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Water-assisted oxygen activation during selective
oxidation reactions
Hung-Vu Tran1, Hieu A Doan1, Bert D Chandler2 and
Lars C Grabow1

The selective functionalization of hydrocarbons with oxygen to

produce valuable commodity chemicals is inherently

challenging, because of the thermodynamic stability of the

complete combustion products. Emerging green synthesis

routes and sustainable energy production also rely on the

success of selective oxidation reactions. As one of the

unselective by-products, water is always present under

reaction conditions and numerous studies indicate that the

catalytic activity and selectivity of selective oxidation reactions

may be tuned by judiciously controlling the water content

during the reaction. Some experimentally verified examples

include the preferential oxidation of carbon monoxide, direct

hydrogen peroxide synthesis, propene epoxidation and alcohol

oxidation. Finally, it has been predicted that the direct

conversion of methane to methanol can benefit from the right

amount of water near the active site during oxygen activation.
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Introduction
Numerous recent studies have eluded to the phenomenon

that the presence of water (H2O) in quantities ranging

from a few ppm to aqueous solutions can significantly

increase reaction rates and, more importantly, the selec-

tivity for certain partial oxidation reactions. This effect is

observed in both homogenously [1,2] and heterogeneously

[3�,4�,5�] catalyzed reactions. While water may affect

catalytic reactions in multiple ways, its ability to shuttle

protons to and from reactants, intermediates and products

can directly change the course of a reaction. In aqueous,

homogeneous environments the facile proton transfer is

known as the Grotthuss mechanism and is rather well

understood [6,7]. In contrast, the co-catalytic effect of

water in heterogeneously catalyzed reactions has only

recently started to attract attention. In 2012, for example,

Merte et al. used a combination of high-speed, high-reso-

lution scanning tunneling microscopy, isotope-exchange

experiments and density functional theory (DFT) calcula-

tions to identify a novel water-mediated proton diffusion

mechanism on a FeO/Pt(111) surface at low temperatures

[8�]. The participation of a water molecule during proton

hopping allows the formation of an H3O+-like transition

state, which lowers the activation energy barrier from

1.02 eV to only 0.21 eV, equivalent to a 16-fold increase

in the diffusion rate at room temperature. A more recent ab
initio molecular dynamics study provides evidence for a

Grotthuss-like, water-mediated mechanism for fast and

long-range proton diffusion at the Pt/CeO2 interface [9�].

Partial oxidation reactions are universally challenged by

the relative thermodynamic instability of the desired

products compared to the total oxidation products (water

and carbon dioxide, CO2) [10]. Further, partial oxidations

are typically exothermic, providing the necessary energy

for deeper oxidation reactions. Thus, successful examples

of difficult direct selective oxidations are rare. Notable

progress has been made using non-traditional oxidants

and/or noble metal catalysts at low to moderate tempera-

tures. In particular, soft oxidants, e.g. sulfur [11,12], or

noble metals such as gold, silver, or copper in combination

with hydrogen peroxide (H2O2) or nitrous oxide (N2O)

seem promising [10]. The strong oxidizing power of H2O2

along with its environmentally friendly product (water)

make it a noteworthy alternative oxidant. It also reacts

more readily on noble metals, which are less suited to

catalyze the direct dissociation of molecular oxygen (O2)

shown in Scheme 1(a). H2O2 is currently produced in the

multistep anthraquinone process, which requires the use

of mixtures of organic solvents and liquid extraction steps.

Thus, the production and abatement of harmful by-pro-

ducts increases synthesis costs and results in a negative

environmental impact [13]. Attempts are underway to

develop green H2O2 synthesis routes directly from O2 and

H2 [14,15��], but safety concerns from handling and

transporting H2O2, or potentially explosive mixtures of

H2 and O2, remain.

The reaction intermediates derived from H2O2 as an

oxidant are generally considered to be surface bound
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hydroperoxyl (OOH) and hydroxyl (OH), both of which

can also be produced from H2O and O2 via the proton

exchange sequences illustrated in Scheme 1(c),(d). Water

and oxygen are environmentally benign, suggesting that

sustainable synthesis routes for challenging selective

oxidation reactions exist. In this context, we provide a

concise review of notable accomplishments since 2012 on

heterogeneously catalyzed selective oxidation reactions

that use water as a co-catalyst to activate oxygen via

proton transfer steps. In the interest of brevity we limit

this review to (preferential) carbon monoxide (CO) oxi-

dation, propylene epoxidation, alcohol oxidation, and

methane partial oxidation; we note many other examples

also exist [16��,17��,18,19��,20�,21�,22��,23��,24,25��].
For the role of water in homogeneously catalyzed reac-

tions and solvent effects on transition state stability we

refer interested readers to previous reviews [1,5�,26].

Selective oxidations involving carbon
monoxide (CO) and hydrogen (H2)
With applications in vehicle-exhaust emission control, and

H2 production/purification for proton-exchange-mem-

brane (PEM) fuel cells and ammonia synthesis, transition

metal catalyzed CO oxidation (CO + ½O2! CO2) is of

substantial interest [27–30]. CO oxidation is routinely

used as the prototypical model reaction in heterogeneous

catalysis research because it is seemingly simple, yet

exhibits a variety of complex phenomena [27,28,31]. High-

lights include Ertl’s observation of temporal oscillations

and spatial pattern formation on Pt(110) [27], Goodman’s

work on bridging the pressure gap on Pt-group metals [32],

and Haruta’s breakthrough discovery that nanoparticulate

gold is highly active for CO oxidation even below room

temperature [33,34]. This discovery undoubtedly marks

the beginning of the ‘gold rush’ in heterogeneous catalysis

leading to an astonishing > 5,000 papers published since

1987 and summarized in several review articles [34–39].

The bulk of the early studies concerns the dependence of

catalytic activity on the Au nanoparticle size, the effect of

various metal oxide support types, and more generally the

nature of the active site, while the presence of moisture

and its benefits for CO oxidation activity has been the

topic of more recent studies [3�,4�,34]. The effect of

moisture is in fact remarkable; co-feeding small amounts

of water (as little as 200 ppm) leads to a larger than 10-fold

increase in CO oxidation activity of Au/SiO2 at 0 8C [40].

Proposed roles of water during CO oxidation on Au can be

categorized as: (i) creation of cationic gold atoms as active

sites; (ii) transformation and decomposition of stable car-

bonate intermediates blocking reaction sites; (iii) direct

participation in CO2 formation; and (iv) activation of

oxygen [4�]. Roles (i)-(iii) are specific to CO oxidation

on Au, but phenomenon (iv), oxygen activation, is com-

mon to aerobic oxidations over numerous types of cata-

lysts. We therefore concentrate on the role of water in

oxygen activation during CO oxidation, and note that

other factors specific to each reaction system also exist.

We also highlight that water’s direct participation as a co-

catalyst in CO2 formation is distinct from the water-gas

shift (WGS) reaction. In WGS catalysis, water is a reactant,

regenerating surface hydroxyl groups, which react with

CO.

Strict differentiation between the effect of water and the

catalyst support is elusive. Unless studied under well-

controlled, ultra high vacuum (UHV) conditions, metal-

oxides generally form surface hydroxyl groups (s-OH)

according to Scheme 1(b). These support hydroxyls

may react directly with CO to form the carboxyl (COOH)

intermediate [39]. Daniells et al. used a high temperature

pre-treatment for Au/Fe2O3 catalysts to remove support

hydroxyls as water, finding that CO oxidation activity was

drastically reduced for the dehydroxylated material [41].

Surface dehydration was confirmed by water detection

during temperature programmed desorption (TPD). Con-

sequently, Bond and Thompson proposed that water

promotes CO oxidation by maintaining the concentration

of reactive s-OH groups from the reaction of water with

the metal oxide support [39]. Lattice oxygen atoms

removed as CO2 are ultimately replaced by O2 in a

H2O-assisted O2 activation Tran et al. 101
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Formation of active oxygen intermediates from O2: (a) O2 dissociation; (b) hydroxyl formation with a pre-existing O atom (in the common case of

metal-oxides, the pre-existing O atom is a lattice oxygen); (c) water-assisted O2 dissociation; and (d) O2 activation with excess water.

www.sciencedirect.com Current Opinion in Chemical Engineering 2016, 13:100–108



Mars-van-Krevelen type mechanism. Although the direct

involvement of s-OH and lattice oxygen atoms has been

frequently suggested, carefully conducted isotope label-

ing experiments demonstrate that lattice oxygen is not a

reactive oxygen source and that observed oxygen ex-

change is due to secondary scrambling effects [22��,42].

Water-assisted activation of O2 to form a reactive OOH

intermediate, shown in Scheme 1(c), has also been in-

voked to explain gold’s oxidation activity [22��,43]. In

fact, many conflicting interpretations can be reconciled by

the CO oxidation mechanism illustrated for Au/TiO2 in

Figure 1 [16��]. Using in situ infrared spectroscopy to

quantify the amount of s-OH groups and molecularly

adsorbed water, a strong correlation between weakly

bound surface water and the reaction rate was found.

Furthermore, a H/D kinetic isotope effect (KIE) of nearly

2 was measured, indicating that a proton transfer step is

involved in the rate-determining step of the reaction.

Complimentary DFT calculations suggested that s-OH

groups at the Au/TiO2 interface are necessary to anchor

water molecules near Au via hydrogen bonding. These

water molecules can then serve as proton source to form

the reactive Au-OOH species in a barrier free proton

transfer step to adsorbing O2. The Au-OOH intermediate

subsequently reacts with Au-CO to generate an Au-

COOH intermediate. Notably, the O-OH bond cleavage

in the presence of Au-CO requires an activation barrier of

only 0.1 eV, thereby constituting one of the lowest

reported energy pathways for O2 activation. The KIE

was attributed to the rate-determining second proton

transfer from Au-COOH back to the adsorbed water layer,

which is necessary to release CO2 and close the catalytic

cycle. The barrier for this step decreases further when

additional water molecules are present, consistent with

the experimentally observed equilibrium isotope effect

under very wet conditions [22��].

Based on the newly established water-assisted mecha-

nism [16��], record-breaking improvements to the pref-

erential oxidation (PROX) of CO with O2 in an H2-rich

environment have been reported [17��]. Rather than

designing a new catalyst, a commercial Au/Al2O3 catalyst

and optimized feed water content achieved unprecedent-

ed CO conversion and O2-to-CO2 selectivity. Under

optimal conditions, CO slip could be reduced to below

10 ppm, while maintaining 80-90% O2-to-CO2 selectivity.

The surface water concentration on the Al2O3 support

under these conditions was quantified to be ca. 1-2

monolayers, and is nearly identical to the optimal support

water coverage for CO oxidation on Au/TiO2 [16��]. The

high selectivity for CO oxidation over H2 oxidation was in

part attributed to the increased CO oxidation rate, but

also to the blockage of H2 dissociation sites near the Au/

Al2O3 interface by water. This is an exceptional example

of how fundamental mechanistic insight can pave the

road for major scientific advances with direct relevance to

industrially important processes.

Similar water-assisted CO oxidation mechanisms have

not only been proposed for Au, but also for Ag [18],

and Pt [22��,44] catalysts. Sheu and Chang used DFT

to study CO oxidation on the water pre-covered Ag(111)

surface, proposing the formation of OOH according to

Scheme 1(c) [18]. The remainder of the proposed mech-

anism shares many steps with the mechanism depicted in

Figure 1. This includes the rate-determining decomposi-

tion of COOH by proton transfer to OH to form CO2 and

to regenerate the H2O co-catalyst. The two mechanisms

differ in the reaction step between OOH and CO forming

either COOH + O [16��] or CO2 + OH [18] as products.

The promotional effect of water on O2 activation is not

limited to noble metals, on which O2 activation is inher-

ently difficult. An exhaustive mechanistic study by Iglesia

and co-workers showed that O2 pre-activation to OOH via

a proton transfer from H2O on Pt/Al2O3 catalyst also

accelerates the rate of CO oxidation [22��]. Changing

from dry to wet conditions (0 kPa to 0.5 kPa of H2O)

causes the rate per surface atom to increase from 0.08 to

0.28 mol s�1 g-at Pts
�1. For comparison, the equivalent

rate increase over Au/Al2O3 (0.08 to 2.55 mol s�1 g-at

Aus
�1) is much larger. Although CO oxidation over Pt and

Au is limited by the ability to activate O2, the difference

in sensitivity to the water coverage speaks to the exis-

tence of different reasons for difficult O2 activation.

Unlike Au, Pt is capable of dissociating O2, but its strong

affinity for CO leads to high CO coverage and surface

poisoning. While the presence of H2O may lower the

102 Reaction engineering and catalysis

Figure 1
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Proposed mechanism for water-assisted CO oxidation over Au/

TiO2. The reaction steps are (1) s-H2O + O2 + Au ! Au-OOH + s-OH;

(2) CO + Au ! Au-CO; (3) Au-CO + Au-OOH ! Au-COOH + Au-O; (4)

Au-COOH + Au-O ! CO2 + Au-OH + Au; (5) Au-CO + Au-OH ! Au-

COOH + Au; and (6) Au-COOH + s-OH ! CO2 + Au + s-H2O. From

reference [16]. Reprinted with permission from AAAS.
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CO surface coverage, it can also decrease the barrier for

O2 dissociation on the remaining vacant sites, and in turn

lead to higher CO oxidation rates. Indeed, the lower

barrier pathway for O2 activation via the OOH interme-

diate is reflected in an 18 kJ/mol lower apparent activation

energy in the presence of H2O. In contrast, Au is not

inhibited by high CO coverage and water is involved in

both O2 binding and COOH decomposition; thus, the

promotional effect of water on O2 activation is more

pronounced.

In contrast to the discussion thus far, complete O-O bond

activation is undesired when it comes to direct H2O2

synthesis. Nevertheless, Wilson and Flaherty have dem-

onstrated that high proton concentrations result in im-

proved selectivity and turnover frequency for H2O2

production over Pd/SiO2 catalysts in protic solvents (wa-

ter and methanol) [15��]. A thorough kinetic analysis

explained this in terms of a competition between OOH

dissociation and further protonation to yield H2O2. This

difference is also captured in Scheme 1(d), in which the

abundance of protons (here shown to originate from H2O)

favors the rapid formation of H2O2 prior to the formation

of OH. As Wilson and Flaherty alluded, secondary O-O

bond scission in H2O2 may be reduced when larger Pd

particles with a higher fraction of coordinated Pd atoms

are used.

Propylene epoxidation
Propylene oxide (PO) is one of the most important

commodity chemicals with more than 7 million tons

annual worldwide market capacity [34]. Polyurethane,

polyether polyols, glycol ethers, and propylene glycols

are just a few of the various compounds produced from

PO [45]. The ideal process for PO production, which is

analogous to ethylene epoxidation over silver catalysts, is

the selective epoxidation of propylene with molecular O2:

C3H6 + ½O2 ! C3H6O [46,47]. This goal, however, has

not yet been achieved and is considered by some as a

Holy Grail in catalysis [34]. Current industrial PO pro-

duction requires the use of chlorohydrin, organic hydro-

peroxides, or hydrogen peroxide in the so-called

hydrogen peroxide to propylene oxide (HPPO) process

[48]. While each process has its own advantages, they

either require toxic, corrosive, expensive to transport

reagents, or produce harmful by-products, whose separa-

tion, abatement or recycling adds to the overall process

cost [34]. Progress toward safer and sustainable PO pro-

duction may be achieved by eliminating hydrogen per-

oxide in the HPPO process through in situ generation of

the right oxygen-containing intermediates. With Au/TiO2

being a known selective catalyst for direct H2O2 synthesis

from a mixture of O2/H2, Haruta et al. confirmed the

feasibility of in situ H2O2 generation on gold nanoparticles

deposited on Ti-containing supports for the selective

epoxidation of propylene [34,45,49]. Although these

results are promising, the primary remaining barriers

are poor hydrogen efficiency due to hydrogen oxidation

to water, and the potential explosion risk when working

with H2/O2 mixtures.

Active oxidants derived from H2O2 are likely surface-

bound OOH and OH, which can also be generated from a

mixture of O2 and H2O (Scheme 1(c),(d)). Thus, it is

reasonable to expect that controlled amounts of added

water can assist during O2 activation, forming the oxygen-

containing surface intermediates required for selective

propylene epoxidation. Consequently, the research

groups of Iglesia, Haruta, and Vajda have independently

pursued this idea on various supported gold catalysts

[50–52]. Ojeda and Iglesia [50] used TiO2 supported

Au nanoclusters (�3.3 nm) and reported up to 70% PO

selectivity. Haruta and co-workers found that 50% PO

selectivity could be achieved over 1.0–2.0 nm small Au

clusters supported on alkaline-treated titanosilicalite-1

(TS-1) [51,53]. Even smaller particles, i.e. Au6-10 clusters

with diameters below 1.0 nm, supported on three mono-

layer thin films of Al2O3 grown by atomic layer deposition

(ALD) were used by Vajda and co-workers, resulting in

up to 90% PO selectivity [52]. The selectivity to PO in all

three studies drops drastically when water was removed

from the feed; in the absence of water, PO production was

no longer observed. It is evident from these experiments

that water plays a vital role in promoting the desired

epoxidation reaction.

Figure 2 provides a generic reaction scheme for supported

Au propylene epoxidation catalysts. Selective PO produc-

tion is attributed to the reaction of propylene with either

Au-OOH or s-OOH, both of which are formed by water-

assisted (proton transfer) O2 activation (Scheme 1(c)). In

the case of TS-1 as support a correlation between the

variation in the UV/Vis band characteristic for Ti-OOH

and the production of PO is consistent with Ti-OOH as

the active oxygen intermediate [51]. The same conclu-

sion was reached in a kinetic study by Perez Fernandez

et al. [25��]. Both groups agree that Au-O species are

H2O-assisted O2 activation Tran et al. 103
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The roles of various oxygen containing reaction intermediates derived

from O2/H2O in the selective epoxidation of propylene.
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responsible for the formation of the undesired products

CO2 and acrolein.

Theoretical studies are largely congruent with the water-

assisted mechanism shown in Figure 2. Yet, the compu-

tational results also indicate that the reaction is structure

sensitive, and that water participates indirectly by chang-

ing the nanoparticle structure and stabilizes transition

states by solvation effects [19��,52,54]. For unsupported

Au cluster models of 10 and 38 atoms, Li and co-workers

calculated a barrier for proton transfer from water to co-

adsorbed O2 of only �0.2 eV [54]. The subsequent reac-

tion between Au–OOH and propylene to form PO

requires a barrier of ca. 0.8 eV for Au10 and 1.0 eV for

Au38. The same group used a combination of global

minimum searches and ab initio molecular dynamics

and determined that initially upright Au7 clusters on fully

hydroxylated a-Al2O3(0001) transform into flat geome-

tries when hydroxyl groups are removed as water [19��].
This structural reconstruction, however, does not affect

the finding that Au-OOH is the selective intermediate

leading to epoxidation. The barrier for Au-OOH forma-

tion via proton transfer from s-H2O to Au-O2 is sensitive

to the amount of water present and is lowered from

0.34 eV to 0.16 eV, when an additional s-H2O molecule

is included in the simulation. The disparate conclusion

regarding the selective epoxidation species, Au-OOH for

Au/Al2O3 vs. s-OOH for Au/TS-1, may be explained by

the different support materials used.

Although a general consensus exists for OOH (either in the

form of s-OOH or Au-OOH) leading to the desired epoxi-

dation of propylene, the pathways leading to the non-

selective side products CO2 and acrolein are still debated.

Some attribute the formation of undesired products to the

existence of Au-OH [19��], while others have suggested

Au-O as the responsible surface species [25��,51]. More

research efforts will be necessary to fully elucidate the

specific roles of Au-O and Au-OH and to enable the design

of catalysts with improved PO selectivity.

Alcohol oxidation
The liquid phase aerobic, selective oxidation of alcohols

to value-added products (e.g. aldehydes, ketones or car-

boxylic acids) over solid catalysts is an industrially desired

process and was reviewed by Mallat and Baiker in

2004 [55]. Since then numerous studies have appeared

discussing the mechanistic implications of water on the

product selectivity using Au-based catalysts [56–60]. The

theme of this review, combining selective noble metal

catalysts with O2 activation by water-mediated proton

transfer chemistry, was successfully followed by Davis

and co-workers, who developed methods for the aqueous

aerobic oxidation of glycerol to glyceric acid and other

partial oxidation products over Au and Au-Pd alloy cat-

alysts [61,62]. Additional insight into the reaction mech-

anism was obtained from kinetic 18O2 and H2
18O labeling

experiments over Au/C, Au/TiO2, Pd/C, and Pt/C cata-

lysts combined with DFT calculations in collaboration

with Neurock’s group [20�]. Under high pH conditions

(pH > 13) the Au-based catalysts exhibited higher turn-

over frequencies (TOF) than the Pd and Pt catalysts

tested under identical conditions. In the absence of added

base, Au was inactive. Adsorbed Au-OH and hydroxide

ions (OH�) in solution were ultimately identified

as active species (Figure 3). Isotope labeling and DFT

models supported the authors conclusion that O2 is need-

ed to regenerate Au-OH/OH� through the in situ forma-

tion of hydrogen peroxide and its subsequent

decomposition to 2 Au-OH groups. As the O2 activation

104 Reaction engineering and catalysis

Figure 3
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Reaction scheme for the oxidation of alcohols to acids over a Au surface in water at high pH. Hydroxide facilitates elementary steps in alcohol

oxidation in both the solution phase and at the metal/solution interface. From reference [20�]. Reprinted with permission from AAAS.
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pathway in Scheme 1(d) shows, it requires more water and

an additional proton transfer step than the mechanism

depicted in Scheme 1(c). Considering the water-rich

environment in aqueous solution and the low calculated

proton transfer barriers, the mechanism in Scheme 1(d) is

entirely plausible.

A variation of this mechanism has been proposed by

Chang and co-workers based on their DFT work on

methanol oxidation to formaldehyde on Au(111) surfaces

[63]. The calculated barriers for Au-O, Au-OH and Au-

OOH-mediated methanol oxidation steps are all reason-

ably low, such that any of these surface intermediates are

feasible oxidants. The endothermic formation of Au-

OOH via the steps shown in Scheme 1(c), however,

was suggested as rate-determining step. This conclusion

was drawn based on a calculated activation barrier of

0.91 eV for the proton transfer from H2O to O2. In the

presence of a second water molecule this barrier drops to

0.45 eV, and Au-OOH dissociation to Au-OH and Au-O

turns into the highest activated step with a barrier of

0.79 eV. The fact that Chang’s group concluded that

water-assisted O2 activation is rate limiting is likely a

consequence of choosing bulk-like Au(111) as model

surface. Thus, this finding is not necessarily in conflict

with other studies; it rather manifests that Au-catalysis is

strongly dependent on electronic and geometric factors,

i.e. particle size, and support effects.

Methane-to-methanol
Despite decades of research, the selective partial oxida-

tion of methane-to-methanol remains one of the last

frontiers in modern chemistry [64,65]. Inspired by nat-

ure’s monooxygenase (MMO) enzyme, whose active site

is composed of an Fe center in its soluble form (sMMO)

and a Cu center in its particulate form (pMMO) [10],

Hutchings’ group studied Cu-promoted Fe/ZSM-5 and

achieved three orders of magnitude higher methane-to-

methanol activity than previously reported [21�]. The

caveat to this discovery is the need for hydrogen peroxide

as oxidant. Nevertheless, research on Fe and Cu ex-

changed zeolites, primarily with MFI or MOR framework

structure, has rapidly intensified in recent years [64–67].

Owing to its superior activity and selectivity, Cu/ZSM-5

with MFI structure has attracted great interest; its active

site was identified as a mono(m-oxo) dicopper core, [Cu-

O-Cu]2+ [68]. Compared to the 10-membered ring chan-

nels in MFI, the MOR structure has larger 12-membered

ring pores that stabilize a trinuclear copper-oxo cluster

[69]. The active site containing extra-framework radical

oxygen is generated from the Cu-exchanged zeolite by an

appropriate oxygen treatment followed by exposure to

methane to form methanol.

Water is regularly employed in methane-to-methanol

studies on Cu-exchanged zeolites, but with the purpose

to purge the zeolite framework and extract the strongly

adsorbed methanol product. Indeed, DFT studies for Cu/

MOR confirm that competitive water adsorption facil-

itates the release of methanol [70]. Yet, to date, no direct

experimental evidence for water-assisted oxygen activa-

tion pathways during partial oxidation of methane on

metal-exchanged zeolites has been reported. According

to the DFT study by Yumura and co-workers, however,

the presence of a single H2O molecule near the dicopper

site in ZSM-5 enhances the activation of dioxygen via

proton transfer analogous to Scheme 1(c), whereas a

second H2O molecule inhibits the reaction [23��]. Given

the ubiquitous presence of trace amounts of water in even

ultra high purity gases, it is entirely plausible that this

pathway contributes to the observed activity.

The proposed water-mediated mechanism for methane

activation over Cu/ZSM-5 is illustrated in Figure 4 [23��].
Adsorption of O2 and H2O to the dicopper site (step 1)

forms the trans-m-1,2-peroxo dicopper complex (Cu–O–
O–Cu–OH2). Next, one proton is transferred from

adsorbed H2O to O2, generating the Cu–O–OH–Cu–
OH intermediate (step 2, cf. Scheme 1(c)). The hydro-

peroxo O–OH bond then breaks (step 3), forming the

radical oxygen containing species HO–Cu–O–Cu–OH

shown in the inset of Figure 4. An alternative radical

oxygen containing isomer HO–Cu–OH–Cu–O can also

be generated along step 4. Both of these radical oxygen

complexes are capable of abstracting a H� atom from

methane, forming CH3� (steps 5 and 50). Similar radical

oxygen containing complexes can be formed by the

water-promoted O2 activation on Cu/ZSM-5 possessing

a trinuclear copper core, indicating that the water-assisted

mechanism may also apply to Cu/MOR and possibly
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other Cu-exchanged zeolites [23��,69]. Further, these

oxo-mediated radical abstraction processes are essentially

the same types of mechanisms employed by MMO

enzymes [10], which suggests that this may be a very

general C-H activation pathway. Verification of this the-

oretical prediction requires precise control of the water

content inside the zeolite pore and may prove difficult,

but the potential impact of a successful demonstration

should provide sufficient motivation.

Summary and Outlook
In general, the use of noble metal catalysts, especially Au,

and mild to moderate reaction conditions favors partial

oxidation products. In these catalytic systems, O2 delivery

can be controlled and selectivity is improved by avoiding

overoxidation and complete combustion. The selectivity

improvement often comes at the cost of low conversion

causing overall process yields to remain below industry

targets. A possible solution is a transition to more readily

activated oxidizing agents, but these reactants are often

costly, may have adverse environmental effects, and are

typically more difficult to handle than O2.

Water-assisted O2 activation in mixtures of O2 and H2O is a

new and promising approach to challenging partial oxida-

tions. While the sequence of elementary steps varies for

different catalysts and reaction conditions, there is general

agreement that facile proton transfer steps between H2O

and O2 lead to the formation of surface bound OOH, OH,

and/or O species. These are the same surface intermedi-

ates as those derived from H2O2, implying that expensive

H2O2 may ultimately be replaced by mixtures of H2O and

O2 with minimal modifications to the catalyst. Moreover,

the concentration and type of active oxygen species on the

catalyst surface may be optimized through precise control

of the amount of water (or protons) present during the

reaction. Despite the reported benefits of water as a co-

catalyst, care must be taken to avoid excess water condi-

tions for systems in which H2O competitively adsorbs on

reaction sites and thereby limits the adsorption of other

reactants. An example of strong water inhibition is the

oxidation of small alkanes on PdO, where surface hydrox-

ylation has been associated with catalyst deactivation [71].

We emphasize that water-assisted O2 activation is not only

relevant to gold, on which O2 dissociation in the absence of

water is difficult, but it also applies to Pt-group and other

transition metal alloys for reactions in which O2 dissocia-

tion is rate-determining. It is important to note that even

when water is not deliberately added, it can hardly be

avoided as a by-product during partial oxidation reactions.

Thus, the water-mediated activation of O2 should always

be considered as a potential catalytic pathway.

As heterogeneous catalysis research moves forward to

make significant advances and new scientific discoveries,

we believe the following key questions related to the role

of proton mobility during O2 activation should be

addressed. For oxide supported metal catalysts, the local

water structure and proton transfer at the three-phase

boundary between the oxide, metal and fluid phase must

be carefully characterized. Concomitantly, a predictive

method for the amount and type of oxygen intermediates

formed on the metal and the support as function of

reaction conditions must be developed. This concept

should then be expanded by considering a broader class

of proton sources and shuttles, for example, alcohols or

carboxylic acids. Finally, a better mechanistic understand-

ing of which oxygen species participate in desired and

undesired oxidation pathways is required to improve

selectivity and atom-efficiency. Besides catalytic oxidation

reactions, water-mediated proton transfer has other far-

reaching implications, for instance, in catalytic hydrodeox-

ygenation of bio-oil [72], electrocatalysis [73–75], and any

reaction using solid acid catalysts including zeolites

[76,77]. Thus, we see numerous opportunities for innova-

tive research on water-assisted catalysis in diverse areas

that may ultimately lead to disruptive technologies.
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