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Abstract 

 

Circa 1.1 Ga granitic magmatism in Texas was manifested as two compositional groups: (1) 

the 1.12 Ga Red Bluff granitic suite in west Texas; and (2) 1.12-1.07 Ga granites of the Llano 

uplift of central Texas. Both suites share some characteristics typical of 'anorogenic' 

granites (e.g. potassium- and iron-rich bulk compositions, Fe-rich hydrous silicates, 

emplacement conditions involving low oxygen fugacities and water contents) and exhibit 

similar isotopic characteristics. However, rock associations, mineral chemistries, and trace 

element compositions of the two suites are distinct and no single petrogenetic model for 

the two suites is possible. 

 

The Red Bluff granitic suite includes cogenetic syenites, quartz syenites and granites; 

transitional ferrobasaltic dikes are also present. In contrast, syenitic and mafic rocks are 

not associated with the Llano granites. The Llano granites contain biotite and calcic 

amphibole with lower Fe/(Fe+Mg) ratios compared to those occurring in the Red Bluff 

rocks. Alkali amphiboles (e.g. arfvedsonite) occur in the Red Bluff granites but not in the 

Llano granites. The Red Bluff granitoids are characterized by high FeOT/MgO ratios, high 

(Na2O+K2O), high concentrations of HFSE and rare earth elements (REE), and other 

features typical of A-type, 'within-plate' granites [e.g. the Pikes Peak batholith (PPB)]. The 

Llano granites are geochemically distinct with generally higher P2O5 and Sr, lower Na2O, 

FeOT/MgO, Zr, Y and REE, and much lower Ta and Nb. Nd isotopic data overlap between the 

two granite suites and have 'juvenile' signatures. However, trace element data suggest 

different petrogeneses for the two suites. The Red Bluff suite is interpreted as having a 

direct derivation from mantle sources via extended fractional crystallization of basaltic 

parental magmas, with minor crustal assimilation. The Llano granites appear to represent 

anatectic melts derived from slightly older, juvenile crustal sources; some melts underwent 

fractional crystallization controlled by feldspar and accessory minerals. 

 

The petrology and geochemistry of ~1.1 Ga granites in Texas indicate that they should not 

be considered as part of a single 'anorogenic' magmatic event. The Red Bluff granitic suite 

was emplaced into a shelf sequence, north of the Grenville Front, within a broad zone 

characterized by mild extension. In contrast, Llano granites are late-stage intrusions 

emplaced into multiply deformed and metamorphosed crust, south of the Grenville Front, 

during or after waning stages of Grenville orogenesis.  
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1. Introduction 

 

Middle Proterozoic granitic magmatism in Texas occurred in the 1.07-1.12 Ga age range on 

both sides of the Llano Front (Fig. 1). In west Texas, the ~1.12 Ga (U-Pb age; Bickford et al., 

1995) Red Bluff granitic suite, exposed in the Franklin Mountains, was emplaced into rocks 

north of the Llano Front. In the Llano uplift, 1.07-1.12 Ga granites intrude rocks of the 

Grenville Province south of the Llano Front (Walker, 1992). 

 

Previous studies (e.g. Anderson and Bender, 1989; Nelson and DePaolo, 1985) commonly 

interpreted the Texas Proterozoic granitic suites to be compositionally similar and to share 

a single tectonic environment. Anderson (1983) included them as part of an 'anorogenic' 

magmatic pulse that occurred ~1.1 Ga ago in North America. Isotopic data (Table 1) exhibit 

few differences between the two suites and suggest a common origin. Unfortunately, the 

data do not clearly distinguish between mantle or crustal sources. For example, Patchett 

and Ruiz (1989) found that Nd isotopic data for these granites can be interpreted as 

documenting either: 

(1) addition of older crustal material to magmas derived from depleted mantle reservoirs; 

or 

(2) an anatectic origin involving older, crustal sources whose isotopic signatures did not 

have sufficient time to evolve to values distinct from depleted mantle signatures. 

 

Our petrological studies show that the west Texas and Llano granites are quite distinct in 

terms of associated rock types, mineralogy and trace element compositions, and are thus 

unlikely to share a common origin or uniform tectonic environment. In this paper, we 

document the petrologic and geochemical characteristics, and address the petrogeneses 

and tectonic settings of these two rock suites. 

 

2. Regional geology and tectonic setting 

 

Basement rocks of Texas are bisected by the Llano Front (Fig. 1), which separates 

undeformed rocks to the north from rocks to the south which were deformed and 

metamorphosed in Grenville time (~ 1.1-1.3 Ga). The Precambrian basement north of the 

Front is dominated by granitic and rhyolitic rocks of the 1.35-1.5 Ga Granite-Rhyolite 

Province (Thomas et al., 1984), adjacent to older rocks of the Yavapai-Mazatzal Province 

(Nelson and DePaolo, 1985). In Texas and New Mexico, rocks of the Granite-Rhyolite 

Province are locally overlain by undeformed shelf carbonates and clastic rocks that are 

intercalated with mafic to intermediate volcanic rocks (e.g. Denison et al., 1984). 
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The Texas Grenville Province consists of polydeformed gneiss, schist and amphibolite, with 

sparse metaserpentinite and local eclogite occurrences (e.g. Mosher, 1993). U-Pb zircon 

ages of orthogneiss in the Llano uplift range from 1.22 to 1.35 Ga (Mosher, 1993). Grenville 

rocks exposed in west Texas are older than ~1.35 Ga (Bickford et al., 1995; K. Nielsen, 

personal communication, 1994). 

 

Circa 1.1 Ga felsic igneous rocks are present on both sides of the Grenville Front. In the 

Franklin Mountains of west Texas (Fig. 1), undeformed ~1.25 Ga sedimentary rocks 

(Pittenger et al., 1994) are overlain by trachytic to rhyolitic lavas and ignimbrites, all of 

which are presumed to overlie Yavapai-Mazatzal basement rocks. The entire section was 

intruded by the ~1.12 Ga Red Bluff Granitic Suite [RBG; Fig. 2; Shannon et al. (1997)]. 

Similar granitic and rhyolitic rocks are exposed in scattered outcrops as much as 120 km 

east of the Franklin Mountains (e.g. Denison et al., 1984). In the Llano uplift (Figs. 1 and 3), 

numerous ovoid, mostly coarse-grained, granitic plutons were emplaced into polydeformed 

and polymetamorphosed igneous and sedimentary rocks over a span of time from 1.12 to 

1.07 Ga [U-Pb ages; Walker (1992); Roback (1996)]. Emplacement was probably at shallow 

crustal levels, although coeval volcanic rocks are not preserved. These plutons are typically 

undeformed but some bodies exhibit evidence for deformation during and after magma 

emplacement (Reed, 1995). 

 

Elsewhere in the western U.S., another example of, ~1.1 anorogenic granitic plutonism—

and one of the classic examples of 'A-type' granitic magmatism—is the PPB of central 

Colorado (PPB; Figs. 1 and 4). This composite intrusion was emplaced ~1.08 Ga ago [U-Pb 

age; D. Unruh, personal communication (1992)] into host rocks comprised of the ~1.7 Ga 

synorogenic Boulder Creek grano-diorite and related gneisses and the ~1.4 Ga anorogenic 

Silver Plume granite (Wobus and Hutchinson, 1988). 

 

Mafic magmatism, contemporaneous with the granites examined here, occurred in some 

North American localities at ~1.1 Ga, the most voluminous example is that associated with 

the Mid-Continent Rift (e.g. Paces and Bell, 1989; Van Schmus and Hinze, 1993). At 

approximately the same time, the 1.16-1.07 Ga Pecos mafic intrusive complex was 

emplaced in west Texas [Fig. 1; Keller et al. (1989)]. This subsurface complex consists of 

four distinct lobate units that range from 3 to 10 km thick (Adams and Miller, 1995). Well 

cuttings (Kargi and Barnes, 1995) and seismic data (Adams and Miller, 1995) show the 

largest unit to be a layered mafic to ultramafic body. Basaltic magmatism at 1.1 Ga was also 

widespread in the southwestern U.S. (Fig. 1), where rocks of the Yavapai-Mazatzal Province 

were cut by numerous diabasic dikes and sills (Hammond, 1986). These dikes have been 

interpreted to indicate that much of southwestern U.S. was in an extensional tectonic 

environment during this time [Hammond (1986); but see Howard (1991)]. 

 

2.1. Summary of tectonic setting 

 

Emplacement of the rift-related Pecos intrusive complex and widespread diabasic dike 

injection in the southwest suggest that west Texas north of the Grenville Front experienced 

extensional tectonic stresses during emplacement of the RBG. Late stage ferrobasaltic dikes 

in the RBG are steeply dipping, and support emplacement in an extensional realm. It is 
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certainly clear that extension dominated the mid-continent region at this time. The tectonic 

setting of the Llano uplift during ~1.1 Ga granitic magmatism is uncertain. Syn-magmatic 

deformation within some of the plutons suggests that magmatism accompanied waning 

stages of Grenville deformation, but other plutons appear undeformed. Details of the timing 

and cause of deformation and magmatism are yet to be resolved. 

 

3. Enchanted rock batholith (ERB) 

 

The 1.08 Ga [U-Pb age; Walker (1992)] Enchanted Rock batholith (ERB; Fig. 3) is the best 

characterized post-tectonic pluton in the Llano uplift and is a representative example of 

granitic magmatism of the time and region; we thus focus on this pluton here. Earlier 

studies documented a generally reverse concentric zonation in this and other Llano plutons 

(Keppel, 1940; Hutchinson, 1956). Hutchinson (1956) documented compositions in the 

ERB ranging from coarse-grained granite, granodiorite and quartz monzonite in the outer 

and intermediate zones, grouped together here as the outer zone, to fine- to medium-

grained quartz monzonite and leuco-granite in the inner zone. Intermediate rock types are 

rare, and, in contrast to the RBG (and sodic series of the PPB, see below), the Llano granitic 

suite is not associated with coeval mafic or syenitic rocks. 

 

Most ERB samples are metaluminous but a few are slightly peraluminous. Outer zone rocks 

are two-feldspar porphyritic granites with megacrystic alkali feldspar and local rapakivi 

texture. Fe-rich biotite is present in both zones; calcic amphibole in amounts > 1% is 

present only in portions of the outer zone. Accessory minerals consist of magnetite, sphene, 

zircon, apatite, allanite and fluorite. 

 

Hutchinson (1956) also mapped the occurrence of fine-grained, dark colored inclusions 

which he interpreted as solid fragments of country rock (i.e. as xenoliths). Based on field, 

petrographic and mineralogical evidence, Smith and Wark (1992) interpreted these 

inclusions as microgranular magmatic enclaves, that is, globules of hybridized magma 

injected into and quenched by the host granite while it was still in a partially molten state. 

The enclaves are metaluminous and have slightly lower silica contents compared to the 

host granites, thus they are not truly mafic (basaltic) in composition. They contain alkali 

feldspar and amphibole 'xenocrysts' (from the host granite) and plagioclase and quartz 

phenocrysts in a fine groundmass. 

 

4. The RBG suite 

 

The RBG was emplaced in five stages, as sketched in Fig. 2. The first stage consists of sills of 

porphyritic alkali feldspar granite, which, in the thickest sills, grades inward to cumulate 

alkali feldspar quartz syenite. The second, most voluminous stage consists of coarse-

grained alkali-feldspar granite. The third stage is alkali feldspar quartz syenite and the 

fourth stage consists of small intrusions of alkali feldspar leucogranite. This latter stage 

cuts volcanic rocks associated with Red Bluff magmatism. The fifth stage consists of 

arfvedsonite granite dikes. Rough estimates of the relative exposed volumes of the RBG 

stages are as follows: stage 1, 5-10%; stage 2, 80-90%; stage 3, < 3%; stage 4, < 5%; stage 5, 
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< 2%. Ferrobasaltic dikes are also present in the RBG; they are generally the latest 

intrusions, but some are cut by stage 4 and 5 dikes. 

 

Stages 1-4 are metaluminous. The common ferromagnesian silicates are ferroedenite and 

annite. Ferrohedenbergite is present in rocks of stages 1 and 3, and grunerite 

pseudomorphs after fayalite(?) are present in stages 2 and 3. Annite is the only mafic phase 

in stage 4. Accessory minerals consist of zircon, apatite, ilmenite, fluorite and sparse 

magnetite. Rocks from stage 5 are peralkaline; arfvedsonite is the common mafic mineral 

and astrophyllite is locally present. Zircon and fluorite are the accessory minerals. Alkali 

feldspars in rocks from all stages are typically exsolved, but 'integrated' compositions 

range from Or58 to Or75. Plagioclase (~An25) is rarely present as cores of alkali feldspar 

from stage 3. 

 

5. Pikes peak batholith 

 

The PPB is an immense composite batholith with a total surface exposure of ~3840 km2 

(Fig. 4). The major volume of the batholith is coarse biotite/hornblende granite and 

granodiorite which were intruded by late-stage alkalic plutons. The late-stage plutons form 

10% of the exposed PPB and are located within and marginal to the main stage of the 

batholith. They include two chemical series, one with a potassic trend, dominantly granitic 

and the other with a sodic trend, dominantly syenitic (Barker et al., 1975; Wobus, 1976; 

Wobus and Anderson, 1978). Rocks of the sodic series include syenite, quartz syenite and 

fayalite- and sodic amphibole-bearing granites; minor gabbro is also present. The syenites 

are peralkaline whereas the granites are peraluminous to metaluminous. Mafic mineral 

assemblages are variable and commonly include iron-rich calcic and sodic amphiboles, 

annite, fayalite and hedenbergite; astrophyllite is present locally. Accessory minerals 

consist of variable amounts of zircon, fluorite, Fe-Ti oxides and allanite/chevkinite. 

 

The sodic series plutons exhibit features typical of A-type granites and striking similarities 

with the RBG, and we use them as a basis for comparison with the 1.1 Ga granites of Texas. 

Note that subsequent discussion and illustrations in this paper include data for only the 

Pikes Peak late sodic plutons, and not for the late potassic plutons, nor for coarse-grained 

granites and granodiorites comprising the major volume of the batholith. 

 

6. Mineral chemistry 

 

Representative analyses of biotites and amphiboles in the PPB are given in Barker et al. 

(1975) and Giambalvo (1993). Shannon et al. (1997) give representative analyses of 

biotites and amphiboles occurring in the RBG. Tables 2 and 3 give representative analyses 

of biotite and amphibole, respectively, in the ERB. In all three suites, these minerals are 

iron-rich, similar to those occurring in typical anorogenic granites as defined by Anderson 

(1983). 
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6.1. Biotite 

 

Micas in the sodic PPB and RBG are annites (Fig. 5), whereas the ERB micas show lower 

values of Fe/(Fe + Mg). In both suites, Fe/(Fe + Mg) in biotite correlates with whole-rock 

Fe/(Fe + Mg). Biotites in the outer and inner zones of the ERB have distinct compositions. 

Compositions of biotites in ERB enclaves correlate with location within the enclave such 

that biotites from enclave margins overlap in composition with those from the host granite, 

whereas those in enclave interiors have lower Fe/(Fe+Mg). 

 

6.2. Amphibole 

 

Calcic amphiboles in the sodic PPB and RBG are predominantly edenite and edenitic 

hornblende (Fig. 6a), whereas they are predominantly hastingsite and hastingsitic 

hornblende in the ERB. The ERB lacks the low-calcium amphiboles found in the sodic PPB 

and RBG suites, both of which include arfvedsonite; richterite is also present in the sodic 

PPB (Fig. 6b). 

 

ERB  amphiboles  show lower values of Fe/(Fe + Mg) than either the RBG or sodic PPB 

(Fig. 7), which is consistent with whole-rock Fe/(Fe+Mg) values (see Fig.8). Calculated 

Fe+3/Fe+2 ratios [after the method of Cosca et al. (1991)] are generally low in all three 

suites (Fig. 7a), but Fe3+/Fe2+ ratios in ERB granites are slightly higher compared to calcic 

amphiboles in the main volume of the RBG. Late-crystallizing arfvedsonites from stage 5 of 

the RBG have the highest Fe3+/Fe2+ ratios, which apparently reflect the incompatible 

behavior of Fe3+ during late-stage crystallization. 

 

Fluorine contents of ERB and RBG calcic amphiboles are comparable (Fig. 7b) and lower 

than arfvedsonite from stage 5 of the RBG where fluorine contents are high and variable. 

High whole-rock fluorine contents are typical of stage 5 arfvedsonite granites (Shannon, 

1994 ). It is noteworthy that the fluorine contents in biotites of the RBG are lower than in 

the amphiboles. This effect probably results from the sequence of crystallization: 

amphibole crystallization preceded late-stage co-precipitation of fluorite + biotite. Thus 

fluorine was enriched in the melt during early amphibole crystallization, but during biotite 

crystallization, fluorine was depleted by fluorite crystallization (Shannon, 1994; Shannon et 

al., 1997). 

 

7. Conditions of crystallization 

 

Shannon et al. (1997) calculated temperatures with the zircon saturation thermometer 

(Watson and Harrison, 1983) that range from 1057 to 727°C for the RBG. Although 

inherited zircon in granitic rocks can lead to extremely high concentrations of Zr and 

erroneously high temperature estimates, there is no Pb isotopic evidence for inherited 

zircon in the RBG (Wasserburg et al., 1962; Copeland and Bowring, 1988; Roths, 1993; 

Shannon et al., 1997). Furthermore, syenitic dikes of stage 3 contain zircon 

microphenocrysts and acicular zircon; the high Zr contents in these rocks are not the result 

of zircon accumulation. The ERB contains euhedral zircon and, similar to the RBG, there is 

no evidence for inherited zircon (Walker, 1992). Temperatures for the ERB based on zircon 
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saturation and plagioclase-hornblende thermometry (Blundy and Holland, 1990) mostly 

fall in the range of 750-830°C. For the sodic PPB, Saltoun (1993) estimated zircon 

saturation temperatures for the fayalite-bearing granitoids that range from 865 to 966°C, 

and Beane (1993) estimated apatite saturation temperatures (Harrison and Watson, 1984) 

for syenites that range from 724 to 961°C. 

 

The RBG and fayalite-bearing granites of the sodic PPB apparently crystallized at low 

oxygen fugacities (Shannon et al., 1997; Barker et al., 1975). The low Fe3+/Fe+2 values of the 

RBG and sodic PPB calcic amphiboles agree with estimated fO2, at or below the quartz-

fayalite-magnetite (QFM) buffer. Although the ERB contains magnetite, the high Fe/Mg in 

biotite reflects crystallization at relatively low oxygen fugacities, below QFM (Anderson 

and Smith, 1995). 

 

Normative Qz-An-Or relations show that all three suites do not plot along minimum-melt 

compositions characteristic of water-saturated granites, but rather towards the Or apex. 

Most compositions cluster at aH2O between 0.3 and 0.5 (Ebadi and Johannes, 1991), 

indicating that the magmas were characterized by water-poor conditions. Other features of 

the granitic suites—for example, general paucity of pegmatites, late crystallization of 

hydrous phases, relatively shallow levels of emplacement and high temperatures of 

crystallization—are also consistent with PH2O < Ptotal· 

 

In summary, temperatures for the ERB ranged from ~750 to 830°C, and the highest 

temperatures are found for the RBG and sadie PPB (up to ~950-1000°C).  All three seem to 

have crystallized under conditions of low water contents and oxygen fugacities. 

 

8. Whole-rock geochemistry  

 

Representative chemical analyses for the RBG, sodic PPB and ERB rocks are given in Tables 

4-7. Additional analyses for the RBG can be found in Shannon et al. (1997). Barker et al. 

(1975, 1976), Wobus (1976), Wobus and Anderson (1978), Beane (1993), Saltoun (1993) 

and Kay (1993) give further analyses for the PPB. Additional analyses chemistry, the RBG, 

ERB and PPB granitic suites for the ERB and PPB can be requested from the first author. 

 

On the basis of mineralogy and major element chemistry, the RGB, ERB and PPB granitic 

suites have been broadly classified as anorogenic (e.g. Anderson and Bender, 1989). 

Potassium contents and Fe/(Fe +Mg) ratios are high in all three suites relative to 

synorogenic granites, but the RBG and sodic PPB area characterized by extremely high 

values of Fe/(Fe+Mg) (Fig. 8a). 

 

In contrast, the three suites exhibit distinctions in their trace element chemistry. For 

example, very low Sr contents characterize the RBG and sodic PPB, with higher values 

found for the ERB (Fig. 8b). The RBG and sodic PPB suites have geochemical features 

typical of A-type or within-plate granites, however, this classification for the ERB is not 

clear. The Ga/Al ratio of the ERB granites (Fig. 9) is considerably lower than that of the RBG 

and PPB sodic series and plots predominantly in the field of I-, S- and M-types. In terms of 
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the alkali/lime ratio and HFSE concentrations (Fig. 10), the ERB compositions straddle the 

boundary between granite types, whereas the RBG and PPB sodic series are clearly A-type 

(Fig. 11). Similarly, the RBG and PPB display geochemical features (e.g. high Nb and Y 

contents, Fig. 12) commonly associated with 'within-plate' granites whereas the ERB 

exhibits features which overlap with granites emplaced in several tectonic settings. 

 

Rare earth element (REE) patterns for the dominant volumes of these three systems are 

generally similar in shape (Fig. 13). REE abundances of stages 1, 2 and 3 of the RBG are 

generally within the range of the PPB sodic series, but the RBG patterns display a slightly 

shallower slope than the PPB. For the RBG, REE abundances generally increase with 

increasing SiO2 from syenite to alkali feldspar granite (stage 3 to stage 2), then decrease 

with further differentiation (from stage 2 to stage 4 leucogranites). Stage 5 arfvedsonite 

granites display a wide range of REE abundances which are typically higher than the rest of 

the RGB. The REE patterns of the ERB, although similar in shape to the PPB, have lower 

abundances of all but the heavy REE and have smaller Eu anomalies (Fig. 13). In addition, 

REE abundances decrease from the outer to the inner zones. 

 

Pb and Sm-Nd analyses of samples from the ERB and the RBG are presented in Tables 1 and 

8 and illustrated in Figs. 13 and 14. Pb isotopic analyses of whole rock and feldspar from 

both the ERB and RBG define an linear array on an 207Pb/204Pb versus 206Pb/204Pb plot, the 

slope of which approximates the 1.1 Ga age of the rocks. Initial Pb values, as approximated 

by feldspar analyses, are similar to 1.0 Ga model mantle (Zartman and Doe, 1981). The 

spread of 208Pb/204Pb versus 206Pb/204Pb suggests average crustal Th/U ratios. Epsilon Nd 

at emplacement (1.08 Ga) ranges from +2.7 to +4.3 for the ERB (Fig. 14), corresponding to 

depleted mantle model ages 100-200 million years older than the emplacement age.  

Epsilon Nd at emplacement (1.12 Ga) for granitic and syenitic rocks from the RBG [Fig. 14; 

data from Patchett and Ruiz (1989)] ranges from +2.4 to +3.7, corresponding to depleted 

mantle model ages 170-230 million years older than emplacement age.  The isotopic data 

for the ERB and RBG suggest either: (1) depleted mantle sources; or (2) crustal sources 

recently derived from mantle. 

 

9. Petrogenetic models 

 

9.1. ERB 

 

There are very few intermediate and virtually no mafic rocks associated with the Llano 

high-K granites. In general, granite plutons of the Llano uplift are remarkably homogeneous 

with respect to major elements [Barker, p. 40, in Mosher (1996)], especially when data for 

magmatic enclaves are excluded from calculated averages. The large volume of granite in 

the uplift [45% of the exposed area; Johnson et al. (1976)] and the lack of associated mafic 

rocks suggest that the granites represent anatectic melts derived from crustal sources. 

Melting of crustal basement rocks could explain the region-wide homogeneity of the Llano 

granites, in contrast to the extended compositional ranges exhibited by the sodic PPB and 

RBG. 
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If crustal sources are assumed, partial melting of tonalitic/granodioritic crust could yield 

the high-K2O calc-alkaline magmas (Roberts and Clemens, 1993) that characterize the ERB. 

Such a source is supported by experimental studies (e.g. Skjerlie and Johnston, 1993). 

Major element compositions of ERB rocks are very similar to melts produced in vapor-

absent experiments, whereas poorer matches are found between ERB compositions and 

melts produced in vapor-present experiments (Carroll and Wyllie, 1990). 

 

Crustal wall rocks to the ERB and similar coeval granite plutons in the Llano uplift include 

~1.25 Ga tectonized granitic rocks (Valley Spring Gneiss, Lost Creek Gneiss, orthogneiss 

within the Packsaddle Schist) and the Coal Creek Domain, an island arc terrane that 

evolved separately from, and later collided with, the rest of the Llano uplift (Roback et al., 

1995). Rocks of the Coal Creek Domain have Pb and Nd isotopic characteristics distinct 

from the ERB (Figs. 13 and 14) and thus could not have been significant magma sources for 

the ERB. The ERB has Ph isotopic characteristics similar to the Valley Spring Gneiss and 

Packsaddle orthogneiss (Fig. 13), and Nd isotopes (Fig. 14) also suggest the ~1.25 Ga 

tectonized granitic rocks as possible source rocks. However, the Valley Spring Gneiss has 
87Sr/86Sr at ~1.1 Ga of ~0.7105, in contrast to ~0.7048 for the ERB (Garrison et al., 1979), 

indicating that ERB magmas could not have been derived from partial melting of Valley 

Spring Gneiss (Barker et al., 1995). Oxygen isotope data are not available for the ERB, but 

relatively high δ18O values [+ 9.3 to +9.7‰; Bebout and Carlson (1986)] for other coeval 

granitic rocks in the Llano uplift seemingly require a significant crustal component. 

 

Trace element models favor tonalitic crustal sources for the ERB. Fig. 15a illustrates ERB 

compositions for inner and outer zone rocks and trends in Ba and Sr during partial melting 

and fractional crystallization processes. The magmatic enclaves are not included in Fig. 15 

because their origin is thought to involve magma mixing/mingling processes (Smith and 

Wark, 1992), in addition to fractionation and/or source effects. In general, ERB 

compositions can be produced by 20-30% melting of a tonalitic source; some outer zone 

compositions were affected by fractionation dominated by feldspar removal/accumulation. 

Other geochemical data are consistent with emplacement of at least two magma types in 

the outer and inner zones. Samples at similar stages of evolution (e.g. similar SiO2 wt% or 

Eu/Eu*) but from the two different zones exhibit geochemical differences (e.g. Fe/(Fe +Mg) 

in whole-rock samples and biotites; Cs, Hf and REE abundances in whole-rock samples; Pb 

isotopic ratios in feldspars] that indicate they either evolved from distinct parental 

magmas or experienced different anatectic histories. The differences between outer and 

inner zone compositions are subtle and can be accounted for by small variations in source 

composition, which are likely for lower crustal assemblages. However, mafic compositions 

are not plausible sources for ERB magmas because they yield melts with Sr and Ba contents 

significantly higher than ERB magmas (cf Fig. 15a), and with low potassium contents 

(Roberts and Clemens, 1993) in contrast to the high-K nature of the ERB.  

 

Although the data favor a crustal origin, the presence of magmatic enclaves in the outer 

zone of the ERB provides evidence for the interaction of intermediate (to mafic?, that is, 

mantle-derived?), low-K2O magmas that were injected into and quenched by the host 

granite while it was still in a partially molten state (Smith and Wark, 1992). Unfortunately, 

it cannot be determined whether the mafic endmember magma was mantle-derived basalt 
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since the enclaves are interpreted as having undergone magma mixing/mingling processes. 

Considering the Nd data, the ERB magmas appear to have a depleted mantle component (cf 

Fig. 14). If ERB magmas were formed by melting of slightly older crustal rocks derived from 

depleted mantle (e.g. isotopically similar to the ~1.25 Ga tectonized granitic rocks) then no 

mantle component need be involved. However, if melting involved older crust extracted 

from depleted mantle 1.35 Ga ago (cf Fig. 14), a mantle component appears to be required. 

Even if granitic rocks of the ERB have no or little mantle material component, we do not 

rule out the importance of mantle heat input during granitic magma genesis. 

 

9.2. RBG suite 

 

Although isotopic data for the ERB and PPB are similar, we interpret the other geochemical 

and petrologic data as indicative of an origin for the RBG involving fractionation of mantle-

derived basalt, in contrast to the crustal anatexis model for the ERB. For the RBG, major 

element mass balance calculations [see Shannon et al. (1997), for details] show that the 

sequence stage 3� stage 2� stage 4 represents a plausible fractional crystallization liquid 

line of descent. Trace element models support these conclusions (Fig. 16a) and indicate 

that fractionation was inefficient: as much as 40% melt was trapped among accumulated 

crystals (Shannon et al., 1997; Shannon, 1994). Fig. 15b also supports a multi-state 

fractionation history for the RBG, but suggests that the least evolved RBG compositions (i.e. 

with highest Sr and Ba) are the result of crustal anatexis (similar to the ERB). However, Fig. 

16b clearly shows that partial melting of tonalitic compositions cannot produce the high Zr 

contents which characterize the RBG, nor can it explain compositional trends within the 

RBG. Partial melting of known or plausible crustal rock types with high Zr contents can 

generate some RBG samples, but not the elemental abundances nor trends of the RBG as a 

whole. As previously mentioned, high concentrations of Zr could be the result of inherited 

zircon, but petrographic and Pb isotopic evidence argue against this interpretation 

(Shannon et al., 1997). Furthermore, inherited zircon does not explain the high contents of 

other trace elements (REE, Y, Nb, Ta, Hf, Zn, Ga) that characterize RBG rocks. 

 

The isotopic data (Table 1; Figs. 14 and 15) are consistent with petrogenesis of the RBG by 

extensive fractional crystallization of mantle-derived basaltic parents, as are high 

temperatures estimated for RBG magmas (up to 1000°C). Oxygen isotopic data indicate 

that assimilation of crustal rocks (up to 20%) is also possible (Shannon et al., 1997). This 

crustal component must be isotopically similar to ca 1.1 Ga depleted mantle. Crustal rocks 

to the west in the Yavapai-Mazatzal crustal province (Wooden et al., 1988) have distinctive 

isotopic characteristics that preclude them as source materials for the RBG. 

 

9.3. PPB sadie suite 

 

Barker et al. (1975, 1976) suggested that the sodic series of the PPB formed by fractional 

crystallization of mantle-derived alkali basaltic parents coupled with assimilation of deep 

crustal rocks. Recent isotopic and trace element studies of the PPB (Douglass and Smith, 

1993; Sturm et al., 1993) are in agreement with these conclusions. The data thus support a 

petrogenesis for the sodic series of the PPB similar to that for the RBG. However, the Nd 

isotopic ratios (Fig. 14) indicate a mantle source that is isotopically distinct from mantle 
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presumed to be the source for RBG parental basaltic magmas. The mantle beneath 

Colorado was evidently affected by an enrichment event, possibly associated with 

subduction during the ~1.7 Ga Boulder Creek orogeny, which did not similarly affect the 

mantle beneath west Texas. 

 

10. Discussion and conclusions 

 

Circa 1.1 Ga granitic magmatism in Texas was apparently manifested as two compositional 

groups. In west Texas, north of the Grenville Front, the Red Bluff granitic suite represents a 

pulse of highly evolved syenitic and granitic melts emplaced into undeformed rocks. This 

granitic suite is very similar to the sodic series of the PPB, which is proposed to have a 

similar petrogenesis. Both plutonic systems were probably emplaced in an extensional 

tectonic setting; both occupy positions 'inboard' of broadly coeval rift zones. 

 

South of the Grenville Front, in the Llano uplift of central Texas, ~1.1 Ga granitic 

magmatism is exemplified by the ERB. The ERB is distinct from both the RBG and PPB in 

having local rapakivi texture, lower Fe/(Fe+Mg), lower concentrations of HFSE, and trace 

element abundances transitional between A-type and fractionated granites. The range of 

compositions exhibited by the ERB is smaller compared to those exhibited by the RBG and 

sodic PPB, especially with regards to several trace elements (cf Figs. 12, 15 and 16). In 

addition, no mafic or syenitic compositions are associated with the ERB and other coeval 

Llano granites, and maximum estimated temperatures are significantly lower compared to 

the RBG (and sodic PPB). The tectonic setting of the ERB is uncertain. Further work is 

needed to determine the relative timing of and tectonic 'trigger' for ~1.1 Ga granitic 

magmatism, final Grenville deformation and juxtaposition of Grenville Province crust with 

Laurentia. 

 

The Nd isotopic data overlap between the two granite suites and have 'juvenile' signatures 

similar to those documented for other A-type granites (e.g. Whalen et al., 1996). We caution 

that if only isotopic data (especially Nd) for the sodic PPB, RBG and Llano suites are 

examined, one might conclude that the ERB and RBG shared a common petrogenesis that 

involved a significant depleted mantle component, whereas the sodic PPB had a distinct 

origin involving crustal materials and/or relatively more enriched mantle sources. We 

interpret the petrologic, mineralogical and geochemical data in their entirety as more 

consistent with an indirect derivation from mantle sources for the ERB involving anatexis 

of tonalitic, juvenile crust (cf Whalen et al., 1996), with relatively limited amounts of 

feldspar fractionation affecting some parental magmas. In contrast, we conclude that the 

RBG and sodic PPB had a common petrogenesis and direct derivation from mantle sources 

via extensive fractional crystallization of mafic magmas, perhaps accompanied by some 

crustal assimilation. 

 

Anderson (1983) identified the Llano granites, Red Bluff granitic suite and the PPB as part 

of an 'anorogenic' magmatic event that occurred ~1.1 Ga ago. The subsurface distribution 

of these granitic types is not known, and evidence exists that RBG-type granites may be 

present south of the Grenville Front in west Texas (Barnes, unpublished data). However, 
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the ~1.1 Ga granites in Texas are clearly not part of a single Grenville-age magmatic event 

because of their distinct petrogenetic histories and tectonic settings. 
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