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Identification of RNase-resistant RNAs in Saccharomyces 
cerevisiae extracts: separation from chromosomal DNA by 
selective precipitation

Blanca V. Rodriguez1, Eric T. Malczewskyj1, Joshua M. Cabiya1, L. Kevin Lewis1, and 
Corina Maeder*

1Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 
78666

Abstract

High quality chromosomal DNA is a requirement for many biochemical and molecular biological 

techniques. To isolate cellular DNA, standard protocols typically lyse cells and separate nucleic 

acids from other biological molecules using a combination of chemical and physical methods. 

After using a standard chemical-based protocol to isolate chromosomal DNA from Saccharomyces 

cerevisiae and then treatment with RNase A to degrade RNA, two RNase-resistant bands persisted 

when analyzed using gel electrophoresis. Interestingly, such resistant bands did not appear in 

preparations of E. coli bacterial DNA after RNase treatment. Several enzymatic, chemical and 

physical methods were employed in an effort to remove the resistant RNAs, including use of 

multiple RNases and alcohol precipitation, base hydrolysis and chromatographic methods. These 

experiments resulted in the development of a new method to isolate S. cerevisiae chromosomal 

DNA. This method utilizes selective precipitation of DNA in the presence of a potassium acetate/

isopropanol mixture and produces high yields of chromosomal DNA without detectable 

contaminating RNAs.
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Introduction

Many different approaches have been developed for the extraction of nucleic acids from 

prokaryotic and eukaryotic cells. Such methods typically entail lysis of cells using some 

combination of physical and/or chemical methods, followed by separation of the nucleic 

acids from other biomolecules [1,2]. For example, chemical-based protocols utilize 

detergents and/or other chemical bond-breaking agents to lyse cells, while physical 
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approaches may involve the disruption of cells using techniques such as sonication, boiling, 

repetitive freeze-thawing, agitation in the presence of small beads, or grinding of frozen 

tissues [1-4].

Protocols have also been described for the purification of specific types of nucleic acids 

from cells, e.g., isolation of pure DNA that does not contain RNA and vice versa [1,2,5-7]. 

DNA isolation schemes may be further subdivided into those methods designed primarily 

for purification of large chromosomal DNA fragments (e.g., to be used for subsequent 

polymerase chain reaction (PCR) assays or Southern blots, etc.) and those developed for 

purification of other molecules such as small circular plasmids, viral DNAs, or 

mitochondrial genomes. Development of plasmid DNA isolation methods has been of 

particular interest, in large part because these DNAs have become essential tools for 

molecular biologists, but also because of new requirements in the burgeoning field of gene 

therapy. Circular DNAs to be used for clinical purposes must meet a high standard of purity, 

meaning that robust methods for removal of contaminating RNAs, proteins and other 

biomolecules must be employed [8-11].

Because of heterogeneity among cells, especially differences in cell membrane and/or cell 

wall structures that can affect the yield and purity of extracted DNAs, many organism- and 

tissue-specific DNA purification procedures have been described. For example, a number of 

specific protocols have been described for the isolation of chromosomal, plasmid and 

mitochondrial DNAs from cells of the widely studied model eukaryote Saccharomyces 

cerevisiae (budding yeast) [12-23]. These methods typically involve an ordered series of 

steps: chemical or physical lysis of cells to release intracellular nucleic acids, sedimentation 

and removal of cell debris and proteins, concentration/purification of DNA molecules by 

precipitation with ethanol or isopropanol, and degradation of contaminating RNAs using 

RNase enzymes. RNases used in these procedures, as well as in many other eukaryotic and 

prokaryotic DNA purification methods, are single-stranded RNA (ssRNA) endonucleases 

such as RNase A or RNase I. Commercially available bovine RNase A preferentially breaks 

phosphodiester linkages at the 3′ ends of pyrimidines, while E. coli RNase I cleaves at the 3′ 

ends of all four bases [2,24,25]. An inexpensive recombinant version of the latter enzyme, 

called RNase If, has recently become available commercially and is also widely used.

As part of a series of experiments involving purification of DNA from S. cerevisiae cells for 

use in Southern blots and for studies aimed at separating chromosomal from plasmid DNA 

[22], we consistently observed that the yeast DNA preps contained contaminating RNAs that 

were resistant to RNase A digestion. These RNAs were distinctly different from those 

present in E. coli plasmid and chromosomal DNA preps, which are readily digested down to 

mono- and oligonucleotides by RNase A. Simple ideas such as increasing RNase enzyme 

concentration or extending incubation times proved ineffective. Similarly, many other 

straightforward approaches did not work, including use of alternative RNase enzymes and 

higher temperatures, base hydrolysis at high pH for selective destruction of RNA but not 

DNA, RNA sedimentation with lithium chloride, and the use of commercially available 

anion exchange and gel chromatography spin columns. Each of these procedures produced 

poor results, either due to inefficient removal of the contaminating RNAs or because both 

DNAs and RNAs were removed from the preparations. Systematic modification and testing 
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of an alternative idea involving sedimentation of DNA in the presence of potassium acetate 

and isopropanol[26] led to the development of an effective approach. Small RNAs and 

RNase-resistant RNA molecules in yeast chromosomal DNA preparations could be 

selectively removed in a single step, without concomitant loss of DNA, using the simple 

method described herein.

Materials and Methods

Reagents and enzymes

Tris base, ethylenediaminetetraacetic acid (EDTA), potassium acetate (KoAc), sodium 

acetate (NaOAc) and lysozyme were purchased from Sigma-Aldrich. TAE running buffer 

(50×) was purchased from Omega Bio-Tek. Sodium hydroxide (NaOH) was obtained from 

EM Science. Boric acid was purchased from JT Baker. Sodium dodecyl sulfate (SDS) was 

purchased from Mallinckrodt Baker. RNase A/T1 Cocktail Mix and RNase V1 were 

purchased from Invitrogen/Life Technologies. RNase If, 2-log DNA ladder, and dsRNA 

ladder were purchased from New England Biolabs. RNase A was obtained from Thermo 

Scientific.

Chromosomal DNA purification from yeast cells

Haploid yeast strain BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) was used for DNA 

purification experiments. Chromosomal DNA was purified using the SDS lysis method as 

described by Lee et al [22]. Briefly, 4 mL of yeast cells were shaken in YPDA broth 

overnight at 30 °C. Three mL of cells (1.5 mL twice) were centrifuged for 10 s at 16,000 × 

g. The pellet was resuspended in 0.3 mL SET (6% SDS + 10 mM EDTA + 30 mM Tris, pH 

8.0) solution, incubated at 65 °C for 15 min and then transferred to ice for 5 min. A total of 

0.15 mL 3 M KOAc was then added to the sample. The tube was spun for 10 min at 21,000 

× g, the supernatant was transferred to a new microcentrifuge tube and 0.5 mL isopropanol 

was mixed into the sample. The tube was then centrifuged for 1 min and the supernatant 

removed. The DNA pellet was washed with 0.5 mL 70% EtOH and subsequently dried for 

10 min using a speedvac. The resulting pellet was resuspended in 50 μL TE. After the DNA 

dissolved, the solution was spun at 21,000 × g for 2 min to remove any remaining insoluble 

materials and the supernatant was transferred to a new tube. All electrophoresis experiments 

were performed using 11 cm × 14 cm Horizon gel rigs (Labrepco) and either a Thermo EC 

EC105 power supply or an Amersham/GE Healthcare EPS 601 power supply. A260/A280 

absorbance ratios were determined using a Nanodrop 2000 UV-Vis spectrophotometer from 

Thermo Scientific.

Chromosomal DNA purification from bacterial cells

DH5α E. coli cells were used to isolate bacterial chromosomal DNA. The cells were shaken 

in 3 mL TB broth at 37 °C overnight. A total of 1.5 mL cells were centrifuged and 

resuspended in 150 μL lysis solution (6% SDS, 10 mM EDTA, 30 mM Tris, pH 8.0). 

Subsequently, 25 μL lysozyme solution (10 mg/mL dissolved in 25 mM Tris, pH 8.0) was 

added and the sample was incubated at room temperature for 3 min, followed by a 5 min 

incubation at 65 °C. After the incubation period, 150 μL of 3 M KOAc was added. The 

solution was then spun for 10 min at 21,000 × g and the supernatant was transferred to a new 
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microcentrifuge tube. The DNA was precipitated by adding 500 μL isopropanol followed by 

a 1 min centrifugation. The pellet was washed with 500 μL cold 70% EtOH and dried for 10 

min using a speedvac. The pellet was resuspended in 50 μL TE. RNA remaining in the 

preparation was enzymatically degraded with addition of 2 μL RNase A (1 mg/mL) and 

incubation at 37 °C for 15 min.

RNase digestion and Ethanol Precipitation

Purified yeast chromosomal DNA was subjected to RNA digestion with the addition of 

RNase A to a final concentration of 0.04 μg/μL. Typically, this involved addition of 2 μL of 

1 mg/mL RNase (in 50% glycerol) to 50 μl of DNA. The yeast DNA/RNA solutions were 

then incubated at 37 °C for 15 min. Samples were visualized for purity via gel 

electrophoresis on a 1.2% agarose gel run in 0.5× TB (45 mM Tris, 45 mM borate) at 300 V 

for 15 minutes as described [27]. High voltages and short run times were used to minimize 

diffusion of small RNAs.

The typical size of contaminating RNA oligonucleotides retained after RNase A or If 

treatment of chromosomal DNA preps was determined by calculating the migration 

distances of the RNA bands relative to a dsRNA ladder on a 3.5% agarose gel run at 300 V 

for 15 min in 0.5× TB buffer. A bestfit trendline and equation derived from a plot of log 

DNA size versus distance travelled were calculated using Microsoft Excel.

A series of reactions were performed on BY4742 chromosomal DNA preps with 

contaminating RNA including: the addition of RNase Cocktail (24 U/ml RNase A and 1.0 

U/μl RNase T1 final concentrations), RNase V1 (5 U/ml) without buffer, RNase V1 (5 

U/ml) in 1× RNA Structure buffer, RNase Cocktail (24 U/ml RNase A and 1.0 U/μl RNase 

T1) plus RNase V1 (5 U/ml) together without buffer, and RNase V1 (5 U/ml) plus RNase 

Cocktail in 1× RNA Structure buffer. Resulting reaction mixtures were incubated at 37 °C 

for 30 min.

Ethanol precipitation was performed by adding 0.1 volume of 3 M NaOAc and 2.5 volumes 

of 100% EtOH to 50 μL of the RNased treated sample. The sample was mixed and spun for 

5 min at 21,000 × g. The supernatant was discarded and 500 μL of 70% EtOH was used to 

wash the DNA pellet. The sample was re-spun for 3 min and dried for 10 min using a 

speedvac. The DNA pellet was resuspended in the original volume of TE.

Base hydrolysis of contaminating RNAs

Base hydrolysis using either sodium hydroxide or potassium hydroxide at 0.2 M and 0.3 M 

final concentrations was tested to remove contaminating RNAs. The effect of EDTA on the 

hydrolysis reaction was explored by varying its concentration from 0 - 0.25 M. Once the pH 

was raised with NaOH or KOH, the samples were allowed to react for 15 min at either room 

temperature or 65 °C. All reaction conditions tested resulted in elimination of the two 

resistant bands present after digestion with RNase A or RNase I. However, each treatment 

also led to poor recovery and aberrant electrophoretic migration of the resulting 

chromosomal DNA.
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Use of columns to remove contaminating RNAs

Further attempts to remove RNA from chromosomal DNA utilized QIAprep Spin Miniprep 

Kit columns and the protocol provided by Qiagen, Inc. for cleaning up DNA solutions. 

CHROMA SPIN-1000 columns were tested using the protocol provided by Clontech 

Laboratories, Inc.

Optimized protocol for RNA removal from chromosomal DNA minipreps

Feliciello and Chinalli published a method for the removal of E. coli RNAs and proteins 

from plasmid DNA preparations [26]. This protocol involved the addition of 1.2 volumes of 

an 88% isopropanol/0.2 M KOAc mixture to a DNA solution, followed by centrifugation to 

selectively precipitate the DNA. Use of this method in the current study consistently resulted 

in only partial removal of yeast RNAs. The original method was made more stringent by 

testing different KOAc concentrations, different centrifugation times, and different volumes 

of the 88% isopropanol/KOAc mixture added to the DNA. The method could be made more 

efficient by reducing the concentration of KOAc and by decreasing the volume of 

isopropanol/KOAc mixture that was added.

The final optimized protocol for the quick removal of contaminating RNAs from yeast 

chromosomal DNA minipreps is as follows. Chromosomal DNA was purified from 3 mL of 

yeast cells grown overnight in YPDA broth and resuspended in 50 μL of TE without RNase 

as previously described [22]. The purified chromosomal DNA was then diluted by a factor 

of 4 with sterile ddH2O, 5 μL of 1 mg/mL RNase A was added, and tubes were incubated at 

37 °C for 15 min. The DNA was then selectively precipitated by adding 0.6 volumes of 88% 

isopropanol/0.1 M KOAc, mixing briefly, incubating at room temperature for 10 min, and 

spinning at 16,000 × g for 2 min. The supernatant was discarded. The DNA pellet was 

washed with 500 μL 70% cold EtOH and spun once again for 1 min. The supernatant was 

removed and the pellet was dried in a speedvac for 10 min. The chromosomal DNA pellet 

was then resuspended in 50 μL TE again. The method works well with modestly smaller or 

larger volumes and concentrations of DNA.

Results

While performing yeast chromosomal DNA isolations according to a previously described 

method[22], we noticed an anomaly in the chromosomal DNA preparations at the end of the 

procedure. This chemical-based method of DNA isolation is similar to other published 

protocols and depends on the lysis of cells using SDS treatment at 65°C, which is followed 

by protein precipitation with potassium acetate, nucleic acid precipitation using isopropanol, 

and resuspension of the DNA in TE [22]. Specifically, 3.0 mL of cells from YPDA broth 

cultures shaken overnight at 30°C were pelleted, lysed and the final purified nucleic acids 

were resuspended in 50 μL of TE. Running 4 μL of the 50 μL mixtures on a 1% agarose gel 

produced bands typical of total nucleic acid preparations obtained from prokaryotic and 

eukaryotic cells, i.e., a prominent band was observed above 10,000 bp in size (∼ 50,000 bp), 

which is composed of large linear fragments generated by random shearing of chromosomal 

DNA during the purification procedure (Figure 1A). Below 10,000 bp, a complex mixture of 
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RNA bands was observed, corresponding to rRNAs, tRNAs and mRNAs, as well as many 

small functional RNAs.

When pure DNA is the desired nucleic acid, it is standard practice to treat preparations with 

an RNase enzyme, usually RNase A or RNase I (or the variant If), to digest the RNAs down 

to mononucleotides and small oligonucleotides [2]. When the RNase treated DNA is 

subsequently run on an agarose gel, the digested RNAs produce either no band or a small, 

diffuse, and weakly-stained RNA oligonucleotide band at the bottom of the gel. This is in 

part due to the fact that ethidium bromide stains small single-stranded nucleic acids poorly 

and is also a result of the rapid diffusion of the small RNAs during electrophoresis, which 

spreads out the fluorescent signal [27]. However, using a standard method (addition of 2 μL 

of 1 mg/ml RNase A to a 50 μL sample followed by incubation at 37°C for 15 minutes) on 

Saccharomyces cerevisiae DNA isolations consistently resulted in two RNase A-resistant 

bands in addition to the chromosomal DNA band (Figure 1B). This was unexpected and 

distinctly different from results seen when RNAs present in chromosomal DNA prepared 

from E. coli cells were digested with RNase A (Figure 1C). Since RNase A is a single-

stranded RNA-specific enzyme, the results imply that some RNAs within yeast cells retain 

stable secondary or tertiary structures that cannot be cleaved by the enzyme.

To further characterize these RNase-resistant fragments, we isolated chromosomal DNA and 

determined the approximate sizes of the fragments using gel electrophoresis. Because of 

their small size, we employed a 3.5% agarose gel in which fragments ranging from 

approximately 5 bp to over 500 bp can be visualized using ethidium bromide [2] (Figure 

2A). These gels were run at high voltage in 0.5 × TB buffer for a minimal amount of time in 

order to limit diffusion of small fragments as previously described [27]. Using a dsRNA 

ladder, we constructed a standard curve relating the sizes of the fragments to their migration 

distances in the gel. This plot produced a linear relationship from which we were able to 

determine the sizes of the RNase-resistant fragments (Figure 2B). The upper band's higher 

molecular weight population was more heterogeneous in size and ranged from 24-56 bp in 

length, while the lower band's smaller molecular weight fragments ranged from 10-16 bp in 

length.

The presence of these small RNase-resistant fragments may potentially affect many 

molecular biology experiments, e.g., the RNA fragments absorb ultraviolet light at 260 nm 

and can significantly hinder accurate DNA concentration determination. They may also 

confound downstream experiments involving enzymes that can act on both RNA and DNA. 

Several simple approaches were pursued in an attempt to eliminate the resistant yeast RNAs, 

including (a) addition of up to 10 times the normal amount of RNase A, (b) switching to 

RNase If, another commonly used single-stranded RNA nuclease that cleaves after all 4 

bases, (c) increasing RNase A incubation time from 15 minutes to 2 hours, and (d) 

precipitation using standard ethanol or isopropanol precipitation methods after RNase 

treatment, which is known to sediment larger nucleic acids more efficiently than smaller 

molecules [2]. None of these straightforward approaches were successful (data not shown). 

Therefore, we sought to improve the efficiency of removal of the resistant RNAs from 

chromosomal DNA by testing a series of more rigorous enzymatic and physical methods.
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Since folding of these fragments into double-stranded RNAs was likely to be protecting 

them from RNase A cleavage, the samples were heated to denature secondary structures at 

temperatures ranging from 50°C to 75°C for 5 minutes and then treated with RNase A 

according to the standard protocol. This modification resulted in small changes in the 

distribution of resistant fragments, primarily in the upper band, but overall did not result in 

removal of either band. A representative experiment involving preincubation at 65°C is 

shown in Figure 3A. After treatment with an ‘RNase cocktail’ (Invitrogen) containing 

RNase A and RNase T1, the large fragment appeared to be degraded while the smaller 

fragment remained intact (Figure 3B, lanes 2 and 3). RNase T1 also targets single-stranded 

RNA but differs from RNase A in that it cleaves after ribonucleotides containing G [25]. 

Similarly poor results were observed when RNase A and RNase If were employed together 

(data not shown).

RNase VI is an enzyme that cleaves double-stranded RNA nonspecifically [25] and is 

therefore potentially capable of digesting small yeast RNAs containing secondary and 

tertiary structures. Treatment with this enzyme did eliminate the majority of the two 

resistant RNA bands, but unfortunately it also consistently resulted in partial digestion of the 

double-stranded chromosomal DNA fragments too, indicating that it can cleave both dsRNA 

and dsDNA (Figure 3B, lane 4). In addition, the degradation of the DNA resulted in a 

significant reduction in the overall yield of the DNA thus lower both the quality and quantity 

of isolated DNA.

Since enzymatic methods had been unsuccessful, we tested two commercially available 

column-based protocols that have been optimized to isolate plasmid DNA. The first 

approach used Qiaprep Spin Miniprep Kit columns, which separate nucleic acids by anion-

exchange. Larger nucleic acids remain bound to the column, while smaller fragments are not 

retained efficiently. The second approach involved CHROMA SPIN-1000 columns, which 

contain a proprietary gel chromatography resin that fractionates molecules based on size. 

For each method, two independent DNA purifications were performed (Figure 3C and 3D). 

In both cases, the smaller fragments were removed efficiently, but the larger fragments 

persisted. In the case of the Qiaprep column (Figure 3C, lanes 2 and 3), there was also a 

significant loss of chromosomal DNA. These results indicate that neither method is suitable 

for removal of the resistant RNAs from the chromosomal DNA.

Because of the susceptibility of RNA, but not DNA, to base hydrolysis [28,29], we 

attempted to use this chemical susceptibility to degrade the small RNA fragments. 

Chromosomal DNA preps were incubated with RNase A using the standard protocol and 

this was followed by ethanol precipitation (addition of 0.1 volume of 3 M NaOAc and 2.5 

volumes of cold ethanol, followed by centrifugation and resuspension in ddH2O; see 

Methods). The resulting chromosomal DNA was reacted with 0.2 M or 0.3 M sodium 

hydroxide based on previously described protocols[28,29]. While the small RNA fragments 

were removed, the overall yield of the chromosomal DNA was significantly depleted and 

the treated DNA migrated unusually slowly compared to the control DNA (Figure 4, lanes 3 

and 4). Several trials that varied the base (sodium hydroxide or potassium hydroxide) and 

the reaction temperature, 25 or 65 °C, showed similar results (data not shown).
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The next experiments addressed whether the RNA fragments could be separated from the 

chromosomal DNA using alcohol precipitation methods. Standard ethanol plus sodium 

acetate precipitation (Figure 4, lane 2) as well as lithium chloride precipitation (data not 

shown) had been unsuccessful in isolating the chromosomal DNA away from the RNA 

fragments. An isopropanol plus KOAc method published by Feliciello and Chinali [26] was 

assessed as well. This method involves the addition of 1.2 volumes of an 88% 

isopropanol/0.2 M KOAc mixture to a DNA solution, followed by incubation for 10 minutes 

at room temperature and centrifugation for 5 minutes in a microcentrifuge. Initial 

experiments with this method produced results that were similar to the other isolation 

methods that had been tested in that the two RNA bands remained. We therefore sought to 

improve this method. We varied the volumes of isopropanol/KOAc that were added to the 

samples; a representative experiment is shown in Figure 5A, which indicated that it was 

possible to add 0.6 volumes rather than 1.2 volumes of isopropanol/KOAc and get removal 

of most of the RNAs (compare lane 3 vs. lanes 1 and 2). After testing many variables, 

including centrifugation times, incubation times, and concentrations of isopropanol and 

KOAc, we developed a new improved protocol that selectively removes the RNase-resistant 

fragments from chromosomal DNA minipreps while not reducing the yield of chromosomal 

DNA.

In the final optimized method, chromosomal DNA prepared from 3 mL overnight cultures 

and suspended in 50 L TE (or ddH2O) is diluted by a factor of 4 into ddH2O and then treated 

with 5 μL of 1 mg/ml RNase A for 15 minutes at 37 °C. The chromosomal DNA is then 

selectively precipitated by adding 0.6 volumes of an 88% isopropanol/0.1 M KOAc mixture 

and incubating at room temperature for 10 minutes followed by centrifugation at 16,000 × g 

for 2 minutes. The supernatant is then discarded and the DNA pellet washed with 70% 

ethanol, dried in a speedvac and resuspended in the original volume of TE or ddH2O. As 

shown in Figure 5B, lane 2, the RNase-resistant fragments are completely removed using 

this method without the quantity of the chromosomal DNA being affected. The quality of 

the DNA was tested by measuring the A260/A280 ratio of chromosomal DNA extracted using 

the new method vs the original RNase A-treated DNA. DNAs from five separate yeast 

chromosomal DNA minipreps which still retained the two resistant RNA bands after RNase 

A treatment exhibited an A260/A280 ratio of 2.17 +/- 0.07 (average +/- standard deviation). 

Five separate yeast chromosomal DNA preps isolated using the new method had an average 

A260/A280 ratio of 1.87 +/- 0.18. The reduction in the A260/A280 ratio indicates that strongly 

UV-absorbing RNA fragments have been removed and that the remaining DNA is highly 

pure with very little contaminating RNA.

Discussion

The isolation of chromosomal DNA from yeast cells has been accomplished historically 

using many different approaches and typically involves a final step involving degradation of 

contaminating RNAs using RNases. For many downstream experiments, both the quantity 

and quality of the isolated chromosomal DNA are critical. As part of a series of 

chromosomal DNA purifications from S. cerevisiae cells, we observed that the isolated 

DNA retained two small RNase-resistant bands when analyzed by gel electrophoresis. To 

further understand the nature of these RNase-resistant fragments, the sizes of the fragments 
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were determined and found to range between 10-16 bp and 24-56 bp for the lower and upper 

bands, respectively. The identities of the fragments are not known. Our observation that they 

could be eliminated by base hydrolysis in NaOH or KOH indicates that they are composed 

of RNAs without any apparent small DNAs. The resistant fragments could also be degraded 

by treatment with RNase V1, a nuclease with strong preference for double-stranded RNA 

that has slight cross-reactivity against double-stranded DNA (Figure 3B). These results 

suggest that the resistant bands are composed of unusually stable double-stranded RNA 

molecules. Such resistant RNAs are not observed in isolated bacterial chromosomal or 

plasmid DNA samples after treatment with RNase A or If. The aggregate data suggest that 

they represent RNA fragments with nuclease-resistant secondary structures that may be 

unique to yeast.

Because downstream experiments often require accurate quantification of chromosomal 

DNA concentrations, we sought out methods that would yield pure, high quality DNA 

without contaminating RNAs. A series of trials using enzymatic, chemical and physical 

separation techniques were employed. These methods included use of multiple RNase 

enzymes incubated at various temperatures, selective destruction of RNAs by hydrolysis in 

strong base, preferential sedimentation of RNAs with lithium chloride, size-dependent 

precipitation using standard alcohol-based methods that combine NaOAc with ethanol or 

isopropanol, and chromatographic separation using anion exchange and gel chromatography 

spin columns. Using these approaches, we had only limited success removing the RNase-

resistant fragments from the chromosomal DNA preparations.

A protocol published by Feliciello and Chinali [26], which involves addition of an 

isopropanol/potassium acetate solution to preferentially sediment larger nucleic acids while 

leaving smaller nucleic acids in the supernatant was also evaluated. The published protocol 

was unsuccessful in producing pure chromosomal DNA. We therefore sought to improve the 

method by testing several variables, including the volume and concentrations of alcohol and 

salt, centrifugation time, and reaction times. This testing process led to the development of a 

modified purification technique for chromosomal DNA minipreps that involves dilution of 

the isolated DNA, treatment with RNase A, incubation with 88% isopropanol/0.1 M KOAc, 

and centrifugation in a microcentrifuge. The DNA pellet is then washed with 70% ethanol, 

dried, and resuspended in the original volume of TE or water. The final optimized protocol 

is described in detail in the Methods. This method is rapid, yields high quality chromosomal 

DNA that lacks any detectable contaminating smaller fragments and exhibits improved 

A260/A280 ratios that are consistent with pure DNA. Additionally, the purification results in 

little loss of the original chromosomal DNA, making it ideal for use in downstream 

experiments.

Acknowledgments

This research was supported in part by an award from Research Corporation for Science Advancement to CM, a 
grant from the National Institutes of Health (grant number 1R15GM09904901) to LKL, and a departmental grant 
from the Welch Foundation.

Rodriguez et al. Page 9

Anal Biochem. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Strauss WM. Preparation of genomic DNA from mammalian tissue. Curr Protoc Mol Biol. 2001; 
Chapter 2 Unit 2.2–2.2.3. 

2. Green, MR.; Sambrook, J. Molecular Cloning: A Laboratory Manual. 4. Cold Spring Harbor 
Laboratory Press; Cold Spring Harbor, NY: 2012. 

3. Liu, D. Handbook of Nucleic Acid Purification. CRC Press, Taylor & Francis Group; Boca Raton, 
FL: 2009. 

4. Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed 
Biotechnol. 2009; 2009:574398–10. [PubMed: 20011662] 

5. Madabusi LV, Latham GJ, Andruss BF. RNA extraction for arrays. Meth Enzymol. 2006; 411:1–14. 
[PubMed: 16939782] 

6. Jahn CE, Charkowski AO, Willis DK. Evaluation of isolation methods and RNA integrity for 
bacterial RNA quantitation. J Microbiol Methods. 2008; 75:318–324. [PubMed: 18674572] 

7. Botling J, Micke P. Fresh frozen tissue: RNA extraction and quality control. Methods Mol Biol. 
2011; 675:405–413. [PubMed: 20949406] 

8. Shamlou PA. Scaleable processes for the manufacture of therapeutic quantities of plasmid DNA. 
Biotechnol Appl Biochem. 2003; 37:207–218. [PubMed: 12683955] 

9. Stadler J, Lemmens R, Nyhammar T. Plasmid DNA purification. J Gene Med. 2004; 6(Suppl 
1):S54–66. [PubMed: 14978751] 

10. Murphy JC, Winters MA, Sagar SL. Large-scale. nonchromatographic purification of plasmid 
DNA. Methods Mol Med. 2006; 127:351–362. [PubMed: 16988465] 

11. Sousa A, Sousa F, Queiroz JA. Advances in chromatographic supports forpharmaceutical-grade 
plasmid DNA purification. J Sep Sci. 2012; 35:3046–3058. [PubMed: 22961759] 

12. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases 
autonomous plasmids for transformation of Escherichia coli. Gene. 1987; 57:267–272. [PubMed: 
3319781] 

13. Mann W, Jeffery J. Isolation of DNA from yeasts. Anal Biochem. 1989; 178:82–87. [PubMed: 
2729583] 

14. Polaina J, Adam AC. A fast procedure for yeast DNA purification. Nucleic Acids Res. 1991; 
19:5443. [PubMed: 1923834] 

15. Burke, D.; Dawson, D.; Stearns, T. C.S.H. Laboratory. Methods in Yeast Genetics. CSHL Press; 
Codl Spring Harbor, NY: 2000. 

16. Kabir S, Rajendran N, Amemiya T, Itoh K. Quantitative measurement of fungal DNA extracted by 
three different methods using real-time polymerase chain reaction. J Biosci Bioeng. 2003; 96:337–
343. [PubMed: 16233533] 

17. Harju S, Fedosyuk H, Peterson KR. Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC 
Biotechnol. 2004; 4:8. [PubMed: 15102338] 

18. Fuller LJ, MacKenzie DA, Roberts IN. Species-specific variation in efficacy of yeast genomic 
DNA isolation techniques assessed using amplified fragment length polymorphism. Anal 
Biochem. 2008; 381:154–156. [PubMed: 18601896] 

19. Borman AM, Fraser M, Linton CJ, Palmer MD, Johnson EM. An improved protocol for the 
preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter 
papers. Mycopathologia. 2010; 169:445–449. [PubMed: 20165922] 

20. Zhou J, Liu L, Chen J. Method to purify mitochondrial DNA directly from yeast total DNA. 
Plasmid. 2010; 64:196–199. [PubMed: 20600282] 

21. Lõoke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based 
applications. Biotech. 2011; 50:325–328.

22. Lee CK, Araki N, Sowersby DS, Lewis LK. Factors affecting chemical-based purification of DNA 
from Saccharomyces cerevisiae. Yeast. 2011; 29:73–80. [PubMed: 22134898] 

23. Dymond JS. Preparation of genomic DNA from Saccharomyces cerevisiae. Meth Enzymol. 2013; 
529:153–160. [PubMed: 24011043] 

Rodriguez et al. Page 10

Anal Biochem. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Nogués MV, Vilanova M, Cuchillo CM. Bovine pancreatic ribonuclease A as a model of an 
enzyme with multiple substrate binding sites. Biochim Biophys Acta. 1995; 1253:16–24. 
[PubMed: 7492594] 

25. Nilsen TW. RNA structure determination using nuclease digestion. Cold Spring Harbor Protocols. 
2013; 2013:379–382. [PubMed: 23547152] 

26. Feliciello I, Chinali G. A modified alkaline lysis method for the preparation of highly purified 
plasmid DNA from Escherichia coli. Anal Biochem. 1993; 212:394–401. [PubMed: 8214582] 

27. Sanderson BA, Araki N, Lilley JL, Guerrero G, Lewis LK. Modification of gel architecture and 
TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis. Anal 
Biochem. 2014; 454:44–52. [PubMed: 24637158] 

28. Kelleher CD, Champoux JJ. RNA degradation and primer selection by Moloney murine leukemia 
virus reverse transcriptase contribute to the accuracy of plus strand initiation. J Biol Chem. 2000; 
275:13061–13070. [PubMed: 10777611] 

29. Libus J, Štorchová H. Quantification of cDNA generated by reverse transcription of total RNA 
provides a simple alternative tool for quantitative RT-PCR normalization. Biotech. 2006; 41:156–
164.

Rodriguez et al. Page 11

Anal Biochem. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Small RNase A-resistant bands are retained in yeast chromosomal DNA minipreps but not in 

E. coli bacterial chromosomal DNA minipreps. All DNA samples were run on 1.2% agarose 

gels. (A) Lanes 1 and 2, S. cerevisiae chromosomal DNA extracted using a simple SDS lysis 

method [22] without RNase treatment; two independent minipreps are shown; (B) Lanes 1 

and 2, S. cerevisiae chromosomal DNAs prepared as in (A) and incubated with RNase A at 

37°C consistently exhibit two resistant bands; (C) E. coli chromosomal DNA without RNase 

A treatment (lane 1) and after digestion with RNase A for 15 minutes at 37°C (lane 2). M, 2-

log DNA ladder.
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Figure 2. 
The lower and upper RNase-resistant bands are composed of RNA fragments ranging in size 

from 10-16 bp and 24-56 bp, respectively. (A) Lane 1, S. cerevisiae chromosomal DNA 

treated with RNase A was run on a 3.5% agarose gel; M, dsRNA ladder; (B) The logs of the 

sizes of dsRNA ladder bands were plotted against their migration distances in order to 

determine the sizes of the RNAs within the RNase-resistant bands. The best fit trendline was 

calculated as y=0.16x+3.4 with R2=1.0.
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Figure 3. 
Conventional physical and enzymatic methods were unsuccessful at removing both RNase-

resistant populations from S. cerevisiae DNA minipreps. Samples were run on 1.2% agarose 

gels. Two bands persisted after treatment with RNase A (Lane 1 in panels A, B, C and D). 

(A) Lane 2, samples were heated to 65°C to reduce secondary structures prior to RNase A 

treatment; (B) Lanes 2 and 3, two independent DNA extractions were treated with RNase 

cocktail (a mixture of RNases A and T1); lane 4, the sample was treated with the dsRNA-

specific nuclease RNase VI; (C) Lanes 2 and 3, DNA samples were treated with RNase A, 

then mixed with 5 volumes of PB buffer and purified using Qiagen anion exchange spin 

columns; (D) Lanes 2 and 3, RNase A-treated DNA samples were purified using 

CHROMA-1000 spin columns according to the manufacturer's instructions. M, 2-log DNA 

ladder.
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Figure 4. 
Base hydrolysis methods eliminated the resistant RNA bands but strongly reduced the yield 

of chromosomal DNA. Lane 1, DNA after RNase A treatment; lane 2, DNA was digested 

with RNase A, followed by standard NaOAc/ethanol precipitation; lanes 3 and 4, DNAs 

were digested with RNase A, followed by treatment with either 0.2 M or 0.3 M NaOH. 

Similar results were observed with 0.2 M KOH.
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Figure 5. 
Treatment of chromosomal DNA minipreps with potassium acetate and isopropanol 

removes the RNase-resistant RNA fragments. All samples were run on 1.2% agarose gels. 

(A) Representative examples of treatment with varying volumes of 88% isopropanol/0.2 M 

KOAc; lane 1, RNase A-treated DNA; lanes 2 and 3, representative experiment showing 

RNase A-treated DNA precipitated by addition of 1.2 and 0.6 volumes of 88% 

isopropanol/0.2 M KOAc, respectively. (B) Lane 1, miniprep DNA after RNase A 

treatment; lane 2, removal of all detectable RNAs by selective precipitation of chromosomal 

DNA with 0.6 volumes of 88% isopropanol/0.1 M KOAc using the optimized protocol. M, 

2-log DNA ladder.
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