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ABSTRACT

We report a thematic sequence of directed inquiry-based labs taking students from bacterial mu-
tagenesis and phenotypic identification of their own self-created mutant, through identification of
mutated genes by biochemical testing, to verification of mutant alleles by complementation, and finally to
mutant allele characterization by DNA sequence analysis. The lab utilizes UV mutagenesis with wild-type
Escherichia coli and a UV-sensitive isogenic derivative optimized for undergraduate use. The labs take
advantage of the simplicity of E. coli in a realistic genetic investigation using safe UV irradiation methods
for creation and characterization of novel mutants. Assessment data collected over three offerings of the
course suggest that the labs, which combine original investigation in a scientifically realistic intellectual
environment with learned techniques and concepts, were instrumental in improving students’ learning in
a number of areas. These include the development of critical thinking skills and understanding of
concepts and methods. Student responses also suggest the labs were helpful in improving students’
understanding of the scientific process as a rational series of experimental investigations and awareness of
the interdisciplinary nature of scientific inquiry.

AS scientist educators we strive to involve students in
the process of active, engaged scientific inquiry,

where they can benefit in a number of ways from
involvement in projects where they are ‘‘doing real
science’’ as opposed to performing scripted ‘‘cookbook’’
activities. These include (1) gaining an understanding of
how scientific studies are conducted, (2) confirming that
such studies yield credible results, and (3) seeing how
engaging scientific discovery can be. The report of the
Committee on Undergraduate Biology Education to
Prepare Scientists for the 21st Century underscored
the significance of involving and inspiring students
through active learning to better prepare them as future
scientists and ‘‘give them an enduring sense of the power
and beauty of creative inquiry’’ (National Research

Council 2003, p. 2). Findings also emphasized the

importance of interdisciplinary research experiences
and using ‘‘examples of research showing that science
consistsofunansweredquestions’’to‘‘intrigueandinspire
students to probe problems in depth’’ (National

Research Council 2003, p. 3).
The integration of discovery-based exercises into

undergraduate genetics laboratory curricula poses
many challenges. These include budget limitations,
performing activities within prescribed laboratory pe-
riod constraints, and student mastery of techniques as a
prerequisite to actual experimentation. However, the
rewards of active and discovery-based approaches are
substantial (Handelsman et al. 2004). As compared to
traditional approaches, active-learning exercises can
result in increased knowledge retention, student confi-
dence, enthusiasm, and satisfaction (Wyckoff 2001;
Smith et al. 2005). Marcus and Hughes developed
inquiry-based genetics lab exercises using Drosophila
melanogaster strains harboring P-element transposon
insertions in novel recombination mapping activities
(Marcus and Hughes 2009); and while student re-
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sponses to the labs were variable, most students were
excited and inspired by doing real experimental science.

To improve the undergraduate biology curriculum at
Trinity University through discovery-based and active-
learning exercises, we developed labs in which students
create and analyze novel lactose metabolism mutations
in Escherichia coli. The labs intellectually and experimen-
tally link learned techniques to original, unscripted
investigations over an 8-week period. Instead of using
organisms with known genotypes, students use safe UV
mutagenesis methods and facile screens to create their
own strains, thereby gaining a sense of project owner-
ship. A logical sequence of mutant characterization
follows, which includes enzymatic and substrate trans-
port assays, plasmid transformation-based complemen-
tation, and amplification and nucleotide sequencing of
mutant alleles. The activity culminates in comparisons
of mutant and wild-type sequences to facilitate an
understanding of mutations and their role in altered
protein structures, connecting phenotype to genotype.

It was our hope that this active-learning investigative
approach, using activities without scripted answers,
would aid student understanding of genetics concepts.
Additionally, students may see improved understanding
of the process of scientific inquiry and linkage between
the larger picture of scientific investigation and stepwise
accumulation of findings leading toward scientific dis-
covery. Assessment data collected following three con-
secutive years of teaching the sequence suggest that the
labs are effective in developing student understanding
of genetics, scientific inquiry, and interdisciplinary
crosstalk (e.g., between biochemistry, genetics, and
chemistry) in the process of scientific investigation.

MATERIALS AND METHODS

E. coli was chosen because (i) handling and maintenance
are inexpensive and require little training; (ii) E. coli grows
rapidly, with doubling times of �30 min in rich media,
allowing completion of exercises within a day or two; (iii)
many individuals can be analyzed (at appropriate densities,
mutant phenotypes can be readily distinguished from among
hundreds of surrounding colonies in a single dish); (iv)
mutagenesis of the haploid genome readily yields interesting
mutants; (v) plasmid complementation is done in a day; and
(vi) mutant allele PCR amplification and nucleotide sequenc-
ing allow comparative analysis with wild-type sequences.

We focused on the lac operon because it is usually covered in
introductory genetics courses and can serve as a ‘‘Rosetta
Stone’’ connecting textbook to lab. Available literature on lac
operon structure–function relationships makes it a logical
place to expose students to gene structure, function, regula-
tion, and protein structure.

The exercises cover 8 weeks of a 12-week sophomore
genetics laboratory, leaving time to repeat experiments if
necessary. At the end, students’ findings are reported in a
research paper. Labs are taught to three or four sections of 16
students (depending on enrollments); each section meets
weekly for �3 hr. Students work in pairs and are required to
complete a two-semester introductory biology course before

enrolling in the course. Students learn pipette use in the
introductory course and learn bacteriology skills in the
genetics lab. Protocols and notes are available (supporting
information, File S1), and all strains and plasmids are available
upon request.

Bacterial strains and plasmids: E. coli K12 strains were
cultured at 37� in Luria–Bertani (LB) broth or on LB or
MacConkey agar medium with added kanamycin (Km, 50
mg/ml), tetracycline (15 mg/ml), or ampicillin (100 mg/ml)
where appropriate. UV mutagenesis was done using strains
W3110 [F�, l�, IN(rrnD-rrnE)1] and an isogenic uvrA-phr
mutant, constructed using standard P1 transduction with
strains JW0698 [D(araD-araB)567 DlacZ4787(TrrnB-3) Dphr-
758TKm l- rph-1 D(rhaD-rhaB)568 hsdR514] and N3055 [l�
IN(rrnD-rrnE)1 uvrA277TTn10]. lacY and lacZ complementing
plasmids were prepared from the Clarke and Carbon collec-
tion (Clarke and Carbon 1976) and using standard cloning
and PCR methods (File S1).

Week 1. Handling of bacterial cultures and dilution plating:
Students are introduced to the philosophy and scope of the
labs and are instructed that they will generate their own
mutants and characterize them in detail, from phenotypic
analysis to nucleotide sequence analysis. We emphasize they
will perform a real genetics experiment in the sense that
neither they nor the instructor have a priori knowledge of the
properties of mutants they will create and they need to think
about how geneticists methodically approach problems using
various techniques in logical sequences, each bringing the
researcher closer to the answer. Students learn microbiolog-
ical techniques for use throughout the semester, including
aseptic technique, serial dilution, and streaking cultures.

Week 2. UV mutagenesis of wild-type E. coli strain W3110
and UV-sensitive strain W3110-uvr-phrA6: This lab introduces
selections vs. screens. Mutant generation as a powerful genetics
tool is discussed with the connection between phenotype and
nucleotide sequence level genotypic differences. DNA damage,
mutation, and repair provide the rationale for using isogenic
strains. A genetic screen for defects in lactose fermentation on
MacConkey agar is contrasted with a selection for antibiotic
resistance in antibiotic-sensitive bacterial populations they see
in complementation assays.

UV mutagenesis was selected over more efficient chemical
mutagens for safety reasons; it was selected over transposition-
based methods because it produces broader mutant classes
with unique and subtle properties, for example, tempera-
ture sensitivity or alterations in catalysis due to amino acid
substitutions.

The class is divided into two teams for mutagenesis. Since
this lab requires organization and attention to detail, one
student from the lab section is chosen to organize the activity.
She or he assigns students to timing of UV exposures of
cultures and plating of time points, etc. One team irradiates
the wild-type strain, while the second team irradiates the UV
repair mutant, using cell suspensions exposed to a UV lamp
for four times at each of four distances, for a total of 16
different treatments. Aliquots (1.5 ml) of cells in cold 0.1 m

MgSO4 are dispensed into 35-mm petri dishes and irradiated
using a 15-W Sylvania G15T8 germicidal lamp with irradiance
and fluence rates of 600 mW/m2 and 1.3 mmol/m2/sec,
respectively (Shinkle et al. 2005). Students are protected by
hanging the lamp behind a black curtain. Dishes are placed on
a tray and the lids are removed immediately before being
placed behind the curtain. It is imperative that lids are
removed to permit UV exposure; it is also critical that the
dishes (not the lids) are labeled before irradiation to keep
track of strains and treatments. Dishes are removed from the
UV source at appropriate time points and teams plate serial
dilutions of each strain 3 distance 3 time on MacConkey agar
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to determine survival frequencies. Nonirradiated cells are
plated out to provide initial culture densities; these data
provide survival frequencies between the strains and illustrate
the deleterious effects of UV exposure and the importance of
UV-induced lesion repair activities.

Suspensions of the mutagenized UV repair mutant are
plated to identify mutants; this activity needs to be done only
with the UV repair mutant, as little mutagenesis occurs with
the parent strain W3110. Optimal exposures using our lamp
setup are described in File S1; for UV irradiation experiments,
survival frequencies in the range of 0.1–1% result in the
highest mutant recovery frequencies (Miller 1972).

Students inspect plates for rare Lac� colonies among many
red Lac1 colonies. In optimal irradiation ranges, 2–10 lactose-
nonfermenting mutants can be found on plates containing
�500 colonies. Putative mutants are streaked onto MacConkey–
Km plates to obtain single colonies and are maintained on
plates for the duration of the lab; we encourage students to
identify several mutants, since they may find false positives or
strains with mutations lying outside of lacY or lacZ (e.g., lacI or
crp; see results and discussion). Depending on colony
density, mutant genotype stability, and colony picking skills,
students may streak more than once to ensure they have stable
single-colony Lac� isolates before proceeding to subsequent
experiments. It is useful here to build extra time into the
schedule to allow students to establish stable Lac� strains before
proceeding to the next exercise.

Irradiated cultures can also be screened for other mutants,
e.g., auxotrophs or temperature-sensitive mutants, and/or
exercises can be modified to more open-ended approaches
where students are asked to devise their own screens/
selections.

Week 3. The b-galactosidase assay for biochemical charac-
terization: lac operon components are presented, including
lacY, encoding the proton symport membrane protein re-
quired for lactose uptake; lacZ, encoding b-galactosidase,
required for hydrolytic cleavage of lactose into glucose and
galactose; and lacI, encoding the lactose repressor, which
prevents lac expression in the absence of lactose.

The qualitative b-galactosidase assay is used to determine
whether cells produce functional lacZ gene products by
assaying cell suspensions for the appearance of o-nitrophenol,
the yellow hydrolysis product resulting from cleavage of o-
nitrophenyl-b-d-galactopyranoside (ONPG). The assay also
demonstrates that lac expression is inducible with the in-
clusion of isopropyl-b-d-thiogalactopyranoside (IPTG) in
cultures. Instructors can discuss reaction chemistry involved
in glycosidic bond cleavage, particularly regarding reactive
amino acids in the protein, as this can later be tied into lacZ
mutant analysis at the nucleotide sequencing stage.

It is apparent to students that Lac� phenotypes could be
attributed to mutations affecting lacZ gene product activity or
expression. It is less obvious that Lac� mutants may possess
defects in LacY: such mutants fail to produce colored products
from ONPG because ONPG cannot enter the cell. lacY and
lacZ mutants can be distinguished using whole intact cells and
cells whose membranes have been permeabilized with chlo-
roform. lacZ mutants yield a negative reaction using whole and
permeabilized cells, whereas lacY mutants yield negative
results in whole cells but positive results using permeabilized
cells. Additionally, LacY is arguably the best understood
proton symport protein (Smirnova et al. 2008; Guan and
Kaback 2009; Zhou et al. 2009; Liu et al. 2010), and structural
relationships can be drawn between wild-type and mutant
LacY following sequencing of mutant lacY alleles. The majority
of mutants identified by students carry mutations in lacZ or
lacY, but alternative outcomes are possible (see results and

discussion).

After completing this lab, students have biochemical
evidence supporting predictions of what type of mutant they
have and are ready to test these predictions using comple-
mentation analysis with plasmids carrying wild-type lac alleles.

Week 4. Plasmid extraction: Students are introduced to
complementation and shown how mutant phenotypes could
be attributed to specific gene defects by introducing wild-type
alleles into mutants to see if the wild-type phenotype is
restored. Students are given strains carrying lacZ1 and lacY1

plasmids and control vector pBR322, and they perform
plasmid extractions. We use alkaline lysis for this but kits are
also available.

Week 5. Agarose gel electrophoresis, spectroscopy, and
complementation of Lac� mutants: Agarose gel electropho-
resis and UV spectroscopy are introduced for nucleic acid
visualization and analysis using spectrophotometry. Students
prepare competent cells of their mutants and control lacZ and
lacY mutants for plasmid transformation (Chung et al. 1989)
and complementation results are typically straightforward. If a
Lac1 phenotype is not restored to mutants carrying lacZ1 or
lacY1 plasmids, students can perform transformation using
plasmids carrying lacI and crp (see results and discussion).

Week 6. PCR amplification of mutant alleles from Lac�

mutants: Students use PCR to amplify alleles from DNA of
mutants and control sequences from wild-type parent DNA.
Primer sequences and PCR protocols are given in File S1.

Week 7. Agarose gel electrophoresis and DNA sequencing
of PCR products: Students perform agarose gel electropho-
rese to assess the success and specificity of amplification of
mutant and wild-type control alleles. We have found it useful to
build extra time into the schedule to troubleshoot and/or
repeat failed PCR assays. Over the course of the week, PCR
products are sent to the University of Texas (Austin, TX) for
sequencing.

Week 8. Analysis of DNA sequencing results: The full scope
and value of the lab are realized in the eighth week when
students receive electropherogram and DNA sequence text
files for comparison with wild-type sequences. A fundamental
connection is established between phenotypic defects of
mutants with genotypic alterations reflected in altered allele

Figure 1.—Student-generated survival curves of Escherichia
coli W3110 wild type (solid symbols) and repair mutant follow-
ing UV irradiation. Exponential phase cultures were pelleted
by centrifugation and resuspended in cold 0.1 m MgSO4 and
cell suspensions were irradiated for the indicated times at dis-
tances of 45 inches (n, wild type; h, mutant,) and 25 inches
(d, wild type; s, mutant,). Following irradiation, cells were
plated on MacConkey agar and enumerated following over-
night growth at 37�.
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sequences. Students construct alignments of mutant and wild-
type sequences to identify sequence changes.

RESULTS AND DISCUSSION

Experimental results: The mutagenesis protocol is
standard but utilizes a DNA repair mutant we con-
structed for the lab; and in combination with the parent
strain, students can directly compare the effects of
irradiation at different distances and times within and
between the two strains (Figure 1). The MacConkey
screen permits visualization of white Lac� colonies amid
red Lac1 colonies (Figure 2), although false positives
will appear on plates. In particular, we see Lac1 ‘‘fish
eye’’ morphologies and false positives accompanied by
the production of elevated levels of secreted polysacchar-
ides, which initially appear Lac� due to abundant whitish
extracellular material. Students should cast wide nets and
spend time outside of normal lab times to obtain bona fide
Lac� derivatives, although the initial mutant identifica-
tion activity is typically the only time students need to be
in the lab outside of the normal lab schedule.

The b-galactosidase assay provides an indication of
the genetic basis underlying mutant phenotypes (Figure
3): lacZ mutant extracts will not produce a yellow
reaction product, whereas yellow reactions indicate
functional LacZ. Nonpermeabilized lacY mutant ex-
tracts will not turn yellow over short time courses,
whereas chloroform-permeabilized lacY extracts turn
yellow within minutes.

Plasmid extraction and transformation are straight-
forward and connect complementation and cell bio-
chemistry data; after this experiment, students can
usually conclude whether they have isolated lacZ or lacY
mutants.

As mentioned previously, students may isolate strains
with mutations in genes other than lacY or lacZ. Among

alternative Lac� isolates, one might find (i) mutations in
lacI, (ii) mutations in lac promoter or sequences bound
by LacI, or (iii) mutations involved in CRP-dependent
catabolite control. The MacConkey screen is not suit-
able for identification of lacI null alleles that do not bind
lac operator DNA: mutants of this type are typically Lac1

on MacConkey medium and evade detection. However,
one may generate lacI alleles that bind lac operator DNA
but that do not bind lactose or IPTG (Romanuka et al.
2009), and these mutants could appear Lac� or weakly
Lac1 using the MacConkey screen. We suspect they would
have variable b-galactosidase activities depending on their
DNA binding kinetics but predict that b-galactosidase
activities with these mutants would be identical regardless
of whether they were grown in the presence or absence of
IPTG. A lacI1 plasmid is available for use although results
may vary depending on DNA binding properties of the
mutant gene product and dimerization interactions be-
tween itself and wild-type LacI.

Mutations could occur in crp, encoding the cyclic-
AMP receptor protein (CRP or CAP), since efficient lac
transcription requires RNA polymerase–CRP interac-
tions (Sharma et al. 2009). crp mutations could yield
Lac� mutants, and although we have not needed to use
crp1 plasmids these are available. While picking multiple
mutants increases the odds of recovering lacZ or lacY
mutants, the less straightforward characterization of a
mutant yielding atypical b-galactosidase results may be
an appropriate project for a particularly gifted, invested,
or enthusiastic student.

Amplification products are sometimes larger than
expected due to Tn10 insertions (Figure 4). The uvrA
allele used for construction of the mutagenesis strain
carries a Tn10 insertion, and while we did not initially
intend for students to find transposon insertion mu-
tants, the unexpected discovery of insertions serves our
initial aims well: to have students discover something in

Figure 2.—Screen and single-colony isolation of Lac� mu-
tants on MacConkey agar following irradiation. Suspensions
of repair mutant in 0.1 m MgSO4 were irradiated for varying
times and distances as described (File S1). Following outgrowth
and segregation in LB medium, cells were plated on MacConkey
agar and incubated overnight at 37�. (A) Mutagenized cells on
MacConkey medium. Lac� mutants are indicated with black ar-
rows. (B) Comparison of Lac� mutant (left) and wild-type Lac1

parent (right) on MacConkey medium.

Figure 3.—Differentiation of lacZ and lacY mutants using a
qualitative b-galactosidase assay. Cultures are grown in LB me-
dium with IPTG for 2–3 hr before assaying cell extracts (File
S1). b-galactosidase-dependent production of o-nitrophenol
in chloroform-permeabilized cells (right, 1CHCl3) allows dis-
crimination of lacY mutants from lacZ mutants. wt, wild-type
Lac1 E. coli; lacY, lacY lactose transport mutant; lacZ, lacZ
b-galactosidase mutant. Over the short reaction time course
shown (2–4 min), no activity is observed in intact cells that
have not been permeabilized (left, �CHCl3).
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an unscripted investigation and to feel engaged in and
excited about the science.

Analysis of alleles reveals a variety of alterations (Figure
5). Close examination of 15 lacY mutant sequences
revealed the following: 8 carried Tn10 insertions in three
different sites; 1 carried an indel of .1.5 kb that extended
beyond the lacY coding sequence; 1 carried both an indel
and a missense substitution; 1 carried a frameshift mu-
tation resulting from a single-nucleotide indel; and 4 were
incomplete, likely resulting from low-quality templates
following PCR amplification and cleanup. We have
found that sequence quality is directly affected by
template quality and care must be taken to ensure that
PCR products are adequately cleaned up prior to
sequencing.

To date we have concluded the lab with sequence
analysis, although it may be broadened to include pro-
tein analysis. High-resolution structures of LacY, LacZ,
and LacI could be used as templates to generate pre-
dictive structures, using homology modeling applications
(e.g. SWISS-MODEL or 3Djigsaw) to explore how mutant
alleles yield defective proteins.

Student evaluation of experience: Our goal was to use
guided inquiry labs to facilitate understanding of the
scientific approach to problem solving and critical
thinking skills. In addition to learning genetics con-
cepts, we wanted students to appreciate the importance
of ‘‘interdisciplinarity’’ (e.g., genetics, biochemistry,

etc.) in problem solving, as increasing interdisciplinary
content is beneficial to learning and development
(National Research Council 2003). To assess these
outcomes, surveys were administered over 3 years on the
basis of an instrument reported by Sleister (2007).
Survey questions used a five-point scale to assess percep-
tions of what students gained from the labs (Q1–Q4)
and to compare the value of the directed inquiry
approach to that of traditional labs (Q5–Q9) (Table
1). Traditional labs previously taken by students would
include, e.g., introductory chemistry laboratory courses
utilizing scripted activities with known outcomes.

Compared to before their participation, after taking
the lab students agreed they had noted improvements
in all areas queried, including understanding of scien-
tific concepts (Q1, m $ 4 over all 3 years) and the process
of scientific inquiry itself (Q2, m $ 3.8 over all 3 years).
Students also perceived improvements in critical think-
ing abilities (Q3, m $ 3.7 over all 3 years) and seeing
connections between individual experiments (Q4, m $

4.1 over all 3 years). Additionally, mean values for Q1–
Q3 increased over the assessment period, while the
mean value for Q4 over survey year 3 was also higher
relative to survey year 1.

Figure 4.—Gel electrophoresis of lac allele amplification
products from genomic DNA of lacZ Tn10 insertion mutant
(lanes 2–6) and Lac1 parent (lanes 7–11). Lane 1, kilobase
ladder; lanes 2 and 7, lacI amplification products; lanes 3
and 8, lacZ region 1 products; lanes 4 and 9, lacZ region 2 prod-
ucts; lanes 5 and 10, lacZ region 3 products; lanes 6 and 11, lacY
products. Due to its larger size, lacZ is amplified and sequenced
as three separate �1-kb fragments; extraction and amplifica-
tion methods are described in File S1.

Figure 5.—Partial alignment of representative lacY mutant
types with wild-type E. coli W3110 lacY sequences. Wild-type
lacY sequence (lacY ) is given at the top of each panel. (A)
T / A transversion mutation (shaded and underlined) in
mutant MUT H9 sequence found at nt position 59 with re-
spect to wild-type lacY translation start, resulting in F59Y sub-
stitution in LacY permease. Altered phenylalanine residue
(shaded and underlined in wild-type LacY sequence) occurs
in LacY transmembrane domain 1(Mirza et al. 2006). (B)
Frameshift mutation resulting from G insertion (shaded
and underlined) in mutant MUT A12 at nt position 492 rel-
ative to lacY translation start. Mutation results in LacY deriv-
ative (LacY9) with altered amino acid sequence beginning
at residue 172, in transmembrane helix 6 (Mirza et al.
2006). (C) Tn10 insertion in mutant MUT A9 at nt position
109 relative to wild-type lacY translation start. The first nucle-
otide of Tn10 insertion is shaded and underlined. Tn10
sequence is given as reverse complement of GenBank acces-
sion AY319289. The first four residues of altered peptide se-
quence (LacY9) are underlined and occur in the N-terminal
periplasmic domain (Mirza et al. 2006).
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Questions Q5–Q7 queried students regarding course
value relative to traditional labs in terms of understand-
ing technical concepts and methods and the interdisci-
plinary linkage of scientific inquiry. Students generally
agreed the approach was helpful (Q5, m $ 4.1; Q6, m $ 4;
both over all 3 years). Results also suggest the labs helped
students to see the multidisciplinary nature of scientific
inquiry (Q7, m $ 4.1 over all 3 years). Questions Q8 and
Q9 assessed the value of the labs vis-à-vis students’
futures at the institution and beyond. Most students
follow a health professions track; here students felt the
labs were helpful in achieving academic (Q8, m $ 3.7
over all 3 years) as well as professional goals (Q9, m $ 3.6
over all 3 years).

Year-to-year variation in survey results was observed,
likely stemming from improved delivery of course
material and participation by multiple faculty, although
the labs were taught by a single instructor during year 3;
notably all year 3 survey results had m $ 4.

We believe the labs may be valuable in reaching goals
that active, engaging teaching methods seek to achieve.
We observe engaged students using the scientific pro-

cess in a real experimental context while simultaneously
increasing their understanding of basic genetics tech-
niques and concepts. Also, students see this lab as a
valuable experience, and significantly, we find many of
them having fun in the process.
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TABLE 1

Assessment questions and responses

Think about your abilities at the beginning vs. the end of the semester. Using the scale 1�5, please indicate the level to
which you agree with the following statements: 5, strongly agree; 4, agree; 3, neutral; 2, disagree; 1, strongly disagree.
As compared with before participating in the genetics lab, after taking the genetics lab I noticed an improvement
in the following:

F 907 (N ¼ 36) F 908 (N ¼ 29) F 909 (N ¼ 37)

1. My understanding of technical/scientific concepts
(e.g., PCR, molecular cloning).

4.03 6 0.91 4.21 6 0.56 4.32 6 0.75

2. My understanding of how science is done (i.e., the range
of activities from asking a biological question to
conducting an experiment and interpreting data).

3.81 6 0.86 4.00 6 0.76 4.05 6 0.70

3. My ability to think critically. 3.75 6 0.91 4.17 6 0.60 4.24 6 0.72
4. My ability to make connections between individual

experiments (e.g., the ‘‘big picture’’ of the project).
4.14 6 0.93 4.07 6 0.70 4.46 6 0.73

Have you taken a traditional science laboratory course? If you answered ‘‘yes’’ to the previous question, please use the
scale 1�5 to indicate the level to which you agree with the following statements: 5, strongly agree; 4, agree; 3, neutral; 2,
disagree; 1, strongly disagree. Relative to other more traditional science laboratory courses, I believe. . .

F 907 (N ¼ 33) F 908 (N ¼ 25) F 909 (N ¼ 30)

5. The inquiry-based approach used in lab helped me better
understand genetics concepts and methods (e.g., mutation,
gel electrophoresis).

4.27 6 0.67 4.12 6 0.78 4.47 6 0.57

6. The inquiry-based approach helped me to make connections
between different concepts/experiments.

4.00 6 0.94 4.00 6 0.82 4.33 6 0.84

7. The inquiry-based approach helped me realize that research
is interdisciplinary (e.g., a mutation at the level of DNA affects
the cellular/biochemical level; methods are required from more
than one subject area—e.g., genetics and chemistry).

4.27 6 0.80 4.16 6 0.69 4.37 6 0.67

8. The concepts and technical skills I gained while participating in lab
helped me/will help me in my further studies at Trinity and beyond.

3.73 6 1.18 4.24 6 0.72 4.10 6 0.80

9. The concepts and skills I gained while participating in lab will help
me in my future career.

3.58 6 1.09 3.84 6 1.11 4.07 6 1.11
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FILE S1 

UV Mutagenesis of Escherichia coli and Analysis of Mutants 

 

Equipment and Reagents 

Escherichia coli K12 bacterial strains 

 W3110    F-, λ-, IN(rrnD-rrnE)1 

 W3110-uvrA-phr W3110 uvrA277::Tn10 Δphr-758::Km 

Plasmids 

 pBR322::lacIZY (Ampr) 

 pBR322::lacZ (Ampr) 

 pBR322::lacY (Ampr) 

 pET-15b (lacI, Ampr) 

Petri Dishes (35 mm for irradiation; 85 mm for routine plating and streaking of cultures) 

Bacteriological Media 

 LB medium per liter 

  NaCl   5g 

  Yeast Extract  5g 

  Tryptone  10g 

  Agar (for plates) 15g 

 MacConkey Agar Medium (available from e.g., Fisher Scientific) 

Antibiotics 

 Ampicillin Sodium Salt (available from Fisher Scientific or Sigma Aldrich) 

  Made up in water as 1000X 100 mg/mL concentrated solution store at -20C and  

  use in medium at 100 µg/mL 

 Kanamycin Sulfate (available from Fisher Scientific or Sigma Aldrich Chemical) 

  Made up in water as 1000X 50 mg/mL solution; use at 50 µg/mL 

ONPG (LacZ substrate; available from Fisher Scientific or Sigma Aldrich Chemical) 

Light box (white light; optional; for identifying Lac- mutants on MacConkey medium) 

Chloroform 

β-galactosidase (optional) 

Z-Buffer (for β-galactosidase assays) per liter: 
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 Na2HPO4·7H2O 16.1 g 

 NaH2PO4·H2O  5.5g 

 KCl   0.75g 

 MgSO4·7H2O  0.246g 

 β-mercaptoethanol 2.7 mL 

Magnesium sulfate (for cell suspensions for irradiation; Fisher or Sigma Aldrich Chemical) 

Micropipettes (P20, P200, P1000) and tips 

Microfuge tubes and Microfuge 

High speed centrifuge (for pelleting cells for irradiation) 

37C incubator  

37C shaker or rotator in 37C incubator 

UV germicidal lamp, handheld UV lightsource or UV crosslinker 

Plasmid Extraction Reagents (optional; commercial kits are also available from, e.g.., Qiagen) 

Alkaline lysis solution I 

  50 mM Glucose 

  25 mM Tris (pH 8.0) 

  10 mM EDTA (pH 8.0) 

Alkaline lysis solution II 

  0.2 N NaOH (freshly diluted from a 10N stock) 

  1 % (w/v) SDS 

Alkaline lysis solution III 

 60.0 mL 5 M potassium acetate 

 11.5 mL glacial acetic acid 

 28.5 mL H20 

TE buffer (for storage of plasmid solutions) 

 10 mM Tris 

 1 mM EDTA 

Agarose (available from e.g., Fisher Scientific) 

Horizontal electrophoresis tanks and power supplies 

50X electrophoresis buffer (50X TAE, use as 1X in agarose gels and running buffer) per liter: 

 Tris base  242g 

 Glacial acetic acid 57.1 mL 
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 0.5 M EDTA  100 mL 

  (0.5 M EDTA is made up by dissolving 186.1 g disodium ethylene diamine  

  tetraacetate in 800 mL water and adding ~20 g NaOH pellets to reach pH 8.0;  

  make up to 1 liter final volume) 

1X TSS Buffer (for plasmid transformation, from Chung et. al. 1989 PNAS 86:2172-2175): 

 LB medium containing: 

  10% w/v polyethylene glycol (mw 3350 or 8000) 

  5% v/v DMSO 

  50 mM MgSO4 or MgCl2 

Thermal cycler 

Thin-walled PCR tubes 

PCR reagents (we use Qiagen Taq PCR MasterMix, a 2X concentrate to which we add primer,  

 DNA and water to make up to 50 µL reaction volume) 

PCR primers 

  OLIGO        sequence, 5'-3' 

lacI-f1      GAGTCAATTCAGGGTGGTGAA 

lacI-r1      CGCTCACAATTCCACACAAC 

lacI-r2      ATACGAGCCGGAAGCATAAA 

lacZ-f1      TGTGGAATTGTGAGCGGATA 

lacZ-r1      TTTCCTTACGCGAAATACGG 

lacZ-f2      CTTTATGCTTCCGGCTCGTA 

lacZ-r2      TGTAGCCAAATCGGGAAAAA 

lacZ-f3      GTGCGGATTGAAAATGGTCT 

lacZ-f4      GGATGTCGCTCCACAAGGTA 

lacZ-r3      CAGCAGCAGACCATTTTCAA 

lacZ-r4      GACCTGACCATGCAGAGGAT 

lacZ-r5      GGAGCGTCACACTGAGGTTT 

lacZ-r6      GGGAAGTAGGCTCCCATGAT 

lacY-f1      CCAGTTGGTCTGGTGTCAAA 

lacY-r1      TCAATGCGATCACTCCGTTA 

lacY-f2      CATGTCTGCCCGTATTTCG 

lacY-r2      GCATGTTCAATGCGATCACT 
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Construction and growth of bacterial strains:  Escherichia coli strains were cultured at 37° in Luria Bertani broth, or 

on Luria Bertani or MacConkey agar medium with added kanamycin (50 µg/mL), tetracycline (15 µg/mL), or 

ampicillin/carbenicillin (100 µg/mL) where appropriate.  UV mutagenesis experiments were done using E. coli K12 

strains W3110 and 3110-uvrA-phr.  Strain W3110 is a wild type prototroph (F-, λ-, IN(rrnD-rrnE)1). The isogenic 

derivative strain W3110-uvrA-phr carries insertions in both the genes encoding components of the excision repair 

nuclease uvrA and in the DNA photolyase-dependent photoreactivation system phr.  Strain W3110-uvrA-phr was 

constructed by using P1 transducing bacteriophage grown on appropriate host strains using standard transduction 

methods.  P1 was first grown on strain JW0698 (Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) Δphr-758::Km λ- rph-1 Δ(rhaD-

rhaB)568 hsdR514), and bacteriophage lysates were used to transduce strain W3110 to kanamycin resistance to 

generate strain 3110-phr.  P1 phage was then grown on strain N3055 (λ- IN(rrnD-rrnE)1 uvrA277::Tn10) and lysates 

were used to transduce strain 3110-phrA to tetracycline resistance.  One of the resulting transductants, designated 

W3110-uvrA-phr, was selected for the subsequent experiments. 

Construction of plasmids for complementation analysis:  Plasmid pLC20-30 from the Clarke and Carbon plasmid 

collection was digested with restriction endonuclease AclI and a 5.7 kb fragment carrying the lacIZY region was 

blunt-end using T4 DNA polymerase (New England Biolabs).  Plasmid pBR322 was digested with EcoRV and ligated 

with the lacIZY fragment such that lac genes are expressed from the pBR322 tet promoter, yielding plasmid 

pBR322::lacIZY.  Ligation products were used to transform NEBα competent cells (New England Biolabs).  

Transformants were selected on MacConkey agar with ampicillin to confirm Lac- complementation.   

 To produce a lacY complementing plasmid, lacY was excised from pBR322::lacIZY by digestion with PvuII 

and BamHI.  This fragment was ligated to pBR322 which had been digested with EcoRV and BamHI, resulting in 

plasmid pBR322::lacY.  Ligation products were used to transform E. coli strain χ508 (λ- lacY83 glnV42 TR) and 

transformants were selected on MacConkey agar with ampicillin.   

 To produce a lacZ complementing plasmid, PCR primers lacZF (5'-aagcttacacaggaaacagctatga) and lacZR (5'-

ggatccttatttttgacaccagacca) were used to amplify the promoterless lacZ gene from W3110 genomic DNA.  The 

resulting amplification product was digested with HindIII and BamHI and ligated into HindIII- and BamHI-digested 

plasmid pBR322.  Ligation products were used to transform NEBα; transformants were selected on Luria Bertani agar 

medium with ampicillin.  Plasmids were extracted from transformants and digested with HindIII.  The pool of 

linearized plasmids was ligated to HindIII-digested Zymomonas mobilis genomic DNA, and ligation products were 

used to transform strain JW0698.  Transformants were selected on MacConkey agar with ampicillin.  Plasmids were 

extracted from transformants expressing strong Lac+ activity on MacConkey agar media; these plasmids, designated 
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pBR322::lacZ1, pBR322::lacZ2, etc., were used for complementation of lacZ mutations. 

 Complementation of lacI mutations is done using plasmid vector pET15b (Novagen) with selection on 

MacConkey agar containing ampicillin. 

 

Week 1: Handling of bacterial cultures and dilution plating 

Objectives and Overview 

 In this lab we will be preparing for your investigative experiment by practicing pipetting, aseptic, and bacterial 

culture techniques. These skills will be crucial to your success throughout the semester. Specifically, we will be learning 

how to do dilution plating of liquid cultures, including plate spreading, to get accurate counts of bacterial cell densities, 

how to streak from colonies for isolates, and how to inoculate tubes aseptically. 

Background I, Dilutions and Dilution Plating 

 At times, the concentration of a solution may be too high for accurate measurement. If this is the case, accurate 

dilutions of the solution can bring the concentration into the necessary range, and the initial concentration can then be 

calculated by measurement of the diluted sample multiplied by the dilution factor.  

 To dilute a sample, we take a known volume of the sample and add it to a known volume of diluent (also 

known as a blank) that contains none of the chemical or component of interest. The dilution of the resulting sample is 

usually expressed as a fraction, and usually in whole amounts such as 1/10 (spoken as “one to ten”), 1/100, etc. to make 

later calculations easier. To calculate the dilution, the amount of the sample is put in the numerator and the total volume 

(sample + diluent) is in the denominator. For example, if we did add 1 ml of sample to 9 ml of diluent, the dilution is 

1/10. The dilution factor (D) is the reciprocal of the dilution. In our example above, the dilution factor is 10. 

 If we do not know the original concentration in a given sample, it is not practical to do one dilution and hope 

that this concentration is within the acceptable range, nor is it practical to do large-scale dilutions in one step (e.g. 1 M 

diluted to 1 µM). In these conditions, we must dilute the concentrated solution several times in what is known as a serial 

dilution to get the dilution(s) needed. Hopefully, one of these should result in a measurable dilution, which can be used to 

calculate the amount in the original sample by multiplying the measurement of the dilution times its dilution factor. A 

serial dilution is illustrated on the following page. 

There are some simple guidelines that you should follow when performing a serial dilution: 

1.  Label everything!  It is very easy to confuse which container is which. 
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2.  Mix well!  You can reduce your experimental error by mixing each solution or dilution well before removing a 

portion for the next dilution. This is especially true with cells that settle to the bottom of the tube. 

3.  Be careful with your pipetting. Make sure quantities are accurately and consistently transferred from container 

to container. 

Figure 1. Serial Dilution Scheme 

 

  Bottle I Bottle II Bottle III 

 

 

 

 

 

Dilution 1/100 1/100 1/100 

Dilution Factor D=100 D=1×104 D=1×106 

 

Each transfer results in a 1/100 dilution, so the sample in Bottle I has been diluted 100 fold. Bottle II is a 1/100 dilution of 

Bottle I, and these dilutions are multiplied to get the total dilution. If the original sample contained 8 × 108 cells/ml, Bottle 

I contains 8 × 106 cells/ml, Bottle II contains 8 × 104 cells/ml, and Bottle III contains 8 × 102 cells/ml. Any quantitative data 

obtained from a dilution, for example Bottle III, must be multiplied by the dilution factor to determine the concentration 

in the original sample, and you can see that calculating the original concentration using the reading from Bottle III gives 

the following: 8 × 102 × 1 × 106 = 8 × 108 
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Background II, Aseptic technique and manipulation of microbes 

 One of the keys to being successful in the lab when working with microorganisms is to avoid contamination. 

This will be important for your experiments, so we will be practicing transferring bacteria to plates and liquid broths. 

General Procedures  

 During lab you will make dilutions of a bacterial culture plate these dilutions onto agar media.  In addition, you 

will be streaking plates and inoculating broths. 

 

Protocol I: dilution plating of bacteria 

For this protocol, you should work in your lab pairs making one set of dilution plates. 

1. Make 10 mls of a 1:1000 dilution of the bacterial culture in LB-Kan. 

2. Make 10 mls of a 1:100 dilution of your first dilution (what is the dilution factor for this tube?) 

3. Plate 100 ul of the dilution made in (2) onto an LB-Kan plate labeled with your names and 'A'. Note — it is 

easiest to observe what happens on a plate if you label the plate around the edge of the agar side. 

4. Make a 1:10 dilution of the dilution made in (2) and then plate 100 ul of this new dilution onto an LB-Kan plate 

labeled with your names and 'B'. 

5. Make a 1:10 dilution of the dilution made in (4) and then plate 100 ul of this new dilution onto an LB-Kan plate 

labeled with your names and 'C'. 

6. Make a 1:10 dilution of the dilution made in (5) and then plate 100 ul of this new dilution onto an LB-Kan plate 

labeled with your names and 'D'. 

7. Make a 1:10 dilution of the dilution made in (6) and then plate 100 ul of this new dilution onto an LB-Kan plate 

labeled with your names and 'E'. 

8. Each team member should come back after 24-48 hours and make a count of all the colonies on a plate with a 

countable density. Use these data to calculate an estimate of the cells/ml in the original tube, and send your 

count data to your instructor. 

9. After counting the cells on your plate, be sure to dispose of the plates in the biohazard box. 

 (your instructor will be looking at your plate series to grade for technique). 

 

Protocol II: tube inoculation 

Each person should complete this protocol independently. 

1. Select a colony from one of the plates provided and use it to inoculate an LB-Kan tube. Write your name on the 

tube and 'inoculated. Place the tube in the rotating incubator. 

2. Mock inoculate a tube by going through the same procedure (flaming your loop, inserting it into broth, etc.), 

except that in this case you do not select a colony from the plate (this checks your aseptic technique). Write your 
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name on the tube and 'mock'. Place the tube in the rotating incubator (use this tube to balance your other tube). 

Your instructor will be looking at your tubes to grade for correct technique. 

 

Protocol III: streaking for isolates 

Each person should complete this protocol independently. 

1. Using aseptic technique, get a loopful of bacteria from the culture of Kanr bacteria provided and streak out for 

isolates on a LB-Kan plate. Label the plate with your name and a code that will allow you to identify your plate 

and place it in the 37C incubator. Next do the same procedure with the Kanr culture and an LB-Carb plate. Next 

do the same procedure with the Kanr culture and a plate of LB agar with no added antibiotics.  Finally, do the 

same procedures with the Kans culture and an LB-Kan, LB-Carb, and an LB plate. Your instructor will grade 

your plates for correct technique. 
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Week 2 UV Mutagenesis of wild type lac+ E. coli strain W3110 and UV-sensitive strain W3110-uvr-phrA6 

Objectives and Overview 

 In this lab we will be using UV light to mutagenize strains of E. coli that are able to metabolize lactose (Lac+) to 

look for mutants which cannot use lactose as a carbon source (Lac-). These mutant strains will be the basis of our 

subsequent labs as we try to characterize which genes are mutated in each strain.  

Background: Uses of mutants in genetic studies 

A. Forward and reverse genetics 

 Analysis of mutants is the main tool used by a geneticists to understand how the information in DNA is 

translated into the phenotype. These analyses can be broadly grouped into two categories, forward genetics and reverse 

genetics. Forward genetic analyses are the older of the two methods, but they are still a standard way of determining the 

genetic basis of a trait. In brief, the procedure for analyzing a trait using forward genetics is to find or create useful 

mutants, determine the number of loci affecting the trait by grouping mutants through crosses, then characterize 

representative mutants for each locus at as detailed a resolution as possible, in most cases down to the level of the DNA 

sequence.  

 The increasing availability of genome sequences and precise mutagenesis techniques in some organisms, even 

down to the level of knocking out genes in specific tissues or cells, has led to the development of reverse genetics. Reverse 

genetic analyses determine the function of a specific gene by knocking it out and observing the mutant phenotype. Once 

the gene(s) responsible for a trait has been identified, genetic studies can branch off in many directions by analyzing the 

biochemical functions of encoded proteins, determining the differences in tissue and/or temporal expression patterns, or 

assessing the amount of natural variation within or between species, etc.  

In lab this semester we will be conducting a forward genetic screen to analyze the phenotype of lactose 

metabolism in E. coli. The lac operon is one of the most intensively studied genetic systems in the world. We will be 

spending a few days when we study prokaryotic gene regulation going over how the lac operon works, but in 

preparation for this lab it would be helpful to look at the figure illustrating the lac operon in your genetics textbook.  Our 

goal is to be able to show what gene(s) were mutated in our strains, determine the sequences of the mutant loci, and 

propose hypotheses for why these mutations lead to a Lac- phenotype. 

B. Understanding your phenotype 

 When a geneticist embarks on a mutant hunt, one of the first things they need to do is understand the phenotype 

they are investigating. Thus far in class we have talked about phenotypes as being clearly distinct, but there may be 

substantial variation in a phenotype that is important to appreciate in order to define a mutant phenotype. For example, if 
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looking at Mendel’s purple flower color, what if there was a lighter purple color? Would that be a mutant or maybe just 

due to more sun or fertilizer? As a geneticist, you need to be aware of what the wild-type phenotype is and what 

constitutes a meaningful deviation from that phenotype.  

 We are hoping to identify strains mutated in their ability to metabolize lactose. As you can imagine, it is hard to 

visualize the absence of something. One important part of the mutant hunt is to define assay conditions that allow for 

rapid phenotype screening and identification of mutant genotypes, which may be present at an extremely low frequency. 

We will be using MacConkey agar plates, which are described below, to visualize our phenotype. 

 

Note: much of the following paragraph is taken from the American Society of Microbiology’s Microbelibrary.org page. 

  

 One easy way to differentiate between different types of bacterial cells is based on their differential metabolic 

properties. For example, some cells may be able to utilize a particular carbon source, such as lactose, or produce a 

particular metabolic intermediate. The first example of a differential media was MacConkey agar which was 

developed by Alfred Theodore MacConkey, M.D. early in the 20th century. This medium selects for the growth of 

gram-negative microorganisms commonly found in the gut and inhibits the growth of gram-positive 

microorganisms, and also allows for the differentiation between lactose fermenting and non-fermenting bacteria. 

The bile salts in this media discourage the growth of gram-positive bacteria because the cytoplasmic membrane is 

sensitive to these salts; the tolerance of gram-negative enteric bacteria to bile is partly a result of the relatively bile-

resistant outer membrane.  

  

 Gram-negative bacteria growing on the media are differentiated by their ability to ferment the sugar lactose as 

shown by a dye indicator. Bacteria that ferment lactose cause the pH to drop as acid end products are produced. 

This change in pH is detected by neutral red that the bacteria have absorbed from the media, which is red in color 

when pH < 6.8; if lactose is metabolized, the colonies will appear bright pink to red on the agar. The color of the 

medium surrounding a colony may also change. Strongly lactose fermenting bacteria produce sufficient acid to 

cause precipitation of the bile salts, resulting in a pink halo in the medium surrounding individual colonies or areas 

of confluent growth. Bacteria with weaker lactose fermentation growing on MacConkey agar will still appear pink 

to red but will not be surrounded by a pink halo in the surrounding medium. Gram-negative bacteria that grow on 

MacConkey agar but do not ferment lactose appear colorless on the medium and the agar surrounding the bacteria 

remains relatively transparent. 

  

When looking for mutants it would be ideal to establish conditions such that your mutants are the only members of the 

population that are observable.  A classic example of this is selecting for antibiotic resistance on growth medium 
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containing the antibiotic — only the resistant mutants will survive. This type of mutant identification is known as a 

selection.  Unfortunately, we are looking for a loss-of-function mutation, and both the mutant and the wild type 

organisms are capable of growth, so we will need to rely on sharp eyes and a good understanding of the normal range of 

colony morphology to be able to pick out mutants based on colony coloration on MacConkey agar.  This approach is 

known as a screen.  We will provide you with a plate containing Lac+ and Lac- colonies for your inspection, so you can see 

the differences between these genotypes on the media.  

C. Mutagenesis methods 

 As stated above, geneticists are always on the lookout for interesting mutant phenotypes, but given the low 

frequency of most of these mutations in nature, we often need to resort to generating our own mutants in order to study a 

trait of interest. Your textbook outlines mutagenesis and you should see those sections to get an overview of mutagenesis 

prior to lab. We will be using UV light to cause random mutations in the E. coli genome.  Cells naturally have the ability to 

repair damage to their DNA caused by UV damage, which reduces the efficiency of UV as a mutagen. As preparation for 

this lab, Dr. Healy has knocked out two of the genes necessary for repair, uvrA and phr, so that the cells we are using are 

repair deficient. We will also be treating the parent strain with UV, and part of the results of this lab will be a comparison 

of the DNA repair efficiencies of these two strains. 

General Procedures 

 We will all be working together this week in lab to generate our mutants. After the first day, lab pairs will be 

working together to gather data on survival at the different time and distance combinations we used for mutagenesis, and 

then lab pairs will be working together to pick their putative mutants for further analysis. This lab will require some time 

outside of the normal period to check plates and count bacterial colonies and select mutants, so the lab will be open on 

subsequent days for you to come in. The anticipated time required outside of class will be approximately ½ hour per lab 

group on the first day after the mutagenesis and about 1 hour the second day after the mutagenesis. Below is a 

description of the activities for lab this week. It is not written in the form of a protocol, so it is up to you to write a detailed 

protocol of the activities you will undertake in lab. 

Important safety tip: we will have a UV source on at all times during this lab. While you will be wearing safety 

glasses, please do not look at the lamp and limit your exposure to the lamp’s rays! 

 Prior to lab your instructor will have grown the parental strain, called 3110, and the derivative double repair 

mutant strain (uvrA- phr-) in overnight cultures. These cells will have been spun down and resuspended in 0.1 M MgSO4 

for the mutagenesis. Because we do not know a priori what the optimum set of parameters are for mutagenesis, we will be 

exposing the cells to UV for four different time points (10 seconds, 30 seconds, 60 seconds, and 120 seconds) at each of 

four distances from the UV source (10 inches, 25 inches, 45 inches, and 70 inches). We will be using 1.5 mls of cells in 35 

mm culture dishes for each exposure. When labeling the culture dishes, please use the system described below that 
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enables you to see what the culture, distance, and time combinations are for each dish (note — you might want to label 

the top and bottom of the dish in case they get separated): 

 

Strain   Distance   Time 

1 = 3110   A = 10 inches   1 = 10 seconds 

2 = uvrA- phr  B = 25 inches   2 = 30 seconds 

   C = 45 inches   3 = 60 seconds 

   D = 70 inches   4 = 120 seconds 

 

Using this system, dish 1A1 is 3110 at 10 inches with a 10 second exposure and dish 2C3 is the UvrA- Phr- repair mutant at 

45 inches and 60 second exposure.  

 After the UV lamp is set to the correct height, gently swirl the dishes so that the cells are not all settled at the 

bottom. The set of eight dishes for that height should then be uncovered and placed under the lamp and the timer started. 

At each time point, remove the appropriate dishes and cover them.   Be sure to remove the dish lids. 

 Once the set of exposures for a height is complete, you will be creating a dilution series for each strain × distance 

× time combination to obtain a count of the number of viable cells in these cultures. Take 100 µl of cells and add this to 900 

µl of media to create the 10-1 dilution. Mix this tube and then take 100 µl of this dilution and add it to 900 µl of media to 

create the 10-2 dilution. Repeat this process until you have created the dilutions you need to plate out for each strain × 

distance × time combination shown in the table below: 

 

 

W3110  uvrA- phr- 

10 s 103–106 103–106 103–106 104–107  10 s 101–104 101–104 101–104 102–105 

30 s 103–106 103–106 103–106 104–107  30 s 100–103 100–103 100–103 100–103 

60 s 102–105 103–106 103–106 103–106  60 s 100–103 100–103 100–103 100–103 

120 s 101–104 102–105 102–105 103–106  120 s 100–103 100–103 100–103 100–103 

 10” 25” 45” 75”   10” 25” 45” 75” 

 untreated, 105–108   untreated 103–107 

 

For each plating, spread 100µl of cells onto the surface of the plate as you have practiced in lab. 
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 Each lab pair will be responsible to return after 24 hours to count colonies on your countable plates to get an 

estimate of the density of viable cells in the original cultures and treatments. To be able to see the colonies on the plates, 

hold the plate over a light source (a light box will be provided). To count the colonies, divide the plate in half and use a 

sharpie to ‘dot’ each colony that you count on the half of the plate. When you are done, use a little bit of ethanol to wipe 

off your marks (but not the plate name!) so that the next group can count colonies. Send your estimates of the original 

densities from each strain × distance × time combination to your instructor and we will then combine these estimates and 

return the data to you.  

 You will be using these data to create graphs showing the effect of exposure on cell viability. For each plate 

where we could get a count, find the ratio of the number of cells/ml in the original dish exposed over the number of 

cells/ml in the culture not subjected to UV. Plot these points on a graph with %survival on the Y axis and exposure time 

on the X axis. Use different lines for the different heights and cell genotypes. Create another graph showing the total 

estimated cell counts for each of these time points with cell number/ml on the Y axis and time on the X axis. Use different 

lines again for the different heights and genotypes and be sure to include error bars for the estimated cell counts. 

 The other important thing we will be doing is plating out cultures to look for mutants. To allow your 

mutagenized cells a chance to recover, you will be removing 0.2 mls of cells from the dish and adding this to a tube 

containing 0.8 mls of LB broth, and then incubating the bacteria at 37°C for 1 hour. Based on experience from previous 

years, we will be doing this for the 2B1, 2B2, 2C1, 2D1, and 2D2 tubes, and it would be best to make as many of these 

subcultures as possible to give us the greatest chances of finding mutants. Use the same designations as above, but add -1, 

etc. to indicate this is the first dilution (e.g., 2B1-1). After one hour, plate out as many of the following on MacConkey-Kan 

agar as you can: 

 

 2B1 100 µl of a 1:10 dilution 

  100 µl of a 1:100 dilution 

 2B2 100 µl of a 1:10 dilution 

 2C1 100 µl straight from the culture tube 

 2D1 100 µl of a 1:100 dilution 

 2D2 100 µl straight from the culture tube 

 

When plating, please record which tube you are using as a source, and then add another number for indexing (e.g., 2B1-1-

1 is the first plate, 2B1-1-2 is the second plate, etc). To plate out the cells add the liquid to the plate and then use a sterilized 

cell spreader (dip in 100% ethanol and then pass over a flame) to push the liquid evenly over the surface of the plate. 

Incubate the plates overnight at 37°C.  
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 After an overnight incubation, these plates will be removed from the incubator. It will be up to you and your lab 

partner to look for mutants. When scanning your plates for mutants, try to open the lids as little as possible. These plates 

contain kanamycin to select against contaminants, but it is good practice to take measures to minimize contamination. If 

the lid of your plate has condensation on it, you can use a clean kimwipe to remove the condensation so that it is easier to 

scan the plate. Each lab group should try to pick eight mutant colonies.  

 As you look at these plates, first take a global view. Do they all look the same? If so, the mutation frequency 

might be too low to find mutants of interest. Variation in colony morphology is a good sign that many of the founder 

bacteria carried mutations in their genes. As you start to look more closely at the bacteria, try to define for yourself 

significant aspects of the colony phenotype so that you can recognize a mutation of interest against the background 

“noise.” Things to consider are colony color, colony shape, color of the media around the colony, etc. When you identify a 

mutant, turn the plate over and circle it. 

 With all of your mutants identified, you will next want to transfer them to a new plate. We subculture the 

organisms to make sure that we have a pure culture, i.e. that we don’t have a mixture if a mutant colony is touching 

another colony or a similar situation. You should at this point give each mutant a unique identifier. In our case, the 

mutants will be coming off of a series of plates that originated from different treatments — so you will want to 

incorporate that into your identifier. For example, if you have a series of mutants found on plates from the 2D2-1-1 

treatment, you could name them 2D2-1-1a, 2D2-1-1b, 2D2-1-1c, etc.  

Next you will want to prepare your plates for subculturing. It is best to use agar plates at room temperature, so if you 

are taking a plate out of the refrigerator you should allow it time to warm to room temperature. You do not need to use an 

entire plate for subculturing — you can split a plate in two or more sections as diagrammed below. You should put your 

name on each plate and the name of the organism you are subculturing. Remember that it is easiest if you label your 

plates around the edges of the plate. The diagram below is a reminder of how to streak out for isolated colonies on a plate: 

 

 

1. Label and divide your plate. 

2. Flame your loop, allow to cool, then pick colony off of 

source plate and do zig-zag streak seen at the top. 

3. Flame your loop, allow to cool, then do vertical streak 

down through the zig-zag streak. 

4. Flame your loop, allow to cool, then cross the vertical 

streak once or twice and do another series of zig-zag streaks. 
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 You can repeat this twice on the plate. What this should do is give you isolated colonies along your last streak. If 

there is more than one bacterial clone in the original colony you selected, you should see two different colony types in the 

area where you have single colonies. 

 You should then put all of your plates in the 37°C incubator for an overnight incubation. When you check on the 

plates, make notes of what you see. The source plates you used should be left out on the benchtop until you are sure that 

your colonies have grown. 

 When you check the plates after their overnight growth, you should hopefully see isolated colonies that will 

allow you to determine whether you have true mutants! For each true mutant you have identified, you will want to 

repeat the procedure above to get a plate where you have a pure culture of each mutant on half of the plate. 

 You will then want to set up a system for keeping each of the mutant strains that you have, which will involve 

restreaking them out every four days to maintain their viability. What you should do is come in every four days and take 

a loopful of inoculum from several colonies and transfer to a new plate, incubate that plate overnight to make sure they 

grow, then keep that plate on the benchtop for three days until you subculture it again. In this case we take a loopful of 

bacteria from several colonies to make sure we don’t happen to pick a colony that has an additional mutation or 

something else that might confound our experiments. Be sure to not throw away any of your old plates until you are sure 

the new culture is growing and pure! 
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Week 3 β-galactosidase assays of mutant cultures 

Objectives and Overview 

In this lab we will begin narrowing down the causal basis of our mutant phenotype by testing our mutants for β-

galactosidase activity. We will also be testing for inducibility of our mutants by incubating them in the presence and 

absence of IPTG, a chemical analog of lactose that cannot be metabolized by the cell, but which does deprepress 

expression of lac genes 

Background   

 After initial identification of a mutant, a geneticist usually will try to use additional, more sensitive assays to 

refine the phenotypic definition of each mutant. For example, our mutants were selected on the basis of a visible colony 

phenotype. Using a colony phenotype allowed us to scan many bacterial clones, but it is a crude assay in that there might 

be many reasons for a colony to be Lac-. The lac operon has been the subject of intense study for over fifty years (see your 

textbook for an overview of the lac operon). We can use the results of these previous studies to try to narrow down the 

causes of our mutants’ Lac- phenotype.In today’s lab we will be testing explicitly for both LacZ and LacY activity. The lacZ 

gene encodes β-galactosidase, the enzyme that catalyzes the hydrolysis of lactose into glucose and galactose. The cleavage 

of lactose is a reaction that can be measured, but the standard assay to differentiate these sugars is rather insensitive and 

laborious. We can, however, use a synthetic substrate, o-nitrophenyl-β-d-galactoside (ONPG) to assay for LacZ activity. 

ONPG is colorless, but upon hydrolysis by β-galactosidase the molecule is cleaved into galactose and o-nitrophenol (see 

figure below), and the o-nitrophenol compound is yellow, allowing us a means to visualize LacZ activity.  

 

The lacY gene encodes an integral membrane protein, known as a permease, which is a transporter used to bring lactose 

into the cell. We will be measuring LacY activity indirectly, by looking at the LacZ activity of intact cells versus cells 

which have had their membranes permeabilized with chloroform. 
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 Another hallmark of the lac operon is inducibility. The genes of the operon are not normally expressed unless 

lactose is present in the environment. We can test for inducibility of our mutants be growing them in the presence and 

absence of lactose and assaying for gene activity. An alternative to lactose as an inducer is isopropyl-β-D-thiogalactoside 

(IPTG), which can be advantageous in experiments because it cannot be metabolized by the cell and so leads to 

continuous expression of the lac genes. In this lab we will be testing for inducibility of our mutants by growing them in 

the presence and absence of IPTG and then assaying for LacZ and LacY activity as described above. 

YOU MUST COME IN 24 HOURS PRIOR TO LAB TO INOCULATE YOUR CULTURES, OTHERWISE YOU WILL NOT 

HAVE ANYTHING TO DO DURING LAB AND WILL LOSE PERFORMANCE POINTS! 

General Procedures: 

Your mutant cultures, along with positive and two negative controls (both lacZ- and lacY-), will need to be grown for 

24 hrs prior to lab, and then we will be using these cultures to inoculate media with and without IPTG for 3 hours of 

growth. These cultures will be pelleted by centrifugation and resuspended in LacZ assay buffer (known as Z buffer) 

and then tested for gene activity by addition of ONPG, chloroform, and exogenous β-galactosidase.  

 

Protocol: 

Note that you will be treating many tubes in parallel. One important key to this lab will be to establish a system of numbering 

your tubes so that you can keep track of what is in each tube quickly and easily. 

-2. 24 hours prior to lab, come in and inoculate a snap cap tube of LB-Kan with your mutant and carefully inoculate 

tubes of LB with colonies from the wt (3110 strain) and two Lac mutant strains (one is lacZ- lacY+ and the other is 

lacZ+ lacY-). These plates will be in your lab’s area on the far right-hand benchtop (as you stand with your back to 

the chalkboard). Please be careful to not contaminate these plates as they do not have antibiotics on them. This 

means you should also be careful in inoculating your tubes as they do not have antibiotics in them either. Be sure 

to click the caps of the tubes shut, and you should have a total of four tubes in the rotator in the incubator. 

-1. 3 hours prior to lab, use 175 µl from each of your overnight cultures to inoculate both an LB and an LB-IPTG 

tube. Again, be sure to exercise aseptic technique and click the lids of the tubes shut. You should now have eight 

tubes in the rotator in the incubator. 

1. In lab, transfer 0.5 ml cells from each tube into each of six 1.5 ml microfuge tube and spin cells at 8000 rpm for 5 

minutes (you should have 48 small tubes at this point, and the remaining instructions will be for what you 

should be doing for each of these tubes). If you do not see a cell pellet, be sure to spin the cells again. 

2. For each 1.5 ml tube, carefully pour off supernatants into waste container and then pipette off any remaining 

supernatants. 

3. Add 1.0 ml Z buffer to each tube and vortex cell pellets until they are broken apart. 
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4. Spin cells again at 8000 rpm for 5 minutes, remove supernatants, and resuspend each pellet in 1.0 mls of Z buffer 

by vortexing. 

5. To start your treatments, add CHCl3, β-galactosidase, and then ONPG to the tubes as indicated in the table 

below. Keep the cells at room temperature for 20 minutes with periodic swirling of the tubes. Note that the color 

changes may start to occur while you are adding solutions to other tubes, so refer back to your tubes often while 

you are pipetting. It may help you to see the changes if you place your tubes on a sheet of white paper during 

the incubation. 

 Tube 

 1 2 3 4 5 6 

CHCl3    X X X 

β-gal  X   X  

ONPG X X  X X  

 

 Key: 

 CHCl3 = add 1 drop of chloroform (this permeabilizes the cell membrane) 

 β-gal = add 1/40 volume of 100 µg/ml β-galactosidase in Z buffer 

 ONPG = add 1/10 volume of 10 mM ONPG in Z buffer 

 

6. Observe the color change or lack thereof in each of the treatments, including how quickly the change occurred, 

and interpret whether there is LacZ and/or LacY activity and whether your mutants are inducible. Note, the 

lacY- phenotype is most visible when comparing tubes 1 and 4 from the uninduced samples. The questions below 

may help you to analyze your results. If you wish, you can let your samples continue to incubate overnight on 

the benchtop to see what extra time will show. 

Questions to help guide your analysis of this week’s experiments: 

1. What does tube 3 show? Is this a positive or negative control? 

2. What does tube 6 show? Is this a positive or negative control? 

3. What does the comparison of tubes 3 and 6 show? How is this a control? 

4. What does tube 5 show? Is this a positive or negative control? 

5. What does tube 2 show? Is this a positive or negative control? 

6. What does the comparison of tubes 2 and 5 show? How is this a control? 

7. What does tube 1 show? 
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8. What does tube 4 show? 

9. What does the comparison of tubes 1 and 4 show? 

10. What does the comparison between the induced and uninduced samples show? 

11. Which tubes are important to observe in the comparison of the induced and uninduced samples? 

12. Why is it important to do all of these comparisons for all three of the strains in addition to your mutants? 
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Week 4 Plasmid Isolation 

Objectives and Overview 

 One way of showing that a gene is responsible for a particular phenotype is through complementation, where a 

wild-type copy of the gene is introduced into a mutant to restore the wild-type phenotype. In this lab you will be using a 

plasmid DNA isolation procedure to obtain three different plasmids, one with a lacZ- lacY+ genotype, another with a lacZ+ 

lacY+ genotype, and a lacZ- lacY- control. After isolating the plasmids, we will be checking our yield with a 

spectrophotometer. Next week you will be using your plasmid DNA to transform your mutant lines to show functional 

complementation of your Lac- genotype. 

Background I, Plasmids and Molecular Biology 

 Plasmids are small, circular molecules of DNA that are used to move and copy specific pieces of DNA in 

recombinant DNA experiments. In order to be able to work with plasmids, scientists need to be able to get plasmids out of 

bacterial cells, modify them, and put them back in cells. Your textbook has good explanations of plasmids, cloning and 

transformation and you may wish to review these sections prior to lab to refresh your memory. Prior to this lab, Dr. Healy 

was able to take a clone containing the entire lac operon and move it to another plasmid containing ampicillin resistance, 

as well as make a lacY+ subclone. These new clones will allow us to transform our bacteria and select for only those 

bacteria that took up the plasmids by including ampicillin in the media. By selecting for ampicillin resistance on 

MacConkey media, we will be able to tell if the plasmids complement our mutant genotypes. 

 

 

Background II, Plasmid isolation 

 Although there are many different methods available for plasmid isolation, most have the following steps in 

common: 

1. Growth and harvesting of plasmid-containing bacterial cells. The cells from an antibiotic-resistant colony are 

usually grown overnight in a liquid culture to stationary phase and then harvested as a pellet by 

centrifugation. 

2. Lysis of the bacteria. Lysis (breaking open) of the bacteria is frequently brought about by agents that destroy 

the bacterial cell wall and plasma membrane. 

3. Purification of the plasmid DNA. Isolating the plasmid DNA from the lysate often involves differential 

precipitation, where the bacterial components (chromosomal DNA, proteins, and membrane fragments) are 

removed by centrifugation, while the smaller plasmid DNA remains in solution. 
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4. Concentrating plasmid DNA. Nucleic acids including plasmid DNA can be precipitated by alcohol in the 

presence of salt (e.g. ethanol, isopropanol), and alcohol precipitation is frequently used to concentrate 

plasmid DNA following purification. 

 

The technique we will use is a modification of the alkaline lysis method from Molecular Cloning, A Laboratory Manual, 

3rd Ed. This technique utilizes the detergent sodium dodecyl sulfate as a lysis reagent and also NaOH to make the lysate 

highly basic. The alkaline conditions lead to rapid denaturation of the plasmid and chromosomal DNA. The alkaline lysis 

step is followed by a rapid neutralization which results in reannealing of the small, relatively simple, circular plasmid 

DNA but causes aggregation of the large, complex chromosomal DNA. The aggregates, which also include precipitated 

protein and other impurities, are removed by centrifugation and the remaining “cleared lysate” is composed of highly 

purified plasmid DNA and RNA. The plasmid DNA is then precipitated with EtOH.  

Protocol I, Isolation of Plasmid DNA by Alkaline Lysis 

YOU MUST COME IN THE AFTERNOON PRIOR TO THE LAB TO INOCULATE YOUR CULTURES SO THEY 

CAN GROW FOR APPROXIMATELY 16 HOURS. 

1. Transfer 1.5 mL of bacterial culture to a 1.5 mL microfuge tube. Be sure to keep this and all other solutions and 

intermediates on ice unless specified otherwise, and be sure to label all your tubes! 

2. Centrifuge the bacterial suspension at room temperature for 2 minute at maximum speed. You should see a 

small cell pellet in the bottom of your tube. 

3. Carefully and quickly remove all the liquid and dispose of it in the liquid waste container. If your cell pellet is 

firm, you can pour off the majority of the liquid and then use a pipette to carefully remove the rest. 

4. Mix the cell pellet vigorously by vortexing, then add 100 µL of ice-cold Alkaline lysis solution I and vortex again. 

5. Immediately add 200 µL of freshly prepared Alkaline lysis solution II to each bacterial suspension. Close the tube 

tightly, and mix the contents by inverting the tube rapidly five times, making sure the entire surface of the tube 

comes in contact with the solution. Do not vortex! Store the tube on ice. 

6. Add 150 µL of ice-cold Alkaline lysis solution III. Close the tube and disperse Alkaline lysis solution III 

throughout the viscous bacterial lysate by inverting the tube several times. Store the tube on ice for 3–5 minutes. 

You should see a white, flocculuent precipitate after this step. 

7. Centrifuge the bacterial lysate at maximum speed for 5 minutes at room temperature in a microfuge. Transfer 

the supernatant to a new 1.5 ml tube. 

8. Precipitate nucleic acids from the supernatant by adding an amount of room temperature 100% ethanol equal to 

2X the volume of supernatant recovered in step 7 (this is often abbreviated “2 volumes of ethanol”), mixing by 

inversion a few times, and letting the solution sit at room temperature for 5 minutes. 
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9. Collect the precipitated nucleic acids by centrifugation at maximum speed for 5 minutes at room temperature. It 

helps to orient your tubes in the rotor with the hinge side up. This will help you to know where your pellet 

should be (it may be hard to see). 

10. Gently and quickly remove the supernatant, being careful not to disturb the pellet. 

11. Allow the pellet to dry by inverting the tube on a Kimwipe on your bench. 

12. Add 200 µl of TE with RNase to your sample to redissolve it and let sit for 15 minutes at room temperature. 

13. Add 20 µl of 10 M ammonium acetate and 400 µl of 100% ethanol to your sample and let sit for 5 minutes at 

room temperature to precipitate the plasmid. 

14. Collect the precipitated nucleic acids by centrifugation at maximum speed for 5 minutes at room temperature 

(remember the hinge!) 

15. Gently and quickly remove the supernatant, being careful not to disturb the pellet. 

16. Allow the pellet to dry by inverting the tube on a Kimwipe on your bench. 

17. Add 1 mL of 70% ethanol and gently inverting the closed tube several times to wash the pellet. 

18. Recover the nucleic acid by spinning at room temperature for 2 minutes at maximum speed. 

19. Repeat steps 17 and 18 from above and allow to dry completely until no drops of liquid are seen in the tube. 

20. Dissolve the nucleic acid pellet by adding 50 µL of TE (pH 8.0) and pipetting gently up and down a few times. 

Keep your plasmid on ice from now on! 

21. Your instructor will show you how to quantitate your nucleic acid yields using the nanodrop spectrophotometer. 

You should record these readings in your lab notebook. Be sure your tubes are labeled and then put them in the 

freezer for next week. 

Recipes: 

Alkaline lysis solution I 

 50 mM Glucose 

 25 mM Tris (pH 8.0) 

 10 mM EDTA (pH 8.0) 

 

Alkaline lysis solution II 

 0.2 N NaOH (freshly diluted from a 10N stock) 

 1 % (w/v) SDS 

 

Alkaline lysis solution III 

60.0 mL 5 M potassium acetate 

11.5 mL glacial acetic acid 
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28.5 mL H20 
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Week 5 Agarose gel electrophoresis, spectroscopy, and complementation of Lac- mutant strains 

Objectives and Overview 

 

 One way to demonstrate that a bacterial strain is mutated in a particular gene is to introduce a wt copy of that 

gene into a mutant strain to see if the gene restores the wt phenotype. If a gene is able to restore the wt phenotype, it is 

said to complement the mutant. This week we will be using the plasmids isolated last week with different lac genes in 

them to test which genes, if any, can complement your mutants.  We will also use agarose gel electrophoresis to observe 

plasmids. 

Background, Gel electrophoresis 

 A common way to analyze DNA samples is gel electrophoresis. At neutral pH, nucleic acids have a net negative 

charge because of the negative charges on the phosphate-sugar backbone, and because of this charge they will migrate 

when subjected to an electric field. The principle behind gel electrophoresis is to set up a matrix with pore sizes large 

enough to allow the nucleic acids to pass through, place the nucleic acids on one side of this matrix, then subject the gel 

and samples to an electric field. Under these conditions, nucleic acids loaded in sample wells at the negative electrode end 

of the gel migrate within pores of the gel matrix towards the positive electrode, and larger molecules move more slowly 

through the gel than smaller molecules. The end result is that molecules can be sorted according to size.  

 Agarose gels are a common type of stabilizing medium/buffer matrix used for the electrophoretic separation of 

nucleic acids. Agarose is a natural polysaccharide of galactose and 3,6-anhydro-galactose derived from agar (purified 

from seaweed). An agarose gel is made by boiling powdered agarose in a buffer solution that provides the ions necessary 

to conduct the current, and then pouring the mix into a casting tray. Before the agarose can polymerize, a comb is inserted 

to create wells where the nucleic acid can be loaded, and the agarose/buffer is then left to cool to room temperature and 

solidify. The resolving power of agarose gel electrophoresis is dependent on the pore size of the gel, which in turn is 

dictated by the concentration of dissolved agarose. High percentage agarose gels (e.g., 2%) are used for the separation of 

small DNA molecules (102–103 base-pairs in length) or molecules with small size differences, while low percentage gels 

(e.g., 0.6%) are used for large molecules (104–105 base-pairs) and/or larger size differences. 

 To ‘run’ a gel, the agarose gel is submerged in the same type buffer used in making the gel inside the 

electrophoresis tank. The samples to be separated are then prepared so they can be loaded into the sample wells. In order 

to visualize what you are pipetting and make samples denser than the buffer so that they sink to the bottom of the well, 

samples are mixed with a loading dye that has bromophenol blue and glycerol, usually in a 1:2 – 1:3 ratio of dye to total 

sample volume (e.g., add 5 µl of dye to 10 µl of sample). The dye also enables the investigator to follow the progress of an 

electrophoretic run because they migrate to the anode with a known rate. Once the samples are loaded, current from the 
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power supply travels to the negative electrode (cathode), supplying electrons to the conductive buffer solution, gel and 

positive electrode (anode), completing the circuit and forcing the DNA to migrate through the gel matrix. 

 Nucleic acids are not visible to the naked eye, and therefore it is necessary to make them visible in some way in 

order to see them in the agarose gel after electrophoresis. The most common method involves staining the nucleic acids 

with ethidium bromide (EtBr), and then detecting the DNA or RNA-bound dye with ultraviolet lamps. Staining with EtBr 

involves the “intercalation” of planar EtBr molecules between stacked nitrogenous bases in the DNA helix. Because of this 

property, EtBr is a mutagen (and probably a carcinogen); in addition, UV light can cause serious eye and skin burns. 

Therefore, gloves must be worn when loading or handling gels containing EtBr to limit direct exposure to EtBr and UV-

filtering safety glasses must always be worn around the UV light sources. 

In order to infer how large the different DNA samples on a gel are, each gel also has a DNA size marker loaded 

on to it. The size marker contains pieces of DNA of known size, and by measuring the distance migrated by these pieces 

and an unknown, the size of the unknown can be calculated. 

Note to instructors: Students can use spectrophotometry or Nanodrop-type instrument to determine the 

concentration of plasmids; also PCR products. 

Background, Bacterial cell plasmid transformation 

 Transformation is the uptake of naked DNA and its subsequent stable maintenance in bacteria. Some bacteria 

can be naturally transformed with DNA, and these bacteria are said to be naturally “competent”. The most commonly 

used cloning host, E. coli, is not naturally transformable, however, therefore E. coli must be made artificially competent by 

treating the cells with Ca2+ or other divalent cations. When E. coli cells are suspended in calcium chloride solution, their 

membranes are altered such that the cells are more likely to take up plasmid DNA molecules. Again, only circular DNA 

molecules will be stably maintained in E. coli; linear DNA is rapidly degraded. The transformation procedure provides a 

means for preparing large amounts of specific plasmid DNA, since one transformed cell gives rise to a clonal population 

of cells that contains exact replicas of the parent plasmid DNA molecule. This procedure was used to generate the 

bacterial strains used last week. As you saw, following growth of the bacteria in the presence of the antibiotic or some 

other regime that selects for the presence of the plasmid, the plasmid DNA can readily be isolated from the bacterial 

culture. 

 Transformation can also be used to put functional copies of genes into mutant cells to see if these genes can 

restore wt function. If the plasmids have intact coding sequences with the proper promoters, these genes can be expressed 

inside the cells to produce their encoded proteins. In this way we can test which genes are mutated in a particular strain. 

General Procedures: 

 We will be doing three different transformations, a plasmid with lacZ+ lacY+, lacZ- lacY+, and a lacZ- lacY- 

control. You should think through what you would expect to see if your mutant is a lacZ- mutant or a lacY- mutant 

before coming to lab. We will also be running a gel to check on your plasmid yields from last week. 
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Protocol: 

16 HOURS PRIOR TO LAB YOU WILL NEED TO COME IN AND INOCULATE ON LB-KAN TUBE FOR EACH OF 

YOUR MUTANTS SO THEY CAN GROW OVERNIGHT. 

Approximately 3 hours prior to lab you will need to come in and subculture your mutants by transferring 100 µl of 

your overnight culture(s) to two new 2 ml tubes of LB-Kan (a 5% inoculum). You need to do this so we can have log-

phase growth cells at the start of lab. 

 

In lab: 

1. Plate out 100 ul of cells on Mac-Amp as a negative control. 

2. Transfer 1.0 mls of fresh cells to a microfuge tube (make 1 tube of cells for each transformation you will be doing) 

and spin 7K rpm for 5 minutes (=5') or longer until the cells are pelleted (you may need to spin for 10' at 8K 

rpm). 

3. Remove the supernatant and resuspend cells in 100 ul of ice cold 1X TSS buffer by flicking your tube gently. 

4. Add 3 ul of your plasmid solution to the cells and mix gently with the tip of your pipettor. 

5. Let the cells incubate for 40' on ice (no mixing during the ice incubation). 

6. Add 1 ml of room temperature LB. 

7. Incubate cells in a shaking incubator for 1 hr. (During this time we will be running a check gel of our plasmids) 

8. Plate out 100 ul of cells on agar with appropriate antibiotic and grow O/N. Keep the remainder of your cells out 

on the benchtop O/N just in case! 

9. Come in after 20 hours or so to check on your plates and interpret your results. 

 This lab is based on a protocol published in Chung, C. T., Niemela, S. L., and Miller, R. H. 1989. One-step 

preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc 

Natl Acad Sci 86:2172-2175 
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Week 6 PCR of suspected mutant genes 

Objectives and Overview 

 In this lab we will be using PCR primers designed to amplify the genes that you think are mutated in each of 

your Lac- lines. We will be using these PCR products as templates for sequencing reactions to see whether we can detect 

the particular based that have been mutated in your strains. You should go over the evidence you have with your 

instructor to make your choices, and as a control, everyone will also be amplifying the lacI gene in their strain. 

General Background I, Polymerase chain reaction 

 The polymerase chain reaction (PCR) is a revolutionary technique developed by Kary Mullis, for which he later 

shared the 1993 Nobel Prize in chemistry. PCR has evolved to be the workhorse technology of the DNA age, with an 

almost limitless range of applications from medical diagnostics, to forensics, to genetic engineering, to biosensor 

technology. PCR is conceptually very simple, based on the observation that DNA polymerases can initiate replication of a 

single stranded DNA template if provided with (i) a short synthetic complementary DNA/RNA primer annealed and to 

the template strand, (ii) deoxyribonucleoside triphosphates, and (iii) the appropriate enzyme and reaction conditions. On 

a late night drive, Mullis realized that if double stranded (ds) DNA was used as a template with oligonucleotide primers 

specific for each strand, oriented convergent to each other, the single template molecule would be converted to two new 

dsDNA molecules (see section 9.4 in your text). Subsequent use of these two new dsDNA molecules for the same reaction 

would yield four copies of the dsDNA, etc. This in vitro DNA synthesis, called amplification, leads to a geometric increase 

in the amount of the dsDNA molecule, allowing us to generate many copies of a DNA sequence of interest from very little 

source material. PCR is very specific in that only the sequence located between the two primers is amplified. In most 

cases, knowledge of the sequence of the DNA of interest is a prerequisite of PCR in order to design synthetic primers. 

 In practice, PCR is performed by placing a test tube with the needed reagents in a machine called a 

thermalcycler. This machine cycles this tube between (i) high heat (95°C) to denature the dsDNA, (ii) a lower 

temperatures (~ 55°C) to facilitate annealing of the primers to complementary target sequences, and (iii) the optimal 

temperature for DNA polymerase activity. Most DNA polymerases (as well as many other proteins) are inactivated at 

95°C, so the first PCR protocols required fresh DNA polymerase at the beginning of each cycle. A subsequent 

improvement for PCR was the incorporation of heat-stable DNA polymerases. Thermophilic and extremely thermophilic 

prokaryotic organisms (thermophiles and hyperthermophiles, respectively) have growth temperature optima of ~ 80ºC 

and ~100ºC, and their polymerases are able to maintain activity throughout the temperature fluctuations in PCR. Thus, 

while originally each PCR required a group of overworked and underpaid students with stop watches, pipettors, and 

water baths, now programmable thermalcyclers and thermostable enzymes allow rapid, repeatable amplification of 

template DNA.  
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 The chemical conditions for PCR can be varied, but include the following essential components; (i) a pair of 

appropriately designed synthetic oligonucleotide primers, (ii) ample deoxyribonucleoside triphosphates (dNTPs) as 

substrates for DNA synthesis, (iii) buffer (pH 7.0), (iv) MgCl2, to provide the of Mg++ cofactor required for the DNA 

polymerase, (v) a salt such as KCl required for optimal enzyme activity (vi) a nonionic detergent (Triton X-100) to keep 

most proteins from aggregating, (vii) DNA template, and (viii) the thermostable polymerase (the most common form is 

isolated from the organism Thermus aquaticus and called Taq polymerase). PCR conditions often must be optimized by 

altering the concentration of nucleotides, primers, Mg2+, or temperatures of the different steps in the cycle.  

General Background II, Design of PCR primers 

 The advent of easy, low cost DNA sequencing has led to the ready availability of many millions of DNA 

sequences from hundreds of thousands of species. The availability of known sequences allows us to design PCR 

primers to amplify specific sequences of interest. In practice, this usually means going to a database, extracting the 

sequence of interest, then using a computer program to assist in the selection of PCR primers by scanning for primers 

that have approximately the same melting temperature, exhibit low self- or cross-complementarity, and flank the 

sequence of interest. 

 As an example, here is how the primers were designed for today’s lab. While it is not necessary for you to go 

to the websites before lab to recreate the sequences, it is a useful exercise to see how this procedure is done. 

 I went to the Entrez site, browsed the genome projects to find microbial genome projects, then found the 

W3110 sequence: 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=89106884 

 

On this page I searched for “lac” and found the  

lacI (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AP_000997.1) 

lacZ (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AP_000996.1) 

and lacY (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AP_000995.1) sequences 

 

Note that these are described as “complements” to sequences in the CDS field — this means that the gene is coded for 

on the opposite strand that was sequenced! In order to find the sequence of the gene, we will need to reverse-

complement the sequence we get from Genbank. 

The sequences we need are as follows: 

lacI 365652..366734 

lacZ 362455..365529 

lacY 361150..362403 
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The next step was to go to the Genbank record for the entire W3110 genome sequence (ID AP009048) and then use 

the “Display:FASTA” to get the entire DNA sequence (all 4.5 million bases!!!) Then, I used the “Send to:File” to save 

it on my computer. 

 Once I had the file, I had to use a text editor to extract out the approximate sequence I wanted. Based on 

counting characters and lines, I decided to cut out from bases 360,011 to 367,990 so that I would have a bit extra on 

either side. Once I had cut out these lines (based on 70 characters per line, lines 5144–5257 in the file), I used a website 

to make the reverse complement to this sequence: 

http://bioinformatics.org/sms/rev_comp.html 

and I saved that to a file. Next I made a drawing that showed where each of the points in the sequence was that I 

needed (the start and stop points for each of the genes, based on the new numbering, 1–7980, from the reverse 

complement). You should produce a similar figure in your notebook prior to lab showing the original numbering, 

new numbering, and start and stop base numbers of each gene. 

 Finally, I took the sequence and used a program called Primer3 on the web to design my primers 

(http://frodo.wi.mit.edu/). Other programs exist, but this one is free and has always worked well for me. In 

particular, many other people like to use the program NetPrimer 

(http://www.premierbiosoft.com/netprimer/index.html) 

Here is the modified output from Primer3: 

 

OLIGO        start  len    tm     gc%   any    3'   seq, 5'-3' 

lacI-f1      1235   21   59.96   47.62  4.00  2.00  GAGTCAATTCAGGGTGGTGAA 

lacI-r1      2434   20   60.16   50.00  4.00  0.00  CGCTCACAATTCCACACAAC 

lacI-r2      2414   20   59.70   45.00  4.00  0.00  ATACGAGCCGGAAGCATAAA 

 

lacZ-f1      2419   20   60.07   45.00  4.00  2.00  TGTGGAATTGTGAGCGGATA 

lacZ-r1      5581   20   60.09   45.00  6.00  1.00  TTTCCTTACGCGAAATACGG 

lacZ-f2      2394   20   60.36   50.00  4.00  2.00  CTTTATGCTTCCGGCTCGTA 

lacZ-r2      5691   20   60.43   40.00  3.00  0.00  TGTAGCCAAATCGGGAAAAA 

lacZ-f3      3467   20   59.94   45.00  3.00  0.00  GTGCGGATTGAAAATGGTCT 

lacZ-f4      4474   20   61.07   55.00  4.00  2.00  GGATGTCGCTCCACAAGGTA 

lacZ-r3      3493   20   59.99   45.00  3.00  3.00  CAGCAGCAGACCATTTTCAA 

lacZ-r4      3562   20   60.08   55.00  4.00  2.00  GACCTGACCATGCAGAGGAT 

lacZ-r5      4655   20   60.31   55.00  5.00  1.00  GGAGCGTCACACTGAGGTTT 
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lacZ-r6      5670   20   60.29   55.00  4.00  3.00  GGGAAGTAGGCTCCCATGAT 

 

lacY-f1      5512   20   59.57   50.00  4.00  1.00  CCAGTTGGTCTGGTGTCAAA 

lacY-r1      6910   20   60.22   45.00  4.00  2.00  TCAATGCGATCACTCCGTTA 

lacY-f2      5553   19   60.08   52.63  4.00  3.00  CATGTCTGCCCGTATTTCG 

lacY-r2      6916   20   59.69   45.00  4.00  2.00  GCATGTTCAATGCGATCACT 

 

This output tells you where in your sequence the primer starts, the length in bases, the melting temperature in °C, the 

%gc (a measure of stability), the complementarity between either the primer and itself or the two primers (could 

allow them to make smaller products) and the 3’ complementarity between a primer and itself or the two together 

(you want these to be below 2 or 3), and the sequence itself. I ordered some extra primers because sometimes they 

just don’t work, and I wanted to be sure we had functional primers for each gene. In class you will be given a 

sequence handout, and you will spend time locating the boundaries for each gene and the locations of each of the 

primer sites based on the prep work outlined above. 

General Procedures: 

 We will be using a technique called colony PCR today to generate template DNA for our PCR. The primers 

have already been resuspended (they are shipped dried down) and are at 10X concentration. We will be using a 

commercial 2X Taq master mix that has everything except template DNA and primers. 

Protocol: 

Generating template DNA 

1. Take a loopful of cells from your plate, immerse the loop in 30 µl of 10 mM Tris in a 0.5 ml tube. Spin the loop to 

resuspend the cells (do for both your mutant and the 3110 positive control). 

2. Mix the cells by pipetting up and down a few times. 

3. Incubate the cells at 95°C for 5 minutes. 

4. Use 4 µl of the resulting mix as the template in PCR. 

5. We will need to amplify ~1 kb fragments of the lacI, lacZ, and lacY genes as this will give us appropriate PCR 

product sizes for sequencing. Because the lacZ gene is larger, we will amplify this gene in three different PCRs, 

while the lacI and lacY genes are only about 1 kb, so you will only need to do one reaction for each. The primer 

pairs we will be using are as follows: 

For lacI use If1-Ir1 

For lacZ use Zf1-Zr3, Zf3-Zr5, and Zf4-Zr2 

For lacY use Yf1-Yr2 
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6. Each PCR cocktail should be prepared on ice and contain 25 µl 2X PCR buffer with polymerase, 4 µl template 

DNA, 5 µl of the forward primer and 5 µl of the reverse primer, and 11 µl water. Be sure to do a PCR for both the 

W3110 wt control and your mutant for each gene. 
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Week 7 and Week 8 Agarose gel electrophoresis of PCR products and sequence analysis of mutant 

Objectives and Overview 

 

In these labs we will electrophorese our PCR amplification products (Week 7) using agarose gel electrophoresis 

techniques as described previously; and we will be looking at the sequences we have amplified to see whether we can 

determine why each strain is Lac-. 

General Procedures: 

 Week 7 activities are similar to those previously used for plasmid DNA electrophoresis, except in this case 

we are electrophoresing PCR amplification products.  Between the week 7 labs and week 8 labs PCR products were 

sent to the molecular core facilities at UT Austin to be sequenced by capillary sequencing methods. They sent us back 

the output files from the machine, so now we need to input those files into a program that will facilitate our analysis, 

along with control sequences we can obtain from Genbank for comparison. 

Protocol: 

 These instructions are for analyzing one of your genes -- you should follow them for each of the genes you 

have readable sequence from. If you do not have readable sequences, you can use the sequences from a classmate. 

Please note that I can't possibly guess about everything that can go wrong with your sequences — so you'll have to 

use your wits or ask questions if you run into a situation that is not described below. 

Analyzing your sequences 

 

(note these directions were written using a Vista PC— XP and Mac users should be similar, but if you have problems please feel 

free to ask questions!) 

 

Note to instructors: we have used Tlearn to deposit files for students, you can use any appropriate system or protocol 

to provide access of files to students 

1. Go to the tlearn site and find the Excel file called “sequences.xls” in the Files/Lab folder. Find which sequences 

are yours by looking for your initials if you did your reactions alone, or you lab partnership initials if you 

worked with someone else. There will be at least two reactions for each PCR product. Next, write down which 

cell corresponds to your sequencing reactions (the cells are A1, B1, …, H12). 

2. Next, find the .scf files for your sequences in the Files/Lab/Sequences folder. They will be named by the cell you 

found in step 1.  

3. Download the FinchTV sequence viewer application from http://www.geospiza.com/finchtv.html 
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4. Install and use the FinchTV application to view your forward sequences in the .scf files. You can use the sliders 

at left and bottom to adjust what you can see in your sequence trace — adjust these and scan your sequence to 

observe how much signal you have at different points along your sequencing run (why does it tail off?) Observe 

where you have clear, individual peaks in your run. At the top, you should see small histograms that describe 

the quality of your sequence read at each called base (if you cannot see these, click on the button with a Q and 

small histograms to reveal them). These histograms show what is called the phred score — essentially where the 

phred score is above 20 the base call is 99% accurate (see http://www.phrap.com/phred/ if you are more 

interested in how phred works). 

5. Open a text (use notepad or wordpad – not Word!) document for your sequence files and add in a fasta 

definition line by typing >description_of_sequence and then hitting return. The one important part of the 

definition line is that it starts off with a greater-than sign — your description can include spaces and odd 

characters, but most people try to stick to alpha-numeric characters to be interchangeable and make the sequence 

descriptors more easily machine-readable. 

6. Go back to FinchTV and select the longest contiguous read of high-quality bases you can, copy these, and then 

paste them into your text file. You should now have something like this: 

 >my_name_for_my_sequence_YF1 

 ATGGATTGATCTGCCATGCATG..... 

7. Next open up one of your reverse sequence reads. You should reverse-complement this sequence by clicking on 

the button with the two arrows. Again, scan this sequence and then select the longest contiguous high-quality 

read and add it with a name to your sequence file. If you are looking at a lacZ read, follow this procedure for 

each of the forward and reverse sequences until you have all six in your file. 

8. Acquire known gene sequences from Genbank to add to your sequence file (see the additional instructions at the 

end if you need help doing this). Save your sequence file as a text file with .fasta as an extension. 

9. Download and install the Jalview application from http://www.jalview.org/Web_Installers/install.htm (you do 

not need to install a java virtual machine) 

10. Start the Jalview application and then use the file>input alignment>from file to open your .fasta file. You should 

now see lines with all your sequences present in the window. 

11. Try to manually align your sequences by shifting the sequences left and right as needed. You can select multiple 

bases and right-click them to cut, etc. To slide a sequence, hold down the shift key, left click on the base, and 

then use the pointer to move the sequence left and right. The search feature within a sequence is also helpful to 

try and find where sequences align. Another help may be to use BLAST to search the nucleotide database for a 

match that will show your alignment (instructions for BLAST can be found below). 
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12. When you have finished aligning your gene, create a composite copy of your gene by selecting the most 5' region 

you want include from your sequence, copying it, and then opening a text file and naming your sequence and 

pasting in what you just copied (sorry — I can't find an easier way to do this!). Next, add the next part of your 

gene by selecting it, copying it, and then adding it to your text file. When you have added in all your sequence 

information, save your text file as a .fasta file and then go back to Jalview and import the sequence. Once you 

have your sequence in Jalview, you can select it and then use the calculate>translate cDNA to get the peptide 

sequence. 

13. From here on out, see what you can find out about your mutant! You can do a protein blast to look for 

dissimilarities, you can use a program such as SWISSMODEL or 3Djigsaw to thread your sequence onto a 

known structure (see me if you would like to do this) 

Finding the lacZ gene in genbank 

• go to http://www.ncbi.nlm.nih.gov 

•  in the search box, type lacZ 

•  this takes you to the Entrez combined database page where you can see that your search term can be found in 

thousands of articles and sequences. We want to find the gene sequence, so click on 'nucleotide' to start to see 

those records (2626 on 11/28/09) 

• you may find that the sequence is not in the top results, though it is an E. coli gene.  It can be hard to find what 

you want, but they are starting to implement better help features -- for example look at the right of the screen 

and you can see that we can easily look only in certain taxa. Click on 'Escherichia coli’ to get the 152 (on 11/28/09) 

results 

• We want to find the gene sequence -- but none of the top hits give us that. There are a few ways to get to where 

we want to go from here, but let's try one of the top links provided from searching the 'Gene' database. Click on 

one of the lacZ from E. coli 0H157 links 

• As you can see, this database has information on where the gene is located, the protein sequence, etc. On the left 

or at the very bottom there is a link to nucleotide -- click on the one at the bottom 

• This takes us to the complete genome sequence! Where is our gene? Use your web browser's search feature to 

find lacZ on this page 

• OK -- so now we know where it is, but do we have to search through the whole sequence to find bases 

423606..426680 and then reverse-complement them?!?! 

• Luckily not -- click on the CDS link to the left (CoDing Sequence) and follow it to get the gene sequence 

• This database record has lots of information for us, but the sequence is not in a friendly format with all the 

spaces and numbers. To get a more concise output, click on the drop-down 'Display' menu item at the top and 

select 'FASTA' 
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• There is not as much information with a FASTA-formatted record, but the top line '>info...' does have most of the 

relevant information, and the sequence data is very easy to manipulate. A FASTA-format is a very specific way 

to represent sequences so that databases can be inter-operable (the other sequence formats are specified as well, 

but a bit more cumbersome for some purposes) 

• select and copy the entire sequence record, including the definition line (the >gi). 

Using BLAST 

We are now going to use our sequence to find other sequences in the database that are similar using an invaluable 

tool called BLAST (Basic Local Alignment Search Tool) 

• go to http://blast.ncbi.nlm.nih.gov/Blast.cgi 

•  select 'nucleotide blast' from the basic blast options. This allows us to use a nucleotide query sequence to search 

against a nucleotide database. As you can see, there are many other flavors of BLAST that allow you to search 

nucleotide, translated nucleotide, an protein sequences against any of those databases.  

• paste your sequence into the query sequence box and then choose nucleotide collection from the search set 

database drop down menu (we could search against human sequences, but you can do that on your own time!) 

• click BLAST at the bottom and your search should be initiated 

• there is again lots to go over with the output from a search, and the interface has been improved quite a bit from 

the early days. Basically you can see a top graphic of the best matches (hits) between your query sequence and 

those in the database. Red means a better match and the length of the bars indicates over what portion of your 

query the match extends. If you scroll down you can get a list of those hits, and then after the list you can start to 

see the alignments between your query and the database records (as a shorcut if you click on one of the bars in 

the graphic it takes you to this point on the page) 

• the alignment output is what we will use when we get our mutant sequences back. If the query matches the 

database sequence, there is a vertical line between the two. The top hits will be perfect matches (after all, we 

used a sequence from the database, so it should match itself!), but if you scroll down you can begin to see that 

there are other imperfect matches and what those look like -- and this is how you can start to look for 

mismatches when you are using your own sequence as a query.  

• if you would like, take the lacZ sequence and add in some letters in the middle (only A, T, G, C allowed!) and 

then BLAST it again to see what a discontinuous match looks like. 

* next, on your own try to find the LacI protein sequence and do a protein BLAST to see what those results look like. 

In the protein alignments, because amino acids can be chemically similar, the alignment has the single-letter 

amino acid in the middle if the query sequence is identical to the database sequence and a + if it is a similar 

replacement and space if the two amino acids are chemically distinct (scroll down through alignments to see 

sequence comparisons that look like this). 
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