching Letter		
discrete or continuous	discrete or continuous	discrete or continuous		
Give the domain and range for	Give the domain and range for the two remaining graphs.	Give the domain and range for the two remaining graphs.		
the formaliting table.	D:	D:		
D:	p.	p.		
R:	N.	N.		
	Matching Letter	Matching Letter		
Matching Letter	-l'annata an anntinuana	diagrata ar continuqua		
	discrete or continuous			

Domain and Range Homework

Name: ____

Be Reasonable!!

In the following situations, come up with a reasonable domain and range. Explain why your domain and range are reasonable.

Ask yourself: Can these values be negative? Can these values be fractions? Are these values **continuous** or **discrete**? How can I tell? Can I use an inequality? List of numbers? Will words describe the domain or range best?

1. Jesse is parking in a garage for a concert. It costs \$6 for the first 2 hours, and an additional \$3 for each additional hour or fraction of an hour. The maximum charge for the day is \$24. Determine a reasonable domain and range for this situation if the cost is a function of time.	2. There are a total of 128 teams at the start of a citywide basketball tournament. Half of the teams are eliminated after each round. Determine a reasonable domain and range for this situation if the number of teams is a function of the number of rounds.
Domain:	Domain:
Range:	Range:
3. In 1952, the United States had 58,000 reported cases of Polio – the worst outbreak in the nation's history. The vaccine was created soon after and in 1994, the Americas were declared Polio-free. Determine a reasonable domain and range for this situation if the number of reported polio cases is a function of the year.	4. Each question on Geraldine's last test was worth 5 points. She knows she answered at least 11 correctly. Her teacher gives no partial credit. She is trying to figure out her possible score. Determine a reasonable domain and range for this situation if the score on the test is a function of the number of questions she answered correctly.
Domain:	Domain:
Range:	Range:
5. A candle started out 16 inches tall. Each hour it burns, it is ¼ inch shorter. Determine a reasonable domain and range for this situation if the height of the candle is a function of the time it spends burning.	6. When sending a package, Harry pays \$3.50 for up to 1 pound and then pays an additional \$0.10 each additional ounce. Harry has several packages, the heaviest weighing 3 pounds. Determine a reasonable domain and range for this situation if the cost of the package is a function of its weight.
Domain:	Domain:
Range:	Range:

7. A kettle of boiling water cools in a warm kitchen. Water boils at 212°F and the kitchen is about 78°F. Determine a reasonable domain and range for this situation if the temperature is a function	8. Hannah went to the carnival and rode the Ferris wheel 7 times in a row. Each ride is about a minute long. The Ferris wheel went up 100 meters. Determine a reasonable domain and range for this situation if Hannah's height from the ground is a function of time elapsed.
Domain:	Domain:
Range:	Range:
9. Laurie is getting her SCUBA diving instructor certification. She knows that recreational diving is usually restricted to 30 or 40 meters below the surface. She can take people under water to explore coral reefs as long as they have oxygen in their tank. Determine a reasonable domain and range for this situation if the depth is a function of time.	10. Tanya saves \$25 each week until she has enough to buy a coat she's been eyeing at the department store. The coat costs \$245 and she is hoping she can purchase it before the winter holidays. Determine a reasonable domain and range for this situation if amount she needs to buy the coat is a function of the amount she has saved.
Domain:	Domain:
Range:	Range:

These situations will be helpful and guide you through your **performance task** over the next few days. If you have any questions, make a note of them here:

1. What are the domain and range of the relation in the table?

A. $D:\{-9,0,9,13\}$
 $R:\{-5,0,4,6\}$ C. $D:\{-5 \le x \le 6\}$
 $R:\{-9 \le y \le 13\}$ B. $D:\{-5,0,4,6\}$
 $R:\{-9,0,9,13\}$ D. $D:\{-9 \le x \le 13\}$
 $R:\{-5 \le y \le 6\}$

2. What are the domain and range of the relation in the graph?

- A. $D: \{-7 \le x \le 5\}$
 $R: \{-5 \le y \le 9\}$ C. $D: \{-2 \le x \le 5\}$
 $R: \{-2 \le y \le 7\}$ B. $D: \{1 \le x \le 5\}$
 $R: \{-5 \le y \le 9\}$ D. $D: \{-5 \le x \le 9\}$
 $R: \{-7 \le y \le 5\}$
- 3. Using the graph from **number 2** evaluate the function at f(5).
 - f(5) = _____
- 4. What are the domain and range of the relation in the graph?
 - A. $D: \{-3 \le x \le 6\}$ $R: \{0 \le y \le -5\}$ C. $D: \{-3 \le x \le 4\}$ $R: \{y = -5\}$
 - B. D: $\{-4 \le x \le 5\}$ D. D: $\{x = -5\}$ R: $\{-6 \le y \le 0\}$ R: $\{-3 \le y \le 4\}$

{(1,2) (2,3) (3,5) (4,10) (5,5)}

Is this relation a function?

6. What are the domain and range of the function graphed on the grid?

Domain: _____

Range: _____

x	у
4	9
6	13
0	0
-5	-9

7. Describe the relation represented by the graph.

8. Describe the relation represented by the graph.

9. If -2 is an element in the domain of $f(x) = \frac{2x+8}{4}$, what is the corresponding element in the range?

Answer: _____

- 10. Which of the following relations is not a function?
 - A. $\{(-1, 4), (1, 6), (4, 10)\}$ B. $\{(-1, 2), (1, 3), (-1, 4)\}$ C. $\{(-1, 6), (4, 7), (5, 6)\}$ D. $\{(-1, 2), (1, 2), (3, 3)\}$
- 11. The mapping on the right represents all of the points on the graph of function f.

What is the range of f?

- A. {-4, -1, 0, 2, 7}
- B. {-4, -1, 0, 1, 2, 3, 4, 7}
- C. {-4, 0, 2, 3, 4}
- D. {0}

12. Which representation shows y as a function of x?

Give the domain and the range of the relation. Then, tell whether the relation							Τ
is a function.							_
13. D:	-			_	_	┢	-
B:	þ					L	t
Function?			\neg	\langle		┢	
	P	•			_		ļ

- 14. What are the domain and range of f(x) = -4?
- D: _____
- 15. Determine if the table on the right represents a function. Explain how you know.

x	У
-2	-5
-1	-1
1	-1
2	-5

16. Part of Peter's budget is money for transportation. He needs gas in his truck to drive to and from college next week. His truck holds up to 28 gallons. Gas costs \$2.79 per gallon. Analyze the domain and range for a function that determines his total cost.

R: _____

	Part of the Situation It Represents	Type of Numbers	Any Restrictions
Domain			
Range			

17. The number of ferryboat trips f(c), needed to transport c cars in 1 day can be found using the function $f(c) = \frac{c}{20}$. To transport the maximum 5000 cars, the ferry makes 250 daily trips. What is the **range** of the function?

- A. The set of all integers greater than or equal to 5,000
- B. The set of all integers from 0 to 5,000
- C. The set of all integers greater than or equal to 250
- D. The set of all integers from 0 to 250

18. Find the value of f(200) in the function $f(c) = \frac{c}{20}$.

f(200) = _____

How did you do?

A.2A										
1	2	3	4	7	8	11	13	14	16	17
/11 =x 100 =										

A.12A							A.12B		
5	7	8	10	12	13	15	3	9	18
/7 =x 100 =				/3 =	=x 10	0 =			

Record your results on your data Algebra tracker under Quiz. Are you improving? What do you need to focus on for your upcoming test?