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Adam R. Urbach is Associate Professor of Chemistry at Trinity University, specializing 

in bioorganic chemistry. His group applies circular dichroism spectroscopy to studies on 

the molecular recognition of proteins and nucleic acids by designed molecules. 

 

Circular dichroism spectropolarimetry (CD) is a method of optical spectroscopy that 

seems in most practical ways like UV–visible spectroscopy. The main difference between 

the two methods is that CD, instead of measuring the absorbance of light as a function of 

wavelength, measures the difference in absorbance of left versus right circularly 

polarized light as a function of wavelength. A CD spectrum is an observation of the 

structure of a chiral compound; it often serves as a “fingerprint” of the structure of 

biological molecules such as proteins and nucleic acids. For this reason, CD has been 

broadly applied in biochemistry and in many other areas ranging from organometallic to 

nanoscale chemistry. Despite its exceptional ease of use and connection to central topics 

in chemistry, however, CD remains rare in the undergraduate curriculum. This column 



provides a brief introduction to the theory and practice of CD spectroscopy and a 

discussion of its advantages in the undergraduate curriculum and the required 

instrumentation. For a more complete treatment of CD, the reader is referred to excellent 

comprehensive references (1,2) including an early series in this Journal (3). 

Introduction to CD 

Most students have worn polarized sunglasses, prescription eyeglasses, or even 3D 

movie glasses. For this reason, they are likely to be familiar with the concept of plane-

polarized light, in which the electric field vector oscillates in a single plane. Few 

students, however, are familiar with circularly polarized (CP) light, in which the electric 

field vector rotates about the axis of light propagation in a helical path. For example, in 

right CP light the field rotates in a clockwise direction when the light is traveling away 

from the viewer, just as the fingers on your right hand curl clockwise when your right 

thumb points away from you. CP light can be thought of as “chiral light”, in which left 

and right CP light are analogous to a pair of enantiomers. The physical and chemical 

properties of enantiomers are identical in every way except that they interact differently 

with other asymmetric species. Similarly, left and right CP light have identical properties 

except that they interact differently with asymmetric molecules. 

Plane-polarized light comprises equal and opposite components of left and right CP 

light, like a racemic mixture of enantiomers. A CD spectropolarimeter (or CD 

spectrometer) separates plane-polarized light into the two components and then measures 

the difference in absorbance of each component by a sample (A = AL – AR) as a 

function of wavelength. Positive CD signal therefore indicates a greater absorbance of 



left versus right CP light. Using Beer’s law, A =  C l, where  is the differential 

molar absorptivity (M-1 cm-1) of left versus right (i.e., L - R) CP light, C is the molar 

concentration, and l is the path length in cm. The quantity  is known as the molar 

circular dichroism and, analogous to molar absorptivity, is a wavelength-dependent 

property intrinsic to a given substance under a given set of environmental conditions 

(e.g., temperature, pH, and so on). The CD spectrum is a plot of molar ellipticity, [], 

versus wavelength, where [] = 3298.2 . 

A molecule that exhibits CD must contain a chromophore in an asymmetric 

environment. Each chromophore has a characteristic absorptivity in one or more regions 

of the UV–visible spectrum. If the chromophore is in an asymmetric electronic 

environment, it may also preferentially absorb left or right CP light. The resulting CD 

spectrum will therefore appear within the absorbance spectral range of the molecule. The 

CD spectrum is the sum of the contributions of each chromophore; in this way, the 

spectrum can be used as a “fingerprint” to identify that compound or as a metric for 

monitoring changes in structure. 

Common Uses of CD.  

CD has been applied in many areas of chemistry, but by far the most common 

application is the study of biomolecular structure. The structures of proteins and nucleic 

acids are ideal for CD studies because each residue has a chromophoric component in an 

asymmetric environment, and the secondary and tertiary structures impart unique CD 

spectral characteristics. The far-UV region (< 250 nm) contains information about 

secondary structure such as -helix, -sheet, or random-coil (Figure 1). The relative 



contributions of -helix and -sheet to the CD signal of a globular protein can therefore 

be viewed qualitatively, or one can deconstruct a spectrum quantitatively (4). The near-

UV region (< 250 nm) contains less predictable information about tertiary structure from 

chromophoric groups on phenylalanine, tyrosine, tryptophan, and cysteine. The visible 

region shows information on ligand-metal interactions in metalloproteins. 

 

Figure 1. Illustration of CD spectra that represent 

proteins with predominantly -helix, -sheet, or random 

coil structure. 

 

In addition to its use in characterizing molecular structure, CD spectroscopy is 

particularly powerful for observing changes in structure. One of the most common 

applications of CD involves monitoring the change in the structure of a protein or nucleic 

acid upon heating. The increase in temperature causes a transition from the natural, 

folded state to an unfolded state, and the CD spectrum changes accordingly. The 



temperature at the center of this transition (i.e., the melting temperature) is a benchmark 

indicator of the stability of a protein or nucleic acid: the more stable the fold, the higher 

the temperature required to unfold it. This feature translates to practice as a convenient 

method for measuring the stability of a biomolecule by simply performing a temperature 

scan. For this reason, a Peltier temperature controller is typically purchased along with a 

CD spectrometer. 

CD in the Classroom.  

Numerous protocols have been published on the use of CD spectroscopy in the 

classroom, including several from this Journal (5-11). Some aim to introduce CD to 

students as an unusual method for measuring common chemical parameters (e.g., pKa) 

(6), but most utilize the unique features of CD as a spectral polarimetry technique that 

enables confirmation of the spectral fingerprint of protein structure (7,10), measurement 

of the stability (11) or heat capacity (9) of a protein, determination of absolute 

configuration (5,8), or monitoring the synthetic conversion of one chiral organic 

compound into another (8). These examples highlight the simple yet powerful way in 

which CD spectroscopy can be used to demonstrate basic concepts, such as molecular 

asymmetry, as well as advanced concepts, such as the thermodynamic parameters that 

govern protein folding. These advantages make CD an attractive topic for both classroom 

and laboratory curricula. 

Conceptually, CD offers a relatively simple context in which to relate structure to 

spectroscopy. In sophomore organic chemistry, students learn about classical polarimetry, 

in which a chiral molecule rotates plane-polarized light to an extent that depends on the 



specific rotation, . Seldom discussed, however, is the photophysical connection between 

chirality and the ability to rotate plane-polarized light (i.e., the intrinsic optical 

birefringence of a chiral sample), and students are thus left with a vague connection of 

molecular chirality to a numeric value of . By contrast, the analogy of CP light to an 

enantiomer, as described above, seems more intuitive, and the results of a CD experiment 

are captured graphically in a spectrum, providing more for students to observe and 

discuss. For example, in the overlaid spectra of D- vs. L-tryptophan (Figure 2) it is 

immediately clear that the two enantiomers have an equal and opposite CD response and 

that CD is a wavelength-dependent phenomenon, analogous to absorptivity. 

 

Figure 2. CD spectra of 1 mM solutions of L-tryptophan (red) 

and D-tryptophan (blue) in 10 mM sodium phosphate, pH 7.0, 

showing the symmetry in the spectra of these enantiomers. 

 

In the teaching laboratory, CD spectroscopy is attractive for many of the same 

reasons as UV–visible spectroscopy. From a practical standpoint, the two techniques are 



very similar. For example, a student prepares a dilute sample of aqueous L-tryptophan, 

dispenses it into a standard 1 cm quartz cuvette, inserts the cuvette in the spectrometer, 

enters the desired UV–visible wavelength range, and acquires a spectrum over that range 

in a matter of minutes. If the student has already used a UV–visible spectrometer, then 

using a CD spectrometer will seem very familiar. The resulting spectrum has an 

appearance similar to a UV–visible spectrum, except that the peaks in a CD spectrum can 

be positive or negative. Just as a UV–visible spectrum is a graphic representation of 

color, with each chromophore displaying a unique spectrum, a CD spectrum is a graphic 

representation of molecular chirality, with each chiral compound showing a unique 

profile. From an instrumental analysis standpoint, the CD spectrometer is a simple 

extension of a single-beam UV–vis. Both use a broadband source, monochromator, and 

detector (photomultiplier-based for CD and most UV–vis). The main functional 

difference is that the CD uses a plane-polarizer and a photoelastic modulator (PEM), 

which separates the components of left and right CP light. 

Instrumentation Needs. 

A representative spectrometer is shown in Figure 3.  Required instrumentation includes 

the spectrometer and computer ($70–80k) and a streaming nitrogen source to keep 

oxygen out of the system. Most users will purchase a temperature controller to monitor 

changes in structure upon heating. I strongly recommend a Peltier-type controller ($7–

8k), which has fine control and a fast response time. This controller requires a water bath 

and pump to circulate the water. We use a 5-gallon bucket with a simple aquarium pump 

for this purpose. The facility will require about six feet of bench, including four feet for 

the spectrometer, with nearby space for the nitrogen source. We use a liquid nitrogen tank 



because long temperature scans tend to deplete standard gas cylinders too quickly. 

Therefore, costs of gas and demurrage need to be considered. Jasco, Inc. has the majority 

share of the United States market of CD spectrometers and auxiliary equipment (12). 

Instruments can also be purchased from Applied Photophysics; their Web site is an 

excellent source of information on the theory and application of CD (13). 

Conclusions 

 

Figure 3.  A representative CD spectrometer.  The cylinder at right is the detector.   

We acquired a CD spectrometer in 2007 through the Major Research Instrumentation 

program of the National Science Foundation. Although we use the instrument primarily 

for research, we have increased its presence in our laboratory courses significantly over 

the past two years. It takes a few hours per week and a few weeks per year to provide a 

hands-on experience to juniors and seniors. However, in the many cases where 

acquisition of an instrument is cost-prohibitive, I recommend introducing the theory of 

CD spectroscopy and the analysis of CD data into the classroom curriculum, particularly 

in biochemistry courses where its relevance is obvious. A recently constructed database 

for assimilating reference CD spectra of proteins provides a useful source of spectra for 



the classroom (14), and programs are freely available for deconvoluting protein CD 

spectra into the relative contributions from secondary structural elements (15). 

Given the initial setup cost, CD spectroscopy may be too expensive for purely 

instructional purposes. Therefore, until lower-grade, less-expensive instruments become 

available, the accessibility of CD to the laboratory curriculum will likely be limited to 

institutions with active biochemical research programs and faculty who value the 

instructional benefits sufficiently to allow access to the instrument for the teaching 

laboratory. 
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