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When ATP levels in a cell decrease, various homeostatic intracellular 

mechanisms initiate attempts to restore ATP levels.  As a prominent energy sensor, 

AMP-activated protein kinase (AMPK) represents one molecular gauge that links 

energy levels to regulation of anabolic and catabolic processes to restore energy 

balance.  Although pharmacological studies have suggested that an AMPK 

activator, AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) may link 

AMPK activation to autophagy, a process that can provide short-term energy within 

the cell, AICAR can have AMPK-independent effects.  Therefore, using a genetic-

based approach we investigated the role of AMPK in cellular energy balance.  We 

demonstrate that genetically altered cells, mouse embryonic fibroblasts (MEFs), 

lacking functional AMPK display altered energy balance under basal conditions 

and die prematurely under low glucose-serum starvation challenge.  These AMPK 

mutant cells appear to be abnormally reliant on autophagy under low glucose basal 

conditions, and therefore cannot rely further on autophagy like wildtype cells 

during further energetic stress and instead undergo apoptosis. This data suggests 

that AMPK helps regulate basal energy levels under low glucose.  Further, AMPK 

mutant cells show increased basal phosphorylation of p53 at serine 15, a residue 
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phosphorylated under glucose deprivation.  We propose that cells lacking AMPK 

function have altered p53 activity that may help sensitize these cells to apoptosis 

under energetic stress. 

 

Running Title: AMPK promotes low glucose serum deprivation survival 

 

Introduction 

Autophagy and apoptosis represent two mechanisms that can ultimately lead to 

cellular self-eradication.  Although apoptosis exclusively eliminates cells, autophagy 

itself can have either a beneficial or detrimental cellular effect depending on the cellular 

context.  It has been suggested that the net outcome of autophagy depends on multiple 

other events and processes.1-7 Although evidence in mammals suggests some molecular 

coupling between autophagy and apoptosis, the exact molecular connection remains 

unclear. 

Organelles and other cellular constituents including lipids, RNA, and proteins can 

undergo catabolism via macroautophagy, subsequently referred to herein as “autophagy”.   

Autophagy involves the sequestration of bulk cytoplasmic regions into double-membrane 

vacuoles that fuse their contents with late endosomal and lysosmal compartments for 

degradation.4, 6, 8-13 In addition, there are two other specialized forms of autophagy 

including chaperone-mediated autophagy (CMA) and microautophagy.  CMA involves 

the selective targeting of proteins containing a KFERQ-like peptide motif to lysosomes 

for degradation.6, 8, 13-16 Microautophagy involves the pinocytosis of small quantities of 

cytosol directly by lysosomes.6, 13, 17 



 4 

If a cell under energetic stress cannot restore energy balance it will eventually die.  

Cell death can be divided into two main mechanisms: apoptosis or necrosis.  Apoptosis is 

a well-characterized programmed cell death event.  The hallmarks of apoptosis include 

caspase activation, cellular shrinkage, pyknosis, and karyorrhexis. Recent evidence 

suggests a third type of cell death, autophagic cell death (ACD).3-6, 18, 19 However, 

whether apoptosis and ACD are indeed uncoupled events or if autophagic failure leads to 

apoptosis remain unclear.   

 AMP-activated protein kinase (AMPK) is a serine-theronine kinase involved in 

sensing energy status in the cell and regulating metabolism. The heterotrimeric protein 

complex contains a catalytic subunit α and two regulatory subunits, β and γ 

respectively.20-24 Cellular stressors including energetic stress, which lowers ATP levels, 

lead to activation of AMPK activity.  In response, activated AMPK then turns on ATP-

generating pathways while inhibiting ATP-consuming pathways in order to increase ATP 

to AMP ratios.20-24 AMPK is highly conserved with orthologues expressed in plants, 

yeast, Drosophila, Caenorhabditis (C.) elegans, vertebrates and mammals.21, 23, 25, 26 The 

first mutations in an AMPK complex gene were identified as mutations in Snf1 (sucrose 

non-fermenting) protein kinase, the Saccharomyces cerevisiae orthologue of AMPKα.21, 

25-28 In yeast, SNF1 has a role in fully inducing autophagy.29 However, mammalian 

studies demonstrate conflicting roles for AMPK in autophagy.  There have been several 

studies indicating that AMPK is an inducer of autophagy,30-32 while there is evidence in 

hepatocytes that AMPK is an inhibitor of autophagy.33, 34 In addition, many studies of 

AMPK and autophagy rely strictly on pharmacological agents, which may have off-target 
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effects to activate or inhibit AMPK.  Indeed, numerous studies demonstrating AICAR 

dependent but AMPK independent phenotypes exist.35-39   

In order to investigate the role of AMPK in autophagy and apoptosis without the 

use of pharmacological activators or inhibitors of AMPK, we took a genetic-based 

approach. We derived mouse embryonic fibroblasts (MEFs) lacking AMPK activity from 

genetically engineered mice to study them within an energy deprivation paradigm.  Our 

results indicate that constitutive genetic loss of AMPK function in MEFs under low 

glucose lead to an increased basal rate of autophagy under serum-rich conditions. Further, 

due to elevated autophagy basally, genetically null AMPK cells are less equipped to 

survive stress exerted by further nutrient deprivation and undergo apoptosis. 

Results 

20 hours serum deprivation leads to apoptotic cell death in AMPKα-/- (null) 

MEFs.  Typical immortalized MEF cells are able to survive serum-free conditions for a 

brief period of time typically at least 24 hours.  Serum deprivation (“starvation”) can be 

used as a paradigm that more subtly mimics nutrient deprivation and is often followed 

with serum re-introduction to examine growth factor mediated signaling events. 

However, in this study with low glucose we observed that serum deprivation itself 

quickly lead to cell death for cells simultaneously lacking both catalytic AMPK subunits, 

AMPKα1 and AMPKα2 (hereafter referred to as AMPK-/-).     

AMPK +/+ (wildtype) and AMPK-/- MEFs were subjected to a 20-hour period of 

serum starvation, after which, we observed 30-40% of the AMPK-/- MEFs completely 

detached and floating in culture media while wildtype MEFs were attached and appeared 

healthy.  To investigate whether the observed phenotype was an apoptotic or necrotic 
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event we measured indicators to distinguish the two (the Annexin-V FITC /Propidium 

Idodide (PI) Assay) on samples from both AMPK+/+ and AMPK-/- MEFs under serum-

rich and serum deprivation conditions.  Results from the Annexin-V FITC/ PI Assay 

indicate that the cell death only observed in the AMPK-/- MEFs under low glucose-serum 

deprivation and is an apoptotic event (Figure 1A-D).    Although, there was a large 

population of PI/Annexin-V FITC double positive cells indicating death, there was also a 

large population of single positive Annexin-V FITC positive cells, a marker exclusive for 

early apoptosis. High glucose-serum-rich or serum deprived conditions for both cell types 

as well as low glucose-serum starved AMPK+/+ MEFs showed no significant amount of 

cell death and more than 90% of the cells remained viable at 20 hours following serum 

removal (Figure 1A-C).   Therefore our study focuses on low glucose effects on cell 

survival unless otherwise stated.   

Total AMPKα1/α2 protein levels detected with two independent AMPK 

antibodies demonstrated significant reduction in AMPK-/- MEFs as expected (Figure 1E).  

In addition, phosphorylated Acetyl-CoA Carboxylase (ACC) at Serine 79, a target site for 

AMPK activity, was also diminished (Figure 1E).  However, it was not eliminated as 

other kinases, including PKA, have also been demonstrated to phosphorylate ACC. 

 To further confirm the cell death observed in AMPK-/- MEFs corresponded to an 

apoptotic event, we performed western blot analyses on these samples using well-

established apoptotic markers, activated PARP and cleaved caspase 3.    As expected for 

surviving cells, AMPK+/+ and AMPK-/- MEFs under serum-rich conditions did not 

display significant cleavage of caspase 3 or PARP (poly ADP ribose polymerase) (Figure 

1D).  However, after 20 hours of serum deprivation a significant increase in caspase 3 
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and PARP cleavage was observed in AMPK-/- MEFs, indicating apoptosis within this 

sample of cells but not in its counterpart AMPK+/+ wildtype MEFs. 

Increased LC3-II in AMPK-/- MEFs under serum-rich conditions compared 

to AMPK+/+ cells.  Under conditions of stress, including reduced energy and serum 

deprivation, cells can maintain viability by recycling cytoplasmic components to generate 

energy via autophagy.    Autophagy can act in a pro-survival manner and assist in 

evading cell death during stressful conditions, which could otherwise lead to death.    

Since the apoptotic phenotype we observed in the AMPK-/- MEFs was induced under low 

glucose-serum deprivation we set out to investigate whether there was an impediment in 

the autophagic pathway in AMPK-/- cells thereby explaining why these cells die during 

serum deprivation stress.    We first exogenously expressed a Venus-LC3 plasmid in our 

AMPK+/+ and AMPK-/- MEFs cultured in high and low glucose media.  The modification 

status of LC3 is a commonly used marker of autophagy.  LC3 is quickly processed into 

cytosolic LC3-I after it is translated.  However, upon induction of autophagy LC3-I 

becomes lipid conjugated with phosphatidylethanolamine (PE) into LC3-II that can then 

target to membranes of autophagosomes.  Although LC3-I appears diffuse throughout the 

cell, LC3-II appears punctate and associated with vesicular appearing structures.  Fusion 

of LC3 with a fluorescent tag (e.g. Venus or GFP) can be used as a reporter of relative 

autophagic activity if combined with other assays. Under low glucose-serum-rich 

conditions, transfected AMPK-/- MEFs expressing Venus-LC3 displayed predominantly 

punctate localization of the fluorescent signal (Figure 2F), while wildtype MEFs cultured 

in either high or low glucose, as well as AMPK-/- cells cultured in high glucose media, 

displayed diffuse cytosolic localization as expected (Figure 2A, K).  As a positive control 
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we added the natural product, rapamycin, an inducer of autophagy.  Rapamycin inhibits 

the activity of mTOR (mammalian target of rapamycin) thereby inducing autophagy.  

Both rapamycin and serum deprivation were able to induce autophagy in both cell types 

indicated by the punctate phenotype (Figure 2B. 2D, 2G, 2I, 2L, 2N). We also observed 

that AMPK-/- MEFs displayed similar venus-LC3 phenotype as AMPK+/+ MEFs under all 

conditions when cultured in high glucose paradigm (Figure 2K-O). These results suggest 

that AMPK-/- MEFs appear to have an increased basal rate of autophagy induction during 

the low glucose-serum rich state.  High and low glucose conditions resulted in similar 

venus-LC3 phenotypes for AMPK+/+cells and therefore Figure 2A-E is representative of 

both conditions. 

 We further wanted to investigate whether or not autophagy is actually functional 

in these AMPK-lacking cells.  Although autophagosomes are being formed it is important 

to know whether these autophagosomes are capable of completing autophagy and thereby 

provide energy to the cell.  Therefore we used two lysosomal protease inhibitors, E64d 

and pepstatin A, which allow the formation of autolysosomes but partially prevent the 

functional completion of autophagy.  Increased amounts in the number of LC3-GFP 

puncta were observed in venus-LC3 transfected AMPK-/-  and wildtype cells when treated 

with E64d and pepstatin A in conjunction with rapamycin or serum deprived condition 

compared to rapamycin or serum deprivation only (Figure 2B-E, G-J, L-O).  

Additionally, whole cell lysates treated with and without 10µg/ml of E64d and pepstatin 

A in low-glucose DMEM media with serum were harvested and used for western blot 

analysis of endogenous LC3 in AMPK+/+ and AMPK-/- MEFs.  LC3-II greatly increased 

in the presence of lysosomal protease inhibitors for both cell types as expected, as LC3-II 
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itself is degraded by autophagy.  However, greater LC3-II was found in AMPK-/- cells 

with serum, particularly when comparing the ratio of LC3-II to LC3-I (Figure 3A).  

These Western blot results confirmed that an increased basal rate of autophagy under 

nutrient rich condition occurs in AMPK-/- MEFs with a 3-fold increase in LC3-II 

formation in the presence of lysosomal inhibitors (E64d and pepstatin A) compared to 

conditions without lysosomal inhibitors suggesting at least functional autophagy 

induction.  We also investigated LC3-II formation in cells cultured for 20 hours under 

serum starvation.  Under serum starvation conditions, LC3-II/LC3-I ratios markedly 

increased in AMPK+/+ cells with or without lysosomal protease inhibitors (Figure 3B) 

compared to lysates from cells with serum (Figure 3A). Both AMPK+/+ and AMPK-/- 

MEFs show increased LC3-II formation in the presence of lysosomal inhibitors as 

expected for functional autophagy (Figure 3B).   

 However it is essential, if monitoring autophagy via LC3-II accumulation, that a 

time course of the autophagic flux be conducted 9, 11.  Therefore we monitored autophagic 

flux by harvesting serum-deprived cells treated with lysosmal inhibitors at 0, 2, 6, 12, and 

20 hours after serum deprivation (Figure 4).  As expected, we did not observe LC3-II in 

AMPK+/+ MEFs at time zero without lysosomal inhibitors.  However, there is LC3-II 

found at time zero for AMPK-/- MEFs without lysosomal inhibitors. Additionally, an 

incremental increase in LC3-II formation was observed for AMPK+/+ and AMPK-/- MEFs 

over the 20 hour time course and this increase was significantly greater in AMPK-/- than 

AMPK+/+ MEFs (Figure 4A).  Upon addition of 3-MA, the increase in LC3-II was largely 

blunted and showed no increase at the later time points (12-20 hours) (Figure 4B). 
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3-Methyladenine inhibition of autophagy in both AMPK+/+ and AMPK-/- 

MEFs leads to increased apoptosis.   In order to determine whether the autophagic 

pathway contributes to survival in AMPK-/- and AMPK+/+ MEFs, we utilized 3-

methyladenine (3-MA), a known autophagy inhibitor, to observe its effects on MEFs 

under both serum-rich and serum free conditions.  Indeed 7mM 3-MA treatment for 20 

hours caused increased apoptosis in AMPK+/+ cells under nutrient deprivation conditions 

as indicated by activation of caspase-3 and PARP (Figure 5A).  This was confirmed with 

the Annexin-V FITC/PI Apoptosis assay (Figure 5B).  Interestingly, the increase of 

apoptotic cell death in AMPK+/+ cells under nutrient deprivation with 3-MA was similar 

to serum deprived AMPK-/- MEFs without 3-MA.  Such observation would suggest there 

is a functional autophagic pathway in AMPK-/- cells supported by increased apoptosis 

when AMPK-/- MEFs are treated with 3-MA compared to non-treated (Figure 5). Both 

cell types utilize some autophagy under basal nutrient rich conditions as both AMPK+/+ 

and AMPK-/- cells showed some increase in apoptosis when treated with 3-MA.  

Additionally, the AMPK-/- cells exhibited much more apoptosis, suggestive of their 

increased reliance on autophagy under nutrient-rich conditions (Figure 5B).  However, 

we do note that although 3-MA is widely used to inhibit autophagy, targets of 3-MA at 

7mM may also include additional pathways such as the Akt survival pathway.  Therefore, 

we do not rule out the possibility of off-target pathways that may play a part in the 

observed cell death. Therefore we decided to verify the 3-MA observation by knocking 

down an essential autophagy gene, ATG7, via a shRNA expressing plasmid under low 

glucose no serum conditions for 20 hours.  However, we did not observe increased cell 

death as with the 3-MA treatment (Figure 5C).  Therefore, we may only suggest the 
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increased cell death observed in both AMPK-/- and wildtype 3-MA treated cells could in 

part be due to autophagy inhibition but also other pathways.  Although we cannot exclude 

that the remaining (~15%) of ATG7 could still have some function.  

Reduced ATP levels in AMPK-/- cells.  We next tested whether ATP levels were 

similar in AMPK+/+ and AMPK-/- MEFs.  We hypothesized that ATP levels might be 

similar or even elevated in AMPK-/- cells due to the increased basal level of autophagy.  

However, despite increased basal levels of autophagy, we observed ~50% decrease in 

ATP levels in AMPK-/- MEFs cultured under low glucose conditions compared to 

wildtype MEFs and AMPK null MEFs cultured in high glucose.  Additionally, there was 

an ~30% reduction in ATP levels in AMPK null MEFs compared to wildtype MEFs 

under low glucose-serum containing conditions (Figure 6A).  Furthermore, high glucose 

media conditions revealed no significant difference in ATP levels between AMPK+/+ and 

AMPK-/- MEFs.   This indicates the energy sensor, AMPK, becomes essential once the 

cells are starved of glucose and serum.  Although, MEFs contain hexokinase, which has a 

lower Km for glucose than glucokinase, our observations may be due to glucose 

consumption during the time course of the experiment.    

 Further, to explore whether the cell death that occurs under serum starvation may 

simply be the result of not enough ATP, we added methyl pyruvate, a cell-permeable 

form of pyruvate to cells.  Pyruvate can be decarboxylated to acetyl-coenzyme A, which 

can enter the Tricarboxylic Acid Cycle (TCA) to produce energy. Interestingly, although 

we did not observe a statistically significant increase in the ATP level with 

methylpyruvate treatment, cell viability was maintained for AMPK-/- cells during serum 

deprivation treated with methyl pyruvate (Figure 6B).  Further, lysate harvested from 
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cells after 20 hours of methyl pyruvate treatment under serum rich and serum deprived 

conditions revealed a decrease in LC3-II for AMPK-/- cells under both conditions (Figure 

6C).   Additionally, we observed that AMPK-/- cells cultured in high glucose do not show 

increased basal levels of autophagy again suggesting the energy sensor, AMPK, becomes 

vital during times of reduced ATP levels. 

Increased p53 phosphorylation and PTEN induction in AMPK-/- cells.  p53 is 

a well characterized tumor suppressor gene activated by numerous cellular stressors and 

genotoxic insults.  p53 regulates various cellular functions including cell growth, DNA 

repair, senescence, apoptosis and even autophagy.40-42 Although some investigators 

demonstrate that p53 activates autophagy 40, 41, 43-45 other studies suggest that p53 inhibits 

autophagy.40-42, 46 In most cases by ultimately affecting mTOR possibly through PTEN or 

the TSC1/2 complex. 

 p53 phosphorylation, specifically at serine 15 (ser15) is induced during glucose 

starvation suggesting a role of p53 coupling cellular energy and metabolism with cell 

growth.43 Additionally, another study found that ultraviolet (UV) and hydrogen peroxide 

stress activated AMPK and p53 phosphorylation at ser15 to mediate stress induced 

apoptosis47.  Therefore we wanted to determine whether p53 phosophorylation is induced 

in our samples during serum fed or deprived conditions, and if phosphorylation status 

correlates with protein levels of upstream regulators of mTOR including PTEN and 

tuberin (TSC2).  Western blot analysis did reveal upregulation of p53 phosphorylation at 

Ser15 in AMPK-/- cells compared to wildtype when cultured under low glucose 

conditions (Figure 7A).  Furthermore, PTEN and tuberin levels were increased in AMPK-

/- cells when cultured in low glucose medium.  Our results suggest that AMPK-/- cell 
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susceptibility to apoptosis correlates with increased Ser15 p53 phosphorylation in 

response to lower ATP levels.   Moreover, we observed no significant difference between 

AMPK-/- and wildtype cells for the above-mentioned markers when cultured in high 

glucose conditions (Figure 7B). 

 

Discussion  

 Autophagy can be induced during pathogenic invasion, starvation conditions, or 

stress as a means of maintaining homeostasis and viability.  Altered regulation of 

autophagy - either as disease causing or disease treating - has received interest in many 

therapeutic areas including cancer, heart disease, neurodegeneration, lysosmal storage 

disease, and infectious disease.8, 13, 18, 19, 48-51   More recent studies have tried to 

understand the link between autophagy and apoptosis.  Conceptually, AMPK and 

autophagy can both be activated under times of stress in order to restore energetic 

homeostasis.  In addition, like autophagy, activation of AMPK has been suggested to 

promote cell death under very specific conditions, for instance in cancer cells.  

Examination of molecular signaling events could help elucidate these context 

dependent differential outcomes.  However, interpretation of experiments can be 

confounded by the use of pharmacological inhibitors or RNA interference based 

approaches, both of which can have off-target effects.  It is important to note that much of 

the research to date investigating AMPK’s role in autophagy has used pharmacological 

agents such as AICAR to activate AMPK.  However, there is evidence suggesting that 

AICAR’s effects can be independent of AMPK even though many studies suggest AMPK 

(through AICAR) induces autophagy. 32, 39, 52  A past study35 demonstrated that AICAR is 
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able to maintain inhibitory effects on glucose phosphorylation in both wildtype and 

AMPKα double knockout primary hepatocytes, suggesting an AMPK-independent but 

AICAR-dependent effect.  Clearly it is of vital importance to investigate AMPK’s role in 

any phenotype in the absence of activating or inhibiting pharmacological agents that may 

have AMPK-independent effects. Previous studies53, 54 did use AMPK α1/α2 double 

knockouts to investigate AMPK activity on autophagy during hypoxic conditions and in 

response to metformin treatment.  Although one group suggests AMPK regulates 

hypoxia-induced autophagy via mTOR inhibition, this study did not detect LC3-II in 

either WT or KO cells but based autophagy on the amount of LC3-I because their 

antibody did not recognize LC3-II (nor did they use lysosomal inhibitors). The other 

study showed impaired relocalization of LC3 in AMPK-/- MEFs upon metformin 

treatment indicating that metformin-induced activation of autophagy is AMPK 

dependent. Our current study did not use pharmacological agents to activate or inhibit 

AMPK to examine its roles in autophagy and apoptosis and does not conclude that 

AMPK could not normally regulate autophagy, only that it is not required for its 

induction in response to serum starvation under low glucose. 

AMPK, autophagy and p53 have conceptual similarities.  A large body of 

literature suggests that AMPK, autophagy, and p53 can have either pro-survival or cell 

death promoting activity. Many conflicting observations could simply reflect differences 

in contexts, for example different cell types or different means of initiating stress that 

may lead to distinct outcomes.  In any case, as more and more genetically engineered 

mice become available in vivo studies may more clearly define the roles of these 

molecules/processes without relying on pharmacological agents.  
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p53 - like AMPK - can also be activated under numerous stress conditions 

including glucose deprivation, heavy metal exposure and UV radiation all of which 

induce phosphorylation at serine 15.43, 55, 56 Interestingly, both serine 15 and serine 46 of 

p53 can be phosphorylated under stress, however, only serine 15 is conserved between 

mice and humans.  Additionally, p53 (Ser15) activation leads to increased levels of 

PTEN and TSC2 resulting in mTOR inhibition43.  p53 has long been known to induce cell 

cycle arrest, cellular senescence or apoptosis in response to genotoxic agents in order to 

allow cells to recover from damage or promote apoptosis if the cellular damage is 

irreversible, respectively.  Only recent investigation of AMPK function has explored its 

roles in cell cycle and cancer, while conversely more recent studies of p53 have explored 

its potential roles in metabolism.57  

Do deficits in AMPK lead to increased autophagy generally? Our study, using 

genetically deficient AMPK cells, demonstrates that autophagy has a pro-survival role in 

AMPK-/- MEFs under low glucose, however, additional energetic stress burden on these 

cells leads to apoptosis perhaps via a p53 based mechanism (Figure 8). This study 

demonstrates, that AMPKα double knockout mouse embryonic fibroblasts have a high 

level of basal autophagy when cultured in low glucose.  The data does not mean that 

AMPK does not have a role in modulating or even inducing autophagy under other 

medium conditions or contexts. Although our experiments in the presence of lysosomal 

inhibitors reveal some functional autolysosomal degradation in knockout cells, we cannot 

exclude the possibility that low ATP levels themselves could impair autophagic function 

by for instance impairing the lysosomal proton pump.  
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Two other possible explanations for the acceleration of autophagy in AMPK-/- 

MEFs under low glucose conditions exist.  It has been proposed that mTOR itself is an 

ATP sensor and its activity falls as the ATP concentration decreases, thus removing an 

autophagic brake58; second, amino acids are essential for mTOR activation and in the 

absence of AMPK under low glucose concentrations, amino acids would be increasingly 

oxidized to provide energy and thus decrease activation of mTOR.  

Researchers have shown various other molecules can have dual roles in regulating 

autophagy.  For instance, p53 can either induce or inhibit autophagy.40, 41 Therefore, it is 

plausible, depending on the cellular context, that AMPK could help induce autophagy 

during energetic stress, but serum starvation-low glucose induced autophagy does not 

require AMPK activation, at least in MEFs. Interestingly, both autophagy and AMPK are 

conserved from yeast to man but may have evolved slightly different regulatory pathways 

due to distinct outcomes needed for different cell types in multicellular organisms.  

Further in vivo studies utilizing AMPKα knockouts, especially in hepatocytes, would 

further elucidate AMPK’s role in autophagy. 

 

Materials and Methods 

Plasmids, reagents, and antibodies.  The following plasmids, reagents, and 

antibodies were used in the study:  pLC3-venus was a kind gift from Dr. Fan Wang 

(Duke University). 3-methyladenine (3-MA) (Sigma: M9281), Rapamycin (LC 

Laboratories: R-5000), E64d, pepstatin A (Calbiochem: 330005, 516481), 

methylpyruvate (Sigma: 371173), anti-LC3 (MBL International: PM036), anti-

phosphoAMPK (Cell Signal: 2535), anti-PARP(cleaved)(Cell Signal: 9544), anti-
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Caspase 3 (Cell Signal: 9662), anti-Caspase 3 (cleaved)(Cell Signal: 9661), anti-

PTEN(Cell Signal: 9556), anti-p53(Ser15)(Cell Signal: 9284), anti-p53(Cell Signal: 

2524), anti-ACC(Ser79)(Cell Signal: 3661), anti-AMPKα(rabbit)(Cell Signal: 2603), 

anti- AMPKα(mouse) (Abcam: ab51025),  anti-Tuberin (Santa Cruz: sc-893), anti-ATG7 

and anti-α tubulin (Sigma: A2856 and T5168). Apoptosis Detection Kit was purchased 

from R & D Systems (TA4638). ATP Assay Kit was purchased from Sigma-Aldrich 

(FLASC).  

Cell culture.  All experiments were carried out in low glucose DMEM unless 

otherwise mentioned. AMPKα1/2 double knock-out mouse embryonic fibroblasts 

(MEFs) and wildtype controls (C57/B6) were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM) (Sigma: 6429 and 6046) containing 10% fetal bovine serum (Atlanta 

Biologicals: S11150) and 1X Pen/Strep antibiotics (Sigma: P4333) under 10% CO2 and 

37°C.    For all experiments, cells were plated in either DMEM-H (4.5g/L) or DMEM-L 

(1g/L) and allowed to grow for 24-48 hours to reach 60-80% confluency before treatment 

for indicated times with E64d (10µg), pepstatin A (10µg), rapamycin (200nM), 3-MA 

(7mM), and methyl pyruvate (10mM). 

Venus-LC3  transfections.  Mouse embryonic fibroblasts were plated on 6-well 

cell culture plates containing coverslides.  Cells were transfected with 4µg of venus-LC3 

plasmid using Lipofectamine 2000 (Invitrogen: 11668-027).  36 hours post-transfection 

cells were treated with rapamycin under serum rich states or with E64d and pepstatin A 

under serum deprived conditions. 20 hours later the cells were washed with phosphate-

buffered saline and fixed with 4% paraformaldehyde. Slides were mounted with 

Vectashield mounting media containing 4', 6'-diamidino-2-phenylindole (DAPI) (Vector 
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Laboratories: H-1200). Signals were observed by confocal microscopy with a Zeiss 

confocal microscope (LSM 510). 

 ATG7 shRNA knockdown.   A retroviral vector encoding a short hairpin RNA 

(shRNA) construct against mouse ATG7 (TRCN0000092163) was obtained from UNC 

shRNA/Open Biosystems Core.  A non-silencing (nonsense) short hairpin RNA vector 

was also obtained (RHS4080). MEF cultures were plated at a density to yield 60-70% 

confluency by the next day. Cultures were transfected using Lipofectamine 2000, 

according to the instructions provided by the manufacturer with ATG7 or non-silencing 

shRNA.  48 hours post transfection cells underwent 20 hours of serum deprivation.  

ATG7 protein level was analyzed by western blot analyses 3 days following transfection.  

Western blotting.  Cells were scraped via cell lifter (Corning) and harvested in 

culture medium and centrifuged at 1000 RPM for 5 min. Pellet was washed 2X in cold 

DPBS and lysed in ice-cold lysis buffer containing 25mM Tris(pH7.5), 2mM MgCl2, 

600mM NaCl, 2mM EDTA, 0.5% NP-40, and 1X protease and phosphatase cocktail 

inhibitors(Sigma). Aliquots of the Proteins were separated on 4–12% NuPAGE BisTris 

(Invitrogen: NP0321 and NP0322) or 12% NuPAGE BisTris (Invitrogen: NP0341 and 

NP0342) and then transfer to a polyvinylidene difluoride (PVDF) membrane (Amersham 

Biosciences: IPFL00010).  After transfer, the membrane was washed 3X in TBS, blocked 

for 1 hour at room temperature in 5% Bovine Serum Albumin (BSA) in TBS, followed 

by 4°C overnight incubation with appropriate primary antibody in 5% BSA-TBS. 

Western blot analysis was performed at 1:1000 dilution of all primary antibodies with the 

following exception anti-α tubulin(1:16,000).  Next day, the membrane was washed 3X 

in TBS-tween, incubated at room temperature for 1 hour with IRDye infrared secondary 
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antibody (LI-COR Biosciences: 926-32221 and 926-32210) at 1:2000 dilution in 5% 

BSA-TBS, followed by 2X TBS-T and 1X TBS washes.   Scanning, analyzing, and 

quantification of blots were performed via the Odyssey Infrared Imaging System.  Three 

or more independent experiments were performed for all immunoblotting data.    

Quantification data is represented by bar graphs with error bars that indicate the standard 

error of the mean. 

Apoptosis assay: Annexin V-FITC detection.  Apoptosis Detection kit from 

R&D Systems was used to detect apoptosis according to the manufacturer’s instructions.  

Briefly, after collecting and washing twice with cold PBS, the treated and/or untreated 

cells were resuspended in a total of 100ul of Annexin V incubation solution containing 

10x Binding Buffer (10ul) (10 mM HEPES/NaOH, pH 7.4, 150 mM NaCl, 1mM MgCl2, 

1.8mM CaCl2), FITC-Annexin-V (1μl) and Propidium iodide (10ul), and ddH2O (79ul).  

The samples were then incubated for 15 min in the dark at room temperature and then 

subjected to analytic flow cytometry using the Dako CyAn instrument through the flow 

cytometry core facility at UNC-Chapel Hill. The X-axis dot plot reflects the Annexin V-

FITC fluorescence and the Y-axis the propidium iodide fluorescence. 

ATP assay. Intracellular ATP levels were determined using the ATP 

bioluminescence assay kit from Sigma-Aldrich based on the manufacturer’s instructions.  

Briefly, cells were harvested and 100µl of ATP Assay mix working solution was added to 

each well and allowed to incubate at room temperature for 3 minutes.  During incubation 

100µl of 1X ATP releasing reagent, 50µl of ultra pure H2O, and 50µl of either cell lysate 

or standard were added and mixed.  After the 3 minutes of incubation period 100µl of the 
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ATP Releasing agent mixture was added to wells containing ATP Assay mix solution, 

mixed and immediately measured via Fluoroskan Ascent (Thermo Scientific).    

 Statistical Analysis.  For all quantified experiments, data is present as mean ± 

SEM.  Analysis of Variance (ANOVA) was used to determine the statistical significance 

with significance set at 0.05.  For Western blot quantification, independent experiments 

(cell preparation, cell harvest, and SDS-PAGE/transfer) were done three times (unless 

otherwise noted).  Indirect immunofluorescent detection of secondary antibody (LI-COR) 

was scanned and standardized to an internal standard (tubulin) to calculate and quantify 

arbitrary units using the Odyssey Infrared Imaging System with a representative Western 

blot shown in each figure.  For the Annexin V-FITC apoptosis detection, experiments 

were done independently four times and plotted in bar graph format, in addition a 

representative dot plot analysis of flow cytometry results is shown in the respective 

figure. 

References 

1. Yu L, Lenardo MJ, Baehrecke EH. Autophagy and caspases: a new cell death 
program. Cell Cycle 2004; 3:1124-6. 
2. Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of 
apoptosis and autophagy. Autophagy 2008; 4:600-6. 
3. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell 
Biol 2004; 36:2405-19. 
4. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: 
crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8:741-52. 
5. Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell 
death. Cell Death Differ 2005; 12 Suppl 2:1528-34. 
6. Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, et al. 
Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a 
mini-review. Gerontology 2008; 54:92-9. 
7. Wang Y, Singh R, Massey AC, Kane SS, Kaushik S, Grant T, et al. Loss of 
macroautophagy promotes or prevents fibroblast apoptosis depending on the death 
stimulus. J Biol Chem 2008; 283:4766-77. 
8. Cuervo AM. Autophagy and aging: keeping that old broom working. Trends 
Genet 2008; 24:604-12. 



 21 

9. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, et al. 
Guidelines for the use and interpretation of assays for monitoring autophagy in 
higher eukaryotes. Autophagy 2008; 4:151-75. 
10. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 
2007; 3:542-5. 
11. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, 
but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 
2005; 1:84-91. 
12. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian 
autophagy. Int J Biochem Cell Biol 2004; 36:2503-18. 
13. Todde V, Veenhuis M, van der Klei IJ. Autophagy: Principles and significance 
in health and disease. Biochim Biophys Acta 2009; 1792:3-13. 
14. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of 
proteins by lysosomes. Science 1996; 273:501-3. 
15. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J 
Biochem Cell Biol 2004; 36:2435-44. 
16. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the 
selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A 2006; 
103:5805-10. 
17. Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, Tajeddine N, et al. Life, 
death and burial: multifaceted impact of autophagy. Biochem Soc Trans 2008; 
36:786-90. 
18. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor 
mechanism. Oncogene 2004; 23:2891-906. 
19. Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis 
in heart disease. Circ Res 2008; 103:343-51. 
20. Amodeo GA, Rudolph MJ, Tong L. Crystal structure of the heterotrimer core of 
Saccharomyces cerevisiae AMPK homologue SNF1. Nature 2007; 449:492-5. 
21. Carling D, Aguan K, Woods A, Verhoeven AJ, Beri RK, Brennan CH, et al. 
Mammalian AMP-activated protein kinase is homologous to yeast and plant protein 
kinases involved in the regulation of carbon metabolism. J Biol Chem 1994; 
269:11442-8. 
22. Gao G, Fernandez CS, Stapleton D, Auster AS, Widmer J, Dyck JR, et al. Non-
catalytic beta- and gamma-subunit isoforms of the 5'-AMP-activated protein kinase. 
J Biol Chem 1996; 271:8675-81. 
23. Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase 
subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 
67:821-55. 
24. Williams T, Brenman JE. LKB1 and AMPK in cell polarity and division. Trends 
Cell Biol 2008; 18:193-8. 
25. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA. Functional domains of 
the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 1998; 
273:35347-54. 
26. Stapleton D, Gao G, Michell BJ, Widmer J, Mitchelhill K, Teh T, et al. 
Mammalian 5'-AMP-activated protein kinase non-catalytic subunits are homologs of 



 22 

proteins that interact with yeast Snf1 protein kinase. J Biol Chem 1994; 269:29343-
6. 
27. Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D. Yeast SNF1 is 
functionally related to mammalian AMP-activated protein kinase and regulates 
acetyl-CoA carboxylase in vivo. J Biol Chem 1994; 269:19509-15. 
28. Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci 2008; 
13:2408-20. 
29. Wang Z, Wilson WA, Fujino MA, Roach PJ. Antagonistic controls of autophagy 
and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein 
kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 2001; 21:5742-52. 
30. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, et al. The energy 
sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the 
decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9:218-24. 
31. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles 
of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated 
protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007; 100:914-22. 
32. Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno 
P, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J 
Biol Chem 2006; 281:34870-9. 
33. Samari HR, Moller MT, Holden L, Asmyhr T, Seglen PO. Stimulation of 
hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-
suppressive toxins. Biochem J 2005; 386:237-44. 
34. Samari HR, Seglen PO. Inhibition of hepatocytic autophagy by adenosine, 
aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. 
Evidence for involvement of amp-activated protein kinase. J Biol Chem 1998; 
273:23758-63. 
35. Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, et 
al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin 
inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-
independent effect on glucokinase translocation. Diabetes 2006; 55:865-74. 
36. Jacobs RL, Lingrell S, Dyck JR, Vance DE. Inhibition of hepatic 
phosphatidylcholine synthesis by 5-aminoimidazole-4-carboxamide-1-beta-4-
ribofuranoside is independent of AMP-activated protein kinase activation. J Biol 
Chem 2007; 282:4516-23. 
37. Kuo CL, Ho FM, Chang MY, Prakash E, Lin WW. Inhibition of 
lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 
gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of 
AMP-activated protein kinase. J Cell Biochem 2008; 103:931-40. 
38. Nofziger C, Kalsi K, West TA, Baines D, Blazer-Yost BL. Vasopressin regulates 
the phosphorylation state of AMP-activated protein kinase (AMPK) in MDCK-C7 
cells. Cell Physiol Biochem 2008; 22:487-96. 
39. Viana R, Aguado C, Esteban I, Moreno D, Viollet B, Knecht E, et al. Role of 
AMP-activated protein kinase in autophagy and proteasome function. Biochem 
Biophys Res Commun 2008; 369:964-8. 



 23 

40. Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-
Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy 2008; 
4:810-4. 
41. Zong WX, Moll U. p53 in autophagy control. Cell Cycle 2008; 7:2947. 
42. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, 
et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10:676-87. 
43. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and 
mTOR pathways in cells. Proc Natl Acad Sci U S A 2005; 102:8204-9. 
44. Jin S. p53, Autophagy and tumor suppression. Autophagy 2005; 1:171-3. 
45. Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, et al. 
Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 
2009; 16:87-93. 
46. Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, et al. Mutant 
p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008; 7:3056-
61. 
47. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, et al. AMP-activated 
protein kinase contributes to UV- and H2O2-induced apoptosis in human skin 
keratinocytes. J Biol Chem 2008; 283:28897-908. 
48. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene 2006; 25:6436-
46. 
49. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov 
EV, et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated 
autophagy. J Clin Invest 2008; 118:777-88. 
50. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J. AMPK 
mediates autophagy during myocardial ischemia in vivo. Autophagy 2007; 3:405-7. 
51. Winslow AR, Rubinsztein DC. Autophagy in neurodegeneration and 
development. Biochim Biophys Acta 2008; 1782:723-9. 
52. Meijer AJ, Codogno P. AMP-activated protein kinase and autophagy. 
Autophagy 2007; 3:238-40. 
53. Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in 
tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death 
Differ 2008; 15:1572-81. 
54. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. 
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-
deficient tumor cell growth. Cancer Res 2007; 67:6745-52. 
55. Matsuoka M, Igisu H. Cadmium induces phosphorylation of p53 at serine 15 
in MCF-7 cells. Biochem Biophys Res Commun 2001; 282:1120-5. 
56. Melnikova VO, Santamaria AB, Bolshakov SV, Ananthaswamy HN. Mutant p53 
is constitutively phosphorylated at Serine 15 in UV-induced mouse skin tumors: 
involvement of ERK1/2 MAP kinase. Oncogene 2003; 22:5958-66. 
57. Ma W, Sung HJ, Park JY, Matoba S, Hwang PM. A pivotal role for p53: 
balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 2007; 39:243-6. 
58. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian 
TOR: a homeostatic ATP sensor. Science 2001; 294:1102-5. 
 
 



 24 

Figure Legends 

Figure 1. AMPK-/- MEFs demonstrate increased apoptosis under low glucose-serum 

deprivation. Cells were cultured in low (A) and high glucose (B) for analysis of AMPK-/- 

and AMPK+/+ MEFs with Annexin V-FITC (X-axis) and Propidium Iodide (PI) (Y-axis) 

labeling. Predominantly viable cells with a small amount of cell death are shown (A, a-c 

and B, a-d).  However, AMPK-/- low glucose-serum deprived MEFs demonstrate 

increased cell death mostly annexin and/or annexin PI positive, indicating apoptotic death 

(A, d).  Quantification of low (A) and high (B) glucose for Annexin V-PI experiments 

(C).  Western blot analysis indicates that under nutrient–rich (low glucose-serum 

containing) conditions AMPK+/+ and AMPK-/- MEFs do not have activation of caspases 

or cleavage of the downstream target PARP (poly ADP ribose polymerase) (D).  

However, 20 hours serum deprivation leads to increased caspase activation and cleaved 

PARP in AMPK-/- MEFs. (E) Levels of total AMPK and phosphorylated ACC.   For all 

figures AMPK-/- indicates the absence of AMPKα1 and AMPKα2.  40µg of whole cell 

lysate was run on a 4-12% Bis-Tris SDS PAGE gel.  Annexin+ cells /viable cells and PI+ 

cells/viable cells quantification is denoted by the bar graph with indicated standard 

deviation from 4 independent experiments.  

 

Figure 2. Accumulated venus-LC3 puncta in AMPK-/- MEFs under low glucose-serum 

rich conditions suggestive of elevated autophagy.  AMPK+/+ and AMPK-/- MEFs cultured 

in low (A-J) or high glucose (K-O) were transiently transfected with venus-LC3 plasmid. 

24 hours post-transfection cells were either treated with rapamycin (B, C, G, H, L, M) or 

cultured in serum-free media plus or minus protease inhibitors (D, E, I, J, N, O) for 20 
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hours.  Cells were fixed in 4% paraformaldehyde for 15 minutes and mounted onto slides 

for imaging.  Representative percentages of transfected cells: A>90%; B, C>65%; D, 

E>50%; F-H >75%; K>90%; L-O>70%.  400X magnification was used for all images 

(some with digital magnification as well); scale bar represent 10μm. Images without scale 

bars used the same magnification as 2A. A-O is representative of 3 independent 

experiments. 

 

Figure 3.  Increased Autophagy as indicated by endogenous LC3-II formation in AMPK-/- 

MEFs. (A) Endogenous LC3 was analyzed by immunoblotting in AMPK+/+ and AMPK-/-

MEFs cultured in nutrient rich complete DMEM medium with 10% FBS or treated with 

E64d (10µg/ml) and pepstatin A (10µg/ml) inhibitors.  A total of 45µg of whole cell 

lysate was used for immunoblotting on 12% Bis-Tris NuPage Gel. (B) AMPK-/- and 

AMPK+/+ MEFs were cultured in serum-free medium for 20 hours treated with either 

protease inhibitors/vehicle and 35µg of whole cell lysate was evaluated on a 4-12% Bis-

Tris SDS PAGE gel.  Bar graphs represent quantification of LC3-II/Tubulin ratio for 4 

independent experiments.  Error bars represent standard deviation.  

 

Figure 4.  Time Course of autophagic flux as indicated by endogenous LC3-II formation 

in AMPK-/- MEFs.   Whole cell lysate (35µg) from cells cultured in serum-free medium 

for 0, 2, 6, 12, and 20 hours and treated with either E64d and pepstatin A lysosomal 

inhibitors (A) was used for immunoblotting to detect endogenous levels of LC3.  

Additionally, cells cultured in serum-free medium for 0, 2, 6, 12, and 20 hours were also 

treated with lysosomal inhibitors plus 3-MA  (B) and lysate (35µg) was used to 



 26 

determine the level of autophagic flux via LC3-II formation.   The ratio of LC3-II to 

tubulin is represented by the bar graphs, which also includes error bars to depict the 

standard deviation.   

 

Figure 5.  The autophagy inhibitor 3-Methyladenine (3-MA) increases apoptosis in serum 

deprived MEFs.  MEFs were cultured in serum-free medium for 20 hours and treated 

with 3-MA or vehicle and 40µg of whole cell lysate run on a 4-12% Bis-Tris NuPAGE 

gel and immunoblotted (A). Analysis of AMPK-/- and AMPK+/+ MEFs via Annexin V-

FITC and Propidium Iodide labeling demonstrates AMPK+/+ serum deprived MEFs 

treated with 3-MA results in an increased amount of apoptosis which is comparable to 

AMPK-/- serum deprived MEFs without 3-MA (B).  3-MA treated AMPK-/- MEFs 

without serum leads to even greater apoptosis.  Additionally, AMPK+/+ MEFs were 

transfected with an ATG7 or non-silencing (NS) shRNA.  48 hours post transfection cells 

underwent 20 hours of serum deprivation and 40ug of whole cell lysate was used to 

analyze ATG7 protein levels by western blot analyses (C) (NS= non-silencing shRNA).   

Annexin+ cells /viable cells and PI+ cells/viable cells quantification denoted by the bar 

graph with indicated standard deviation representing 4 independent experiments. 

 

Figure 6. Decreased ATP levels in AMPK-/- MEFs under low glucose-serum containing 

conditions.   Cells were plated in either DMEM-H (4.5g/L) or DMEM-L (1g/L) 

containing serum and allowed to grow for 36 hours to reach 80% confluency.  After 36 

hours cells were maintained in serum-free DMEM or serum-rich DMEM for an 

additional 20 hours.  (A) Under low glucose serum rich conditions AMPK-/- MEFs have 



 27 

substantially lower ATP levels.  H indicates the use of high glucose medium while L 

indicates low glucose medium.  Results represent 2 independent experiments performed 

in triplicate. Samples were normalized to wild type levels in serum-high glucose 

conditions. Error bars indicate standard deviation.  (B) Whole cell lysate (35µg) from 

AMPK-/- and AMPK+/+ cells treated with methyl pyruvate rescues caspase activation 

during serum starvation and (C) decreases LC3-II ratios compared to vehicle, analyzed 

by Western blot on 4-12% (B) and 12% (C) Bis-Tris NuPage gels.   LC3/tubulin 

quantification is denoted by the bar graph with indicated standard deviation of 3 

independent experiments.  

 

Figure 7.  Increased p53 phosphorylation at Serine 15 (Ser15) and increased PTEN in 

AMPK-/- cells. Western blot analysis reveals increased phosphorylated p53 and PTEN 

levels for AMPK-/- cells under either serum starved or serum containing media when 

cultured in low glucose (A) but not during high glucose cultured conditions (B).  Bar 

graphs represent quantification of indicated protein relative to tubulin, including the 

standard error of the mean for 3 independent experiments.  

 

Figure 8.  The absence of AMPK activity results in cell death under nutrient stress. 

Normal (AMPK+/+) cells induce autophagy (green double circles) under nutrient stress to 

generate ATP and promote cell survival.  Cells lacking AMPK activity have elevated 

basal autophagy and cannot generate sufficient energy following nutrient stress.  In the 

presence of phosphorylated p53 (purple circle; “P”) the cells then undergo apoptosis. 
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