

Trinity University Digital Commons @ Trinity

Chemistry Faculty Research

Chemistry Department

11-21-2012

A Cucurbit[8]uril Sponge

Vijayakumar Ramalingam *Trinity University,* vramalin@trinity.edu

Sharon K. Kwee *Trinity University,* skwee@trinity.edu

Lisa M. Ryno *Trinity University*

Adam R. Urbach *Trinity University*, aurbach@trinity.edu

Follow this and additional works at: https://digitalcommons.trinity.edu/chem_faculty

Part of the Chemistry Commons

Repository Citation

Ramalingam, V., Kwee, S. K., Ryno, L. M., & Urbach, A. R. (2012). A cucurbit[8]uril sponge. Organic and Biomolecular Chemistry, 10(43), 8587-8589. doi: 10.1039/c2ob26774h

This Post-Print is brought to you for free and open access by the Chemistry Department at Digital Commons @ Trinity. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

Organic & Biomolecular Chemistry

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

A Cucurbit[8]uril Sponge

Vijayakumar Ramalingam,^a Sharon K. Kwee,^a Lisa M. Ryno^a and Adam R. Urbach^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

5 This paper describes a convenient approach to quantitative removal of the synthetic host cucurbit[8]uril (Q8) from aqueous mixtures using a sepharose resin coated in memantine groups to selectively sequester Q8 in the presence of competing hosts and guests. The "Q8 sponge" can separate Q8 from Q6 10 and reverse the Q8-mediated dimerization of peptides.

Q8 and its homologues¹ are synthetic, water-soluble macrocycles that continue to earn increasing attention from the supramolecular, chemical biology, biotechnology, catalysis, and materials science communities² for their capacity to associate 15 selectively with a broad range of guests in aqueous media with equilibrium dissociation constant (Kd) values ranging from millimolar to femtomolar.^{3, 4} The structure of Qn hosts, comprising n repeating glycoluril groups linked by 2n methylene bridges (Fig. 1), promote the inclusion of nonpolar groups within the central 20 cavity of the Qn and the stabilization of cationic groups on the guest by the carbonyl oxygens that line the two entries.

Among the Qn homologues, analogues,⁵ and derivatives,⁶⁻⁸ Q8 has received special attention for its ability to form specific ternary complexes with two guests bound inside the cavity.9, 10 Q8 can

- induce the noncovalent homodimerization of amino acids, peptides,50 proteins, viologens, and other guests,^{11, 12} as well as the heterodimerization of dications such as methyl viologen (MV), 2,7dimethyldiazaphenanthrenium, or tetramethvl benzobis-(imidazolium) with relatively electron-rich aromatics such as
- 30 naphthalene, and indole.^{10, 13-15} Using Q8 as a so-called "handcuff"⁵⁵ to dimerize species via the specific complexation of two guests has led to applications in molecular assembly,^{13, 16} polymer assembly,¹⁷ surface chemistry,13,18 and catalysis.6, 19,20
- Ternary complexes of Q8 can be reversed upon treatment with a 35 competitive ligand, as demonstrated numerous times, including for⁶⁰ molecular example, switches,6 protein dimers,²¹ and supramolecular polymers.^{22, 23} In these and other potential applications, in particular catalysis, the complete removal of Q8 from the mixture would be desirable for the purpose of repetitive
- current approaches only add a competitive ligand to the mixture. Here we demonstrate that adding a solid resin coated in a competitive ligand to a ternary complex of Q8 completely reverses complex formation by enabling the selective removal of Q8 from $_{\rm 45}$ solution. Moreover, we show that Q8 can be removed selectively 70
- in the presence of another Qn.

COMMUNICATION

Dynamic Article Links

Fig. 1. (top) i) 6-(Boc-amino)hexyl bromide, Cs₂CO₃, DMF, r.t.; ii) 2.0 M HCl, ether, r.t.; iii) Sepharose-NHS resin, 0.2 M NaHCO₃, 0.5 M NaCl, pH 8.3, r. t. (bottom) Formulas for hosts and guests.

The Q8 sponge (5, Fig. 1) has three important design features: 1) recognition group, memantine (1-amino-3,5the dimethyladamantane), which, as an ammonium ion, is known to bind to Q8 with a K_d value in the pM range;³ 2) the linker, hexanediamine, which was designed to separate the recognition group from the solid support and to allow the sterically hindered secondary amino group proximal to the adamantane to remain basic (and thus protonated at pH 7) as part of the memantine recognition group, whereas the primary amino group is more accessible for coupling to the NHS-activated carboxylic acid groups on the surface of the resin; and 3) the resin, sepharose, which was chosen because Kim and coworkers successfully used this resin as part of an approach to isolate proteins from cell extract,²⁴ and thus this resin is known to accommodate cucurbit[n]uril interactions in aqueous media. Moreover, we found 40 switching, reducing side-reactions, and simplifying analysis, but⁶⁵ that the unmodified resin does not bind to Q8 (data not shown).

Q8 sponge 5 was synthesized in two steps from commercially available memantine hydrochloride (1) (Fig. 1). Compound 1 was coupled to 6-(boc-amino)hexyl bromide 2 by stirring overnight in basic DMF solution, and the Boc group was removed in acidic ether solution to yield the diammonium chloride salt 4 in 33% overall recovery after reverse-phase HPLC purification. To complete the synthesis, 4 was coupled to NHS-activated sepharose

Fig. 2. Overlay of ITC data (27 °C, 10 mM sodium phosphate, pH 7.0) 5 quantifying the concentration of a sample of Q8 before (open circles) and after (closed circles) the addition of sponge.

The capacity of 5 to remove Q8 from solution was quantified by isothermal titration calorimetry (ITC) (Fig. 2). In this method, a methyl viologen (MV) solution of known concentration[‡] was 10 titrated into a Q8 solution of unknown concentration, and the known 1:1 binding stoichiometry^{10, 11} was used to determine the concentration of Q8 based on the observed equivalence point. This sample was treated with dry sponge 5, and the residual solution concentration of Q8 was then measured again by ITC. From these 50 Fig. 3. Overlay of ¹H NMR spectra at 1 mM in D₂O of a) 1; b) Phe-Gly-

15 experiments, the removal of Q8 from solution per gram of 5 was calculated to be 127 µmol/g. This approach to quantifying the functional loading of the resin is complementary to that described recently by Hennig and coworkers using a fluorescent dye.25

One of the unique and fascinating properties of Q8 is its ability

- 20 to induce the reversible, noncovalent dimerization of small molecules in aqueous media. We have shown that Q8 can dimerize peptides containing an N-terminal aromatic residue (e.g., Phe-Gly-Gly) via hydrophobic inclusion of the nonpolar aromatic sidechain within the nonpolar cavity of Q8 and electrostatic attraction of the
- 25 N-terminal ammonium group with ureido carbonyl oxygens on Q8. ²⁶ Just as Q8 can induce the dimerization of Phe-Gly-Gly, we hypothesized that a Q8 sponge should be able to compete for Q8 binding, remove Q8 from solution, and thereby fully restore the peptides to their original environment before Q8 was introduced.
- 30 To test this hypothesis, a solution containing a 1:2 mixture of Q8:Phe-Gly-Gly (i.e., the Q8•(Phe-Gly-Gly)₂ complex) was treated with a 4-fold molar excess of sponge 5, mixed, and separated by centrifugation. The ¹H NMR spectral overlay of this sample before and after treatment with 5 (Fig. 3a vs. Fig. 3c) showed
- 35 disappearance of Q8 signals and a return of the peptide signals to their original, unbound chemical shifts,²⁶ thus demonstrating removal of Q8 and reversal of peptide dimerization. The same reversal process can be achieved by treating the Q8•(Phe-Gly-Gly)2
- ⁴⁰ sponge **5** has the clear advantage that it can remove Q8 completely from the sample by centrifugation or filtration. Given the successful demonstration of Q8 to dimerize fully folded proteins terminated in phenylalanine,²¹ we expect the Q8 sponge to find broader use in chemical biology.
- 45 useful for separating mixtures of cucurbit[n]uril (Qn) homologues. The isolation of pure Qn homologues, analogues, derivatives, and

uncyclized glycoluril oligomers remains a technically challenging

Gly; c) $Q8 \cdot (Phe-Gly-Gly)_2 + 4$ equiv. 5; d) $Q8 \cdot (Phe-Gly-Gly)_2 + 1$; and e) Q8•(Phe-Gly-Gly)2.

Fig. 4. Overlay of ¹H NMR spectra in 35% (w/v) DCl in D₂O of a) 1.0 mM complex with memantine hydrochloride (1) (Fig. 3b), but the $_{55}$ Q8; b) 1.0 mM Q6); c) mixture of 1.0 mM Q8 1.0 mM Q6; and d) a mixture of 1.12 µmol Q6 and 0.98 µmol Q8 after treatment with 4.3 µmol 5 (see supporting information for details of this experiment).

process typically accomplished by iterative rounds of selective precipitation, recrystallization, and/or ion-exchange In a second application we show that the Q8 sponge can be⁶⁰ chromatography.²⁷ We hypothesized that a Q8-specific sponge, such as 5, could selectively remove Q8 from a Qn mixture via selective interaction of Q8 with the memantine groups on the

surface of the sponge.³ To demonstrate this concept, Q8 sponge 5 was added to a mixture of Q8 and Q6 (two prevalent but minimally soluble Qn homologues). ¹H NMR spectroscopy (Fig. 4) revealed the selective disappearance of Q8 signals upon treatment with 5, 5 and thus removal of Q8 from the mixture. Therefore, 5 can⁶⁰ ².

- selectively and quantitatively separate Qn homologues. The majority of the cost of this approach to separating Qnrelated species is derived from the commercial sepharose resin. It is 4. quite reasonable to consider more cost-effective materials
- 10 comprising the same ligand attached to other aqueous-compatible65 resins, such as common chromatography matrices. Moreover, the Q8-sponge 5 (as with most affinity matrices) is recyclable by 5. L. Isaacs, Chem. Comm., 2009, 619-629. treatment with a competing ligand. To demonstrate recyclability, we treated a sample of used 5 (i.e., 5•Q8n) repeatedly with a 20
- 15 mM sample of memantine hydrochloride (1). The resulting₇₀ 7. K. Kim, N. Selvapalam, Y. H. Ko, K.-M. Park, D. Kim and J. Kim, recycled sponge was able to completely remove Q8 from a mixture of Q8 and methyl viologen just as effectively as a freshly synthesized sample of 5 (Fig. S4).²⁸

Conclusions

- ²⁰ In summary, this paper demonstrates novel and potentially general approaches to the complete reversal of Qn-mediated processes and to the separation of Qn homologues using a resin coated in strongbinding guests. The Q8 sponge is easy to make, fast and convenient to use, highly effective, and reusable. It is no surprise that anso 12. A. R. Urbach and V. Ramalingam, Israel J. Chem., 2011, 51, 664-678.
- ²⁵ ultrahigh-affinity ligand should compete effectively for a receptor. By attaching the ligand to a solid support, however, the receptormediated process can be reversed completely, including removal of the receptor from solution. This concept was demonstrated here using Q8 sponge 5 to reverse the dimerization of aromatic peptides $_{85}$
- 30 rapidly and under ambient, aqueous conditions, effecting a complete return of the peptides to their original, unbound state. Moreover, the use of a Q8-sponge to separate Qn homologues, as demonstrated here, presages a more general approach to the selective isolation of other target homologues, analogues,
- 35 derivatives, and/or uncyclized glycoluril oligomers by linking their cognate guests to a solid-support, or by removing all known cucurbit[n]uril-related species in order to discover the rare, species that remain.

Acknolwedgements

- 40 Financial Support from the Welch Foundation (W-1640), the National Science Foundation (CHE-0748483 and CHE-0957839), and the Henry Dreyfus Teacher-Scholar Awards Program is gratefully acknowledged. LMR had a Jean Dreyfus Boissevain₁₀₀ 23. E. A. Appel, X. J. Loh, S. T. Jones, F. Biedermann, C. A. Dreiss and O. Undergraduate Scholarship for Excellence in Chemistry from the
- 45 Camille and Henry Dreyfus Foundation.

Notes and references

^a Department of Chemistry, Trinity University, San Antonio, TX 78212, USA. Fax: 1-210-999-7569; Tel: 1-210-999-7660; E-mail: aurbach@trinity.edu

- 50
 - † Electronic Supplementary Information (ESI) available: Experimental details and spectral data are available.
- [‡] The concentration of methyl viologen was determined based on a molar 55 absorptivity of 20,400 M⁻¹ cm⁻¹ at 257 nm.

- 1. L. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs, Angew. Chem. Int. Ed., 2005, 44, 4844-4870.
 - W. M. Nau and O. A. Scherman, Israel J. Chem., 2011, 51, 492-494.
- S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij and 3. L. Isaacs, J. Am. Chem. Soc., 2005, 127, 15959-15967.
- M. V. Rekharsky, T. Mori, C. Yang, H. K. Young, N. Selvapalam, H. Kim, D. Sobransingh, A. E. Kaifer, S. Liu, L. Isaacs, W. Chen, S. Moghaddam, M. K. Gilson, O. Kim and Y. Inoue, Proc. Natl. Acad. Sci., 2007, 104, 20737-20742.

75

95

- 6. J. W. Lee, S. Samal, N. Selvapalam, H. Kim and K. Kim, Acc. Chem. Res., 2003, 36, 621-630.
- Chem. Soc. Rev., 2007, 36, 267-279.
- 8 B. Vinciguerra, L. Cao, J. R. Cannon, P. Y. Zavalij, C. Fenselau and L. Isaacs, J. Am. Chem. Soc., 2012, 134, 13133-13140.
- 9. J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim, J. Am. Chem. Soc., 2000, 122, 540-541.
- 10. H.-J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi and K. Kim, Angew. Chem. Int. Ed., 2001, 40, 1526-1529.
- 11. W. S. Jeon, H. Kim, C. Lee and K. Kim, Chem. Commun., 2002, 1828-1829.
- 13. Y. H. Ko, E. Kim, I. Hwang and K. Kim, Chem. Comm., 2007, 1305-1315.
- 14. Y. Ling, W. Wang and A. E. Kaifer, Chem. Comm., 2007, 610-612.
- 15. F. Biedermann and O. A. Scherman, J. Phys. Chem. B, 2012, 116, 2842-2849.
- 16. K. Moon, J. Grindstaff, D. Sobransingh and A. E. Kaifer, Angew. Chem. Int. Ed., 2004, 43, 5496-5499.
- 17. U. Rauwald and O. A. Scherman, Angew. Chem. Int. Ed., 2008, 47, 3950-3953.
- 90 18. F. Tian, M. Cziferszky, D. Jiao, K. Wahlstrom, J. Geng and O. A. Scherman, Langmuir, 2011, 27, 1387-1390.
 - 19. X.-L. Wu, L. Luo, L. Lei, G.-H. Liao, L.-Z. Wu and C.-H. Tung, J. Org. Chem., 2008, 73, 491-494.
 - 20. B. C. Pemberton, N. Barooah, D. K. Srivatsava and J. Sivaguru, Chem. Comm., 2010, 46, 225-227.
- 21. H. D. Nguyen, D. T. Dang, J. L. J. van Dongen and L. Brunsveld, Angew. Chem. Int. Ed., 2010, 49, 895-898.
- 22. U. Rauwald, J. del Barrio, X. J. Loh and O. A. Scherman, Chem. Comm., 2011, 47, 6000-6002.
- A. Scherman, J. Am. Chem. Soc., 2012, 134, 11767-11773.
- 24. D.-W. Lee, K. M. Park, M. Banerjee, S. H. Ha, T. Lee, K. Suh, S. Paul, H. Jung, J. Kim, N. Selvapalam, S. H. Ryu and K. Kim, Nature Chem., 2011, 3, 154-159.
- 105 25. A. Hennig, A. Hoffmann, H. Borcherding, T. Thiele, U. Schedler and U. Resch-Genger, Chem. Comm., 2011, 47, 7842-7844.
 - 26. L. M. Heitmann, A. B. Taylor, P. J. Hart and A. R. Urbach, J. Am. Chem. Soc., 2006, 128, 12574-12581.
 - 27. A. I. Day, A. P. Arnold, R. J. Blanch and B. Snushall, J. Org. Chem., 2001, 66, 8094-8100.

28. We note that this method elutes Q8•1 complex rather than pure Q8. We have not attempted alternative methods of elution.