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Preface
This is a text for a two-term course in introductory real analysis for junior or senior math-

ematics majors and science students with a serious interest in mathematics. Prospective

educators or mathematically gifted high school students can also benefit from the mathe-

matical maturity that can be gained from an introductory real analysis course.

The book is designed to fill the gaps left in the development of calculus as it is usually

presented in an elementary course, and to provide the background required for insight into

more advanced courses in pure and applied mathematics. The standard elementary calcu-

lus sequence is the only specific prerequisite for Chapters 1–5, which deal with real-valued

functions. (However, other analysis oriented courses, such as elementary differential equa-

tion, also provide useful preparatory experience.) Chapters 6 and 7 require a working

knowledge of determinants, matrices and linear transformations, typically available from a

first course in linear algebra. Chapter 8 is accessible after completion of Chapters 1–5.

Without taking a position for or against the current reforms in mathematics teaching, I

think it is fair to say that the transition from elementary courses such as calculus, linear

algebra, and differential equations to a rigorous real analysis course is a bigger step to-

day than it was just a few years ago. To make this step today’s students need more help

than their predecessors did, and must be coached and encouraged more. Therefore, while

striving throughout to maintain a high level of rigor, I have tried to write as clearly and in-

formally as possible. In this connection I find it useful to address the student in the second

person. I have included 295 completely worked out examples to illustrate and clarify all

major theorems and definitions.

I have emphasized careful statements of definitions and theorems and have tried to be

complete and detailed in proofs, except for omissions left to exercises. I give a thorough

treatment of real-valued functions before considering vector-valued functions. In making

the transition from one to several variables and from real-valued to vector-valued functions,

I have left to the student some proofs that are essentially repetitions of earlier theorems. I

believe that working through the details of straightforward generalizations of more elemen-

tary results is good practice for the student.

Great care has gone into the preparation of the 761 numbered exercises, many with

multiple parts. They range from routine to very difficult. Hints are provided for the more

difficult parts of the exercises.

vi



Preface vii

Organization

Chapter 1 is concerned with the real number system. Section 1.1 begins with a brief dis-

cussion of the axioms for a complete ordered field, but no attempt is made to develop the

reals from them; rather, it is assumed that the student is familiar with the consequences of

these axioms, except for one: completeness. Since the difference between a rigorous and

nonrigorous treatment of calculus can be described largely in terms of the attitude taken

toward completeness, I have devoted considerable effort to developing its consequences.

Section 1.2 is about induction. Although this may seem out of place in a real analysis

course, I have found that the typical beginning real analysis student simply cannot do an

induction proof without reviewing the method. Section 1.3 is devoted to elementary set the-

ory and the topology of the real line, ending with the Heine-Borel and Bolzano-Weierstrass

theorems.

Chapter 2 covers the differential calculus of functions of one variable: limits, continu-

ity, differentiablility, L’Hospital’s rule, and Taylor’s theorem. The emphasis is on rigorous

presentation of principles; no attempt is made to develop the properties of specific ele-

mentary functions. Even though this may not be done rigorously in most contemporary

calculus courses, I believe that the student’s time is better spent on principles rather than

on reestablishing familiar formulas and relationships.

Chapter 3 is to devoted to the Riemann integral of functions of one variable. In Sec-

tion 3.1 the integral is defined in the standard way in terms of Riemann sums. Upper and

lower integrals are also defined there and used in Section 3.2 to study the existence of the

integral. Section 3.3 is devoted to properties of the integral. Improper integrals are studied

in Section 3.4. I believe that my treatment of improper integrals is more detailed than in

most comparable textbooks. A more advanced look at the existence of the proper Riemann

integral is given in Section 3.5, which concludes with Lebesgue’s existence criterion. This

section can be omitted without compromising the student’s preparedness for subsequent

sections.

Chapter 4 treats sequences and series. Sequences of constant are discussed in Sec-

tion 4.1. I have chosen to make the concepts of limit inferior and limit superior parts

of this development, mainly because this permits greater flexibility and generality, with

little extra effort, in the study of infinite series. Section 4.2 provides a brief introduction

to the way in which continuity and differentiability can be studied by means of sequences.

Sections 4.3–4.5 treat infinite series of constant, sequences and infinite series of functions,

and power series, again in greater detail than in most comparable textbooks. The instruc-

tor who chooses not to cover these sections completely can omit the less standard topics

without loss in subsequent sections.

Chapter 5 is devoted to real-valued functions of several variables. It begins with a dis-

cussion of the toplogy of R
n in Section 5.1. Continuity and differentiability are discussed

in Sections 5.2 and 5.3. The chain rule and Taylor’s theorem are discussed in Section 5.4.
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Chapter 6 covers the differential calculus of vector-valued functions of several variables.

Section 6.1 reviews matrices, determinants, and linear transformations, which are integral

parts of the differential calculus as presented here. In Section 6.2 the differential of a

vector-valued function is defined as a linear transformation, and the chain rule is discussed

in terms of composition of such functions. The inverse function theorem is the subject of

Section 6.3, where the notion of branches of an inverse is introduced. In Section 6.4. the

implicit function theorem is motivated by first considering linear transformations and then

stated and proved in general.

Chapter 7 covers the integral calculus of real-valued functions of several variables. Mul-

tiple integrals are defined in Section 7.1, first over rectangular parallelepipeds and then

over more general sets. The discussion deals with the multiple integral of a function whose

discontinuities form a set of Jordan content zero. Section 7.2 deals with the evaluation by

iterated integrals. Section 7.3 begins with the definition of Jordan measurability, followed

by a derivation of the rule for change of content under a linear transformation, an intuitive

formulation of the rule for change of variables in multiple integrals, and finally a careful

statement and proof of the rule. The proof is complicated, but this is unavoidable.

Chapter 8 deals with metric spaces. The concept and properties of a metric space are

introduced in Section 8.1. Section 8.2 discusses compactness in a metric space, and Sec-

tion 8.3 discusses continuous functions on metric spaces.

Corrections–mathematical and typographical–are welcome and will be incorporated when

received.

William F. Trench

wtrench@trinity.edu

Home: 659 Hopkinton Road

Hopkinton, NH 03229



CHAPTER 1

The Real Numbers

IN THIS CHAPTER we begin the study of the real number system. The concepts discussed

here will be used throughout the book.

SECTION 1.1 deals with the axioms that define the real numbers, definitions based on

them, and some basic properties that follow from them.

SECTION 1.2 emphasizes the principle of mathematical induction.

SECTION 1.3 introduces basic ideas of set theory in the context of sets of real num-

bers. In this section we prove two fundamental theorems: the Heine–Borel and Bolzano–

Weierstrass theorems.

1.1 THE REAL NUMBER SYSTEM

Having taken calculus, you know a lot about the real number system; however, you prob-

ably do not know that all its properties follow from a few basic ones. Although we will

not carry out the development of the real number system from these basic properties, it is

useful to state them as a starting point for the study of real analysis and also to focus on

one property, completeness, that is probably new to you.

Field Properties

The real number system (which we will often call simply the reals) is first of all a set

fa; b; c; : : : g on which the operations of addition and multiplication are defined so that

every pair of real numbers has a unique sum and product, both real numbers, with the

following properties.

(A) aC b D b C a and ab D ba (commutative laws).

(B) .a C b/C c D aC .b C c/ and .ab/c D a.bc/ (associative laws).

(C) a.b C c/ D ab C ac (distributive law).

(D) There are distinct real numbers 0 and 1 such that aC 0 D a and a1 D a for all a.

(E) For each a there is a real number �a such that aC .�a/ D 0, and if a ¤ 0, there is

a real number 1=a such that a.1=a/ D 1.

1



2 Chapter 1 The Real Numbers

The manipulative properties of the real numbers, such as the relations

.a C b/2 D a2 C 2abC b2;

.3a C 2b/.4cC 2d/D 12acC 6ad C 8bc C 4bd;
.�a/ D .�1/a; a.�b/ D .�a/b D �ab;

and
a

b
C c

d
D ad C bc

bd
.b; d ¤ 0/;

all follow from (A)–(E). We assume that you are familiar with these properties.

A set on which two operations are defined so as to have properties (A)–(E) is called a

field. The real number system is by no means the only field. The rational numbers (which

are the real numbers that can be written as r D p=q, where p and q are integers and q ¤ 0)

also form a field under addition and multiplication. The simplest possible field consists of

two elements, which we denote by 0 and 1, with addition defined by

0C 0 D 1C 1 D 0; 1C 0 D 0C 1 D 1; (1.1.1)

and multiplication defined by

0 � 0 D 0 � 1 D 1 � 0 D 0; 1 � 1 D 1 (1.1.2)

(Exercise 1.1.2).

The Order Relation

The real number system is ordered by the relation<, which has the following properties.

(F) For each pair of real numbers a and b, exactly one of the following is true:

a D b; a < b; or b < a:

(G) If a < b and b < c, then a < c. (The relation< is transitive.)

(H) If a < b, then aC c < b C c for any c, and if 0 < c, then ac < bc.

A field with an order relation satisfying (F)–(H) is an ordered field. Thus, the real

numbers form an ordered field. The rational numbers also form an ordered field, but it is

impossible to define an order on the field with two elements defined by (1.1.1) and (1.1.2)

so as to make it into an ordered field (Exercise 1.1.2).

We assume that you are familiar with other standard notation connected with the order

relation: thus, a > b means that b < a; a � b means that either a D b or a > b; a � b
means that either a D b or a < b; the absolute value of a, denoted by jaj, equals a if

a � 0 or �a if a � 0. (Sometimes we call jaj the magnitude of a.)

You probably know the following theorem from calculus, but we include the proof for

your convenience.
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Theorem 1.1.1 (The Triangle Inequality) If a and b are any two real numbers;

then

jaC bj � jaj C jbj: (1.1.3)

Proof There are four possibilities:

(a) If a � 0 and b � 0, then aC b � 0, so jaC bj D aC b D jaj C jbj.
(b) If a � 0 and b � 0, then aC b � 0, so jaC bj D �a C .�b/ D jaj C jbj.
(c) If a � 0 and b � 0, then aC b D jaj � jbj.
(d) If a � 0 and b � 0, then aC b D �jaj C jbj.
Eq. 1.1.3 holds in cases (c) and (d), since

jaC bj D
(
jaj � jbj if jaj � jbj;
jbj � jaj if jbj � jaj:

The triangle inequality appears in various forms in many contexts. It is the most impor-

tant inequality in mathematics. We will use it often.

Corollary 1.1.2 If a and b are any two real numbers; then

ja � bj �
ˇ̌
jaj � jbj

ˇ̌
(1.1.4)

and

ja C bj �
ˇ̌
jaj � jbj

ˇ̌
: (1.1.5)

Proof Replacing a by a � b in (1.1.3) yields

jaj � ja � bj C jbj;

so

ja � bj � jaj � jbj: (1.1.6)

Interchanging a and b here yields

jb � aj � jbj � jaj;

which is equivalent to

ja � bj � jbj � jaj; (1.1.7)

since jb � aj D ja � bj. Since

ˇ̌
jaj � jbj

ˇ̌
D
(
jaj � jbj if jaj > jbj;

jbj � jaj if jbj > jaj;

(1.1.6) and (1.1.7) imply (1.1.4). Replacing b by�b in (1.1.4) yields (1.1.5), since j�bj D
jbj. Supremum of a Set

A set S of real numbers is bounded above if there is a real number b such that x � b

whenever x 2 S . In this case, b is an upper bound of S . If b is an upper bound of S ,

then so is any larger number, because of property (G). If ˇ is an upper bound of S , but no

number less than ˇ is, then ˇ is a supremum of S , and we write

ˇ D supS:
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With the real numbers associated in the usual way with the points on a line, these defini-

tions can be interpreted geometrically as follows: b is an upper bound of S if no point of S

is to the right of b; ˇ D supS if no point of S is to the right of ˇ, but there is at least one

point of S to the right of any number less than ˇ (Figure 1.1.1).

(S = dark line segments)
β b

Figure 1.1.1

Example 1.1.1 If S is the set of negative numbers, then any nonnegative number is an

upper bound of S , and supS D 0. If S1 is the set of negative integers, then any number a

such that a � �1 is an upper bound of S1, and supS1 D �1.

This example shows that a supremum of a set may or may not be in the set, since S1

contains its supremum, but S does not.

A nonempty set is a set that has at least one member. The empty set, denoted by ;, is the

set that has no members. Although it may seem foolish to speak of such a set, we will see

that it is a useful idea.

The Completeness Axiom

It is one thing to define an object and another to show that there really is an object that

satisfies the definition. (For example, does it make sense to define the smallest positive

real number?) This observation is particularly appropriate in connection with the definition

of the supremum of a set. For example, the empty set is bounded above by every real

number, so it has no supremum. (Think about this.) More importantly, we will see in

Example 1.1.2 that properties (A)–(H) do not guarantee that every nonempty set that

is bounded above has a supremum. Since this property is indispensable to the rigorous

development of calculus, we take it as an axiom for the real numbers.

(I) If a nonempty set of real numbers is bounded above, then it has a supremum.

Property (I) is called completeness, and we say that the real number system is a complete

ordered field. It can be shown that the real number system is essentially the only complete

ordered field; that is, if an alien from another planet were to construct a mathematical

system with properties (A)–(I), the alien’s system would differ from the real number

system only in that the alien might use different symbols for the real numbers and C, �,
and <.

Theorem 1.1.3 If a nonempty set S of real numbers is bounded above; then supS is

the unique real number ˇ such that

(a) x � ˇ for all x in S I
(b) if � > 0 .no matter how small/; there is an x0 in S such that x0 > ˇ � �:
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Proof We first show that ˇ D supS has properties (a) and (b). Since ˇ is an upper

bound of S , it must satisfy (a). Since any real number a less than ˇ can be written as ˇ��
with � D ˇ � a > 0, (b) is just another way of saying that no number less than ˇ is an

upper bound of S . Hence, ˇ D supS satisfies (a) and (b).

Now we show that there cannot be more than one real number with properties (a) and

(b). Suppose that ˇ1 < ˇ2 and ˇ2 has property (b); thus, if � > 0, there is an x0 in S

such that x0 > ˇ2 � �. Then, by taking � D ˇ2 � ˇ1, we see that there is an x0 in S such

that

x0 > ˇ2 � .ˇ2 � ˇ1/ D ˇ1;

so ˇ1 cannot have property (a). Therefore, there cannot be more than one real number

that satisfies both (a) and (b).

Some Notation

We will often define a set S by writing S D
˚
x
ˇ̌
� � �
	
, which means that S consists of all

x that satisfy the conditions to the right of the vertical bar; thus, in Example 1.1.1,

S D
˚
x
ˇ̌
x < 0

	
(1.1.8)

and

S1 D
˚
x
ˇ̌
x is a negative integer

	
:

We will sometimes abbreviate “x is a member of S” by x 2 S , and “x is not a member of

S” by x … S . For example, if S is defined by (1.1.8), then

�1 2 S but 0 … S:

The Archimedean Property

The property of the real numbers described in the next theorem is called the Archimedean

property. Intuitively, it states that it is possible to exceed any positive number, no matter

how large, by adding an arbitrary positive number, no matter how small, to itself sufficiently

many times.

Theorem 1.1.4 (Archimedean Property) If � and � are positive; then n� >

� for some integer n:

Proof The proof is by contradiction. If the statement is false, � is an upper bound of

the set

S D
˚
x
ˇ̌
x D n�; n is an integer

	
:

Therefore, S has a supremum ˇ, by property (I). Therefore,

n� � ˇ for all integers n: (1.1.9)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Archimedes.html


6 Chapter 1 The Real Numbers

Since nC 1 is an integer whenever n is, (1.1.9) implies that

.nC 1/� � ˇ

and therefore

n� � ˇ � �
for all integers n. Hence, ˇ � � is an upper bound of S . Since ˇ � � < ˇ, this contradicts

the definition of ˇ.

Density of the Rationals and Irrationals

Definition 1.1.5 A set D is dense in the reals if every open interval .a; b/ contains a

member of D.

Theorem 1.1.6 The rational numbers are dense in the reals I that is, if a and b are

real numbers with a < b; there is a rational number p=q such that a < p=q < b.

Proof From Theorem 1.1.4 with � D 1 and � D b�a, there is a positive integer q such

that q.b � a/ > 1. There is also an integer j such that j > qa. This is obvious if a � 0,

and it follows from Theorem 1.1.4 with � D 1 and � D qa if a > 0. Let p be the smallest

integer such that p > qa. Then p � 1 � qa, so

qa < p � qaC 1:

Since 1 < q.b � a/, this implies that

qa < p < qa C q.b � a/ D qb;

so qa < p < qb. Therefore, a < p=q < b.

Example 1.1.2 The rational number system is not complete; that is, a set of rational

numbers may be bounded above (by rationals), but not have a rational upper bound less

than any other rational upper bound. To see this, let

S D
˚
r
ˇ̌
r is rational and r2 < 2

	
:

If r 2 S , then r <
p
2. Theorem 1.1.6 implies that if � > 0 there is a rational number r0

such that
p
2� � < r0 <

p
2, so Theorem 1.1.3 implies that

p
2 D supS . However,

p
2 is

irrational; that is, it cannot be written as the ratio of integers (Exercise 1.1.3). Therefore,

if r1 is any rational upper bound of S , then
p
2 < r1. By Theorem 1.1.6, there is a rational

number r2 such that
p
2 < r2 < r1. Since r2 is also a rational upper bound of S , this shows

that S has no rational supremum.

Since the rational numbers have properties (A)–(H), but not (I), this example shows

that (I) does not follow from (A)–(H).

Theorem 1.1.7 The set of irrational numbers is dense in the reals I that is, if a and b

are real numbers with a < b; there is an irrational number t such that a < t < b:
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Proof From Theorem 1.1.6, there are rational numbers r1 and r2 such that

a < r1 < r2 < b: (1.1.10)

Let

t D r1 C
1
p
2
.r2 � r1/:

Then t is irrational (why?) and r1 < t < r2, so a < t < b, from (1.1.10).

Infimum of a Set

A set S of real numbers is bounded below if there is a real number a such that x � a

whenever x 2 S . In this case, a is a lower bound of S . If a is a lower bound of S , so is

any smaller number, because of property (G). If ˛ is a lower bound of S , but no number

greater than ˛ is, then ˛ is an infimum of S , and we write

˛ D infS:

Geometrically, this means that there are no points of S to the left of ˛, but there is at least

one point of S to the left of any number greater than ˛.

Theorem 1.1.8 If a nonempty set S of real numbers is bounded below; then infS is

the unique real number ˛ such that

(a) x � ˛ for all x in S I
(b) if � > 0 .no matter how small /, there is an x0 in S such that x0 < ˛ C �:

Proof (Exercise 1.1.6)

A set S is bounded if there are numbers a and b such that a � x � b for all x in S . A

bounded nonempty set has a unique supremum and a unique infimum, and

infS � supS (1.1.11)

(Exercise 1.1.7).

The Extended Real Number System

A nonempty set S of real numbers is unbounded above if it has no upper bound, or un-

bounded below if it has no lower bound. It is convenient to adjoin to the real number

system two fictitious points, C1 (which we usually write more simply as 1) and �1,

and to define the order relationships between them and any real number x by

�1 < x <1: (1.1.12)

We call1 and �1 points at infinity. If S is a nonempty set of reals, we write

supS D1 (1.1.13)

to indicate that S is unbounded above, and

infS D �1 (1.1.14)

to indicate that S is unbounded below.
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Example 1.1.3 If

S D
˚
x
ˇ̌
x < 2

	
;

then supS D 2 and infS D �1. If

S D
˚
x
ˇ̌
x � �2

	
;

then supS D 1 and infS D �2. If S is the set of all integers, then supS D 1 and

infS D �1.

The real number system with1 and �1 adjoined is called the extended real number

system, or simply the extended reals. A member of the extended reals differing from �1
and 1 is finite; that is, an ordinary real number is finite. However, the word “finite” in

“finite real number” is redundant and used only for emphasis, since we would never refer

to1 or �1 as real numbers.

The arithmetic relationships among1, �1, and the real numbers are defined as follows.

(a) If a is any real number, then

aC1D 1C a D 1;
a �1D �1C a D �1;

a

1 D
a

�1 D 0:

(b) If a > 0, then

a1 D 1a D 1;
a .�1/ D .�1/ a D �1:

(c) If a < 0, then

a1 D 1a D �1;
a .�1/ D .�1/ a D 1:

We also define

1C1 D11 D .�1/.�1/ D1

and

�1�1 D1.�1/ D .�1/1 D �1:
Finally, we define

j1j D j �1j D 1:

The introduction of1 and�1, along with the arithmetic and order relationships defined

above, leads to simplifications in the statements of theorems. For example, the inequality

(1.1.11), first stated only for bounded sets, holds for any nonempty set S if it is interpreted

properly in accordance with (1.1.12) and the definitions of (1.1.13) and (1.1.14). Exer-

cises 1.1.10(b) and 1.1.11(b) illustrate the convenience afforded by some of the arith-

metic relationships with extended reals, and other examples will illustrate this further in

subsequent sections.
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It is not useful to define1�1, 0 � 1,1=1, and 0=0. They are called indeterminate

forms, and left undefined. You probably studied indeterminate forms in calculus; we will

look at them more carefully in Section 2.4.

1.1 Exercises

1. Write the following expressions in equivalent forms not involving absolute values.

(a) aC b C ja � bj (b) a C b � ja � bj

(c) aC b C 2cC ja � bj C
ˇ̌
aC b � 2c C ja � bj

ˇ̌

(d) a C b C 2c � ja � bj �
ˇ̌
a C b � 2c � ja � bj

ˇ̌

2. Verify that the set consisting of two members, 0 and 1, with operations defined by

Eqns. (1.1.1) and (1.1.2), is a field. Then show that it is impossible to define an order

< on this field that has properties (F), (G), and (H).

3. Show that
p
2 is irrational. HINT: Show that if

p
2 D m=n; where m and n are

integers; then both m and n must be even: Obtain a contradiction from this:

4. Show that
p
p is irrational if p is prime.

5. Find the supremum and infimum of each S . State whether they are in S .

(a) S D
˚
x
ˇ̌
x D �.1=n/ C Œ1C .�1/n� n2; n � 1

	

(b) S D
˚
x
ˇ̌
x2 < 9

	

(c) S D
˚
x
ˇ̌
x2 � 7

	

(d) S D
˚
x
ˇ̌
j2x C 1j < 5

	

(e) S D
˚
x
ˇ̌
.x2 C 1/�1 > 1

2

	

(f) S D
˚
x
ˇ̌
x D rational and x2 � 7

	

6. Prove Theorem 1.1.8. HINT: The set T D
˚
x
ˇ̌
� x 2 S

	
is bounded above if S is

bounded below: Apply property (I) and Theorem 1.1.3 to T:

7. (a) Show that

inf S � sup S .A/

for any nonempty set S of real numbers, and give necessary and sufficient

conditions for equality.

(b) Show that if S is unbounded then (A) holds if it is interpreted according to

Eqn. (1.1.12) and the definitions of Eqns. (1.1.13) and (1.1.14).

8. Let S and T be nonempty sets of real numbers such that every real number is in S

or T and if s 2 S and t 2 T , then s < t . Prove that there is a unique real number ˇ

such that every real number less than ˇ is in S and every real number greater than

ˇ is in T . (A decomposition of the reals into two sets with these properties is a

Dedekind cut. This is known as Dedekind’s theorem.)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Dedekind.html
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9. Using properties (A)–(H) of the real numbers and taking Dedekind’s theorem

(Exercise 1.1.8) as given, show that every nonempty set U of real numbers that is

bounded above has a supremum. HINT: Let T be the set of upper bounds of U and

S be the set of real numbers that are not upper bounds of U:

10. Let S and T be nonempty sets of real numbers and define

S C T D
˚
s C t

ˇ̌
s 2 S; t 2 T

	
:

(a) Show that

sup.S C T / D supS C sup T .A/

if S and T are bounded above and

inf.S C T / D infS C infT .B/

if S and T are bounded below.

(b) Show that if they are properly interpreted in the extended reals, then (A) and

(B) hold if S and T are arbitrary nonempty sets of real numbers.

11. Let S and T be nonempty sets of real numbers and define

S � T D
˚
s � t

ˇ̌
s 2 S; t 2 T

	
:

(a) Show that if S and T are bounded, then

sup.S � T / D supS � infT .A/

and

inf.S � T / D infS � sup T: .B/

(b) Show that if they are properly interpreted in the extended reals, then (A) and

(B) hold if S and T are arbitrary nonempty sets of real numbers.

12. Let S be a bounded nonempty set of real numbers, and let a and b be fixed real

numbers. Define T D
˚
as C b

ˇ̌
s 2 S

	
. Find formulas for sup T and inf T in terms

of supS and infS . Prove your formulas.

1.2 MATHEMATICAL INDUCTION

If a flight of stairs is designed so that falling off any step inevitably leads to falling off the

next, then falling off the first step is a sure way to end up at the bottom. Crudely expressed,

this is the essence of the principle of mathematical induction: If the truth of a statement

depending on a given integer n implies the truth of the corresponding statement with n

replaced by nC 1, then the statement is true for all positive integers n if it is true for n D 1.

Although you have probably studied this principle before, it is so important that it merits

careful review here.

Peano’s Postulates and Induction

The rigorous construction of the real number system starts with a set N of undefined ele-

ments called natural numbers, with the following properties.
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(A) N is nonempty.

(B) Associated with each natural number n there is a unique natural number n0 called

the successor of n.

(C) There is a natural number n that is not the successor of any natural number.

(D) Distinct natural numbers have distinct successors; that is, if n ¤ m, then n0 ¤ m0.

(E) The only subset of N that contains n and the successors of all its elements is N

itself.

These axioms are known as Peano’s postulates. The real numbers can be constructed

from the natural numbers by definitions and arguments based on them. This is a formidable

task that we will not undertake. We mention it to show how little you need to start with to

construct the reals and, more important, to draw attention to postulate (E), which is the

basis for the principle of mathematical induction.

It can be shown that the positive integers form a subset of the reals that satisfies Peano’s

postulates (with n D 1 and n0 D nC 1), and it is customary to regard the positive integers

and the natural numbers as identical. From this point of view, the principle of mathematical

induction is basically a restatement of postulate (E).

Theorem 1.2.1 (Principle of Mathematical Induction) Let P1; P2;. . . ;

Pn; . . . be propositions; one for each positive integer; such that

(a) P1 is trueI
(b) for each positive integer n; Pn implies PnC1:

Then Pn is true for each positive integer n:

Proof Let

M D
˚
n
ˇ̌
n 2 N and Pn is true

	
:

From (a), 1 2 M, and from (b), n C 1 2 M whenever n 2 M. Therefore, M D N, by

postulate (E).

Example 1.2.1 Let Pn be the proposition that

1C 2C � � � C n D n.nC 1/
2

: (1.2.1)

Then P1 is the proposition that 1 D 1, which is certainly true. If Pn is true, then adding

nC 1 to both sides of (1.2.1) yields

.1C 2C � � � C n/C .nC 1/D n.nC 1/
2

C .nC 1/

D .nC 1/
�n
2
C 1

�

D .nC 1/.nC 2/
2

;

or

1C 2C � � � C .nC 1/D .nC 1/.nC 2/
2

;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Peano.html
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which is PnC1, since it has the form of (1.2.1), with n replaced by nC1. Hence, Pn implies

PnC1, so (1.2.1) is true for all n, by Theorem 1.2.1.

A proof based on Theorem 1.2.1 is an induction proof , or proof by induction. The

assumption that Pn is true is the induction assumption. (Theorem 1.2.3 permits a kind of

induction proof in which the induction assumption takes a different form.)

Induction, by definition, can be used only to verify results conjectured by other means.

Thus, in Example 1.2.1 we did not use induction to find the sum

sn D 1C 2C � � � C nI (1.2.2)

rather, we verified that

sn D
n.nC 1/

2
: (1.2.3)

How you guess what to prove by induction depends on the problem and your approach to

it. For example, (1.2.3) might be conjectured after observing that

s1 D 1 D
1 � 2
2
; s2 D 3 D

2 � 3
2
; s3 D 6 D

4 � 3
2
:

However, this requires sufficient insight to recognize that these results are of the form

(1.2.3) for n D 1, 2, and 3. Although it is easy to prove (1.2.3) by induction once it has

been conjectured, induction is not the most efficient way to find sn, which can be obtained

quickly by rewriting (1.2.2) as

sn D nC .n � 1/C � � � C 1

and adding this to (1.2.2) to obtain

2sn D ŒnC 1�C Œ.n � 1/C 2�C � � � C Œ1C n�:

There are n bracketed expressions on the right, and the terms in each add up to n C 1;

hence,

2sn D n.nC 1/;
which yields (1.2.3).

The next two examples deal with problems for which induction is a natural and efficient

method of solution.

Example 1.2.2 Let a1 D 1 and

anC1 D
1

nC 1
an; n � 1 (1.2.4)

(we say that an is defined inductively), and suppose that we wish to find an explicit formula

for an. By considering n D 1, 2, and 3, we find that

a1 D
1

1
; a2 D

1

1 � 2 ; and a3 D
1

1 � 2 � 3 ;
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and therefore we conjecture that

an D
1

nŠ
: (1.2.5)

This is given for n D 1. If we assume it is true for some n, substituting it into (1.2.4) yields

anC1 D
1

nC 1
1

nŠ
D 1

.nC 1/Š
;

which is (1.2.5) with n replaced by n C 1. Therefore, (1.2.5) is true for every positive

integer n, by Theorem 1.2.1.

Example 1.2.3 For each nonnegative integer n, let xn be a real number and suppose

that

jxnC1 � xnj � r jxn � xn�1j; n � 1; (1.2.6)

where r is a fixed positive number. By considering (1.2.6) for n D 1, 2, and 3, we find that

jx2 � x1j � r jx1 � x0j;
jx3 � x2j � r jx2 � x1j � r2jx1 � x0j;
jx4 � x3j � r jx3 � x2j � r3jx1 � x0j:

Therefore, we conjecture that

jxn � xn�1j � rn�1jx1 � x0j if n � 1: (1.2.7)

This is trivial for n D 1. If it is true for some n, then (1.2.6) and (1.2.7) imply that

jxnC1 � xnj � r.rn�1jx1 � x0j/; so jxnC1 � xnj � rnjx1 � x0j;

which is proposition (1.2.7) with n replaced by n C 1. Hence, (1.2.7) is true for every

positive integer n, by Theorem 1.2.1.

The major effort in an induction proof (after P1, P2, . . . , Pn, . . . have been formulated)

is usually directed toward showing that Pn impliesPnC1. However, it is important to verify

P1, since Pn may imply PnC1 even if some or all of the propositions P1, P2, . . . , Pn, . . .

are false.

Example 1.2.4 Let Pn be the proposition that 2n � 1 is divisible by 2. If Pn is true

then PnC1 is also, since

2nC 1 D .2n � 1/C 2:

However, we cannot conclude that Pn is true for n � 1. In fact, Pn is false for every n.

The following formulation of the principle of mathematical induction permits us to start

induction proofs with an arbitrary integer, rather than 1, as required in Theorem 1.2.1.
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Theorem 1.2.2 Let n0 be any integer .positive; negative; or zero/: Let Pn0
; Pn0C1;

. . . ; Pn; . . . be propositions; one for each integer n � n0; such that

(a) Pn0
is true I

(b) for each integer n � n0; Pn implies PnC1:

Then Pn is true for every integer n � n0:

Proof For m � 1, let Qm be the proposition defined by Qm D PmCn0�1. Then Q1 D
Pn0

is true by (a). If m � 1 and Qm D PmCn0�1 is true, then QmC1 D PmCn0
is true by

(b) with n replaced bymC n0� 1. Therefore, Qm is true for allm � 1 by Theorem 1.2.1

with P replaced by Q and n replaced by m. This is equivalent to the statement that Pn is

true for all n � n0.

Example 1.2.5 Consider the propositionPn that

3nC 16 > 0:

If Pn is true, then so is PnC1, since

3.nC 1/C 16D 3nC 3C 16
D .3nC 16/C 3 > 0C 3 (by the induction assumption)

> 0:

The smallest n0 for which Pn0
is true is n0 D �5. Hence, Pn is true for n � �5, by

Theorem 1.2.2.

Example 1.2.6 Let Pn be the proposition that

nŠ � 3n > 0:

If Pn is true, then

.nC 1/Š � 3nC1 D nŠ.nC 1/� 3nC1

> 3n.nC 1/ � 3nC1 (by the induction assumption)

D 3n.n � 2/:

Therefore, Pn implies PnC1 if n > 2. By trial and error, n0 D 7 is the smallest integer

such that Pn0
is true; hence, Pn is true for n � 7, by Theorem 1.2.2.

The next theorem is a useful consequence of the principle of mathematical induction.

Theorem 1.2.3 Let n0 be any integer .positive; negative; or zero/: Let Pn0
; Pn0C1;. . . ;

Pn; . . . be propositions; one for each integer n � n0; such that

(a) Pn0
is true I

(b) for n � n0; PnC1 is true if Pn0
; Pn0C1;. . . ; Pn are all true.

Then Pn is true for n � n0:
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Proof For n � n0, letQn be the proposition that Pn0
, Pn0C1, . . . , Pn are all true. Then

Qn0
is true by (a). SinceQn implies PnC1 by (b), and QnC1 is true ifQn and PnC1 are

both true, Theorem 1.2.2 implies that Qn is true for all n � n0. Therefore, Pn is true for

all n � n0.

Example 1.2.7 An integer p > 1 is a prime if it cannot be factored as p D rs where

r and s are integers and 1 < r , s < p. Thus, 2, 3, 5, 7, and 11 are primes, and, although 4,

6, 8, 9, and 10 are not, they are products of primes:

4 D 2 � 2; 6 D 2 � 3; 8 D 2 � 2 � 2; 9 D 3 � 3; 10 D 2 � 5:

These observations suggest that each integer n � 2 is a prime or a product of primes. Let

this proposition be Pn. Then P2 is true, but neither Theorem 1.2.1 nor Theorem 1.2.2

apply, since Pn does not imply PnC1 in any obvious way. (For example, it is not evident

from 24 D 2 � 2 � 2 � 3 that 25 is a product of primes.) However, Theorem 1.2.3 yields the

stated result, as follows. Suppose that n � 2 and P2, . . . , Pn are true. Either n C 1 is a

prime or

nC 1 D rs; (1.2.8)

where r and s are integers and 1 < r , s < n, so Pr and Ps are true by assumption. Hence, r

and s are primes or products of primes and (1.2.8) implies that nC1 is a product of primes.

We have now proved PnC1 (that nC 1 is a prime or a product of primes). Therefore, Pn is

true for all n � 2, by Theorem 1.2.3.

1.2 Exercises

Prove the assertions in Exercises 1.2.1–1.2.6 by induction.

1. The sum of the first n odd integers is n2.

2. 12 C 22 C � � � C n2 D n.nC 1/.2nC 1/
6

:

3. 12 C 32 C � � � C .2n� 1/2 D n.4n2 � 1/
3

:

4. If a1, a2, . . . , an are arbitrary real numbers, then

ja1 C a2 C � � � C anj � ja1j C ja2j C � � � C janj:

5. If ai � 0, i � 1, then

.1C a1/.1C a2/ � � � .1C an/ � 1C a1 C a2 C � � � C an:

6. If 0 � ai � 1, i � 1, then

.1 � a1/.1 � a2/ � � � .1 � an/ � 1 � a1 � a2 � � � � an:



16 Chapter 1 The Real Numbers

7. Suppose that s0 > 0 and sn D 1 � e�sn�1, n � 1. Show that 0 < sn < 1, n � 1.

8. Suppose that R > 0, x0 > 0, and

xnC1 D
1

2

�
R

xn

C xn

�
; n � 0:

Prove: For n � 1, xn > xnC1 >
p
R and

xn �
p
R � 1

2n

.x0 �
p
R/2

x0

:

9. Find and prove by induction an explicit formula for an if a1 D 1 and, for n � 1,

(a) anC1 D
an

.nC 1/.2nC 1/
(b) anC1 D

3an

.2nC 2/.2nC 3/

(c) anC1 D
2nC 1
nC 1 an (d) anC1 D

�
1C

1

n

�n

an

10. Let a1 D 0 and anC1 D .n C 1/an for n � 1, and let Pn be the proposition that

an D nŠ
(a) Show that Pn implies PnC1.

(b) Is there an integer n for which Pn is true?

11. Let Pn be the proposition that

1C 2C � � � C n D .nC 2/.n � 1/
2

:

(a) Show that Pn implies PnC1.

(b) Is there an integer n for which Pn is true?

12. For what integers n is
1

nŠ
>

8n

.2n/Š
‹

Prove your answer by induction.

13. Let a be an integer � 2.

(a) Show by induction that if n is a nonnegative integer, then n D aq C r , where

q (quotient) and r (remainder) are integers and 0 � r < a.

(b) Show that the result of (a) is true if n is an arbitrary integer (not necessarily

nonnegative).

(c) Show that there is only one way to write a given integer n in the form n D
aq C r , where q and r are integers and 0 � r < a.

14. Take the following statement as given: If p is a prime and a and b are integers such

that p divides the product ab, then p divides a or b.
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(a) Prove: Ifp,p1, . . . , pk are positive primes and p divides the productp1 � � �pk ,

then p D pi for some i in f1; : : : ; kg.
(b) Let n be an integer > 1. Show that the prime factorization of n found in

Example 1.2.7 is unique in the following sense: If

n D p1 � � �pr and n D q1q2 � � �qs ;

where p1, . . . , pr , q1, . . . , qs are positive primes, then r D s and fq1; : : : ; qrg
is a permutation of fp1; : : : ; prg.

15. Let a1 D a2 D 5 and

anC1 D an C 6an�1; n � 2:
Show by induction that an D 3n � .�2/n if n � 1.

16. Let a1 D 2, a2 D 0, a3 D �14, and

anC1 D 9an � 23an�1 C 15an�2; n � 3:
Show by induction that an D 3n�1 � 5n�1 C 2, n � 1.

17. The Fibonacci numbers fFng1nD1 are defined by F1 D F2 D 1 and

FnC1 D Fn C Fn�1; n � 2:
Prove by induction that

Fn D
.1C

p
5/n � .1 �

p
5/n

2n
p
5

; n � 1:

18. Prove by induction that
Z 1

0

yn.1 � y/r dy D
nŠ

.r C 1/.r C 2/ � � � .r C nC 1/
if n is a nonnegative integer and r > �1.

19. Suppose that m and n are integers, with 0 � m � n. The binomial coefficient

 
n

m

!

is the coefficient of tm in the expansion of .1C t/n; that is,

.1C t/n D
nX

mD0

 
n

m

!
tm:

From this definition it follows immediately that
 
n

0

!
D
 
n

n

!
D 1; n � 0:

For convenience we define 
n

�1

!
D
 

n

nC 1

!
D 0; n � 0:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Fibonacci.html
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(a) Show that  
nC 1
m

!
D
 
n

m

!
C
 

n

m � 1

!
; 0 � m � n;

and use this to show by induction on n that

 
n

m

!
D nŠ

mŠ.n �m/Š
; 0 � m � n:

(b) Show that

nX

mD0

.�1/m
 
n

m

!
D 0 and

nX

mD0

 
n

m

!
D 2n:

(c) Show that

.x C y/n D
nX

mD0

 
n

m

!
xmyn�m:

(This is the binomial theorem.)

20. Use induction to find an nth antiderivative of logx, the natural logarithm of x.

21. Let f1.x1/ D g1.x1/ D x1. For n � 2, let

fn.x1; x2; : : : ; xn/ D fn�1.x1; x2; : : : ; xn�1/C 2n�2xn C
jfn�1.x1; x2; : : : ; xn�1/� 2n�2xnj

and

gn.x1; x2; : : : ; xn/ D gn�1.x1; x2; : : : ; xn�1/C 2n�2xn �
jgn�1.x1; x2; : : : ; xn�1/� 2n�2xnj:

Find explicit formulas for fn.x1; x2; : : : ; xn/ and gn.x1; x2; : : : ; xn/.

22. Prove by induction that

sinx C sin 3x C � � � C sin.2n� 1/x D 1 � cos 2nx

2 sinx
; n � 1:

HINT: You will need trigonometric identities that you can derive from the identities

cos.A � B/ D cosA cosB C sinA sinB;

cos.ACB/ D cosA cosB � sinA sinB:

Take these two identities as given:
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23. Suppose that a1 � a2 � � � � � an and b1 � b2 � � � � � bn. Let f`1; `2; : : : `ng be a

permutation of f1; 2; : : : ; ng, and define

Q.`1 ; `2; : : : ; `n/ D
nX

iD1

.ai � b`i
/2:

Show that

Q.`1 ; `2; : : : ; `n/ � Q.1; 2; : : : ; n/:

1.3 THE REAL LINE

One of our objectives is to develop rigorously the concepts of limit, continuity, differen-

tiability, and integrability, which you have seen in calculus. To do this requires a better

understanding of the real numbers than is provided in calculus. The purpose of this section

is to develop this understanding. Since the utility of the concepts introduced here will not

become apparent until we are well into the study of limits and continuity, you should re-

serve judgment on their value until they are applied. As this occurs, you should reread the

applicable parts of this section. This applies especially to the concept of an open covering

and to the Heine–Borel and Bolzano–Weierstrass theorems, which will seem mysterious at

first.

We assume that you are familiar with the geometric interpretation of the real numbers as

points on a line. We will not prove that this interpretation is legitimate, for two reasons: (1)

the proof requires an excursion into the foundations of Euclidean geometry, which is not

the purpose of this book; (2) although we will use geometric terminology and intuition in

discussing the reals, we will base all proofs on properties (A)–(I) (Section 1.1) and their

consequences, not on geometric arguments.

Henceforth, we will use the terms real number system and real line synonymously and

denote both by the symbol R; also, we will often refer to a real number as a point (on the

real line).

Some Set Theory

In this section we are interested in sets of points on the real line; however, we will consider

other kinds of sets in subsequent sections. The following definition applies to arbitrary

sets, with the understanding that the members of all sets under consideration in any given

context come from a specific collection of elements, called the universal set. In this section

the universal set is the real numbers.

Definition 1.3.1 Let S and T be sets.

(a) S contains T , and we write S � T or T � S , if every member of T is also in S . In

this case, T is a subset of S .

(b) S � T is the set of elements that are in S but not in T .

(c) S equals T , and we write S D T , if S contains T and T contains S ; thus, S D T if

and only if S and T have the same members.
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(d) S strictly contains T if S contains T but T does not contain S ; that is, if every

member of T is also in S , but at least one member of S is not in T (Figure 1.3.1).

(e) The complement of S , denoted by Sc , is the set of elements in the universal set that

are not in S .

(f) The union of S and T , denoted by S [ T , is the set of elements in at least one of S

and T (Figure 1.3.1(b)).

(g) The intersection of S and T , denoted by S \ T , is the set of elements in both S and

T (Figure 1.3.1(c)). If S \ T D ; (the empty set), then S and T are disjoint sets

(Figure 1.3.1(d)).

(h) A set with only one member x0 is a singleton set, denoted by fx0g.

TS

S    T

(a)

S ∪ T = shaded region

(b)

(c) (d)

S ∩ T = shaded region S ∩ T = ∅

TS

TS

TS

Figure 1.3.1

Example 1.3.1 Let

S D
˚
x
ˇ̌
0 < x < 1

	
; T D

˚
x
ˇ̌
0 < x < 1 and x is rational

	
;

and

U D
˚
x
ˇ̌
0 < x < 1 and x is irrational

	
:

Then S � T and S � U , and the inclusion is strict in both cases. The unions of pairs of

these sets are

S [ T D S; S [ U D S; and T [ U D S;

and their intersections are

S \ T D T; S \ U D U; and T \ U D ;:
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Also,

S � U D T and S � T D U:

Every set S contains the empty set ;, for to say that ; is not contained in S is to say that

some member of ; is not in S , which is absurd since ; has no members. If S is any set,

then

.Sc/c D S and S \ Sc D ;:
If S is a set of real numbers, then S [ Sc D R.

The definitions of union and intersection have generalizations: If F is an arbitrary col-

lection of sets, then [
˚
S
ˇ̌
S 2 F

	
is the set of all elements that are members of at least

one of the sets in F , and \
˚
S
ˇ̌
S 2 F

	
is the set of all elements that are members of every

set in F . The union and intersection of finitely many sets S1, . . . , Sn are also written asSn
kD1 Sk and

Tn
kD1 Sk . The union and intersection of an infinite sequence fSkg1kD1

of sets

are written as
S1

kD1 Sk and
T1

kD1 Sk .

Example 1.3.2 If F is the collection of sets

S� D
˚
x
ˇ̌
� < x � 1C �

	
; 0 < � � 1=2;

then

[˚
S�

ˇ̌
S� 2 F

	
D
˚
x
ˇ̌
0 < x � 3=2

	
and

\˚
S�

ˇ̌
S� 2 F

	
D
˚
x
ˇ̌
1=2 < x � 1

	
:

Example 1.3.3 If, for each positive integer k, the set Sk is the set of real numbers

that can be written as x D m=k for some integer m, then
S1

kD1 Sk is the set of rational

numbers and
T1

kD1 Sk is the set of integers.

Open and Closed Sets

If a and b are in the extended reals and a < b, then the open interval .a; b/ is defined by

.a; b/ D
˚
x
ˇ̌
a < x < b

	
:

The open intervals .a;1/ and .�1; b/ are semi-infinite if a and b are finite, and .�1;1/
is the entire real line.

Definition 1.3.2 If x0 is a real number and � > 0, then the open interval .x0��; x0C�/
is an �-neighborhood of x0. If a set S contains an �-neighborhood of x0, then S is a

neighborhood of x0, and x0 is an interior point of S (Figure 1.3.2). The set of interior

points of S is the interior of S , denoted by S0. If every point of S is an interior point (that

is, S0 D S ), then S is open. A set S is closed if Sc is open.
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( )

x
0
 + x

0
 − x

0
 

x
0
 = interior point of S 

S = four line segments

Figure 1.3.2

The idea of neighborhood is fundamental and occurs in many other contexts, some of

which we will see later in this book. Whatever the context, the idea is the same: some defi-

nition of “closeness” is given (for example, two real numbers are “close” if their difference

is “small”), and a neighborhood of a point x0 is a set that contains all points sufficiently

close to x0.

Example 1.3.4 An open interval .a; b/ is an open set, because if x0 2 .a; b/ and

� � minfx0 � a; b � x0g, then

.x0 � �; x0C �/ � .a; b/:

The entire line R D .�1;1/ is open, and therefore ; .D R
c/ is closed. However, ; is

also open, for to deny this is to say that ; contains a point that is not an interior point,

which is absurd because ; contains no points. Since ; is open, R .D ;c/ is closed. Thus,

R and ; are both open and closed. They are the only subsets of R with this property

(Exercise 1.3.18).

A deleted neighborhood of a point x0 is a set that contains every point of some neigh-

borhood of x0 except for x0 itself. For example,

S D
˚
x
ˇ̌
0 < jx � x0j < �

	

is a deleted neighborhood of x0. We also say that it is a deleted �-neighborhood of x0.

Theorem 1.3.3

(a) The union of open sets is open:

(b) The intersection of closed sets is closed:

These statements apply to arbitrary collections, finite or infinite, of open and closed sets:

Proof (a) Let G be a collection of open sets and

S D [
˚
G
ˇ̌
G 2 G

	
:

If x0 2 S , then x0 2 G0 for some G0 in G , and since G0 is open, it contains some �-

neighborhood of x0. Since G0 � S , this �-neighborhood is in S , which is consequently a

neighborhood of x0. Thus, S is a neighborhood of each of its points, and therefore open,

by definition.

(b) Let F be a collection of closed sets and T D \
˚
F
ˇ̌
F 2 F

	
. Then T c D

[
˚
F c

ˇ̌
F 2 F

	
(Exercise 1.3.7) and, since each F c is open, T c is open, from (a). There-

fore, T is closed, by definition.
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Example 1.3.5 If �1 < a < b <1, the set

Œa; b� D
˚
x
ˇ̌
a � x � b

	

is closed, since its complement is the union of the open sets .�1; a/ and .b;1/. We say

that Œa; b� is a closed interval. The set

Œa; b/ D
˚
x
ˇ̌
a � x < b

	

is a half-closed or half-open interval if �1 < a < b <1, as is

.a; b� D
˚
x
ˇ̌
a < x � b

	
I

however, neither of these sets is open or closed. (Why not?) Semi-infinite closed intervals

are sets of the form

Œa;1/ D
˚
x
ˇ̌
a � x

	
and .�1; a� D

˚
x
ˇ̌
x � a

	
;

where a is finite. They are closed sets, since their complements are the open intervals

.�1; a/ and .a;1/, respectively.

Example 1.3.4 shows that a set may be both open and closed, and Example 1.3.5 shows

that a set may be neither. Thus, open and closed are not opposites in this context, as they

are in everyday speech.

Example 1.3.6 From Theorem 1.3.3 and Example 1.3.4, the union of any collection of

open intervals is an open set. (In fact, it can be shown that every nonempty open subset of

R is the union of open intervals.) From Theorem 1.3.3 and Example 1.3.5, the intersection

of any collection of closed intervals is closed.

It can be shown that the intersection of finitely many open sets is open, and that the

union of finitely many closed sets is closed. However, the intersection of infinitely many

open sets need not be open, and the union of infinitely many closed sets need not be closed

(Exercises 1.3.8 and 1.3.9).

Definition 1.3.4 Let S be a subset of R. Then

(a) x0 is a limit point of S if every deleted neighborhood of x0 contains a point of S .

(b) x0 is a boundary point of S if every neighborhood of x0 contains at least one point

in S and one not in S . The set of boundary points of S is the boundary of S , denoted

by @S . The closure of S , denoted by S , is S D S [ @S .

(c) x0 is an isolated point of S if x0 2 S and there is a neighborhood of x0 that contains

no other point of S .

(d) x0 is exterior to S if x0 is in the interior of Sc . The collection of such points is the

exterior of S .

Example 1.3.7 Let S D .�1;�1� [ .1; 2/ [ f3g. Then
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(a) The set of limit points of S is .�1;�1� [ Œ1; 2�.
(b) @S D f�1; 1; 2; 3g and S D .�1;�1� [ Œ1; 2�[ f3g.
(c) 3 is the only isolated point of S .

(d) The exterior of S is .�1; 1/ [ .2; 3/[ .3;1/.

Example 1.3.8 For n � 1, let

In D
�

1

2nC 1;
1

2n

�
and S D

1[

nD1

In:

Then

(a) The set of limit points of S is S [ f0g.
(b) @S D

˚
x
ˇ̌
x D 0 or x D 1=n .n � 2/

	
and S D S [ f0g.

(c) S has no isolated points.

(d) The exterior of S is

.�1; 0/ [
" 1[

nD1

�
1

2nC 2 ;
1

2nC 1

�#
[
�
1

2
;1

�
:

Example 1.3.9 Let S be the set of rational numbers. Since every interval contains a

rational number (Theorem 1.1.6), every real number is a limit point of S ; thus, S D R.

Since every interval also contains an irrational number (Theorem 1.1.7), every real number

is a boundary point of S ; thus @S D R. The interior and exterior of S are both empty, and

S has no isolated points. S is neither open nor closed.

The next theorem says that S is closed if and only if S D S (Exercise 1.3.14).

Theorem 1.3.5 A set S is closed if and only if no point of Sc is a limit point of S:

Proof Suppose that S is closed and x0 2 Sc . Since Sc is open, there is a neighborhood

of x0 that is contained in Sc and therefore contains no points of S . Hence, x0 cannot be a

limit point of S . For the converse, if no point of Sc is a limit point of S then every point in

Sc must have a neighborhood contained in Sc . Therefore, Sc is open and S is closed.

Theorem 1.3.5 is usually stated as follows.

Corollary 1.3.6 A set is closed if and only if it contains all its limit points:

Theorem 1.3.5 and Corollary 1.3.6 are equivalent. However, we stated the theorem as

we did because students sometimes incorrectly conclude from the corollary that a closed

set must have limit points. The corollary does not say this. If S has no limit points, then

the set of limit points is empty and therefore contained in S . Hence, a set with no limit

points is closed according to the corollary, in agreement with Theorem 1.3.5. For example,

any finite set is closed. More generally, S is closed if there is a ı > 0 such jx � yj � ı for

every pair fx; yg of distinct points in S .
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Open Coverings

A collection H of open sets is an open covering of a set S if every point in S is contained

in a set H belonging to H ; that is, if S � [
˚
H
ˇ̌
H 2 H

	
.

Example 1.3.10 The sets

S1 D Œ0; 1�; S2 D f1; 2; : : : ; n; : : : g;

S3 D
�
1;
1

2
; : : : ;

1

n
; : : :

�
; and S4 D .0; 1/

are covered by the families of open intervals

H1 D
��
x � 1

N
; xC 1

N

� ˇ̌
ˇ̌ 0 < x < 1

�
; (N D positive integer),

H2 D
��
n � 1

4
; nC 1

4

� ˇ̌
ˇ̌ n D 1; 2; : : :

�
;

H3 D
( 

1

nC 1
2

;
1

n� 1
2

! ˇ̌
ˇ̌ n D 1; 2; : : :

)
;

and

H4 D f.0; �/j 0 < � < 1g;

respectively.

Theorem 1.3.7 (Heine–Borel Theorem) If H is an open covering of a closed

and bounded subset S of the real line; then S has an open covering eH consisting of finitely

many open sets belonging to H :

Proof Since S is bounded, it has an infimum ˛ and a supremum ˇ, and, since S is

closed, ˛ and ˇ belong to S (Exercise 1.3.17). Define

St D S \ Œ˛; t � for t � ˛;

and let

F D
˚
t
ˇ̌
˛ � t � ˇ and finitely many sets from H cover St

	
:

Since Sˇ D S , the theorem will be proved if we can show that ˇ 2 F . To do this, we use

the completeness of the reals.

Since ˛ 2 S , S˛ is the singleton set f˛g, which is contained in some open set H˛ from

H because H covers S ; therefore, ˛ 2 F . Since F is nonempty and bounded above by ˇ,

it has a supremum  . First, we wish to show that  D ˇ. Since  � ˇ by definition of F ,

it suffices to rule out the possibility that  < ˇ. We consider two cases.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Heine.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Borel.html


26 Chapter 1 The Real Numbers

CASE 1. Suppose that  < ˇ and  62 S . Then, since S is closed,  is not a limit point

of S (Theorem 1.3.5). Consequently, there is an � > 0 such that

Œ � �;  C �� \ S D ;;

so S�� D SC�. However, the definition of  implies that S�� has a finite subcovering

from H , while SC� does not. This is a contradiction.

CASE 2. Suppose that  < ˇ and  2 S . Then there is an open set H in H that

contains  and, along with  , an interval Œ � �; C �� for some positive �. Since S�� has

a finite covering fH1; : : : ; Hng of sets from H , it follows that SC� has the finite covering

fH1; : : : ; Hn; Hg. This contradicts the definition of  .

Now we know that  D ˇ, which is in S . Therefore, there is an open set Hˇ in H that

contains ˇ and along with ˇ, an interval of the form Œˇ � �; ˇ C ��, for some positive �.

Since Sˇ�� is covered by a finite collection of sets fH1; : : : ; Hkg, Sˇ is covered by the

finite collection fH1; : : : ; Hk; Hˇg. Since Sˇ D S , we are finished.

Henceforth, we will say that a closed and bounded set is compact. The Heine–Borel

theorem says that any open covering of a compact set S contains a finite collection that

also covers S . This theorem and its converse (Exercise 1.3.21) show that we could just

as well define a set S of reals to be compact if it has the Heine–Borel property; that is, if

every open covering of S contains a finite subcovering. The same is true of R
n, which we

study in Section 5.1. This definition generalizes to more abstract spaces (called topological

spaces) for which the concept of boundedness need not be defined.

Example 1.3.11 Since S1 in Example 1.3.10 is compact, the Heine–Borel theorem

implies that S1 can be covered by a finite number of intervals from H1. This is easily veri-

fied, since, for example, the 2N intervals from H1 centered at the points xk D k=2N .0 �
k � 2N � 1/ cover S1.

The Heine–Borel theorem does not apply to the other sets in Example 1.3.10 since they

are not compact: S2 is unbounded and S3 and S4 are not closed, since they do not contain

all their limit points (Corollary 1.3.6). The conclusion of the Heine–Borel theorem does

not hold for these sets and the open coverings that we have given for them. Each point in

S2 is contained in exactly one set from H2, so removing even one of these sets leaves a

point of S2 uncovered. If eH3 is any finite collection of sets from H3, then

1

n
62 [

˚
H
ˇ̌
H 2 eH3

	

for n sufficiently large. Any finite collection f.0; �1/; : : : ; .0; �n/g from H4 covers only the

interval .0; �max/, where

�max D maxf�1; : : : ; �ng < 1:

The Bolzano–Weierstrass Theorem

As an application of the Heine–Borel theorem, we prove the following theorem of Bolzano

and Weierstrass.
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Theorem 1.3.8 (Bolzano–Weierstrass Theorem) Every bounded infinite set

of real numbers has at least one limit point:

Proof We will show that a bounded nonempty set without a limit point can contain only

a finite number of points. If S has no limit points, then S is closed (Theorem 1.3.5) and

every point x of S has an open neighborhoodNx that contains no point of S other than x.

The collection

H D
˚
Nx

ˇ̌
x 2 S

	

is an open covering for S . Since S is also bounded, Theorem 1.3.7 implies that S can be

covered by a finite collection of sets from H , say Nx1
, . . . , Nxn . Since these sets contain

only x1, . . . , xn from S , it follows that S D fx1; : : : ; xng.

1.3 Exercises

1. Find S \ T , .S \ T /c , Sc \ T c , S [ T , .S [ T /c , and Sc [ T c .

(a) S D .0; 1/, T D
�

1
2
; 3

2

�
(b) S D

˚
x
ˇ̌
x2 > 4

	
, T D

˚
x
ˇ̌
x2 < 9

	

(c) S D .�1;1/, T D ; (d) S D .�1;�1/, T D .1;1/
2. Let Sk D .1 � 1=k; 2C 1=k�, k � 1. Find

(a)
1[

kD1

Sk (b)
1\

kD1

Sk (c)
1[

kD1

Sc
k

(d)
1\

kD1

Sc
k

3. Prove: If A and B are sets and there is a set X such that A [ X D B [ X and

A\ X D B \X , then A D B .

4. Find the largest � such that S contains an �-neighborhood of x0.

(a) x0 D 3
4

, S D
�

1
2
; 1
�

(b) x0 D 2
3

, S D
�

1
2
; 3

2

�

(c) x0 D 5, S D .�1;1/ (d) x0 D 1, S D .0; 2/
5. Describe the following sets as open, closed, or neither, and find S0, .Sc/0, and

.S0/c .

(a) S D .�1; 2/ [ Œ3;1/ (b) S D .�1; 1/ [ .2;1/

(c) S D Œ�3;�2�[ Œ7; 8� (d) S D
˚
x
ˇ̌
x D integer

	

6. Prove that .S \ T /c D Sc [ T c and .S [ T /c D Sc \ T c .

7. Let F be a collection of sets and define

I D \
˚
F
ˇ̌
F 2 F

	
and U D [

˚
F
ˇ̌
F 2 F

	
:

Prove that (a) I c D [
˚
F c

ˇ̌
F 2 F

	
and (b) U c D

˚
\F c

ˇ̌
F 2 F

	
.

8. (a) Show that the intersection of finitely many open sets is open.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bolzano.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Weierstrass.html
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(b) Give an example showing that the intersection of infinitely many open sets

may fail to be open.

9. (a) Show that the union of finitely many closed sets is closed.

(b) Give an example showing that the union of infinitely many closed sets may

fail to be closed.

10. Prove:

(a) If U is a neighborhood of x0 and U � V , then V is a neighborhood of x0.

(b) If U1, . . . , Un are neighborhoods of x0, so is
Tn

iD1 Ui .

11. Find the set of limit points of S , @S , S , the set of isolated points of S , and the

exterior of S .

(a) S D .�1;�2/[ .2; 3/[ f4g [.7;1/
(b) S D fall integersg
(c) S D [

˚
.n; nC 1/

ˇ̌
n D integer

	

(d) S D
˚
x
ˇ̌
x D 1=n; n D 1; 2; 3; : : :

	

12. Prove: A limit point of a set S is either an interior point or a boundary point of S .

13. Prove: An isolated point of S is a boundary point of Sc .

14. Prove:

(a) A boundary point of a set S is either a limit point or an isolated point of S .

(b) A set S is closed if and only if S D S .

15. Prove or disprove: A set has no limit points if and only if each of its points is

isolated.

16. (a) Prove: If S is bounded above and ˇ D supS , then ˇ 2 @S .

(b) State the analogous result for a set bounded below.

17. Prove: If S is closed and bounded, then infS and supS are both in S .

18. If a nonempty subset S of R is both open and closed, then S D R.

19. Let S be an arbitrary set. Prove: (a) @S is closed. (b) S0 is open. (c) The exterior

of S is open. (d) The limit points of S form a closed set. (e)
�
S
�
D S .

20. Give counterexamples to the following false statements.

(a) The isolated points of a set form a closed set.

(b) Every open set contains at least two points.

(c) If S1 and S2 are arbitrary sets, then @.S1 [ S2/ D @S1 [ @S2.

(d) If S1 and S2 are arbitrary sets, then @.S1 \ S2/ D @S1 \ @S2.

(e) The supremum of a bounded nonempty set is the greatest of its limit points.

(f) If S is any set, then @.@S/ D @S .

(g) If S is any set, then @S D @S .

(h) If S1 and S2 are arbitrary sets, then .S1 [ S2/
0 D S0

1 [ S0
2 .
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21. Let S be a nonempty subset of R such that if H is any open covering of S , then S

has an open covering eH comprised of finitely many open sets from H . Show that

S is compact.

22. A set S is. in a set T if S � T � S .

(a) Prove: If S and T are sets of real numbers and S � T , then S is dense in T

if and only if every neighborhood of each point in T contains a point from S .

(b) State how (a) shows that the definition given here is consistent with the re-

stricted definition of a dense subset of the reals given in Section 1.1.

23. Prove:

(a) .S1 \ S2/
0 D S0

1 \ S0
2 (b) S0

1 [ S0
2 � .S1 [ S2/

0

24. Prove:

(a) @.S1 [ S2/ � @S1 [ @S2 (b) @.S1 \ S2/ � @S1 [ @S2

(c) @S � @S (d) @S D @Sc

(e) @.S � T / � @S [ @T



CHAPTER 2

Differential Calculus of

Functions of One Variable

IN THIS CHAPTER we study the differential calculus of functions of one variable.

SECTION 2.1 introduces the concept of function and discusses arithmetic operations on

functions, limits, one-sided limits, limits at ˙1, and monotonic functions.

SECTION 2.2 defines continuity and discusses removable discontinuities, composite func-

tions, bounded functions, the intermediate value theorem, uniform continuity, and addi-

tional properties of monotonic functions.

SECTION 2.3 introduces the derivative and its geometric interpretation. Topics covered in-

clude the interchange of differentiation and arithmetic operations, the chain rule, one-sided

derivatives, extreme values of a differentiable function, Rolle’s theorem, the intermediate

value theorem for derivatives, and the mean value theorem and its consequences.

SECTION 2.4 presents a comprehensive discussion of L’Hospital’s rule.

SECTION 2.5 discusses the approximation of a function f by the Taylor polynomials of

f and applies this result to locating local extrema of f . The section concludes with the

extended mean value theorem, which implies Taylor’s theorem.

2.1 FUNCTIONS AND LIMITS

In this section we study limits of real-valued functions of a real variable. You studied

limits in calculus. However, we will look more carefully at the definition of limit and prove

theorems usually not proved in calculus.

A rule f that assigns to each member of a nonempty set D a unique member of a set Y

is a function from D to Y . We write the relationship between a member x of D and the

member y of Y that f assigns to x as

y D f .x/:

The set D is the domain of f , denoted by Df . The members of Y are the possible values

of f . If y0 2 Y and there is an x0 inD such that f .x0/ D y0 then we say that f attains

30
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or assumes the value y0. The set of values attained by f is the range of f . A real-valued

function of a real variable is a function whose domain and range are both subsets of the

reals. Although we are concerned only with real-valued functions of a real variable in this

section, our definitions are not restricted to this situation. In later sections we will consider

situations where the range or domain, or both, are subsets of vector spaces.

Example 2.1.1 The functions f , g, and h defined on .�1;1/ by

f .x/ D x2; g.x/ D sin x; and h.x/ D ex

have ranges Œ0;1/, Œ�1; 1�, and .0;1/, respectively.

Example 2.1.2 The equation

Œf .x/�2 D x (2.1.1)

does not define a function except on the singleton set f0g. If x < 0, no real number satisfies

(2.1.1), while if x > 0, two real numbers satisfy (2.1.1). However, the conditions

Œf .x/�2 D x and f .x/ � 0

define a function f on Df D Œ0;1/ with values f .x/ D
p
x. Similarly, the conditions

Œg.x/�2 D x and g.x/ � 0

define a function g onDg D Œ0;1/ with values g.x/ D �
p
x. The ranges of f and g are

Œ0;1/ and .�1; 0�, respectively.

It is important to understand that the definition of a function includes the specification

of its domain and that there is a difference between f , the name of the function, and f .x/,

the value of f at x. However, strict observance of these points leads to annoying verbosity,

such as “the function f with domain .�1;1/ and values f .x/ D x.” We will avoid this

in two ways: (1) by agreeing that if a function f is introduced without explicitly defining

Df , then Df will be understood to consist of all points x for which the rule defining

f .x/makes sense, and (2) by bearing in mind the distinction between f and f .x/, but not

emphasizing it when it would be a nuisance to do so. For example, we will write “consider

the function f .x/ D
p
1 � x2,” rather than “consider the function f defined on Œ�1; 1�

by f .x/ D
p
1 � x2,” or “consider the function g.x/ D 1= sinx,” rather than “consider

the function g defined for x ¤ k� (k D integer) by g.x/ D 1= sinx.” We will also write

f D c (constant) to denote the function f defined by f .x/ D c for all x.

Our definition of function is somewhat intuitive, but adequate for our purposes. More-

over, it is the working form of the definition, even if the idea is introduced more rigorously

to begin with. For a more precise definition, we first define the Cartesian product X � Y
of two nonempty sets X and Y to be the set of all ordered pairs .x; y/ such that x 2 X and

y 2 Y ; thus,

X � Y D
˚
.x; y/

ˇ̌
x 2 X; y 2 Y

	
:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Descartes.html
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A nonempty subset f of X � Y is a function if no x in X occurs more than once as a first

member among the elements of f . Put another way, if .x; y/ and .x; y1/ are in f , then

y D y1. The set of x’s that occur as first members of f is the of f . If x is in the domain

of f , then the unique y in Y such that .x; y/ 2 f is the value of f at x, and we write

y D f .x/. The set of all such values, a subset of Y , is the range of f .

Arithmetic Operations on Functions

Definition 2.1.1 IfDf \Dg ¤ ;; then f Cg; f �g; and fg are defined onDf \Dg

by

.f C g/.x/ D f .x/C g.x/;
.f � g/.x/ D f .x/� g.x/;

and

.fg/.x/ D f .x/g.x/:

The quotient f=g is defined by

�
f

g

�
.x/ D f .x/

g.x/

for x in Df \Dg such that g.x/ ¤ 0:

Example 2.1.3 If f .x/ D
p
4 � x2 and g.x/ D

p
x � 1; then Df D Œ�2; 2� and

Dg D Œ1;1/; so f C g; f � g; and fg are defined on Df \Dg D Œ1; 2� by

.f C g/.x/ D
p
4 � x2 C

p
x � 1;

.f � g/.x/ D
p
4 � x2 �

p
x � 1;

and

.fg/.x/ D .
p
4 � x2/.

p
x � 1/ D

p
.4 � x2/.x � 1/: (2.1.2)

The quotient f=g is defined on .1; 2� by

�
f

g

�
.x/ D

r
4 � x2

x � 1
:

Although the last expression in (2.1.2) is also defined for �1 < x < �2; it does not

represent fg for such x; since f and g are not defined on .�1;�2�.

Example 2.1.4 If c is a real number, the function cf defined by .cf /.x/ D cf .x/ can

be regarded as the product of f and a constant function. Its domain is Df . The sum and

product of n .� 2/ functions f1, . . . , fn are defined by

.f1 C f2 C � � � C fn/.x/ D f1.x/C f2.x/C � � � C fn.x/
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and

.f1f2 � � �fn/.x/ D f1.x/f2.x/ � � �fn.x/ (2.1.3)

on D D
Tn

iD1Dfi
, provided that D is nonempty. If f1 D f2 D � � � D fn, then (2.1.3)

defines the nth power of f :

.f n/.x/ D .f .x//n :

From these definitions, we can build the set of all polynomials

p.x/ D a0 C a1x C � � � C anx
n;

starting from the constant functions and f .x/ D x. The quotient of two polynomials is a

rational function

r.x/ D a0 C a1x C � � � C anx
n

b0 C b1x C � � � C bmxm
.bm ¤ 0/:

The domain of r is the set of points where the denominator is nonzero.

Limits

The essence of the concept of limit for real-valued functions of a real variable is this: If L

is a real number, then limx!x0
f .x/ D L means that the value f .x/ can be made as close

to L as we wish by taking x sufficiently close to x0. This is made precise in the following

definition.

y

x

L + 

L − 

L

y = f (x)

x
0
 − δ x

0
 + δ x

0
 

Figure 2.1.1
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Definition 2.1.2 We say that f .x/ approaches the limit L as x approaches x0, and

write

lim
x!x0

f .x/ D L;

if f is defined on some deleted neighborhood of x0 and, for every � > 0, there is a ı > 0

such that

jf .x/ �Lj < � (2.1.4)

if

0 < jx � x0j < ı: (2.1.5)

Figure 2.1.1 depicts the graph of a function for which limx!x0
f .x/ exists.

Example 2.1.5 If c and x are arbitrary real numbers and f .x/ D cx, then

lim
x!x0

f .x/ D cx0:

To prove this, we write

jf .x/� cx0j D jcx � cx0j D jcjjx � x0j:

If c ¤ 0, this yields

jf .x/� cx0j < � (2.1.6)

if

jx � x0j < ı;
where ı is any number such that 0 < ı � �=jcj. If c D 0, then f .x/ � cx0 D 0 for all x,

so (2.1.6) holds for all x.

We emphasize that Definition 2.1.2 does not involve f .x0/, or even require that it be

defined, since (2.1.5) excludes the case where x D x0.

Example 2.1.6 If

f .x/ D x sin
1

x
; x ¤ 0;

then

lim
x!0

f .x/ D 0

even though f is not defined at x0 D 0, because if

0 < jxj < ı D �;

then

jf .x/ � 0j D
ˇ̌
ˇ̌x sin

1

x

ˇ̌
ˇ̌ � jxj < �:

On the other hand, the function

g.x/ D sin
1

x
; x ¤ 0;

has no limit as x approaches 0, since it assumes all values between �1 and 1 in every

neighborhood of the origin (Exercise 2.1.26).
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The next theorem says that a function cannot have more than one limit at a point.

Theorem 2.1.3 If limx!x0
f .x/ exists; then it is unique I that is; if

lim
x!x0

f .x/ D L1 and lim
x!x0

f .x/ D L2; (2.1.7)

then L1 D L2:

Proof Suppose that (2.1.7) holds and let � > 0. From Definition 2.1.2, there are positive

numbers ı1 and ı2 such that

jf .x/� Li j < � if 0 < jx � x0j < ıi ; i D 1; 2:

If ı D min.ı1; ı2/, then

jL1 � L2j D jL1 � f .x/C f .x/ �L2j
� jL1 � f .x/j C jf .x/ �L2j < 2� if 0 < jx � x0j < ı:

We have now established an inequality that does not depend on x; that is,

jL1 �L2j < 2�:

Since this holds for any positive �, L1 D L2.

Definition 2.1.2 is not changed by replacing (2.1.4) with

jf .x/ �Lj < K�; (2.1.8)

where K is a positive constant, because if either of (2.1.4) or (2.1.8) can be made to hold

for any � > 0 by making jx � x0j sufficiently small and positive, then so can the other

(Exercise 2.1.5). This may seem to be a minor point, but it is often convenient to work with

(2.1.8) rather than (2.1.4), as we will see in the proof of the following theorem.

A Useful Theorem about Limits

Theorem 2.1.4 If

lim
x!x0

f .x/ D L1 and lim
x!x0

g.x/ D L2; (2.1.9)

then

lim
x!x0

.f C g/.x/ D L1 C L2; (2.1.10)

lim
x!x0

.f � g/.x/ D L1 � L2; (2.1.11)

lim
x!x0

.fg/.x/ D L1L2; (2.1.12)

and, if L2 ¤ 0, (2.1.13)

lim
x!x0

�
f

g

�
.x/ D L1

L2

: (2.1.14)
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Proof From (2.1.9) and Definition 2.1.2, if � > 0, there is a ı1 > 0 such that

jf .x/ �L1j < � (2.1.15)

if 0 < jx � x0j < ı1, and a ı2 > 0 such that

jg.x/ � L2j < � (2.1.16)

if 0 < jx � x0j < ı2. Suppose that

0 < jx � x0j < ı D min.ı1; ı2/; (2.1.17)

so that (2.1.15) and (2.1.16) both hold. Then

j.f ˙ g/.x/ � .L1 ˙ L2/j D j.f .x/ �L1/˙ .g.x/ �L2/j
� jf .x/� L1j C jg.x/ � L2j < 2�;

which proves (2.1.10) and (2.1.11).

To prove (2.1.12), we assume (2.1.17) and write

j.fg/.x/ �L1L2j D jf .x/g.x/ �L1L2j
D jf .x/.g.x/ �L2/C L2.f .x/ � L1/j
� jf .x/jjg.x/ �L2j C jL2jjf .x/�L1j
� .jf .x/j C jL2j/� (from (2.1.15) and (2.1.16))

� .jf .x/ �L1j C jL1j C jL2j/�
� .� C jL1j C jL2j/� from (2.1.15)

� .1C jL1j C jL2j/�

if � < 1 and x satisfies (2.1.17). This proves (2.1.12).

To prove (2.1.14), we first observe that if L2 ¤ 0, there is a ı3 > 0 such that

jg.x/ �L2j <
jL2j
2
;

so

jg.x/j > jL2j
2

(2.1.18)

if

0 < jx � x0j < ı3:

To see this, let L D L2 and � D jL2j=2 in (2.1.4). Now suppose that

0 < jx � x0j < min.ı1; ı2; ı3/;

so that (2.1.15), (2.1.16), and (2.1.18) all hold. Then
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ˇ̌
ˇ̌
�
f

g

�
.x/ � L1

L2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌f .x/
g.x/

� L1

L2

ˇ̌
ˇ̌

D jL2f .x/ �L1g.x/j
jg.x/L2j

� 2

jL2j2
jL2f .x/ �L1g.x/j

D 2

jL2j2
jL2Œf .x/ �L1�C L1ŒL2 � g.x/�j (from (2.1.18))

� 2

jL2j2
ŒjL2jjf .x/ �L1j C jL1jjL2 � g.x/j�

� 2

jL2j2
.jL2j C jL1j/� (from (2.1.15) and (2.1.16)):

This proves (2.1.14).

Successive applications of the various parts of Theorem 2.1.4 permit us to find limits

without the �–ı arguments required by Definition 2.1.2.

Example 2.1.7 Use Theorem 2.1.4 to find

lim
x!2

9 � x2

x C 1
and lim

x!2
.9 � x2/.x C 1/:

Solution If c is a constant, then limx!x0
c D c, and, from Example 2.1.5, limx!x0

x D
x0. Therefore, from Theorem 2.1.4,

lim
x!2

.9 � x2/ D lim
x!2

9 � lim
x!2

x2

D lim
x!2

9 � . lim
x!2

x/2

D 9 � 22 D 5;
and

lim
x!2

.x C 1/ D lim
x!2

x C lim
x!2

1 D 2C 1 D 3:

Therefore,

lim
x!2

9 � x2

x C 1 D
lim
x!2

.9 � x2/

lim
x!2

.x C 1/ D
5

3

and

lim
x!2

.9 � x2/.x C 1/ D lim
x!2

.9 � x2/ lim
x!2

.x C 1/ D 5 � 3 D 15:

One-Sided Limits

The function

f .x/ D 2x sin
p
x
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satisfies the inequality

jf .x/j < �

if 0 < x < ı D �=2. However, this does not mean that limx!0 f .x/ D 0, since f is

not defined for negative x, as it must be to satisfy the conditions of Definition 2.1.2 with

x0 D 0 and L D 0. The function

g.x/ D x C jxj
x
; x ¤ 0;

can be rewritten as

g.x/ D
�
x C 1; x > 0;

x � 1; x < 0I
hence, every open interval containing x0 D 0 also contains points x1 and x2 such that

jg.x1/ � g.x2/j is as close to 2 as we please. Therefore, limx!x0
g.x/ does not exist

(Exercise 2.1.26).

Although f .x/ and g.x/ do not approach limits as x approaches zero, they each exhibit

a definite sort of limiting behavior for small positive values of x, as does g.x/ for small

negative values of x. The kind of behavior we have in mind is defined precisely as follows.

y

x
x

0
 

x    x
0
 − x    x

0
 +

f (x) = λ

y = f (x)

f (x) = µlim lim

µ

λ

Figure 2.1.2

Definition 2.1.5

(a) We say that f .x/ approaches the left-hand limit L as x approaches x0 from the left,

and write

lim
x!x0�

f .x/ D L;

if f is defined on some open interval .a; x0/ and, for each � > 0, there is a ı > 0

such that

jf .x/ �Lj < � if x0 � ı < x < x0:
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(b) We say that f .x/ approaches the right-hand limit L as x approaches x0 from the

right, and write

lim
x!x0C

f .x/ D L;

if f is defined on some open interval .x0; b/ and, for each � > 0, there is a ı > 0

such that

jf .x/� Lj < � if x0 < x < x0 C ı:

Figure 2.1.2 shows the graph of a function that has distinct left- and right-hand limits at

a point x0.

Example 2.1.8 Let

f .x/ D x

jxj ; x ¤ 0:

If x < 0, then f .x/ D �x=x D �1, so

lim
x!0�

f .x/ D �1:

If x > 0, then f .x/ D x=x D 1, so

lim
x!0C

f .x/ D 1:

Example 2.1.9 Let

g.x/ D x C jxj.1C x/
x

sin
1

x
; x ¤ 0:

If x < 0, then

g.x/ D �x sin
1

x
;

so

lim
x!0�

g.x/ D 0;

since

jg.x/ � 0j D
ˇ̌
ˇ̌x sin

1

x

ˇ̌
ˇ̌ � jxj < �

if �� < x < 0; that is, Definition 2.1.5(a) is satisfied with ı D �. If x > 0, then

g.x/ D .2C x/ sin
1

x
;

which takes on every value between �2 and 2 in every interval .0; ı/. Hence, g.x/ does not

approach a right-hand limit at x approaches 0 from the right. This shows that a function

may have a limit from one side at a point but fail to have a limit from the other side.
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Example 2.1.10 We leave it to you to verify that

lim
x!0C

� jxj
x
C x

�
D 1;

lim
x!0�

� jxj
x
C x

�
D �1;

lim
x!0C

x sin
p
x D 0;

and limx!0� sin
p
x does not exist.

Left- and right-hand limits are also called one-sided limits. We will often simplify the

notation by writing

lim
x!x0�

f .x/ D f .x0�/ and lim
x!x0C

f .x/ D f .x0C/:

The following theorem states the connection between limits and one-sided limits. We

leave the proof to you (Exercise 2.1.12).

Theorem 2.1.6 A function f has a limit at x0 if and only if it has left- and right-hand

limits at x0; and they are equal. More specifically;

lim
x!x0

f .x/ D L

if and only if

f .x0C/ D f .x0�/ D L:

With only minor modifications of their proofs (replacing the inequality 0 < jx�x0j < ı
by x0 � ı < x < x0 or x0 < x < x0 C ı), it can be shown that the assertions of Theo-

rems 2.1.3 and 2.1.4 remain valid if “limx!x0
” is replaced by “limx!x0�” or “limx!x0C”

throughout (Exercise 2.1.13).

Limits at ˙1

Limits and one-sided limits have to do with the behavior of a function f near a limit point

ofDf . It is equally reasonable to study f for large positive values of x ifDf is unbounded

above or for large negative values of x ifDf is unbounded below.

Definition 2.1.7 We say that f .x/ approaches the limit L as x approaches 1, and

write

lim
x!1

f .x/ D L;

if f is defined on an interval .a;1/ and, for each � > 0, there is a number ˇ such that

jf .x/� Lj < � if x > ˇ:



Section 2.1 Functions and Limits 41

Figure 2.1.3 provides an illustration of the situation described in Definition 2.1.7.

x    ∞
lim f (x) = L

β

y

L +

L −

L

x

Figure 2.1.3

We leave it to you to define the statement “limx!�1 f .x/ D L” (Exercise 2.1.14) and

to show that Theorems 2.1.3 and 2.1.4 remain valid if x0 is replaced throughout by1 or

�1 (Exercise 2.1.16).

Example 2.1.11 Let

f .x/ D 1 � 1

x2
; g.x/ D 2jxj

1C x ; and h.x/ D sin x:

Then

lim
x!1

f .x/ D 1;

since

jf .x/� 1j D 1

x2
< � if x >

1p
�
;

and

lim
x!1

g.x/ D 2;

since

jg.x/ � 2j D
ˇ̌
ˇ̌ 2x

1C x � 2
ˇ̌
ˇ̌ D 2

1C x <
2

x
< � if x >

2

�
:

However, limx!1 h.x/ does not exist, since h assumes all values between �1 and 1 in any

semi-infinite interval .�;1/.
We leave it to you to show that limx!�1 f .x/ D 1, limx!�1 g.x/ D �2, and

limx!�1 h.x/ does not exist (Exercise 2.1.17).
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We will sometimes denote limx!1 f .x/ and limx!�1 f .x/ by f .1/ and f .�1/,
respectively.

Infinite Limits

The functions

f .x/ D 1

x
; g.x/ D 1

x2
; p.x/ D sin

1

x
;

and

q.x/ D 1

x2
sin

1

x

do not have limits, or even one-sided limits, at x0 D 0. They fail to have limits in different

ways:

� f .x/ increases beyond bound as x approaches 0 from the right and decreases beyond

bound as x approaches 0 from the left;

� g.x/ increases beyond bound as x approaches zero;

� p.x/ oscillates with ever-increasing frequency as x approaches zero;

� q.x/ oscillates with ever-increasing amplitude and frequency as x approaches 0.

The kind of behavior exhibited by f and g near x0 D 0 is sufficiently common and

simple to lead us to define infinite limits.

Definition 2.1.8 We say that f .x/ approaches 1 as x approaches x0 from the left,

and write

lim
x!x0�

f .x/ D1 or f .x0�/ D1;

if f is defined on an interval .a; x0/ and, for each real number M , there is a ı > 0 such

that

f .x/ > M if x0 � ı < x < x0:

Example 2.1.12 We leave it to you to define the other kinds of infinite limits (Exer-

cises 2.1.19 and 2.1.21) and show that

lim
x!0�

1

x
D �1; lim

x!0C

1

x
D 1I

lim
x!0�

1

x2
D lim

x!0C

1

x2
D lim

x!0

1

x2
D 1I

lim
x!1

x2 D lim
x!�1

x2 D 1I

and

lim
x!1

x3 D1; lim
x!�1

x3 D �1:
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Throughout this book, “limx!x0
f .x/ exists” will mean that

lim
x!x0

f .x/ D L; where L is finite.

To leave open the possibility that L D ˙1, we will say that

lim
x!x0

f .x/ exists in the extended reals.

This convention also applies to one-sided limits and limits as x approaches ˙1.

We mentioned earlier that Theorems 2.1.3 and 2.1.4 remain valid if “limx!x0
” is re-

placed by “limx!x0�” or “limx!x0C.” They are also valid with x0 replaced by ˙1.

Moreover, the counterparts of (2.1.10), (2.1.11), and (2.1.12) in all these versions of The-

orem 2.1.4 remain valid if either or both of L1 and L2 are infinite, provided that their

right sides are not indeterminate (Exercises 2.1.28 and 2.1.29). Equation (2.1.14) and its

counterparts remain valid if L1=L2 is not indeterminate and L2 ¤ 0 (Exercise 2.1.30).

Example 2.1.13 Results like Theorem 2.1.4 yield

lim
x!1

sinhx D lim
x!1

ex � e�x

2
D 1

2

�
lim

x!1
ex � lim

x!1
e�x

�

D 1

2
.1� 0/ D1;

lim
x!�1

sinhx D lim
x!�1

ex � e�x

2
D 1

2

�
lim

x!�1
ex � lim

x!�1
e�x

�

D 1

2
.0 �1/ D �1;

and

lim
x!1

e�x

x
D

lim
x!1

e�x

lim
x!1

x
D 0

1
D 0:

Example 2.1.14 If

f .x/ D e2x � ex;

we cannot obtain limx!1 f .x/ by writing

lim
x!1

f .x/ D lim
x!1

e2x � lim
x!1

ex;

because this produces the indeterminate form1�1. However, by writing

f .x/ D e2x.1 � e�x/;

we find that

lim
x!1

f .x/ D
�

lim
x!1

e2x
��

lim
x!1

1 � lim
x!1

e�x
�
D1.1 � 0/ D1:
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Example 2.1.15 Let

g.x/ D 2x2 � x C 1
3x2 C 2x � 1

:

Trying to find limx!1 g.x/ by applying a version of Theorem 2.1.4 to this fraction as it is

written leads to an indeterminate form (try it!). However, by rewriting it as

g.x/ D 2 � 1=xC 1=x2

3C 2=x � 1=x2
; x ¤ 0;

we find that

lim
x!1

g.x/ D
lim

x!1
2 � lim

x!1
1=xC lim

x!1
1=x2

lim
x!1

3C lim
x!1

2=x � lim
x!1

1=x2
D 2 � 0C 0
3C 0� 0

D 2

3
:

Monotonic Function

A function f is nondecreasing on an interval I if

f .x1/ � f .x2/ whenever x1 and x2 are in I and x1 < x2; (2.1.19)

or nonincreasing on I if

f .x1/ � f .x2/ whenever x1 and x2 are in I and x1 < x2: (2.1.20)

In either case, f is on I . If � can be replaced by < in (2.1.19), f is increasing on I . If �
can be replaced by > in (2.1.20), f is decreasing on I . In either of these two cases, f is

strictly monotonic on I .

Example 2.1.16 The function

f .x/ D
(
x; 0 � x < 1;

2; 1 � x � 2;

is nondecreasing on I D Œ0; 2� (Figure 2.1.4), and �f is nonincreasing on I D Œ0; 2�.

2

21

1

y

x
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Figure 2.1.4

The function g.x/ D x2 is increasing on Œ0;1/ (Figure 2.1.5),

y

x

y = x2

Figure 2.1.5

and h.x/ D �x3 is decreasing on .�1;1/ (Figure 2.1.6).

y = − x 3

y

x

Figure 2.1.6
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In the proof of the following theorem, we assume that you have formulated the definitions

called for in Exercise 2.1.19.

Theorem 2.1.9 Suppose that f is monotonic on .a; b/ and define

˛ D inf
a<x<b

f .x/ and ˇ D sup
a<x<b

f .x/:

(a) If f is nondecreasing; then f .aC/ D ˛ and f .b�/ D ˇ:
(b) If f is nonincreasing; then f .aC/ D ˇ and f .b�/ D ˛:

.Here aC D �1 if a D �1 and b� D 1 if b D1:/
(c) If a < x0 < b, then f .x0C/ and f .x0�/ exist and are finite I moreover;

f .x0�/ � f .x0/ � f .x0C/

if f is nondecreasing; and

f .x0�/ � f .x0/ � f .x0C/

if f is nonincreasing:

Proof (a) We first show that f .aC/ D ˛. If

M > ˛, there is an x0 in .a; b/ such that f .x0/ < M . Since f is nondecreasing,

f .x/ < M if a < x < x0. Therefore, if ˛ D �1, then f .aC/ D �1. If ˛ > �1, let

M D ˛C �, where � > 0. Then ˛ � f .x/ < ˛ C �, so

jf .x/ � ˛j < � if a < x < x0: (2.1.21)

If a D �1, this implies that f .�1/ D ˛. If a > �1, let ı D x0 � a. Then (2.1.21) is

equivalent to

jf .x/ � ˛j < � if a < x < aC ı;
which implies that f .aC/ D ˛.

We now show that f .b�/ D ˇ. IfM < ˇ, there is an x0 in .a; b/ such that f .x0/ > M .

Since f is nondecreasing, f .x/ > M if x0 < x < b. Therefore, if ˇ D 1, then

f .b�/ D1. If ˇ <1, let M D ˇ � �, where � > 0. Then ˇ � � < f .x/ � ˇ, so

jf .x/ � ˇj < � if x0 < x < b: (2.1.22)

If b D 1, this implies that f .1/ D ˇ. If b < 1, let ı D b � x0. Then (2.1.22) is

equivalent to

jf .x/ � ˇj < � if b � ı < x < b;
which implies that f .b�/ D ˇ.

(b) The proof is similar to the proof of (a) (Exercise 2.1.34).

(c) Suppose that f is nondecreasing. Applying (a) to f on .a; x0/ and .x0; b/ sepa-

rately shows that

f .x0�/ D sup
a<x<x0

f .x/ and f .x0C/ D inf
x0<x<b

f .x/:
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However, if x1 < x0 < x2, then

f .x1/ � f .x0/ � f .x2/I

hence,

f .x0�/ � f .x0/ � f .x0C/:

We leave the case where f is nonincreasing to you (Exercise 2.1.34).

Limits Inferior and Superior

We now introduce some concepts related to limits. We leave the study of these concepts

mainly to the exercises.

We say that f is bounded on a set S if there is a constantM <1 such that jf .x/j �M
for all x in S .

Definition 2.1.10 Suppose that f is bounded on Œa; x0/, where x0 may be finite or1.

For a � x < x0, define

Sf .xI x0/ D sup
x�t<x0

f .t/

and

If .xI x0/ D inf
x�t<x0

f .t/:

Then the left limit superior of f at x0 is defined to be

lim
x!x0�

f .x/ D lim
x!x0�

Sf .xI x0/;

and the left limit inferior of f at x0 is defined to be

lim
x!x0�

f .x/ D lim
x!x0�

If .xI x0/:

(If x0 D1, we define x0� D 1.)

Theorem 2.1.11 If f is bounded on Œa; x0/; then ˇ D limx!x0� f .x/ exists and is

the unique real number with the following properties W
(a) If � > 0, there is an a1 in Œa; x0/ such that

f .x/ < ˇC � if a1 � x < x0: (2.1.23)

(b) If � > 0 and a1 is in Œa; x0/; then

f .x/ > ˇ � � for some x 2 Œa1; x0/:

Proof Since f is bounded on Œa; x0/, Sf .xI x0/ is nonincreasing and bounded on

Œa; x0/. By applying Theorem 2.1.9(b) to Sf .xI x0/, we conclude that ˇ exists (finite).

Therefore, if � > 0, there is an a in Œa; x0/ such that

ˇ � �=2 < Sf .xI x0/ < ˇ C �=2 if a � x < x0: (2.1.24)
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Since Sf .xI x0/ is an upper bound of
˚
f .t/

ˇ̌
x � t < x0

	
, f .x/ � Sf .xI x0/. Therefore,

the second inequality in (2.1.24) implies (2.1.23) with a1 D a. This proves (a). To prove

(b), let a1 be given and define x1 D max.a1; a/. Then the first inequality in (2.1.24)

implies that

Sf .x1I x0/ > ˇ � �=2: (2.1.25)

Since Sf .x1I x0/ is the supremum of
˚
f .t/

ˇ̌
x1 < t < x0

	
, there is an x in Œx1; x0/ such

that

f .x/ > Sf .x1I x0/� �=2:
This and (2.1.25) imply that f .x/ > ˇ � �. Since x is in Œa1; x0/, this proves (b).

Now we show that there cannot be more than one real number with properties (a) and

(b). Suppose that ˇ1 < ˇ2 and ˇ2 has property (b); thus, if � > 0 and a1 is in Œa; x0/,

there is an x in Œa1; x0/ such that f .x/ > ˇ2 � �. Letting � D ˇ2 � ˇ1, we see that there

is an x in Œa1; b/ such that

f .x/ > ˇ2 � .ˇ2 � ˇ1/ D ˇ1;

so ˇ1 cannot have property (a). Therefore, there cannot be more than one real number

that satisfies both (a) and (b).

The proof of the following theorem is similar to this (Exercise 2.1.35).

Theorem 2.1.12 If f is bounded on Œa; x0/; then ˛ D limx!x0� f .x/ exists and is

the unique real number with the following properties:

(a) If � > 0; there is an a1 in Œa; x0/ such that

f .x/ > ˛ � � if a1 � x < x0:

(b) If � > 0 and a1 is in Œa; x0/; then

f .x/ < ˛ C � for some x 2 Œa1; x0/:

2.1 Exercises

1. Each of the following conditions fails to define a function on any domain. State

why.

(a) sinf .x/ D x (b) ef .x/ D �jxj

(c) 1C x2 C Œf .x/�2 D 0 (d) f .x/Œf .x/ � 1� D x2

2. If

f .x/ D
r
.x � 3/.x C 2/

x � 1 and g.x/ D
x2 � 16
x � 7

p
x2 � 9;

find Df , Df ˙g , Dfg , and Df =g .
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3. Find Df .

(a) f .x/ D tan x (b) f .x/ D 1p
1 � j sinxj

(c) f .x/ D 1

x.x � 1/
(d) f .x/ D sin x

x

(e) eŒf .x/�2 D x; f .x/ � 0

4. Find limx!x0
f .x/, and justify your answers with an �–ı proof.

(a) x2 C 2x C 1; x0 D 1 (b)
x3 � 8
x � 2 ; x0 D 2

(c)
1

x2 � 1 ; x0 D 0 (d)
p
x; x0 D 4

(e)
x3 � 1

.x � 1/.x � 2/ C x; x0 D 1

5. Prove that Definition 2.1.2 is unchanged if Eqn. (2.1.4) is replaced by

jf .x/ �Lj < K�;

where K is any positive constant. (That is, limx!x0
f .x/ D L according to Defini-

tion 2.1.2 if and only if limx!x0
f .x/ D L according to the modified definition.)

6. Use Theorem 2.1.4 and the known limits limx!x0
x D x0, limx!x0

c D c to find

the indicated limits.

(a) lim
x!2

x2 C 2xC 3
2x3 C 1 (b) lim

x!2

�
1

x C 1 �
1

x � 1

�

(c) lim
x!1

x � 1
x3 C x2 � 2x

(d) lim
x!1

x8 � 1
x4 � 1

7. Find limx!x0� f .x/ and limx!x0C f .x/, if they exist. Use �–ı proofs, where ap-

plicable, to justify your answers.

(a)
x C jxj
x

; x0 D 0 (b) x cos
1

x
C sin

1

x
C sin

1

jxj ; x0 D 0

(c)
jx � 1j

x2 C x � 2
; x0 D 1 (d)

x2 C x � 2
p
x C 2

; x0 D �2

8. Prove: If h.x/ � 0 for a < x < x0 and limx!x0� h.x/ exists, then limx!x0� h.x/
� 0. Conclude from this that if f2.x/ � f1.x/ for a < x < x0, then

lim
x!x0�

f2.x/ � lim
x!x0�

f1.x/

if both limits exist.
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9. (a) Prove: If limx!x0
f .x/ exists, there is a constant M and a � > 0 such that

jf .x/j � M if 0 < jx � x0j < �. (We say then that f is bounded on˚
x
ˇ̌
0 < jx � x0j < �

	
.)

(b) State similar results with “limx!x0
” replaced by “limx!x0�.”

(c) State similar results with “limx!x0
” replaced by “limx!x0C.”

10. Suppose that limx!x0
f .x/ D L and n is a positive integer. Prove that limx!x0

Œf .x/�n D
Ln (a) by using Theorem 2.1.4 and induction; (b) directly from Definition 2.1.2.

HINT: You will find Exercise 2.1.9 useful for .b/:

11. Prove: If limx!x0
f .x/ D L > 0, then limx!x0

p
f .x/ D

p
L.

12. Prove Theorem 2.1.6.

13. (a) Using the hint stated after Theorem 2.1.6, prove that Theorem 2.1.3 remains

valid with “limx!x0
” replaced by “limx!x0�.”

(b) Repeat (a) for Theorem 2.1.4.

14. Define the statement “limx!�1 f .x/ D L.”

15. Find limx!1 f .x/ if it exists, and justify your answer directly from Definition 2.1.7.

(a)
1

x2 C 1
(b)

sinx

jxj˛
.˛ > 0/ (c)

sinx

jxj˛
.˛ � 0/

(d) e�x sinx (e) tan x (f) e�x2

e2x

16. Theorems 2.1.3 and 2.1.4 remain valid with “limx!x0
” replaced throughout by

“limx!1” (“limx!�1”). How would their proofs have to be changed?

17. Using the definition you gave in Exercise 2.1.14, show that

(a) lim
x!�1

�
1 �

1

x2

�
D 1 (b) lim

x!�1
2jxj
1C x D �2

(c) lim
x!�1

sin x does not exist

18. Find limx!�1 f .x/, if it exists, for each function in Exercise 2.1.15. Justify your

answers directly from the definition you gave in Exercise 2.1.14.

19. Define

(a) lim
x!x0�

f .x/ D �1 (b) lim
x!x0C

f .x/ D1 (c) lim
x!x0C

f .x/ D �1

20. Find

(a) lim
x!0C

1

x3
(b) lim

x!0�

1

x3

(c) lim
x!0C

1

x6
(d) lim

x!0�

1

x6

(e) lim
x!x0C

1

.x � x0/2k
(f) lim

x!x0�
1

.x � x0/2kC1

(k D positive integer)
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21. Define

(a) lim
x!x0

f .x/ D1 (b) lim
x!x0

f .x/ D �1

22. Find

(a) lim
x!0

1

x3
(b) lim

x!0

1

x6

(c) lim
x!x0

1

.x � x0/2k
(d) lim

x!x0

1

.x � x0/2kC1

(k D positive integer)

23. Define

(a) lim
x!1

f .x/ D 1 (b) lim
x!�1

f .x/ D �1

24. Find

(a) lim
x!1

x2k (b) lim
x!�1

x2k

(c) lim
x!1

x2kC1 (d) lim
x!�1

x2kC1

(k=positive integer)

(e) lim
x!1

p
x sinx (f) lim

x!1
ex

25. Suppose that f and g are defined on .a;1/ and .c;1/ respectively, and that

g.x/ > a if x > c. Suppose also that limx!1 f .x/ D L, where �1 � L � 1,

and limx!1 g.x/ D 1. Show that limx!1 f .g.x// D L.

26. (a) Prove: limx!x0
f .x/ does not exist (finite) if for some �0 > 0, every deleted

neighborhood of x0 contains points x1 and x2 such that

jf .x1/� f .x2/j � �0:

(b) Give analogous conditions for the nonexistence of

lim
x!x0C

f .x/; lim
x!x0�

f .x/; lim
x!1

f .x/; and lim
x!�1

f .x/:

27. Prove: If �1 < x0 < 1, then limx!x0
f .x/ exists in the extended reals if and

only if limx!x0� f .x/ and limx!x0C f .x/ both exist in the extended reals and are

equal, in which case all three are equal.

In Exercises 2.1.28–2.1.30 consider only the case where at least one of L1 and L2 is˙1.

28. Prove: If limx!x0
f .x/ D L1, limx!x0

g.x/ D L2, and L1CL2 is not indetermi-

nate, then

lim
x!x0

.f C g/.x/ D L1 C L2:
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29. Prove: If limx!1 f .x/ D L1, limx!1 g.x/ D L2, andL1L2 is not indeterminate,

then

lim
x!1

.fg/.x/ D L1L2:

30. (a) Prove: If limx!x0
f .x/ D L1, limx!x0

g.x/ D L2 ¤ 0, and L1=L2 is not

indeterminate, then

lim
x!x0

�
f

g

�
.x/ D L1

L2

:

(b) Show that it is necessary to assume thatL2 ¤ 0 in(a) by considering f .x/ D
sinx, g.x/ D cos x, and x0 D �=2.

31. Find

(a) lim
x!0C

x3 C 2x C 3
2x4 C 3x2 C 2 (b) lim

x!0�

x3 C 2x C 3
2x4 C 3x2C 2

(c) lim
x!1

2x4 C 3x2 C 2
x3 C 2x C 3 (d) lim

x!�1
2x4 C 3x2 C 2
x3 C 2x C 3

(e) limx!1.ex2 � ex/ (f) lim
x!1

x C
p
x sinx

2xC e�x

32. Find limx!1 r.x/ and limx!�1 r.x/ for the rational function

r.x/ D a0 C a1x C � � � C anx
n

b0 C b1x C � � � C bmxm
;

where an ¤ 0 and bm ¤ 0.

33. Suppose that limx!x0
f .x/ exists for every x0 in .a; b/ and g.x/ D f .x/ except

on a set S with no limit points in .a; b/. What can be said about limx!x0
g.x/ for

x0 in .a; b/? Justify your answer.

34. Prove Theorem 2.1.9(b), and complete the proof of Theorem 2.1.9(b) in the case

where f is nonincreasing.

35. Prove Theorem 2.1.12.

36. Show that if f is bounded on Œa; x0/, then

(a) lim
x!x0�

f .x/ � lim
x!x0�

f .x/.

(b) lim
x!x0�

.�f /.x/ D � lim
x!x0�

f .x/ and lim
x!x0�

.�f /.x/ D � lim
x!x0�

f .x/.

(c) lim
x!x0�

f .x/ D lim
x!x0�

f .x/ if and only if limx!x0� f .x/ exists, in which

case

lim
x!x0�

f .x/ D lim
x!x0�

f .x/ D lim
x!x0�

f .x/:

37. Suppose that f and g are bounded on Œa; x0/.
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(a) Show that

lim
x!x0�

.f C g/.x/ � lim
x!x0�

f .x/C lim
x!x0�

g.x/:

(b) Show that

lim
x!x0�

.f C g/.x/ � lim
x!x0�

f .x/C lim
x!x0�

g.x/:

(c) State inequalities analogous to those in (a) and (b) for

lim
x!x0�

.f � g/.x/ and lim
x!x0�

.f � g/.x/:

38. Prove: limx!x0� f .x/ exists (finite) if and only if for each � > 0 there is a ı > 0

such that jf .x1/ � f .x2/j < � if x0 � ı < x1, x2 < x0. HINT: For sufficiency;

show that f is bounded on some interval .a; x0/ and

lim
x!0�

f .x/ D lim
x!x0�

f .x/:

Then use Exercise 2.1.36.c/:

39. Suppose that f is bounded on an interval .x0; b�. Using Definition 2.1.10 as a guide,

define limx!x0C f .x/ (the right limit superior of f at x0) and limx!x0C f .x/ (the

right limit inferior of f at x0). Then prove that they exist. HINT: Use Theorem 2.1.9:

40. Suppose that f is bounded on an interval .x0; b�. Show that limx!x0C f .x/ D
limx!x0C f .x/ if and only if limx!x0C f .x/ exists, in which case

lim
x!x0C

f .x/ D lim
x!x0C

f .x/ D lim
x!x0C

f .x/:

41. Suppose that f is bounded on an open interval containingx0. Show that limx!x0
f .x/

exists if and only if

lim
x!x0�

f .x/ D lim
x!x0C

f .x/ D lim
x!x0�

f .x/ D lim
x!x0C

f .x/;

in which case limx!x0
f .x/ is the common value of these four expressions.

2.2 CONTINUITY

In this section we study continuous functions of a real variable. We will prove some impor-

tant theorems about continuous functions that, although intuitively plausible, are beyond

the scope of the elementary calculus course. They are accessible now because of our better

understanding of the real number system, especially of those properties that stem from the

completeness axiom.
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The definitions of

f .x0�/ D lim
x!x0�

f .x/; f .x0C/ D lim
x!x0C

f .x/; and lim
x!x0

f .x/

do not involve f .x0/ or even require that it be defined. However, the case where f .x0/ is

defined and equal to one or more of these quantities is important.

Definition 2.2.1

(a) We say that f is continuous at x0 if f is defined on an open interval .a; b/ containing

x0 and limx!x0
f .x/ D f .x0/.

(b) We say that f is continuous from the left at x0 if f is defined on an open interval

.a; x0/ and f .x0�/ D f .x0/.

(c) We say that f is continuous from the right at x0 if f is defined on an open interval

.x0; b/ and f .x0C/ D f .x0/.

The following theorem provides a method for determining whether these definitions are

satisfied. The proof, which we leave to you (Exercise 2.2.1), rests on Definitions 2.1.2,

2.1.5, and 2.2.1.

Theorem 2.2.2

(a) A function f is continuous at x0 if and only if f is defined on an open interval .a; b/

containing x0 and for each � > 0 there is a ı > 0 such that

jf .x/ � f .x0/j < � (2.2.1)

whenever jx � x0j < ı:
(b) A function f is continuous from the right at x0 if and only if f is defined on an

interval Œx0; b/ and for each � > 0 there is a ı > 0 such that (2.2.1) holds whenever

x0 � x < x0 C ı:
(c) A function f is continuous from the left at x0 if and only if f is defined on an interval

.a; x0� and for each � > 0

there is a ı > 0 such that (2.2.1) holds whenever x0 � ı < x � x0:

From Definition 2.2.1 and Theorem 2.2.2, f is

continuous at x0 if and only if

f .x0�/ D f .x0C/ D f .x0/

or, equivalently, if and only if it is continuous from the right and left at x0 (Exercise 2.2.2).

Example 2.2.1 Let f be defined on Œ0; 2� by

f .x/ D
�
x2; 0 � x < 1;
x C 1; 1 � x � 2
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(Figure 2.2.1); then

f .0C/D 0 D f .0/;
f .1�/D 1 ¤ f .1/ D 2;
f .1C/D 2 D f .1/;
f .2�/D 3 D f .2/:

Therefore, f is continuous from the right at 0 and 1 and continuous from the left at 2, but

not at 1. If 0 < x, x0 < 1, then

jf .x/� f .x0/j D jx2 � x2
0 j D jx � x0j jx C x0j

� 2jx � x0j < � if jx � x0j < �=2:

Hence, f is continuous at each x0 in .0; 1/. If 1 < x, x0 < 2, then

jf .x/� f .x0/j D j.x C 1/ � .x0 C 1/ D jx � x0j
< � if jx � x0j < �:

Hence, f is continous at each x0 in .1; 2/.

2

3

21

1

y

x

y = x + 1,  1 ≤ x ≤ 2

y = x2,  0 ≤ x < 1

Figure 2.2.1

Definition 2.2.3 A function f is continuous on an open interval .a; b/ if it is continu-

ous at every point in .a; b/. If, in addition,

f .b�/ D f .b/ (2.2.2)

or

f .aC/ D f .a/ (2.2.3)
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then f is continuous on .a; b� or Œa; b/, respectively. If f is continuous on .a; b/ and

(2.2.2) and (2.2.3) both hold, then f is continuous on Œa; b�. More generally, if S is a subset

ofDf consisting of finitely or infinitely many disjoint intervals, then f is continuous on S

if f is continuous on every interval in S . (Henceforth, in connection with functions of one

variable, whenever we say “f is continuous on S” we mean that S is a set of this kind.)

Example 2.2.2 Let f .x/ D
p
x, 0 � x <1. Then

jf .x/� f .0/j D
p
x < � if 0 � x < �2;

so f .0C/ D f .0/. If x0 > 0 and x � 0, then

jf .x/� f .x0/j D j
p
x �px0j D

jx � x0jp
x Cpx0

� jx � x0jp
x0

< � if jx � x0j < �
p
x0;

so limx!x0
f .x/ D f .x0/. Hence, f is continuous on Œ0;1/.

Example 2.2.3 The function

g.x/ D 1

sin�x

is continuous on S D
S1

nD�1.n; n C 1/. However, g is not continuous at any x0 D n

(integer), since it is not defined at such points.

The function f defined in Example 2.2.1 (see also Figure 2.2.1) is continuous on Œ0; 1/

and Œ1; 2�, but not on any open interval containing 1. The discontinuity of f there is of the

simplest kind, described in the following definition.

Definition 2.2.4 A function f is piecewise continuous on Œa; b� if

(a) f .x0C/ exists for all x0 in Œa; b/;

(b) f .x0�/ exists for all x0 in .a; b�;

(c) f .x0C/ D f .x0�/ D f .x0/ for all but finitely many points x0 in .a; b/.

If (c) fails to hold at some x0 in .a; b/, f has a jump discontinuity at x0. Also, f has a

jump discontinuity at a if f .aC/ ¤ f .a/ or at b if f .b�/ ¤ f .b/.

Example 2.2.4 The function

f .x/ D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

1; x D 0;
x; 0 < x < 1;

2; x D 1;
x; 1 < x � 2;
�1; 2 < x < 3;

0; x D 3;

(Figure 2.2.2) is the graph of a piecewise continuous function on Œ0; 3�, with jump discon-

tinuities at x0 D 0, 1, 2, and 3.
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2

3

2 31

1

−1

y

x

Figure 2.2.2

The reason for the adjective “jump” can be seen in Figures 2.2.1 and 2.2.2, where the

graphs exhibit a definite jump at each point of discontinuity. The next example shows that

not all discontinuities are of this kind.

Example 2.2.5 The function

f .x/ D

8
<̂

:̂

sin
1

x
; x ¤ 0;

0; x D 0;

is continuous at all x0 except x0 D 0. As x approaches 0 from either side, f .x/ oscillates

between �1 and 1 with ever-increasing frequency, so neither f .0C/ nor f .0�/ exists.

Therefore, the discontinuity of f at 0 is not a jump discontinuity, and if � > 0, then f is

not piecewise continuous on any interval of the form Œ��; 0�, Œ��; ��, or Œ0; ��.

Theorems 2.1.4 and 2.2.2 imply the next theorem (Exercise 2.2.18).

Theorem 2.2.5 If f and g are continuous on a set S; then so are f C g; f � g; and

fg: In addition; f =g is continuous at each x0 in S such that g.x0/ ¤ 0:

Example 2.2.6 Since the constant functions and the function f .x/ D x are continu-

ous for all x, successive applications of the various parts of Theorem 2.2.5 imply that the

function

r.x/ D
9 � x2

x C 1
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is continuous for all x except x D �1 (see Example 2.1.7). More generally, by starting

from Theorem 2.2.5 and using

induction, it can be shown that if f1, f2, . . . , fn are continuous on a set S , then so are

f1 C f2 C � � � C fn and f1f2 � � � fn. Therefore, any rational function

r.x/ D a0 C a1x C � � � C anx
n

b0 C b1x C � � � C bmxm
.bm ¤ 0/

is continuous for all values of x except those for which its denominator vanishes.

Removable Discontinuities

Let f be defined on a deleted neighborhood of x0 and discontinuous (perhaps even unde-

fined) at x0. We say that f has a at x0 if limx!x0
f .x/ exists. In this case, the function

g.x/ D

8
<
:
f .x/ if x 2 Df and x ¤ x0;

lim
x!x0

f .x/ if x D x0;

is continuous at x0.

Example 2.2.7 The function

f .x/ D x sin
1

x

is not defined at x0 D 0, and therefore certainly not continuous there, but limx!0 f .x/ D 0
(Example 2.1.6). Therefore, f has a removable discontinuity at 0.

The function

f1.x/ D sin
1

x

is undefined at 0 and its discontinuity there is not removable, since limx!0 f1.x/ does not

exist (Example 2.2.5).

Composite Functions

We have seen that the investigation of limits and continuity can be simplified by regarding a

given function as the result of addition, subtraction, multiplication, and division of simpler

functions. Another operation useful in this connection is composition of functions; that is,

substitution of one function into another.

Definition 2.2.6 Suppose that f and g are functions with domains Df and Dg . If

Dg has a nonempty subset T such that g.x/ 2 Df whenever x 2 T , then the composite

function f ı g is defined on T by

.f ı g/.x/ D f .g.x//:
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Example 2.2.8 If

f .x/ D logx and g.x/ D 1

1 � x2
;

then

Df D .0;1/ and Dg D
˚
x
ˇ̌
x ¤ ˙1

	
:

Since g.x/ > 0 if x 2 T D .�1; 1/, the composite function f ı g is defined on .�1; 1/ by

.f ı g/.x/ D log
1

1� x2
:

We leave it to you to verify that g ı f is defined on .0; 1=e/[ .1=e; e/[ .e;1/ by

.g ı f /.x/ D 1

1 � .log x/2
:

The next theorem says that the composition of continuous functions is continuous.

Theorem 2.2.7 Suppose that g is continuous at x0; g.x0/ is an interior point of Df ;

and f is continuous at g.x0/: Then f ı g is continuous at x0:

Proof Suppose that � > 0. Since g.x0/ is an interior point of Df and f is continuous

at g.x0/, there is a ı1 > 0 such that f .t/ is defined and

jf .t/ � f .g.x0//j < � if jt � g.x0/j < ı1: (2.2.4)

Since g is continuous at x0, there is a ı > 0 such that g.x/ is defined and

jg.x/ � g.x0/j < ı1 if jx � x0j < ı: (2.2.5)

Now (2.2.4) and (2.2.5) imply that

jf .g.x// � f .g.x0//j < � if jx � x0j < ı:

Therefore, f ı g is continuous at x0.

See Exercise 2.2.22 for a related result concerning limits.

Example 2.2.9 In Examples 2.2.2 and 2.2.6 we saw that the function

f .x/ D
p
x

is continuous for x > 0, and the function

g.x/ D 9 � x2

x C 1
is continuous for x ¤ �1. Since g.x/ > 0 if x < �3 or �1 < x < 3, Theorem 2.2.7

implies that the function

.f ı g/.x/ D

s
9 � x2

x C 1
is continuous on .�1;�3/ [ .�1; 3/. It is also continuous from the left at �3 and 3.
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Bounded Functions

A function f is bounded below on a set S if there is a real number m such that

f .x/ � m for all x 2 S:

In this case, the set

V D
˚
f .x/

ˇ̌
x 2 S

	

has an infimum ˛, and we write

˛ D inf
x2S

f .x/:

If there is a point x1 in S such that f .x1/ D ˛, we say that ˛ is the minimum of f on S ,

and write

˛ D min
x2S

f .x/:

Similarly, f is bounded above on S if there is a real number M such that f .x/ � M for

all x in S . In this case, V has a supremum ˇ, and we write

ˇ D sup
x2S

f .x/:

If there is a point x2 in S such that f .x2/ D ˇ, we say that ˇ is the maximum of f on S ,

and write

ˇ D max
x2S

f .x/:

If f is bounded above and below on a set S , we say that f is bounded on S .

Figure 2.2.3 illustrates the geometric meaning of these definitions for a function f

bounded on an interval S D Œa; b�. The graph of f lies in the strip bounded by the

lines y D M and y D m, where M is any upper bound and m is any lower bound

for f on Œa; b�. The narrowest strip containing the graph is the one bounded above by

y D ˇ D supa�x�b f .x/ and below by y D ˛ D infa�x�b f .x/.

y

x

y = α

y = β

y = m

y = M

Figure 2.2.3
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Example 2.2.10 The function

g.x/ D
(

1
2
; x D 0 or x D 1;
1 � x; 0 < x < 1;

C

(Figure 2.2.4(a)) is bounded on Œ0; 1�, and

sup
0�x�1

g.x/ D 1; inf
0�x�1

g.x/ D 0:

Therefore, g has no maximum or minimum on Œ0; 1�, since it does not assume either of the

values 0 and 1.

The function

h.x/ D 1 � x; 0 � x � 1;
which differs from g only at 0 and 1 (Figure 2.2.4(b)), has the same supremum and infi-

mum as g, but it attains these values at x D 0 and x D 1, respectively; therefore,

max
0�x�1

h.x/ D 1 and min
0�x�1

h.x/ D 0:

2

1

1

1

y

x
1

1

y

x

(a) (b)

y = g (x) y = 1 − x

Figure 2.2.4

Example 2.2.11 The function

f .x/ D ex.x�1/ sin
1

x.x � 1/ ; 0 < x < 1;

oscillates between˙ex.x�1/ infinitely often in every interval of the form .0; �/ or .1��; 1/,
where 0 < � < 1, and

sup
0<x<1

f .x/ D 1; inf
0<x<1

f .x/ D �1:

However, f does not assume these values, so f has no maximum or minimum on .0; 1/.
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Theorem 2.2.8 If f is continuous on a finite closed interval Œa; b�; then f is bounded

on Œa; b�:

Proof Suppose that t 2 Œa; b�. Since f is continuous at t , there is an open interval It

containing t such that

jf .x/� f .t/j < 1 if x 2 It \ Œa; b�: (2.2.6)

(To see this, set � D 1 in (2.2.1), Theorem 2.2.2.) The collection H D
˚
It

ˇ̌
a � t � b

	
is

an open covering of Œa; b�. Since Œa; b� is compact, the Heine–Borel theorem implies that

there are finitely many points t1, t2, . . . , tn such that the intervals It1 , It2 , . . . , Itn cover

Œa; b�. According to (2.2.6) with t D ti ,

jf .x/� f .ti /j < 1 if x 2 Iti \ Œa; b�:

Therefore,

jf .x/j D j.f .x/ � f .ti //C f .ti /j � jf .x/� f .ti /j C jf .ti /j

� 1C jf .ti /j if x 2 Iti \ Œa; b�:
(2.2.7)

Let

M D 1C max
1�i�n

jf .ti/j:

Since Œa; b� �
Sn

iD1

�
Iti \ Œa; b�

�
, (2.2.7) implies that jf .x/j �M if x 2 Œa; b�.

This proof illustrates the utility of the Heine–Borel theorem, which allows us to choose

M as the largest of a finite set of numbers.

Theorem 2.2.8 and the completeness of the reals imply that

if f is continuous on a finite closed interval Œa; b�, then f has an infimum and a supre-

mum on Œa; b�. The next theorem shows that f actually assumes these values at some

points in Œa; b�.

Theorem 2.2.9 Suppose that f is continuous on a finite closed interval Œa; b�: Let

˛ D inf
a�x�b

f .x/ and ˇ D sup
a�x�b

f .x/:

Then ˛ and ˇ are respectively the minimum and maximum of f on Œa; b�I that is; there are

points x1 and x2 in Œa; b� such that

f .x1/ D ˛ and f .x2/ D ˇ:

Proof We show that x1 exists and leave it to you to show that x2 exists (Exercise 2.2.24).

Suppose that there is no x1 in Œa; b� such that f .x1/ D ˛. Then f .x/ > ˛ for all

x 2 Œa; b�. We will show that this leads to a contradiction.

Suppose that t 2 Œa; b�. Then f .t/ > ˛, so

f .t/ >
f .t/C ˛

2
> ˛:
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Since f is continuous at t , there is an open interval It about t such that

f .x/ >
f .t/C ˛

2
if x 2 It \ Œa; b� (2.2.8)

(Exercise 2.2.15). The collection H D
˚
It

ˇ̌
a � t � b

	
is an open covering of Œa; b�. Since

Œa; b� is compact, the Heine–Borel theorem implies that there are finitely many points t1,

t2, . . . , tn such that the intervals It1 , It2 , . . . , Itn cover Œa; b�. Define

˛1 D min
1�i�n

f .ti /C ˛
2

:

Then, since Œa; b� �
Sn

iD1.Iti \ Œa; b�/, (2.2.8) implies that

f .t/ > ˛1; a � t � b:

But ˛1 > ˛, so this contradicts the definition of ˛. Therefore, f .x1/ D ˛ for some x1 in

Œa; b�.

Example 2.2.12 We used the compactness of Œa; b� in the proof of Theorem 2.2.9

when we invoked the Heine–Borel theorem. To see that compactness is essential to the

proof, consider the function

g.x/ D 1 � .1 � x/ sin
1

x
;

which is continuous and has supremum 2 on the noncompact interval .0; 1�, but does not

assume its supremum on .0; 1�, since

g.x/ � 1C .1 � x/
ˇ̌
ˇ̌sin

1

x

ˇ̌
ˇ̌

� 1C .1 � x/ < 2 if 0 < x � 1:

As another example, consider the function

f .x/ D e�x;

which is continuous and has infimum 0, which it does not attain, on the noncompact interval

.0;1/.

The next theorem shows that if f is continuous on a finite closed interval Œa; b�, then f

assumes every value between f .a/ and f .b/ as x varies from a to b (Figure 2.2.5, page 64).

Theorem 2.2.10 (Intermediate Value Theorem) Suppose that f is con-

tinuous on Œa; b�; f .a/ ¤ f .b/; and � is between f .a/ and f .b/: Then f .c/ D � for

some c in .a; b/:
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a bx
x

y

y = f (x)

y = µ

Figure 2.2.5

Proof Suppose that f .a/ < � < f .b/. The set

S D
˚
x
ˇ̌
a � x � b and f .x/ � �

	

is bounded and nonempty. Let c D supS . We will show that f .c/ D �. If f .c/ > �,

then c > a and, since f is continuous at c, there is an � > 0 such that f .x/ > � if

c � � < x � c (Exercise 2.2.15). Therefore, c � � is an upper bound for S , which

contradicts the definition of c as the supremum of S . If f .c/ < �, then c < b and there is

an � > 0 such that f .x/ < � for c � x < c C �, so c is not an upper bound for S . This is

also a contradiction. Therefore, f .c/ D �.

The proof for the case where f .b/ < � < f .a/ can be obtained by applying this result

to �f .

Uniform Continuity

Theorem 2.2.2 and Definition 2.2.3 imply that a

function f is continuous on a subset S of its domain if for each � > 0 and each x0 in S ,

there is a ı > 0, which may depend upon x0 as well as �, such that

jf .x/ � f .x0/j < � if jx � x0j < ı and x 2 Df :

The next definition introduces another kind of continuity on a set S .

Definition 2.2.11 A function f is uniformly continuous on a subset S of its domain

if, for every � > 0, there is a ı > 0 such that

jf .x/ � f .x0/j < � whenever jx � x0j < ı and x; x0 2 S:

We emphasize that in this definition ı depends only on � and S and not on the particular

choice of x and x0, provided that they are both in S .

Example 2.2.13 The function

f .x/ D 2x
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is uniformly continuous on .�1;1/, since

jf .x/ � f .x0/j D 2jx � x0j < � if jx � x0j < �=2:

Example 2.2.14 If 0 < r <1, then the function

g.x/ D x2

is uniformly continuous on Œ�r; r �. To see this, note that

jg.x/ � g.x0/ D jx2 � .x0/2j D jx � x0j jxC x0j � 2r jx � x0j;

so

jg.x/ � g.x0/j < � if jx � x0j < ı D �

2r
and � r � x; x0 � r:

Often a concept is clarified by considering its negation: a function f is not uniformly

continuous on S if there is an �0 > 0 such that if ı is any positive number, there are points

x and x0 in S such that

jx � x0j < ı but jf .x/ � f .x0/j � �0:

Example 2.2.15 The function g.x/ D x2 is uniformly continuous on Œ�r; r � for any

finite r (Example 2.2.14), but not on .�1;1/. To see this, we will show that if ı > 0

there are real numbers x and x0 such that

jx � x0j D ı=2 and jg.x/ � g.x0/j � 1:

To this end, we write

jg.x/ � g.x0/j D jx2 � .x0/2j D jx � x0j jx C x0j:

If jx � x0j D ı=2 and x; x0 > 1=ı, then

jx � x0j jx C x0j >
ı

2

�
1

ı
C
1

ı

�
D 1:

Example 2.2.16 The function

f .x/ D cos
1

x

is continuous on .0; 1� (Exercise 2.2.23(i)). However, f is not uniformly continuous on

.0; 1�, since ˇ̌
ˇ̌f
�
1

n�

�
� f

�
1

.nC 1/�

�ˇ̌
ˇ̌ D 2; n D 1; 2; : : : :

Examples 2.2.15 and 2.2.16 show that a function may be continuous but not uniformly

continuous on an interval. The next theorem shows that this cannot happen if the interval

is closed and bounded, and therefore compact.
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Theorem 2.2.12 If f is continuous on a closed and bounded interval Œa; b�; then f

is uniformly continuous on Œa; b�:

Proof Suppose that � > 0. Since f is continuous on Œa; b�, for each t in Œa; b� there is

a positive number ıt such that

jf .x/ � f .t/j < �

2
if jx � t j < 2ıt and x 2 Œa; b�: (2.2.9)

If It D .t � ıt ; t C ıt /, the collection

H D
˚
It

ˇ̌
t 2 Œa; b�

	

is an open covering of Œa; b�. Since Œa; b� is compact, the Heine–Borel theorem implies that

there are finitely many points t1, t2, . . . , tn in Œa; b� such that It1 , It2 , . . . , Itn cover Œa; b�.

Now define

ı D minfıt1 ; ıt2; : : : ; ıtng: (2.2.10)

We will show that if

jx � x0j < ı and x; x0 2 Œa; b�; (2.2.11)

then jf .x/� f .x0/j < �.
From the triangle inequality,

jf .x/� f .x0/j D j .f .x/ � f .tr //C .f .tr / � f .x0// j
� jf .x/ � f .tr/j C jf .tr/ � f .x0/j: (2.2.12)

Since It1 , It2 , . . . , Itn cover Œa; b�, xmust be in one of these intervals. Suppose that x 2 Itr ;

that is,

jx � tr j < ıtr : (2.2.13)

From (2.2.9) with t D tr ,

jf .x/ � f .tr /j <
�

2
: (2.2.14)

From (2.2.11), (2.2.13), and the triangle inquality,

jx0 � tr j D j.x0 � x/C .x � tr/j � jx0 � xj C jx � tr j < ı C ıtr � 2ıtr :

Therefore, (2.2.9) with t D tr and x replaced by x0 implies that

jf .x0/� f .tr/j <
�

2
:

This, (2.2.12), and (2.2.14) imply that jf .x/� f .x0/j < �.
This proof again shows the utility of the Heine–Borel theorem, which allowed us to

define ı in (2.2.10) as the smallest of a finite set of positive numbers, so that ı is sure to be

positive. (An infinite set of positive numbers may fail to have a smallest positive member;

for example, consider the open interval .0; 1/.)

Corollary 2.2.13 If f is continuous on a set T; then f is uniformly continuous on

any finite closed interval contained in T:
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Applied to Example 2.2.16, Corollary 2.2.13 implies that the function g.x/ D cos 1=x

is uniformly continuous on Œ�; 1� if 0 < � < 1.

More About Monotonic Functions

Theorem 2.1.9 implies that if f is monotonic on an interval I , then f is either continuous

or has a jump discontinuity at each x0 in I . This and Theorem 2.2.10 provide the key to

the proof of the following theorem.

Theorem 2.2.14 If f is monotonic and nonconstant on Œa; b�; then f is continuous on

Œa; b� if and only if its rangeRf D
˚
f .x/

ˇ̌
x 2 Œa; b�

	
is the closed interval with endpoints

f .a/ and f .b/:

Proof We assume that f is nondecreasing, and leave the case where f is nonincreasing

to you (Exercise 2.2.34). Theorem 2.1.9(a) implies that the set eRf D
˚
f .x/

ˇ̌
x 2 .a; b/

	

is a subset of the open interval .f .aC/; f .b�//. Therefore,

Rf D ff .a/g [ eRf [ ff .b/g � ff .a/g [ .f .aC/; f .b�// [ ff .b/g: (2.2.15)

Now suppose that f is continuous on Œa; b�. Then f .a/ D f .aC/, f .b�/ D f .b/, so

(2.2.15) implies that Rf � Œf .a/; f .b/�. If f .a/ < � < f .b/, then Theorem 2.2.10

implies that � D f .x/ for some x in .a; b/. Hence, Rf D Œf .a/; f .b/�.
For the converse, suppose that Rf D Œf .a/; f .b/�. Since f .a/ � f .aC/ and f .b�/ �

f .b/, (2.2.15) implies that f .a/ D f .aC/ and f .b�/ D f .b/. We know from Theo-

rem 2.1.9(c) that if f is nondecreasing and a < x0 < b, then

f .x0�/ � f .x0/ � f .x0C/:

If either of these inequalities is strict, Rf cannot be an interval. Since this contradicts

our assumption, f .x0�/ D f .x0/ D f .x0C/. Therefore, f is continuous at x0 (Exer-

cise 2.2.2). We can now conclude that f is continuous on Œa; b�.

Theorem 2.2.14 implies the following theorem.

Theorem 2.2.15 Suppose that f is increasing and continuous on Œa; b�; and let f .a/ D
c and f .b/ D d: Then there is a unique function g defined on Œc; d � such that

g.f .x// D x; a � x � b; (2.2.16)

and

f .g.y// D y; c � y � d: (2.2.17)

Moreover; g is continuous and increasing on Œc; d �:

Proof We first show that there is a function g satisfying (2.2.16) and (2.2.17). Since f

is continuous, Theorem 2.2.14 implies that for each y0 in Œc; d � there is an x0 in Œa; b� such

that

f .x0/ D y0; (2.2.18)
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and, since f is increasing, there is only one such x0. Define

g.y0/ D x0: (2.2.19)

The definition of x0 is illustrated in Figure 2.2.6: with Œc; d � drawn on the y-axis, find the

intersection of the line y D y0 with the curve y D f .x/ and drop a vertical from the

intersection to the x-axis to find x0.

y

d

c

a b
x

y = f (x)

x
0
 

y
0
 

Figure 2.2.6

Substituting (2.2.19) into (2.2.18) yields

f .g.y0// D y0;

and substituting (2.2.18) into (2.2.19) yields

g.f .x0// D x0:

Dropping the subscripts in these two equations yields (2.2.16) and (2.2.17).

The uniqueness of g follows from our assumption that f is increasing, and therefore

only one value of x0 can satisfy (2.2.18) for each y0.

To see that g is increasing, suppose that y1 < y2 and let x1 and x2 be the points in Œa; b�

such that f .x1/ D y1 and f .x2/ D y2. Since f is increasing, x1 < x2. Therefore,

g.y1/ D x1 < x2 D g.y2/;

so g is increasing. Since Rg D
˚
g.y/

ˇ̌
y 2 Œc; d �

	
is the interval Œg.c/; g.d/� D Œa; b�,

Theorem 2.2.14 with f and Œa; b� replaced by g and Œc; d � implies that g is continuous on

Œc; d �.

The function g of Theorem 2.2.15 is the inverse of f , denoted by f �1. Since (2.2.16)

and (2.2.17) are symmetric in f and g, we can also regard f as the inverse of g, and denote

it by g�1.
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Example 2.2.17 If

f .x/ D x2; 0 � x � R;
then

f �1.y/ D g.y/ D py; 0 � y � R2:

Example 2.2.18 If

f .x/ D 2x C 4; 0 � x � 2;
then

f �1.y/ D g.y/ D y � 4
2

; 4 � y � 8:

2.2 Exercises

1. Prove Theorem 2.2.2.

2. Prove that a function f is continuous at x0 if and only if

lim
x!x0�

f .x/ D lim
x!x0C

f .x/ D f .x0/:

3. Determine whether f is continuous or discontinuous from the right or left at x0.

(a) f .x/ D
p
x .x0 D 0/ (b) f .x/ D

p
x .x0 > 0/

(c) f .x/ D 1

x
.x0 D 0/ (d) f .x/ D x2 .x0 arbitrary/

(e) f .x/ D
�
x sin 1=x; x ¤ 0;
1; x D 0 .x0 D 0/

(f) f .x/ D
�
x sin 1=x; x ¤ 0
0; x D 0 .x0 D 0/

(g) f .x/ D

8
<
:
x C jxj.1C x/

x
sin

1

x
; x ¤ 0

1; x D 0
.x0 D 0/

4. Let f be defined on Œ0; 2� by

f .x/ D
(
x2; 0 � x < 1;

x C 1; 1 � x � 2:

On which of the following intervals is f continuous according to Definition 2.2.3:

Œ0; 1/, .0; 1/, .0; 1�, Œ0; 1�, Œ1; 2/, .1; 2/, .1; 2�, Œ1; 2�?

5. Let

g.x/ D
p
x

x � 1
:

On which of the following intervals is g continuous according to Definition 2.2.3:

Œ0; 1/, .0; 1/, .0; 1�, Œ1;1/, .1;1/?
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6. Let

f .x/ D
(

-1 if x is irrational;

1 if x is rational:

Show that f is not continuous anywhere.

7. Let f .x/ D 0 if x is irrational and f .p=q/ D 1=q if p and q are positive inte-

gers with no common factors. Show that f is discontinuous at every rational and

continuous at every irrational on .0;1/.
8. Prove: If f assumes only finitely many values, then f is continuous at a point x0 in

D0
f

if and only if f is constant on some interval .x0 � ı; x0C ı/.
9. The characteristic function T of a set T is defined by

 T .x/ D
(
1; x 2 T;

0; x 62 T:

Show that  T is continuous at a point x0 if and only if x0 2 T 0 [ .T c/0.

10. Prove: If f and g are continuous on .a; b/ and f .x/ D g.x/ for every x in a dense

subset (Definition 1.1.5) of .a; b/, then f .x/ D g.x/ for all x in .a; b/.

11. Prove that the function g.x/ D logx is continuous on .0;1/. Take the following

properties as given.

(a) limx!1 g.x/ D 0.

(b) g.x1/C g.x2/ D g.x1x2/ if x1; x2 > 0.

12. Prove that the function f .x/ D eax is continuous on .�1;1/. Take the following

properties as given.

(a) limx!0 f .x/ D 1.

(b) f .x1 C x2/ D f .x1/f .x2/; �1 < x1; x2 <1.

13. (a) Prove that the functions sinhx and cosh x are continuous for all x.

(b) For what values of x are tanhx and coth x continuous?

14. Prove that the functions s.x/ D sinx and c.x/ D cos x are continuous on .�1;1/.
Take the following properties as given.

(a) limx!0 c.x/ D 1.

(b) c.x1 � x2/ D c.x1/c.x2/C s.x1/s.x2/; �1 < x1; x2 <1.

(c) s2.x/C c2.x/ D 1; �1 < x <1.

15. (a) Prove: If f is continuous at x0 and f .x0/ > �, then f .x/ > � for all x in

some neighborhood of x0.

(b) State a result analogous to (a) for the case where f .x0/ < �.

(c) Prove: If f .x/ � � for all x in S and x0 is a limit point of S at which f is

continuous, then f .x0/ � �.

(d) State results analogous to (a), (b), and (c) for the case where f is contin-

uous from the right or left at x0.
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16. Let jf j be the function whose value at each x in Df is jf .x/j. Prove: If f is

continuous at x0, then so is jf j. Is the converse true?

17. Prove: If f is monotonic on Œa; b�, then f is piecewise continuous on Œa; b� if and

only if f has only finitely many discontinuities in Œa; b�.

18. Prove Theorem 2.2.5.

19. (a) Show that if f1, f2, . . . , fn are continuous on a set S then so are f1 C f2 C
� � � C fn and f1f2 � � �fn.

(b) Use (a) to show that a rational function is continuous for all values of x

except the zeros of its denominator.

20. (a) Let f1 and f2 be continuous at x0 and define

F.x/ D max .f1.x/; f2.x// :

Show that F is continuous at x0.

(b) Let f1, f2, . . . , fn be continuous at x0 and define

F.x/ D max .f1.x/; f2.x/; : : : ; fn.x// :

Show that F is continuous at x0.

21. Find the domains of f ı g and g ı f .

(a) f .x/ D
p
x; g.x/ D 1 � x2 (b) f .x/ D logx; g.x/ D sin x

(c) f .x/ D 1

1 � x2
; g.x/ D cos x (d) f .x/ D

p
x; g.x/ D sin 2x

22. (a) Suppose that y0 D limx!x0
g.x/ exists and is an interior point of Df , and

that f is continuous at y0. Show that

lim
x!x0

.f ı g/.x/ D f .y0/:

(b) State an analogous result for limits from the right.

(c) State an analogous result for limits from the left.

23. Use Theorem 2.2.7 to find all points x0 at which the following functions are contin-

uous.

(a)
p
1 � x2 (b) sin e�x2

(c) log.1C sinx/

(d) e�1=.1�2x/ (e) sin
1

.x � 1/2 (f) sin

�
1

cos x

�

(g) .1 � sin2 x/�1=2 (h) cot.1 � e�x2

/ (i) cos
1

x

24. Complete the proof of Theorem 2.2.9 by showing that there is an x2 such that

f .x2/ D ˇ.
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25. Prove: If f is nonconstant and continuous on an interval I , then the set S D˚
y
ˇ̌
y D f .x/; x 2 I

	
is an interval. Moreover, if I is a finite closed interval, then

so is S .

26. Suppose that f and g are defined on .�1;1/, f is increasing, and f ı g is con-

tinuous on .�1;1/. Show that g is continuous on .�1;1/.
27. Let f be continuous on Œa; b/, and define

F.x/ D max
a�t�x

f .t/; a � x < b:

(How do we know that F is well defined?) Show that F is continuous on Œa; b/.

28. Let f and g be uniformly continuous on an interval S .

(a) Show that f C g and f � g are uniformly continuous on S .

(b) Show that fg is uniformly continuous on S if S is compact.

(c) Show that f=g is uniformly continuous on S if S is compact and g has no

zeros in S .

(d) Give examples showing that the conclusion of (b) and (c) may fail to hold

if S is not compact.

(e) State additional conditions on f and g which guarantee that fg is uniformly

continuous on S even if S is not compact. Do the same for f=g.

29. Suppose that f is uniformly continuous on a set S , g is uniformly continuous on a

set T , and g.x/ 2 S for every x in T . Show that f ı g is uniformly continuous on

T .

30. (a) Prove: If f is uniformly continuous on disjoint closed intervals I1, I2, . . . ,

In, then f is uniformly continuous on
Sn

j D1 Ij .

(b) Is (a) valid without the word “closed”?

31. (a) Prove: If f is uniformly continuous on a bounded open interval .a; b/, then

f .aC/ and f .b�/ exist and are finite. HINT: See Exercise 2.1.38:

(b) Show that the conclusion in (a) does not follow if .a; b/ is unbounded.

32. Prove: If f is continuous on Œa;1/ and f .1/ exists (finite), then f is uniformly

continuous on Œa;1/.
33. Suppose that f is defined on .�1;1/ and has the following properties.

(i) lim
x!0

f .x/ D 1 and (ii) f .x1Cx2/ D f .x1/f .x2/; �1 < x1; x2 <1:

Prove:

(a) f .x/ > 0 for all x.

(b) f .rx/ D Œf .x/�r if r is rational.

(c) If f .1/ D 1 then f is constant.
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(d) If f .1/ D � > 1, then f is increasing,

lim
x!1

f .x/ D 1; and lim
x!�1

f .x/ D 0:

(Thus, f .x/ D eax has these properties if a > 0.)

HINT: See Exercises 2.2.10 and 2.2.12:

34. Prove Theorem 2.2.14 in the case where f is nonincreasing.

2.3 DIFFERENTIABLE FUNCTIONS OF ONE VARIABLE

In calculus you studied differentiation, emphasizing rules for calculating derivatives. Here

we consider the theoretical properties of differentiable functions. In doing this, we assume

that you know how to differentiate elementary functions such as xn, ex, and sin x, and we

will use such functions in examples.

Definition of the Derivative

Definition 2.3.1 A function f is differentiable at an interior point x0 of its domain if

the difference quotient
f .x/� f .x0/

x � x0

; x ¤ x0;

approaches a limit as x approaches x0, in which case the limit is called the derivative of f

at x0, and is denoted by f 0.x0/; thus,

f 0.x0/ D lim
x!x0

f .x/� f .x0/

x � x0

: (2.3.1)

It is sometimes convenient to let x D x0 C h and write (2.3.1) as

f 0.x0/ D lim
h!0

f .x0 C h/� f .x0/

h
:

If f is defined on an open set S , we say that f is differentiable on S if f is differentiable

at every point of S . If f is differentiable on S , then f 0 is a function on S . We say that

f is continuously differentiable on S if f 0 is continuous on S . If f is differentiable on a

neighborhood of x0, it is reasonable to ask if f 0 is differentiable at x0. If so, we denote the

derivative of f 0 at x0 by f 00.x0/. This is the second derivative of f at x0, and it is also

denoted by f .2/.x0/. Continuing inductively, if f .n�1/ is defined on a neighborhood of

x0, then the nth derivative of f at x0, denoted by f .n/.x0/, is the derivative of f .n�1/ at

x0. For convenience we define the zeroth derivative of f to be f itself; thus

f .0/ D f:

We assume that you are familiar with the other standard notations for derivatives; for

example,

f .2/ D f 00; f .3/ D f 000;
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and so on, and

dnf

dxn
D f .n/:

Example 2.3.1 If n is a positive integer and

f .x/ D xn;

then

f .x/� f .x0/

x � x0

D
xn � xn

0

x � x0

D
x � x0

x � x0

n�1X

kD0

xn�k�1xk
0 ;

so

f 0.x0/ D lim
x!x0

n�1X

kD0

xn�k�1xk
0 D nxn�1

0 :

Since this holds for every x0, we drop the subscript and write

f 0.x/ D nxn�1 or
d

dx
.xn/ D nxn�1:

To derive differentiation formulas for elementary functions such as sin x, cos x, and ex

directly from Definition 2.3.1 requires estimates based on the properties of these functions.

Since this is done in calculus, we will not repeat it here.

Interpretations of the Derivative

If f .x/ is the position of a particle at time x ¤ x0, the difference quotient

f .x/� f .x0/

x � x0

is the average velocity of the particle between times x0 and x. As x approaches x0, the

average applies to shorter and shorter intervals. Therefore, it makes sense to regard the limit

(2.3.1), if it exists, as the particle’s instantaneous velocity at time x0. This interpretation

may be useful even if x is not time, so we often regard f 0.x0/ as the instantaneous rate of

change of f .x/ at x0, regardless of the specific nature of the variable x. The derivative also

has a geometric interpretation. The equation of the line through two points .x0; f .x0// and

.x1; f .x1// on the curve y D f .x/ (Figure 2.3.1) is

y D f .x0/C
f .x1/ � f .x0/

x1 � x0

.x � x0/:

Varying x1 generates lines through .x0; f .x0// that rotate into the line

y D f .x0/C f 0.x0/.x � x0/ (2.3.2)
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as x1 approaches x0. This is the tangent to the curve y D f .x/ at the point .x0; f .x0//.

Figure 2.3.2 depicts the situation for various values of x1.
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x
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Figure 2.3.1
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Figure 2.3.2

Here is a less intuitive definition of the tangent line: If the function

T .x/ D f .x0/Cm.x � x0/

approximates f so well near x0 that

lim
x!x0

f .x/ � T .x/
x � x0

D 0;

we say that the line y D T .x/ is tangent to the curve y D f .x/ at .x0; f .x0//.
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This tangent line exists if and only if f 0.x0/ exists, in which casem is uniquely determined

by m D f 0.x0/ (Exercise 2.3.1). Thus, (2.3.2) is the equation of the tangent line.

We will use the following lemma to study differentiable functions.

Lemma 2.3.2 If f is differentiable at x0; then

f .x/ D f .x0/C Œf 0.x0/C E.x/�.x � x0/; (2.3.3)

where E is defined on a neighborhood of x0 and

lim
x!x0

E.x/ D E.x0/ D 0:

Proof Define

E.x/ D

8
<
:

f .x/ � f .x0/

x � x0

� f 0.x0/; x 2 Df and x ¤ x0;

0; x D x0:
(2.3.4)

Solving (2.3.4) for f .x/ yields (2.3.3) if x ¤ x0, and (2.3.3) is obvious if x D x0. Defini-

tion 2.3.1 implies that limx!x0
E.x/ D 0. We defined E.x0/ D 0 to make E continuous

at x0.

Since the right side of (2.3.3) is continuous at x0, so is the left. This yields the following

theorem.

Theorem 2.3.3 If f is differentiable at x0; then f is continuous at x0:

The converse of this theorem is false, since a function may be continuous at a point

without being differentiable at the point.

Example 2.3.2 The function

f .x/ D jxj
can be written as

f .x/ D x; x > 0; (2.3.5)

or as

f .x/ D �x; x < 0: (2.3.6)

From (2.3.5),

f 0.x/ D 1; x > 0;

and from (2.3.6),

f 0.x/ D �1; x < 0:

Neither (2.3.5) nor (2.3.6) holds throughout any neighborhood of 0, so neither can be used

alone to calculate f 0.0/. In fact, since the one-sided limits

lim
x!0C

f .x/ � f .0/
x � 0 D lim

x!0C

x

x
(2.3.7)

and

lim
x!0�

f .x/ � f .0/
x � 0

D lim
x!0�

�x
x
D �1 (2.3.8)
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are different,

lim
x!0

f .x/� f .0/
x � 0

does not exist (Theorem 2.1.6); thus, f is not differentiable at 0, even though it is continu-

ous at 0.

Interchanging Differentiation and Arithmetic Operations

The following theorem should be familiar from calculus.

Theorem 2.3.4 If f and g are differentiable at x0; then so are f Cg; f �g; and fg;

with

(a) .f C g/0.x0/ D f 0.x0/C g0.x0/I
(b) .f � g/0.x0/ D f 0.x0/� g.x0/I
(c) .fg/0.x0/ D f 0.x0/g.x0/C f .x0/g

0.x0/:

The quotient f=g is differentiable at x0 if g.x0/ ¤ 0; with

(d)

�
f

g

�0
.x0/ D

f 0.x0/g.x0/ � f .x0/g
0.x0/

Œg.x0/�
2

:

Proof The proof is accomplished by forming the appropriate difference quotients and

applying Definition 2.3.1 and Theorem 2.1.4. We will prove (c) and leave the rest to you

(Exercises 2.3.9, 2.3.10, and 2.3.11).

The trick is to add and subtract the right quantity in the numerator of the difference

quotient for .fg/0.x0/; thus,

f .x/g.x/ � f .x0/g.x0/

x � x0

D f .x/g.x/ � f .x0/g.x/ C f .x0/g.x/ � f .x0/g.x0/

x � x0

D f .x/ � f .x0/

x � x0

g.x/ C f .x0/
g.x/ � g.x0/

x � x0

:

The difference quotients on the right approach f 0.x0/ and g0.x0/ as x approaches x0, and

limx!x0
g.x/ D g.x0/ (Theorem 2.3.3). This proves (c).

The Chain Rule

Here is the rule for differentiating a composite function.

Theorem 2.3.5 (The Chain Rule) Suppose that g is differentiable at x0 and f

is differentiable at g.x0/: Then the composite function h D f ı g; defined by

h.x/ D f .g.x//;

is differentiable at x0; with

h0.x0/ D f 0.g.x0//g
0.x0/:
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Proof Since f is differentiable at g.x0/, Lemma 2.3.2 implies that

f .t/ � f .g.x0// D Œf 0.g.x0// C E.t/�Œt � g.x0/�;

where

lim
t!g.x0/

E.t/ D E.g.x0// D 0: (2.3.9)

Letting t D g.x/ yields

f .g.x// � f .g.x0// D Œf 0.g.x0//C E.g.x//�Œg.x/ � g.x0/�:

Since h.x/ D f .g.x//, this implies that

h.x/ � h.x0/

x � x0

D Œf 0.g.x0//C E.g.x//�
g.x/ � g.x0/

x � x0

: (2.3.10)

Since g is continuous at x0 (Theorem 2.3.3), (2.3.9) and Theorem 2.2.7 imply that

lim
x!x0

E.g.x// D E.g.x0// D 0:

Therefore, (2.3.10) implies that

h0.x0/ D lim
x!x0

h.x/ � h.x0/

x � x0

D f 0.g.x0//g
0.x0/;

as stated.

Example 2.3.3 If

f .x/ D sinx and g.x/ D 1

x
; x ¤ 0;

then

h.x/ D f .g.x// D sin
1

x
; x ¤ 0;

and

h0.x/ D f 0.g.x//g.x/ D
�

cos
1

x

��
� 1
x2

�
; x ¤ 0:

It may seem reasonable to justify the chain rule by writing

h.x/ � h.x0/

x � x0

D f .g.x// � f .g.x0//

x � x0

D
f .g.x// � f .g.x0//

g.x/ � g.x0/

g.x/ � g.x0/

x � x0

and arguing that

lim
x!x0

f .g.x// � f .g.x0//

g.x/ � g.x0/
D f 0.g.x0//
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(because limx!x0
g.x/ D g.x0// and

lim
x!x0

g.x/ � g.x0/

x � x0

D g0.x0/:

However, this is not a valid proof (Exercise 2.3.13).

One-Sided Derivatives

One-sided limits of difference quotients such as (2.3.7) and (2.3.8) in Example 2.3.2 are

called one-sided or right- and left-hand derivatives. That is, if f is defined on Œx0; b/, the

right-hand derivative of f at x0 is defined to be

f 0
C.x0/ D lim

x!x0C

f .x/ � f .x0/

x � x0

if the limit exists, while if f is defined on .a; x0�, the left-hand derivative of f at x0 is

defined to be

f 0
�.x0/ D lim

x!x0�
f .x/ � f .x0/

x � x0

if the limit exists. Theorem 2.1.6 implies that f is differentiable at x0 if and only if f 0
C.x0/

and f 0
�.x0/ exist and are equal, in which case

f 0.x0/ D f 0
C.x0/ D f 0

�.x0/:

In Example 2.3.2, f 0
C.0/ D 1 and f 0

�.0/ D �1.

Example 2.3.4 If

f .x/ D

8
<
:

x3; x � 0;

x2 sin
1

x
; x > 0;

(2.3.11)

then

f 0.x/ D

8
<
:

3x2; x < 0;

2x sin
1

x
� cos

1

x
; x > 0:

(2.3.12)

Since neither formula in (2.3.11) holds for all x in any neighborhood of 0, we cannot simply

differentiate either to obtain f 0.0/; instead, we calculate

f 0
C.0/ D lim

x!0C

x2 sin
1

x
� 0

x � 0 D lim
x!0C

x sin
1

x
D 0;

f 0
�.0/ D lim

x!0�

x3 � 0
x � 0 D lim

x!0�
x2 D 0I

hence, f 0.0/ D f 0
C.0/ D f 0

�.0/ D 0.
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This example shows that there is a difference between a one-sided derivative and a one-

sided limit of a derivative, since f 0
C.0/ D 0, but, from (2.3.12), f 0.0C/ D limx!0C f 0.x/

does not exist. It also shows that a derivative may exist in a neighborhood of a point x0

(D 0 in this case), but be discontinuous at x0.

Exercise 2.3.4 justifies the method used in Example 2.3.4 to compute f 0.x/ for x ¤ 0.

Definition 2.3.6

(a) We say that f is differentiable on the closed interval Œa; b� if f is differentiable on

the open interval .a; b/ and f 0
C.a/ and f 0

�.b/ both exist.

(b) We say that f is continuously differentiable on Œa; b� if f is differentiable on Œa; b�,

f 0 is continuous on .a; b/, f 0
C.a/ D f 0.aC/, and f 0

�.b/ D f 0.b�/.

Extreme Values

We say that f .x0/ is a local extreme value of f if there is a ı > 0 such that f .x/� f .x0/

does not change sign on

.x0 � ı; x0C ı/\Df : (2.3.13)

More specifically, f .x0/ is a local maximum value of f if

f .x/ � f .x0/ (2.3.14)

or a local minimum value of f if

f .x/ � f .x0/ (2.3.15)

for all x in the set (2.3.13). The point x0 is called a local extreme point of f , or, more

specifically, a local maximum or local minimum point of f .

y

x
1 2

2

3 4−1 −1

2

1

Figure 2.3.3
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Example 2.3.5 If

f .x/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1; �1 < x � �1
2

jxj; �1
2
< x � 1

2
;

1p
2

sin
�x

2
; 1

2
< x � 4

(Figure 2.3.3), then 0, 3, and every x in .�1;�1
2
/ are local minimum points of f , while 1,

4, and every x in .�1;�1
2
� are local maximum points.

It is geometrically plausible that if the curve y D f .x/ has a tangent at a local extreme

point of f , then the tangent must be horizontal; that is, have zero slope. (For example, in

Figure 2.3.3, see x D 1, x D 3, and every x in .�1;�1=2/.) The following theorem shows

that this must be so.

Theorem 2.3.7 If f is differentiable at a local extreme point x0 2 D0
f
; then f 0.x0/ D 0:

Proof We will show that x0 is not a local extreme point of f if f 0.x0/ ¤ 0. From

Lemma 2.3.2,
f .x/ � f .x0/

x � x0

D f 0.x0/C E.x/; (2.3.16)

where limx!x0
E.x/ D 0. Therefore, if f 0.x0/ ¤ 0, there is a ı > 0 such that

jE.x/j < jf 0.x0/j if jx � x0j < ı;

and the right side of (2.3.16) must have the same sign as f 0.x0/ for jx � x0j < ı. Since

the same is true of the left side, f .x/ � f .x0/ must change sign in every neighborhood of

x0 (since x � x0 does). Therefore, neither (2.3.14) nor (2.3.15) can hold for all x in any

interval about x0.

If f 0.x0/ D 0, we say that x0 is a critical point of f . Theorem 2.3.7 says that every

local extreme point of f at which f is differentiable is a critical point of f . The converse

is false. For example, 0 is a critical point of f .x/ D x3, but not a local extreme point.

Rolle’s Theorem

The use of Theorem 2.3.7 for finding local extreme points is covered in calculus, so we will

not pursue it here. However, we will use Theorem 2.3.7 to prove the following fundamental

theorem, which says that if a curve y D f .x/ intersects a horizontal line at x D a and

x D b and has a tangent at .x; f .x// for every x in .a; b/, then there is a point c in .a; b/

such that the tangent to the curve at .c; f .c// is horizontal (Figure 2.3.4).
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y

x
bca

Figure 2.3.4

Theorem 2.3.8 (Rolle’s Theorem) Suppose that f is continuous on the closed

interval Œa; b� and differentiable on the open interval .a; b/; and f .a/ D f .b/: Then

f 0.c/ D 0 for some c in the open interval .a; b/:

Proof Since f is continuous on Œa; b�, f attains a maximum and a minimum value on

Œa; b� (Theorem 2.2.9). If these two extreme values are the same, then f is constant on

.a; b/, so f 0.x/ D 0 for all x in .a; b/. If the extreme values differ, then at least one must

be attained at some point c in the open interval .a; b/, and f 0.c/ D 0, by Theorem 2.3.7.

Intermediate Values of Derivatives

A derivative may exist on an interval Œa; b� without being continuous on Œa; b�. Neverthe-

less, an intermediate value theorem similar to Theorem 2.2.10 applies to derivatives.

Theorem 2.3.9 (Intermediate Value Theorem for Derivatives) Suppose

that f is differentiable on Œa; b�; f 0.a/ ¤ f 0.b/; and � is between f 0.a/ and f 0.b/: Then

f 0.c/ D � for some c in .a; b/:

Proof Suppose first that

f 0.a/ < � < f 0.b/ (2.3.17)

and define

g.x/ D f .x/� �x:

Then

g0.x/ D f 0.x/� �; a � x � b; (2.3.18)

and (2.3.17) implies that

g0.a/ < 0 and g0.b/ > 0: (2.3.19)

Since g is continuous on Œa; b�, g attains a minimum at some point c in Œa; b�. Lemma 2.3.2

and (2.3.19) imply that there is a ı > 0 such that

g.x/ < g.a/; a < x < a C ı; and g.x/ < g.b/; b � ı < x < b

http://www-history.mcs.st-and.ac.uk/Mathematicians/Rolle.html
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(Exercise 2.3.3), and therefore c ¤ a and c ¤ b. Hence, a < c < b, and therefore

g0.c/ D 0, by Theorem 2.3.7. From (2.3.18), f 0.c/ D �.

The proof for the case where f 0.b/ < � < f 0.a/ can be obtained by applying this result

to �f .

Mean Value Theorems

Theorem 2.3.10 (Generalized Mean Value Theorem) If f and g are con-

tinuous on the closed interval Œa; b� and differentiable on the open interval .a; b/; then

Œg.b/ � g.a/�f 0.c/ D Œf .b/� f .a/�g0.c/ (2.3.20)

for some c in .a; b/:

Proof The function

h.x/ D Œg.b/ � g.a/�f .x/ � Œf .b/� f .a/�g.x/
is continuous on Œa; b� and differentiable on .a; b/, and

h.a/ D h.b/ D g.b/f .a/ � f .b/g.a/:
Therefore, Rolle’s theorem implies that h0.c/ D 0 for some c in .a; b/. Since

h0.c/ D Œg.b/ � g.a/�f 0.c/ � Œf .b/ � f .a/�g0.c/;

this implies (2.3.20).

The following special case of Theorem 2.3.10 is important enough to be stated separately.

Theorem 2.3.11 (Mean Value Theorem) If f is continuous on the closed

interval Œa; b� and differentiable on the open interval .a; b/; then

f 0.c/ D f .b/� f .a/
b � a

for some c in .a; b/:

Proof Apply Theorem 2.3.10 with g.x/ D x.

Theorem 2.3.11 implies that the tangent to the curve y D f .x/ at .c; f .c// is parallel to

the line connecting the points .a; f .a// and .b; f .b// on the curve (Figure 2.3.5, page 84).

Consequences of the Mean Value Theorem

If f is differentiable on .a; b/ and x1, x2 2 .a; b/ then f is continuous on the closed

interval with endpoints x1 and x2 and differentiable on its interior. Hence, the mean value

theorem implies that

f .x2/ � f .x1/ D f 0.c/.x2 � x1/

for some c between x1 and x2. (This is true whether x1 < x2 or x2 < x1.) The next three

theorems follow from this.
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Theorem 2.3.12 If f 0.x/ D 0 for all x in .a; b/; then f is constant on .a; b/:

Theorem 2.3.13 If f 0 exists and does not change sign on .a; b/; then f is monotonic

on .a; b/ W increasing; nondecreasing; decreasing; or nonincreasing as

f 0.x/ > 0; f 0.x/ � 0; f 0.x/ < 0; or f 0.x/ � 0;

respectively; for all x in .a; b/:

Theorem 2.3.14 If

jf 0.x/j �M; a < x < b;

then

jf .x/� f .x0/j �M jx � x0j; x; x0 2 .a; b/: (2.3.21)

A function that satisfies an inequality like (2.3.21) for all x and x0 in an interval is said

to satisfy a Lipschitz condition on the interval.

y

x
bca

y = f (x)f (b)

f (c)

f (a)

Figure 2.3.5

2.3 Exercises

1. Prove that a function f is differentiable at x0 if and only if

lim
x!x0

f .x/ � f .x0/ �m.x � x0/

x � x0

D 0

for some constant m. In this case, f 0.x0/ D m.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Lipschitz.html
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2. Prove: If f is defined on a neighborhood of x0, then f is differentiable at x0 if and

only if the discontinuity of

h.x/ D f .x/ � f .x0/

x � x0

at x0 is removable.

3. Use Lemma 2.3.2 to prove that if f 0.x0/ > 0, there is a ı > 0 such that

f .x/ < f .x0/ if x0 � ı < x < x0 and f .x/ > f .x0/ if x0 < x < x0 C ı:

4. Suppose that p is continuous on .a; c� and differentiable on .a; c/, while q is con-

tinuous on Œc; b/ and differentiable on .c; b/. Let

f .x/ D
(
p.x/; a < x � c;

q.x/; c < x < b:

(a) Show that

f 0.x/ D
(
p0.x/; a < x < c;

q0.x/; c < x < b:

(b) Under what additional conditions on p and q does f 0.c/ exist? Prove that

your stated conditions are necessary and sufficient.

5. Find all derivatives of f .x/ D xn�1jxj, where n is a positive integer.

6. Suppose that f 0.0/ exists and f .xC y/ D f .x/f .y/ for all x and y. Prove that f 0

exists for all x.

7. Suppose that c0.0/ D a and s0.0/ D b where a2 C b2 ¤ 0, and

c.x C y/ D c.x/c.y/ � s.x/s.y/
s.x C y/ D s.x/c.y/ C c.x/s.y/

for all x and y.

(a) Show that c and s are differentiable on .�1;1/, and find c0 and s0 in terms

of c, s, a, and b.

(b) (For those who have studied differential equations.) Find c and s explicitly.

8. (a) Suppose that f and g are differentiable at x0, f .x0/ D g.x0/ D 0, and

g0.x0/ ¤ 0. Without using L’Hospital’s rule, show that

lim
x!x0

f .x/

g.x/
D f 0.x0/

g0.x0/
:

(b) State the corresponding results for one-sided limits.

9. Prove Theorem 2.3.4(a).
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10. Prove Theorem 2.3.4(b).

11. Prove Theorem 2.3.4(d).

12. Prove by induction: If n � 1 and f .n/.x0/ and g.n/.x0/ exist, then so does .fg/.n/.x0/,

and

.fg/.n/.x0/ D
nX

mD0

 
n

m

!
f .m/.x0/g

.n�m/.x0/:

HINT: See Exercise 1.2.19: This is Leibniz’s rule for differentiating a product.

13. What is wrong with the “proof” of the chain rule suggested after Example 2.3.3?

Correct it.

14. Suppose that f is continuous and increasing on Œa; b�. Let f be differentiable at a

point x0 in .a; b/, with f 0.x0/ ¤ 0. If g is the inverse of f Theorem 2.2.15), show

that g0.f .x0// D 1=f 0.x0/.

15. (a) Show that f 0
C.a/ D f 0.aC/ if both quantities exist.

(b) Example 2.3.4 shows that f 0
C.a/ may exist even if f 0.aC/ does not. Give an

example where f 0.aC/ exists but f 0
C.a/ does not.

(c) Complete the following statement so it becomes a theorem, and prove the

theorem: “If f 0.aC/ exists and f is at a, then f 0
C.a/ D f 0.aC/.”

16. Show that f .aC/ and f .b�/ exist (finite) if f 0 is bounded on .a; b/. HINT: See

Exercise 2.1.38:

17. Suppose that f is continuous on Œa; b�, f 0
C.a/ exists, and � is between f 0

C.a/ and

.f .b/ � f .a//=.b � a/. Show that f .c/� f .a/ D �.c � a/ for some c in .a; b/.

18. Suppose that f is continuous on Œa; b�, f 0
C.a/ < � < f

0
�.b/, and

.f .b/ � f .a//=.b � a/ ¤ �:

Show that either f .c/ � f .a/ D �.c � a/ or f .c/ � f .b/ D �.c � b/ for some c

in .a; b/.

19. Let

f .x/ D sin x

x
; x ¤ 0:

(a) Define f .0/ so that f is continuous at x D 0. HINT: Use Exercise 2.3.8:

(b) Show that if x is a local extreme point of f , then

jf .x/j D .1C x2/�1=2:

HINT: Express sinx and cos x in terms of f .x/ and f 0.x/; and add their

squares to obtain a useful identity:

(c) Show that jf .x/j � 1 for all x. For what value of x is equality attained?

http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html
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20. Let n be a positive integer and

f .x/ D
sinnx

n sinx
; x ¤ k� (k D integer):

(a) Define f .k�/ so that f is continuous at k� . HINT: Use Exercise 2.3.8:

(b) Show that if x is a local extreme point of f , then

jf .x/j D
�
1C .n2 � 1/ sin2 x

��1=2
:

HINT: Express sinnx and cos nx in terms of f .x/ and f 0.x/; and add their

squares to obtain a useful identity:

(c) Show that jf .x/j � 1 for all x. For what values of x is equality attained?

21. We say that f has at least n zeros, counting multiplicities, on an interval I if there

are distinct points x1, x2, . . . , xp in I such that

f .j /.xi / D 0; 0 � j � ni � 1; 1 � i � p;

and n1 C � � � C np D n. Prove: If f is differentiable and has at least n zeros,

counting multiplicities, on an interval I , then f 0 has at least n � 1 zeros, counting

multiplicities, on I .

22. Give an example of a function f such that f 0 exists on an interval .a; b/ and has a

jump discontinuity at a point x0 in .a; b/, or show that there is no such function.

23. Let x1, x2, . . . , xn and y1, y2, . . . , yn be in .a; b/ and yi < xi , 1 � i � n. Show

that if f is differentiable on .a; b/, then

nX

iD1

Œf .xi /� f .yi /� D f 0.c/
nX

iD1

.xi � yi /

for some c in .a; b/.

24. Prove or give a counterexample: If f is differentiable on a neighborhood of x0, then

f satisfies a Lipschitz condition on some neighborhood of x0.

25. Let

f 00.x/C p.x/f .x/ D 0 and g00.x/C p.x/g.x/ D 0; a < x < b:

(a) Show thatW D f 0g � fg0 is constant on .a; b/.

(b) Prove: If W ¤ 0 and f .x1/ D f .x2/ D 0 where a < x1 < x2 < b, then

g.c/ D 0 for some c in .x1; x2/. HINT: Consider f=g:
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26. Suppose that we extend the definition of differentiability by saying that f is differ-

entiable at x0 if

f 0.x0/ D lim
x!x0

f .x/ � f .x0/

x � x0

exists in the extended reals. Show that if

f .x/ D
(p

x; x � 0;
�
p
�x; x < 0;

then f 0.0/ D1.

27. Prove or give a counterexample: If f is differentiable at x0 in the extended sense of

Exercise 2.3.26, then f is continuous at x0.

28. Assume that f is differentiable on .�1;1/ and x0 is a critical point of f .

(a) Let h.x/ D f .x/g.x/, where g is differentiable on .�1;1/ and

f .x0/g
0.x0/ ¤ 0:

Show that the tangent line to the curve y D h.x/ at .x0; h.x0// and the tangent

line to the curve y D g.x/ at .x0; g.x0/ intersect on the x-axis.

(b) Suppose that f .x0/ ¤ 0. Let h.x/ D f .x/.x � x1/, where x1 is arbitrary.

Show that the tangent line to the curve y D h.x/ at .x0; h.x0// intersects the

x-axis at x D x1.

(c) Suppose that f .x0/ ¤ 0. Let h.x/ D f .x/.x � x1/
2, where x1 ¤ x0. Show

that the tangent line to the curve y D h.x/ at .x0; h.x0// intersects the x-axis

at the midpoint of the interval with endpoints x0 and x1.

(d) Let h.x/ D .ax2 C bx C c/.x � x1/, where a ¤ 0 and b2 � 4ac ¤ 0. Let

x0 D �
b

2a
. Show that the tangent line to the curve y D h.x/ at .x0; h.x0//

intersects the x-axis at x D x1.

(e) Let h be a cubic polynomial with zeros ˛, ˇ, and  , where ˛ and ˇ are distinct

and  is real. Let x0 D
˛C ˇ
2

. Show that the tangent line to the curve

y D h.x/ at .x0; h.x0// intersects the axis at x D  .

2.4 L’HOSPITAL’S RULE

The method of Theorem 2.1.4 for finding limits of the sum, difference, product, and quo-

tient of functions breaks down in connection with indeterminate forms. The generalized

mean value theorem (Theorem 2.3.10) leads to a method for evaluating limits of indetermi-

nate forms.

Theorem 2.4.1 (L’Hospital’s Rule) Suppose that f and g are differentiable

and g0 has no zeros on .a; b/: Let

lim
x!b�

f .x/ D lim
x!b�

g.x/ D 0 (2.4.1)

http://www-history.mcs.st-and.ac.uk/Mathematicians/De_L'Hopital.html
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or

lim
x!b�

f .x/ D ˙1 and lim
x!b�

g.x/ D ˙1; (2.4.2)

and suppose that

lim
x!b�

f 0.x/

g0.x/
D L .finite or˙1/: (2.4.3)

Then

lim
x!b�

f .x/

g.x/
D L: (2.4.4)

Proof We prove the theorem for finite L and leave the case where L D ˙1 to you

(Exercise 2.4.1).

Suppose that � > 0. From (2.4.3), there is an x0 in .a; b/ such that

ˇ̌
ˇ̌f

0.c/

g0.c/
�L

ˇ̌
ˇ̌ < � if x0 < c < b: (2.4.5)

Theorem 2.3.10 implies that if x and t are in Œx0; b/, then there is a c between them, and

therefore in .x0; b/, such that

Œg.x/ � g.t/�f 0.c/ D Œf .x/ � f .t/�g0.c/: (2.4.6)

Since g0 has no zeros in .a; b/, Theorem 2.3.11 implies that

g.x/ � g.t/ ¤ 0 if x; t 2 .a; b/:

This means that g cannot have more than one zero in .a; b/. Therefore, we can choose x0

so that, in addition to (2.4.5), g has no zeros in Œx0; b/. Then (2.4.6) can be rewritten as

f .x/ � f .t/
g.x/ � g.t/

D f 0.c/

g0.c/
;

so (2.4.5) implies that

ˇ̌
ˇ̌f .x/ � f .t/
g.x/ � g.t/

� L
ˇ̌
ˇ̌ < � if x; t 2 Œx0; b/: (2.4.7)

If (2.4.1) holds, let x be fixed in Œx0; b/, and consider the function

G.t/ D f .x/ � f .t/
g.x/ � g.t/

�L:

From (2.4.1),

lim
t!b�

f .t/ D lim
t!b�

g.t/ D 0;

so

lim
t!b�

G.t/ D f .x/

g.x/
�L: (2.4.8)
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Since

jG.t/j < � if x0 < t < b;

because of (2.4.7), (2.4.8) implies that
ˇ̌
ˇ̌f .x/
g.x/

�L
ˇ̌
ˇ̌ � �:

This holds for all x in .x0; b/, which implies (2.4.4).

The proof under assumption (2.4.2) is more complicated. Again choose x0 so that (2.4.5)

holds and g has no zeros in Œx0; b/. Letting t D x0 in (2.4.7), we see that
ˇ̌
ˇ̌f .x/ � f .x0/

g.x/ � g.x0/
�L

ˇ̌
ˇ̌ < � if x0 � x < b: (2.4.9)

Since limx!b� f .x/ D ˙1, we can choose x1 > x0 so that f .x/ ¤ 0 and f .x/ ¤ f .x0/

if x1 < x < b. Then the function

u.x/ D 1 � g.x0/=g.x/

1 � f .x0/=f .x/

is defined and nonzero if x1 < x < b, and

lim
x!b�

u.x/ D 1; (2.4.10)

because of (2.4.2).

Since
f .x/ � f .x0/

g.x/ � g.x0/
D f .x/

g.x/

1 � f .x0/=f .x/

1 � g.x0/=g.x/
D f .x/

g.x/u.x/
;

(2.4.9) implies that ˇ̌
ˇ̌ f .x/

g.x/u.x/
� L

ˇ̌
ˇ̌ < � if x1 < x < b;

which can be rewritten as
ˇ̌
ˇ̌f .x/
g.x/

� Lu.x/
ˇ̌
ˇ̌ < �ju.x/j if x1 < x < b: (2.4.11)

From this and the triangle inequality,
ˇ̌
ˇ̌f .x/
g.x/

�L
ˇ̌
ˇ̌ �

ˇ̌
ˇ̌f .x/
g.x/

�Lu.x/
ˇ̌
ˇ̌ C jLu.x/ � Lj � �ju.x/j C jLj ju.x/ � 1j: (2.4.12)

Because of (2.4.10), there is a point x2 in .x1; b/ such that

ju.x/ � 1j < � and therefore ju.x/j < 1C � if x2 < x < b:

This, (2.4.11), and (2.4.12) imply that
ˇ̌
ˇ̌f .x/
g.x/

�L
ˇ̌
ˇ̌ < �.1C �/C jLj� if x2 < x < b;
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which proves (2.4.4) under assumption (2.4.2).

Theorem 2.4.1 and the proof given here remain valid if b D 1 and “x ! b�” is

replaced by “x ! 1” throughout. Only minor changes in the proof are required to show

that similar theorems are valid for limits from the right, limits at �1, and ordinary (two-

sided) limits. We will take these as given.

The Indeterminate Forms 0=0 and 1=1

We say that f=g is of the form 0=0 as x ! b� if

lim
x!b�

f .x/ D lim
x!b�

g.x/ D 0;

or of the form1=1 as x ! b� if

lim
x!b�

f .x/ D ˙1

and

lim
x!b�

g.x/ D ˙1:

The corresponding definitions for x ! bC and x ! ˙1 are similar. If f=g is of one of

these forms as x ! b� and as x ! bC, then we say that it is of that form as x ! b.

Example 2.4.1 The ratio sinx=x is of the form 0=0 as x ! 0, and L’Hospital’s rule

yields

lim
x!0

sinx

x
D lim

x!0

cos x

1
D 1:

Example 2.4.2 The ratio e�x=x is of the form1=1 as x ! �1, and L’Hospital’s

rule yields

lim
x!�1

e�x

x
D lim

x!�1
�e�x

1
D �1:

Example 2.4.3 Using L’Hospital’s rule may lead to another indeterminate form; thus,

lim
x!1

ex

x2
D lim

x!1
ex

2x

if the limit on the right exists in the extended reals. Applying L’Hospital’s rule again yields

lim
x!1

ex

2x
D lim

x!1
ex

2
D1:

Therefore,

lim
x!1

ex

x2
D1:

More generally,

lim
x!1

ex

x˛
D1

for any real number ˛ (Exercise 2.4.33).
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Example 2.4.4 Sometimes it pays to combine L’Hospital’s rule with other manipula-

tions. For example,

lim
x!0

4 � 4 cos x � 2 sin2 x

x4
D lim

x!0

4 sinx � 4 sinx cos x

4x3

D
�

lim
x!0

sinx

x

��
lim
x!0

1 � cos x

x2

�

D
�

lim
x!0

sinx

x

��
lim
x!0

sin x

2x

�

D 1

2

�
lim
x!0

sin x

x

�2

D 1

2
.1/2 D 1

2
(Example 2.4.1):

As another example, L’Hospital’s rule yields

lim
x!0

e�x2

log.1C x/
x

D lim
x!0

�2xe�x2

log.1C x/C e�x2

.1C x/�1

1
D 1:

However, it is better to remove the “determinate” part of the ratio before using L’Hospital’s

rule:

lim
x!0

e�x2

log.1C x/
x

D
�

lim
x!0

e�x2

��
lim
x!0

log.1C x/
x

�

D .1/ lim
x!0

log.1C x/
x

D lim
x!0

1=.1C x/
1

D 1:

In using L’Hospital’s rule we usually write, for example,

lim
x!b

f .x/

g.x/
D lim

x!b

f 0.x/

g0.x/
(2.4.13)

and then try to find the limit on the right. This is convenient, but technically incorrect, since

(2.4.13) is true only if the limit on the right exists in the extended reals. It may happen that

the limit on the left exists but the one on the right does not. In this case, (2.4.13) is incorrect.

Example 2.4.5 If

f .x/ D x � x2 sin
1

x
and g.x/ D sin x;

then

f 0.x/ D 1 � 2x sin
1

x
C cos

1

x
and g0.x/ D cos x:
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Therefore, limx!0 f
0.x/=g0.x/ does not exist. However,

lim
x!0

f .x/

g.x/
D lim

x!0

1 � x sin.1=x/

.sin x/=x
D 1

1
D 1:

The Indeterminate Form 0 � 1

We say that a product fg is of the form 0 � 1 as x ! b� if one of the factors approaches

0 and the other approaches ˙1 as x ! b�. In this case, it may be useful to apply

L’Hospital’s rule after writing

f .x/g.x/ D f .x/

1=g.x/
or f .x/g.x/ D g.x/

1=f .x/
;

since one of these ratios is of the form 0=0 and the other is of the form1=1 as x ! b�.

Similar statements apply to limits as x ! bC, x ! b, and x !˙1.

Example 2.4.6 The product x logx is of the form 0 � 1 as x ! 0C. Converting it to

an1=1 form yields

lim
x!0C

x logx D lim
x!0C

logx

1=x

D lim
x!0C

1=x

�1=x2

D � lim
x!0C

x D 0:

Converting to a 0=0 form leads to a more complicated problem:

lim
x!0C

x logx D lim
x!0C

x

1= logx

D lim
x!0C

1

�1=x.logx/2

D � lim
x!0C

x.logx/2 D ‹

Example 2.4.7 The product x log.1C1=x/ is of the form 0�1 as x !1. Converting

it to a 0=0 form yields

lim
x!1

x log.1C 1=x/D lim
x!1

log.1C 1=x/
1=x

D lim
x!1

Œ1=.1C 1=x/� .�1=x2/

�1=x2

D lim
x!1

1

1C 1=x D 1:
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In this case, converting to an1=1 form complicates the problem:

lim
x!1

x log.1C 1=x/D lim
x!1

x

1= log.1C 1=x/

D lim
x!1

1
� �1
Œlog.1C 1=x/�2

�� �1=x2

1C 1=x

�

D lim
x!1

x.x C 1/Œlog.1C 1=x/�2 D ‹

The Indeterminate Form 1�1

A difference f � g is of the form1�1 as x ! b� if

lim
x!b�

f .x/ D lim
x!b�

g.x/ D ˙1:

In this case, it may be possible to manipulate f � g into an expression that is no longer

indeterminate, or is of the form 0=0 or1=1 as x ! b�. Similar remarks apply to limits

as x ! bC, x ! b, or x ! ˙1.

Example 2.4.8 The difference

sin x

x2
� 1
x

is of the form1�1 as x ! 0, but it can be rewritten as the 0=0 form

sinx � x
x2

:

Hence,

lim
x!0

�
sinx

x2
� 1
x

�
D lim

x!0

sinx � x
x2

D lim
x!0

cos x � 1
2x

D lim
x!0

� sinx

2
D 0:

Example 2.4.9 The difference

x2 � x
is of the form1�1 as x !1. Rewriting it as

x2

�
1 � 1

x

�
;

which is no longer indeterminate as x !1, we find that

lim
x!1

.x2 � x/ D lim
x!1

x2

�
1 � 1

x

�

D
�

lim
x!1

x2
�

lim
x!1

�
1 � 1

x

�

D .1/.1/ D 1
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The Indeterminate Forms 00, 11, and 10

The function f g is defined by

f .x/g.x/ D eg.x/ log f .x/ D exp.g.x/ log f .x//

for all x such that f .x/ > 0. Therefore, if f and g are defined and f .x/ > 0 on an interval

.a; b/, Exercise 2.2.22 implies that

lim
x!b�

Œf .x/�g.x/ D exp

�
lim

x!b�
g.x/ log f .x/

�
(2.4.14)

if limx!b� g.x/ log f .x/ exists in the extended reals. (If this limit is˙1 then (2.4.14) is

valid if we define e�1 D 0 and e1 D 1.) The product g logf can be of the form 0 � 1
in three ways as x ! b�:

(a) If limx!b� g.x/ D 0 and limx!b� f .x/ D 0.

(b) If limx!b� g.x/ D ˙1 and limx!b� f .x/ D 1.

(c) If limx!b� g.x/ D 0 and limx!b� f .x/ D 1.

In these three cases, we say that f g is of the form 00, 11, and10, respectively, as x !
b�. Similar definitions apply to limits as x ! bC, x ! b, and x ! ˙1.

Example 2.4.10 The function xx is of the form 00 as x ! 0C. Since

xx D ex log x

and limx!0C x logx D 0 (Example 2.4.6),

lim
x!0C

xx D e0 D 1:

Example 2.4.11 The function x1=.x�1/ is of the form 11 as x ! 1. Since

x1=.x�1/ D exp

�
logx

x � 1

�

and

lim
x!1

logx

x � 1
D lim

x!1

1=x

1
D 1;

it follows that

lim
x!1

x1=.x�1/ D e1 D e:

Example 2.4.12 The function x1=x is of the form10 as x !1. Since

x1=x D exp

�
logx

x

�

and

lim
x!1

logx

x
D lim

x!1
1=x

1
D 0;
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it follows that

lim
x!1

x1=x D e0 D 1:

2.4 Exercises

1. Prove Theorem 2.4.1 for the case where limx!b� f
0.x/=g0.x/ D ˙1.

In Exercises 2.4.2–2.4.40, find the indicated limits.

2. lim
x!0

tan�1 x

sin�1 x

3. lim
x!0

1 � cos x

log.1C x2/
4. lim

x!0C

1C cos x

ex � 1

5. lim
x!�

sin nx

sinx
6. lim

x!0

log.1C x/
x

7. lim
x!1

ex sin e�x2

8. lim
x!1

x sin.1=x/ 9. lim
x!1

p
x.e�1=x � 1/ 10. lim

x!0C
tan x logx

11. lim
x!�

sinx log.j tan xj/ 12. lim
x!0C

�
1

x
C log.tan x/

�

13. lim
x!1

.
p
x C 1 �

p
x/ 14. lim

x!0

�
1

ex � 1
� 1
x

�

15. lim
x!0

.cot x � csc x/ 16. lim
x!0

�
1

sinx
� 1
x

�

17. lim
x!�
j sinxjtan x 18. lim

x!�=2
j tan xjcosx

19. lim
x!0
j sinxjx 20. lim

x!0
.1C x/1=x

21. lim
x!1

xsin.1=x/ 22. lim
x!0

�
x

1 � cos x
� 2
x

�

23. lim
x!0C

x˛ logx 24. lim
x!e

log.log x/

sin.x � e/

25. lim
x!1

�
x C 1
x � 1

�p
x2�1

26. lim
x!1C

�
x C 1
x � 1

�p
x2�1

27. lim
x!1

.log x/ˇ

x
28. lim

x!1
.cosh x � sinh x/

29. lim
x!1

.x˛ � logx/
30. lim

x!�1
ex2

sin.ex/
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31. lim
x!1

x.x C 1/ Œlog.1C 1=x/�2 32. lim
x!0

sinx � x C x3=6

x5

33. lim
x!1

ex

x˛

34. lim
x!3�=2�

etanx cos x

35. lim
x!1C

.logx/˛ log.log x/ 36. lim
x!1

xx

x logx

37. lim
x!�=2

.sin x/tan x

38. lim
x!0

ex �
nX

rD0

xrrŠ

xn
.n D integer � 1/

39. lim
x!0

sinx �
nX

rD0

.�1/r x2rC1

.2r C 1/Š
x2nC1

.n D integer � 0/

40. lim
x!0

e�1=x2

xn
D 0 (n D integer)

41. (a) Prove: If f is continuous at x0 and limx!x0
f 0.x/ exists, then f 0.x0/ exists

and f 0 is continuous at x0.

(b) Give an example to show that it is necessary to assume in (a) that f is con-

tinuous at x0.

42. The iterated logarithms are defined by L0.x/ D x and

Ln.x/ D log.Ln�1.x//; x > an; n � 1;

where a1 D 0 and an D ean�1; n � 1. Show that

(a) Ln.x/ D Ln�1.logx/; x > an; n � 1.

(b) Ln�1.anC/ D 0 and Ln.anC/ D �1.

(c) lim
x!anC

.Ln�1.x//
˛Ln.x/ D 0 if ˛ > 0 and n � 1.

(d) lim
x!1

.Ln.x//
˛=Ln�1.x/ D 0 if ˛ is arbitrary and n � 1.

43. Let f be positive and differentiable on .0;1/, and suppose that

lim
x!1

f 0.x/

f .x/
D L; where 0 < L � 1:

Define f0.x/ D x and

fn.x/ D f .fn�1.x// ; n � 1:

Use L’Hospital’s rule to show that

lim
x!1

.fn.x//
˛

fn�1.x/
D1 if ˛ > 0 and n � 1:
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44. Let f be differentiable on some deleted neighborhoodN of x0, and suppose that f

and f 0 have no zeros in N . Find

(a) lim
x!x0

jf .x/jf .x/ if lim
x!x0

f .x/ D 0;

(b) lim
x!x0

jf .x/j1=.f .x/�1/ if lim
x!x0

f .x/ D 1;

(c) lim
x!x0

jf .x/j1=f .x/ if limx!x0
f .x/ D1.

45. Suppose that f and g are differentiable and g0 has no zeros on .a; b/. Suppose also

that limx!b� f 0.x/=g0.x/ D L and either

lim
x!b�

f .x/ D lim
x!b�

g.x/ D 0

or

lim
x!b�

f .x/ D1 and lim
x!b�

g.x/ D ˙1:

Find limx!b�.1C f .x//1=g.x/ .

46. We distinguish between1�1 .D 1/ and .�1/1 .D �1/ and between1C1
.D 1/ and �1 � 1 .D �1/. Why don’t we distinguish between 0 � 1 and

0 � .�1/,1�1 and �1C1,1=1 and �1=1, and 11 and 1�1?

2.5 TAYLOR’S THEOREM

A polynomial is a function of the form

p.x/ D a0 C a1.x � x0/C � � � C an.x � x0/
n; (2.5.1)

where a0, . . . , an and x0 are constants. Since it is easy to calculate the values of a polyno-

mial, considerable effort has been devoted to using them to approximate more complicated

functions. Taylor’s theorem is one of the oldest and most important results on this question.

The polynomial (2.5.1) is said to be written in powers of x � x0, and is of degree n if

an ¤ 0. If we wish to leave open the possibility that an D 0, we say that p is of degree

� n. In particular, a constant polynomial p.x/ D a0 is of degree zero if a0 ¤ 0. If

a0 D 0, so that p vanishes identically, then p has no degree according to our definition,

which requires at least one coefficient to be nonzero. For convenience we say that the

identically zero polynomial p has degree �1. (Any negative number would do as well as

�1. The point is that with this convention, the statement that p is a polynomial of degree

� n includes the possibility that p is identically zero.)

Taylor Polynomials

We saw in Lemma 2.3.2 that if f is differentiable at x0, then

f .x/ D f .x0/C f 0.x0/.x � x0/C E.x/.x � x0/;
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where

lim
x!x0

E.x/ D 0:

To generalize this result, we first restate it: the polynomial

T1.x/ D f .x0/C f 0.x0/.x � x0/;

which is of degree � 1 and satisfies

T1.x0/ D f .x0/; T 0
1.x0/ D f 0.x0/;

approximates f so well near x0 that

lim
x!x0

f .x/� T1.x/

x � x0

D 0: (2.5.2)

Now suppose that f has n derivatives at x0 and Tn is the polynomial of degree � n

such that

T .r/
n .x0/ D f .r/.x0/; 0 � r � n: (2.5.3)

How well does Tn approximate f near x0?

To answer this question, we must first find Tn. Since Tn is a polynomial of degree � n,

it can be written as

Tn.x/ D a0 C a1.x � x0/C � � � C an.x � x0/
n; (2.5.4)

where a0, . . . , an are constants. Differentiating (2.5.4) yields

T .r/
n .x0/ D rŠar ; 0 � r � n;

so (2.5.3) determines ar uniquely as

ar D
f .r/.x0/

rŠ
; 0 � r � n:

Therefore,

Tn.x/ D f .x0/C
f 0.x0/

1Š
.x � x0/C � � � C

f .n/.x0/

nŠ
.x � x0/

n

D
nX

rD0

f .r/.x0/

rŠ
.x � x0/

r :

We call Tn the nth Taylor polynomial of f about x0.

The following theorem describes how Tn approximates f near x0.

Theorem 2.5.1 If f .n/.x0/ exists for some integer n � 1 and Tn is the nth Taylor

polynomial of f about x0; then

lim
x!x0

f .x/ � Tn.x/

.x � x0/n
D 0: (2.5.5)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
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Proof The proof is by induction. Let Pn be the assertion of the theorem. From (2.5.2)

we know that (2.5.5) is true if n D 1; that is, P1 is true. Now suppose that Pn is true for

some integer n � 1, and f .nC1/ exists. Since the ratio

f .x/ � TnC1.x/

.x � x0/nC1

is indeterminate of the form 0=0 as x ! x0, L’Hospital’s rule implies that

lim
x!x0

f .x/ � TnC1.x/

.x � x0/nC1
D 1

nC 1
lim

x!x0

f 0.x/ � T 0
nC1.x/

.x � x0/n
(2.5.6)

if the limit on the right exists. But f 0 has an nth derivative at x0, and

T 0
nC1.x/ D

nX

rD0

f .rC1/.x0/

rŠ
.x � x0/

r

is the nth Taylor polynomial of f 0 about x0. Therefore, the induction assumption, applied

to f 0, implies that

lim
x!x0

f 0.x/ � T 0
nC1.x/

.x � x0/n
D 0:

This and (2.5.6) imply that

lim
x!x0

f .x/� TnC1.x/

.x � x0/nC1
D 0;

which completes the induction.

It can be shown (Exercise 2.5.8) that if

pn D a0 C a1.x � x0/C � � � C an.x � x0/
n

is a polynomial of degree � n such that

lim
x!x0

f .x/ � pn.x/

.x � x0/n
D 0;

then

ar D
f .r/.x0/

rŠ
I

that is, pn D Tn. Thus, Tn is the only polynomial of degree � n that approximates f near

x0 in the manner indicated in (2.5.5).

Theorem 2.5.1 can be restated as a generalization of Lemma 2.3.2.

Lemma 2.5.2 If f .n/.x0/ exists; then

f .x/ D
nX

rD0

f .r/.x0/

rŠ
.x � x0/

r C En.x/.x � x0/
n; (2.5.7)

where

lim
x!x0

En.x/ D En.x0/ D 0:
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Proof Define

En.x/ D

8
<
:

f .x/� Tn.x/

.x � x0/n
; x 2 Df � fx0g;

0; x D x0:

Then (2.5.5) implies that limx!x0
En.x/ D En.x0/ D 0, and it is straightforward to verify

(2.5.7).

Example 2.5.1 If f .x/ D ex, then f .n/.x/ D ex. Therefore, f .n/.0/ D 1 for n � 0,

so the nth Taylor polynomial of f about x0 D 0 is

Tn.x/ D
nX

rD0

xr

rŠ
D 1C x

1Š
C x2

2Š
C � � � C xn

nŠ
: (2.5.8)

Theorem 2.5.1 implies that

lim
x!0

ex �
nX

rD0

xr

rŠ

xn
D 0:

(See also Exercise 2.4.38.)

Example 2.5.2 If f .x/ D logx, then f .1/ D 0 and

f .r/.x/ D .�1/.r�1/ .r � 1/Š
xr

; r � 1;

so the nth Taylor polynomial of f about x0 D 1 is

Tn.x/ D
nX

rD1

.�1/r�1

r
.x � 1/r

if n � 1. (T0 D 0.) Theorem 2.5.1 implies that

lim
x!1

logx �
nX

rD1

.�1/r�1r.x � 1/r

.x � 1/n D 0; n � 1:

Example 2.5.3 If f .x/ D .1C x/q , then

f 0.x/ D q.1C x/q�1

f 00.x/ D q.q � 1/.1C x/q�2

:::

f .n/.x/ D q.q � 1/ � � � .q � nC 1/.1C x/q�n:
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If we define
 
q

0

!
D 1 and

 
q

n

!
D q.q � 1/ � � � .q � nC 1/

nŠ
; n � 1;

then

f .n/.0/

nŠ
D
 
q

n

!
;

and the nth Taylor polynomial of f about 0 can be written as

Tn.x/ D
nX

rD0

 
q

r

!
xr : (2.5.9)

Theorem 2.5.1 implies that

lim
x!0

.1C x/q �
nX

rD0

 
q

r

!
xr

xn
D 0; n � 0:

If q is a nonnegative integer, then

 
q

n

!
is the binomial coefficient defined in Exer-

cise 1.2.19. In this case, we see from (2.5.9) that

Tn.x/ D .1C x/q D f .x/; n � q:

Applications to Finding Local Extrema

Lemma 2.5.2 yields the following theorem.

Theorem 2.5.3 Suppose that f has n derivatives at x0 and n is the smallest positive

integer such that f .n/.x0/ ¤ 0:
(a) If n is odd; x0 is not a local extreme point of f:

(b) If n is even; x0 is a local maximum of f if f .n/.x0/ < 0; or a local mininum of f if

f .n/.x0/ > 0:

Proof Since f .r/.x0/ D 0 for 1 � r � n � 1, (2.5.7) implies that

f .x/ � f .x0/ D
"
f .n/.x0/

nŠ
CEn.x/

#
.x � x0/

n (2.5.10)

in some interval containing x0. Since limx!x0
En.x/ D 0 and f .n/.x0/ ¤ 0, there is a

ı > 0 such that

jEn.x/j <
ˇ̌
ˇ̌
ˇ
f .n/.x0/

nŠ

ˇ̌
ˇ̌
ˇ if jx � x0j < ı:
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This and (2.5.10) imply that
f .x/� f .x0/

.x � x0/n
(2.5.11)

has the same sign as f .n/.x0/ if 0 < jx � x0j < ı. If n is odd the denominator of (2.5.11)

changes sign in every neighborhood of x0, and therefore so must the numerator (since the

ratio has constant sign for 0 < jx � x0j < ı). Consequently, f .x0/ cannot be a local

extreme value of f . This proves (a). If n is even, the denominator of (2.5.11) is positive

for x ¤ x0, so f .x/ � f .x0/ must have the same sign as f .n/.x0/ for 0 < jx � x0j < ı.

This proves (b).

For n D 2,(b) is called the second derivative test for local extreme points.

Example 2.5.4 If f .x/ D ex3

, then f 0.x/ D 3x2ex3

, and 0 is the only critical point

of f . Since

f 00.x/ D .6x C 9x4/ex3

and

f 000.x/ D .6C 54x3 C 27x6/ex3

;

f 00.0/ D 0 and f 000.0/ ¤ 0. Therefore, Theorem 2.5.3 implies that 0 is not a local extreme

point of f . Since f is differentiable everywhere, it has no local maxima or minima.

Example 2.5.5 If f .x/ D sinx2, then f 0.x/ D 2x cos x2, so the critical points of f

are 0 and ˙
p
.k C 1=2/�, k D 0; 1; 2; : : : . Since

f 00.x/ D 2 cos x2 � 4x2 sinx2;

f 00.0/ D 2 and f 00
�
˙
p
.k C 1=2/�/

�
D .�1/kC1.4k C 2/�:

Therefore, Theorem 2.5.3 implies that f attains local minima at 0 and˙
p
.k C 1=2/� for

odd integers k, and local maxima at ˙
p
.k C 1=2/� for even integers k.

Taylor’s theorem

Theorem 2.5.1 implies that the error in approximating f .x/ by Tn.x/ approaches zero

faster than .x � x0/
n as x approaches x0; however, it gives no estimate of the error in

approximating f .x/ by Tn.x/ for a fixed x. For instance, it provides no estimate of the

error in the approximation

e0:1 � T2.0:1/ D 1C
0:1

1Š
C .0:1/2

2Š
D 1:105 (2.5.12)

obtained by setting n D 2 and x D 0:1 in (2.5.8). The following theorem provides a way

of estimating errors of this kind under the additional assumption that f .nC1/ exists in a

neighborhood of x0.
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Theorem 2.5.4 (Taylor’s Theorem) Suppose that f .nC1/ exists on an open in-

terval I about x0; and let x be in I: Then the remainder

Rn.x/ D f .x/ � Tn.x/

can be written as

Rn.x/ D
f .nC1/.c/

.nC 1/Š .x � x0/
nC1;

where c depends upon x and is between x and x0:

This theorem follows from an extension of the mean value theorem that we will prove

below. For now, let us assume that Theorem 2.5.4 is correct, and apply it.

Example 2.5.6 If f .x/ D ex, then f 000.x/ D ex, and Theorem 2.5.4 with n D 2

implies that

ex D 1C x C x2

2Š
C ecx3

3Š
;

where c is between 0 and x. Hence, from (2.5.12),

e0:1 D 1:105C ec.0:1/3

6
;

where 0 < c < 0:1. Since 0 < ec < e0:1, we know from this that

1:105 < e0:1 < 1:105C e0:1.0:1/3

6
:

The second inequality implies that

e0:1

�
1 � .0:1/

3

6

�
< 1:105;

so

e0:1 < 1:1052:

Therefore,

1:105 < e0:1 < 1:1052;

and the error in (2.5.12) is less than 0:0002.

Example 2.5.7 In numerical analysis, forward differences are used to approximate

derivatives. If h > 0, the first and second forward differences with spacing h are defined

by

�f .x/ D f .x C h/ � f .x/
and

�2f .x/ D �Œ�f .x/�D �f .x C h/ ��f .x/
D f .x C 2h/ � 2f .x C h/C f .x/: (2.5.13)

Higher forward differences are defined inductively (Exercise 2.5.18).
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We will find upper bounds for the magnitudes of the errors in the approximations

f 0.x0/ �
�f .x0/

h
(2.5.14)

and

f 00.x0/ �
�2f .x0/

h2
: (2.5.15)

If f 00 exists on an open interval containing x0 and x0 C h, we can use Theorem 2.5.4 to

estimate the error in (2.5.14) by writing

f .x0 C h/ D f .x0/C f 0.x0/hC
f 00.c/h2

2
; (2.5.16)

where x0 < c < x0 C h. We can rewrite (2.5.16) as

f .x0 C h/ � f .x0/

h
� f 0.x0/ D

f 0.c/h

2
;

which is equivalent to
�f .x0/

h
� f 0.x0/ D

f 00.c/h

2
:

Therefore, ˇ̌
ˇ̌�f .x0/

h
� f 0.x0/

ˇ̌
ˇ̌ � M2h

2
;

where M2 is an upper bound for jf 00j on .x0; x0C h/.
If f 000 exists on an open interval containing x0 and x0 C 2h, we can use Theorem 2.5.4

to estimate the error in (2.5.15) by writing

f .x0 C h/ D f .x0/C hf 0.x0/C
h2

2
f 00.x0/C

h3

6
f 000.c0/

and

f .x0 C 2h/D f .x0/C 2hf 0.x0/C 2h2f 00.x0/C
4h3

3
f 000.c1/;

where x0 < c0 < x0 C h and x0 < c1 < x0 C 2h. These two equations imply that

f .x0 C 2h/� 2f .x0 C h/C f .x0/ D h2f 00.x0/C
�
4

3
f 000.c1/�

1

3
f 000.c0/

�
h3;

which can be rewritten as

�2f .x0/

h2
� f 00.x0/ D

�
4

3
f 000.c1/�

1

3
f 000.c0/

�
h;

because of (2.5.13). Therefore,
ˇ̌
ˇ̌�

2f .x0/

h2
� f 00.x0/

ˇ̌
ˇ̌ � 5M3h

3
;

where M3 is an upper bound for jf 000j on .x0; x0 C 2h/.
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The Extended Mean Value Theorem

We now consider the extended mean value theorem, which implies Theorem 2.5.4 (Exer-

cise 2.5.24). In the following theorem, a and b are the endpoints of an interval, but we do

not assume that a < b.

Theorem 2.5.5 (Extended Mean Value Theorem) Suppose thatf is con-

tinuous on a finite closed interval I with endpoints a and b .that is, either I D .a; b/ or

I D .b; a//; f .nC1/ exists on the open interval I 0; and; if n > 0; that f 0, . . . , f .n/ exist

and are continuous at a: Then

f .b/�
nX

rD0

f .r/.a/

rŠ
.b � a/r D f .nC1/.c/

.nC 1/Š .b � a/
nC1 (2.5.17)

for some c in I 0:

Proof The proof is by induction. The mean value theorem (Theorem 2.3.11) implies

the conclusion for n D 0. Now suppose that n � 1, and assume that the assertion of the

theorem is true with n replaced by n � 1. The left side of (2.5.17) can be written as

f .b/�
nX

rD0

f .r/.a/

rŠ
.b � a/r D K .b � a/

nC1

.nC 1/Š
(2.5.18)

for some number K. We must prove that K D f .nC1/.c/ for some c in I 0. To this end,

consider the auxiliary function

h.x/ D f .x/ �
nX

rD0

f .r/.a/

rŠ
.x � a/r �K .x � a/

nC1

.nC 1/Š ;

which satisfies

h.a/ D 0; h.b/ D 0;
(the latter because of (2.5.18)) and is continuous on the closed interval I and differentiable

on I 0, with

h0.x/ D f 0.x/ �
n�1X

rD0

f .rC1/.a/

rŠ
.x � a/r �K .x � a/

n

nŠ
: (2.5.19)

Therefore, Rolle’s theorem (Theorem 2.3.8) implies that h0.b1/ D 0 for some b1 in I 0;

thus, from (2.5.19),

f 0.b1/ �
n�1X

rD0

f .rC1/.a/

rŠ
.b1 � a/r �K

.b1 � a/n
nŠ

D 0:

If we temporarily write f 0 D g, this becomes

g.b1/ �
n�1X

rD0

g.r/.a/

r
.b1 � a/r �K

.b1 � a/n
nŠ

D 0: (2.5.20)
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Since b1 2 I 0, the hypotheses on f imply that g is continuous on the closed interval J

with endpoints a and b1, g.n/ exists on J 0, and, if n � 1, g0, . . . , g.n�1/ exist and are

continuous at a (also at b1, but this is not important). The induction hypothesis, applied to

g on the interval J , implies that

g.b1/ �
n�1X

rD0

g.r/.a/

rŠ
.b1 � a/r D

g.n/.c/

nŠ
.b1 � a/n

for some c in J 0. Comparing this with (2.5.20) and recalling that g D f 0 yields

K D g.n/.c/ D f .nC1/.c/:

Since c is in I 0, this completes the induction.

2.5 Exercises

1. Let

f .x/ D
�
e�1=x2

; x ¤ 0;
0; x D 0:

Show that f has derivatives of all orders on .�1;1/ and every Taylor polynomial

of f about 0 is identically zero. HINT: See Exercise 2.4.40:

2. Suppose that f .nC1/.x0/ exists, and let Tn be the nth Taylor polynomial of f about

x0. Show that the function

En.x/ D

8
<
:

f .x/ � Tn.x/

.x � x0/n
; x 2 Df � fx0g;

0; x D x0;

is differentiable at x0, and find E 0
n.x0/.

3. (a) Prove: If f is continuous at x0 and there are constants a0 and a1 such that

lim
x!x0

f .x/ � a0 � a1.x � x0/

x � x0

D 0;

then a0 D f .x0/, f
0 is differentiable at x0, and f 0.x0/ D a1.

(b) Give a counterexample to the following statement: If f and f 0 are continuous

at x0 and there are constants a0, a1, and a2 such that

lim
x!x0

f .x/ � a0 � a1.x � x0/� a2.x � x0/
2

.x � x0/2
D 0;

then f 00.x0/ exists.

4. (a) Prove: if f 00.x0/ exists, then

lim
h!0

f .x0 C h/� 2f .x0/C f .x0 � h/
h2

D f 00.x0/:
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(b) Prove or give a counterexample: If the limit in (a) exists, then so does

f 00.x0/, and they are equal.

5. A function f has a simple zero (or a zero of multiplicity1) at x0 if f is differentiable

in a neighborhood of x0 and f .x0/ D 0, while f 0.x0/ ¤ 0.

(a) Prove that f has a simple zero at x0 if and only if

f .x/ D g.x/.x � x0/;

where g is continuous at x0 and differentiable on a deleted neighborhood of

x0, and g.x0/ ¤ 0.

(b) Give an example showing that g in(a) need not be differentiable at x0.

6. A function f has a double zero (or a zero of multiplicity 2) at x0 if f is twice dif-

ferentiable on a neighborhood of x0 and f .x0/ D f 0.x0/ D 0, while f 00.x0/ ¤ 0.

(a) Prove that f has a double zero at x0 if and only if

f .x/ D g.x/.x � x0/
2;

where g is continuous at x0 and twice differentiable on a deleted neighborhood

of x0, g.x0/ ¤ 0, and

lim
x!x0

.x � x0/g
0.x/ D 0:

(b) Give an example showing that g in(a) need not be differentiable at x0.

7. Let n be a positive integer. A function f has a zero of multiplicity n at x0 if f

is n times differentiable on a neighborhood of x0, f .x0/ D f 0.x0/ D � � � D
f .n�1/.x0/ D 0 and f .n/.x0/ ¤ 0. Prove that f has a zero of multiplicity n at

x0 if and only if

f .x/ D g.x/.x � x0/
n;

where g is continuous at x0 and n times differentiable on a deleted neighborhood of

x0, g.x0/ ¤ 0, and

lim
x!x0

.x � x0/
j g.j /.x/ D 0; 1 � j � n � 1:

HINT: Use Exercise 2.5.6 and induction:

8. (a) Let

Q.x/ D ˛0 C ˛1.x � x0/C � � � C ˛n.x � x0/
n

be a polynomial of degree � n such that

lim
x!x0

Q.x/

.x � x0/n
D 0:

Show that ˛0 D ˛1 D � � � D ˛n D 0.
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(b) Suppose that f is n times differentiable at x0 and p is a polynomial

p.x/ D a0 C a1.x � x0/C � � � C an.x � x0/
n

of degree � n such that

lim
x!x0

f .x/� p.x/
.x � x0/n

D 0:

Show that

ar D
f .r/.x0/

rŠ
if 0 � r � nI

that is, p D Tn, the nth Taylor polynomial of f about x0.

9. Show that if f .n/.x0/ and g.n/.x0/ exist and

lim
x!x0

f .x/ � g.x/
.x � x0/n

D 0;

then f .r/.x0/ D g.r/.x0/, 0 � r � n.

10. (a) Let Fn, Gn, and Hn be the nth Taylor polynomials about x0 of f , g, and

their product h D fg. Show that Hn can be obtained by multiplying Fn

by Gn and retaining only the powers of x � x0 through the nth. HINT: Use

Exercise 2.5.8.b/:

(b) Use the method suggested by (a) to compute h.r/.x0/, r D 1; 2; 3; 4.

(i) h.x/ D ex sinx; x0 D 0
(ii) h.x/ D .cos �x=2/.logx/; x0 D 1
(iii) h.x/ D x2 cos x; x0 D �=2
(iv) h.x/ D .1C x/�1e�x; x0 D 0

11. (a) It can be shown that if g is n times differentiable at x and f is n times dif-

ferentiable at g.x/, then the composite function h.x/ D f .g.x// is n times

differentiable at x and

h.n/.x/ D
nX

rD1

f .r/.g.x//
X

r

rŠ

r1Š � � � rnŠ

�
g0.x/

1Š

�r1
�
g00.x/

2Š

�r2

� � �
 
g.n/.x/

nŠ

!rn

where
P

r is over all n-tuples .r1; r2; : : : ; rn/ of nonnegative integers such that

r1 C r2 C � � � C rn D r
and

r1 C 2r2 C � � � C nrn D n:

(This is Faa di Bruno’s formula). However, this formula is quite complicated.

Justify the following alternative method for computing the derivatives of a

composite function at a point x0:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Faa_di_Bruno.html
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Let Fn be the nth Taylor polynomial of f about y0 D g.x0/, and let Gn and

Hn be the nth Taylor polynomials of g and h about x0. Show that Hn can

be obtained by substituting Gn into Fn and retaining only powers of x � x0

through the nth. HINT: See Exercise 2.5.8.b/:

(b) Compute the first four derivatives of h.x/ D cos.sin x/ at x0 D 0, using the

method suggested by (a).

12. (a) If g.x0/ ¤ 0 and g.n/.x0/ exists, then the reciprocal h D 1=g is also n times

differentiable at x0, by Exercise 2.5.11(a), with f .x/ D 1=x. Let Gn andHn

be the nth Taylor polynomials of g and h about x0. Use Exercise 2.5.11(a) to

prove that if g.x0/ D 1, thenHn can be obtained by expanding the polynomial

nX

rD1

Œ1� Gn.x/�
r

in powers of x � x0 and retaining only powers through the nth.

(b) Use the method of (a) to compute the first four derivatives of the following

functions at x0.

(i) h.x/ D csc x; x0 D �=2
(ii) h.x/ D .1C x C x2/�1; x0 D 0
(iii) h.x/ D sec x; x0 D �=4
(iv) h.x/ D Œ1C log.1C x/��1 ; x0 D 0

(c) Use Exercise 2.5.10 to justify the following alternative procedure for obtaining

Hn, again assuming that g.x0/ D 1: If

Gn.x/ D 1C a1.x � x0/C � � � C an.x � x0/
n

(where, of course, ar D g.r/.x0/=rŠ/ and

Hn.x/ D b0 C b1.x � x0/C � � � C bn.x � x0/
n;

then

b0 D 1; bk D �
kX

rD1

arbk�r ; 1 � k � n:

13. Determine whether x0 D 0 is a local maximum, local minimum, or neither.

(a) f .x/ D x2ex3
(b) f .x/ D x3ex2

(c) f .x/ D 1C x2

1C x3
(d) f .x/ D 1C x3

1C x2

(e) f .x/ D x2 sin3 x C x2 cos x (f) f .x/ D ex2
sinx

(g) f .x/ D ex sinx2 (h) f .x/ D ex2
cos x

14. Give an example of a function that has zero derivatives of all orders at a local mini-

mum point.
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15. Find the critical points of

f .x/ D x3

3
C bx2

2
C cx C d

and identify them as local maxima, local minima, or neither.

16. Find an upper bound for the magnitude of the error in the approximation.

(a) sinx � x; jxj < �

20

(b)
p
1C x � 1C x

2
; jxj < 1

8

(c) cos x � 1p
2
�
1 �

�
x � �

4

��
; �

4
< x < 5�

16

(d) logx � .x � 1/� .x � 1/
2

2
C .x � 1/3

3
; jx � 1j < 1

64

17. Prove: If

Tn.x/ D
nX

rD0

xr

rŠ
;

then

Tn.x/ < TnC1.x/ < e
x <

�
1 � xnC1

.nC 1/Š

��1

Tn.x/

if 0 < x < Œ.nC 1/Š�1=.nC1/
.

18. The forward difference operators with spacing h > 0 are defined by

�0f .x/ D f .x/; �f .x/ D f .x C h/ � f .x/;

�nC1f .x/ D �Œ�nf .x/� ; n � 1:

(a) Prove by induction on n: If k � 2, c1, . . . , ck are constants, and n � 1, then

�nŒc1f1.x/C � � � C ckfk.x/� D c1�
nf1.x/C � � � C ck�

nfk.x/:

(b) Prove by induction: If n � 1, then

�nf .x/ D
nX

mD0

.�1/n�m

 
n

m

!
f .x Cmh/:

HINT: See Exercise 1.2.19:

In Exercises 2.5.19–2.5.22, � is the forward difference operator with spacing h > 0.
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19. Let m and n be nonnegative integers, and let x0 be any real number. Prove by

induction on n that

�n.x � x0/
m D

�
0 if 0 � m � n;
nŠhn if m D n:

Does this suggest an analogy between “differencing" and differentiation?

20. Find an upper bound for the magnitude of the error in the approximation

f 00.x0/ �
�2f .x0 � h/

h2
;

(a) assuming that f 000 is bounded on .x0 � h; x0 C h/;
(b) assuming that f .4/ is bounded on .x0 � h; x0C h/.

21. Let f 000 be bounded on an open interval containing x0 and x0C 2h. Find a constant

k such that the magnitude of the error in the approximation

f 0.x0/ �
�f .x0/

h
C k�

2f .x0/

h2

is not greater than Mh2, where M D sup
˚
jf 000.c/j

ˇ̌
jx0 < c < x0

	
.

22. Prove: If f .nC1/ is bounded on an open interval containing x0 and x0 C nh, then

ˇ̌
ˇ̌�

nf .x0/

hn
� f .n/.x0/

ˇ̌
ˇ̌ � AnMnC1h;

where An is a constant independent of f and

MnC1 D sup
x0<c<x0Cnh

jf .nC1/.c/j:

HINT: See Exercises 2.5.18 and 2.5.19:

23. Suppose that f .nC1/ exists on .a; b/, x0, . . . , xn are in .a; b/, and p is the polyno-

mial of degree � n such that p.xi / D f .xi /, 0 � i � n. Prove: If x 2 .a; b/,
then

f .x/ D p.x/C f .nC1/.c/

.nC 1/Š .x � x0/.x � x1/ � � � .x � xn/;

where c, which depends on x, is in .a; b/. HINT: Let x be fixed; distinct from x0;

x1; . . . , xn; and consider the function

g.y/ D f .y/ � p.y/ � K

.nC 1/Š
.y � x0/.y � x1/ � � � .y � xn/;

where K is chosen so that g.x/ D 0: Use Rolle’s theorem to show that K D
f .nC1/.c/ for some c in .a; b/:

24. Deduce Theorem 2.5.4 from Theorem 2.5.5.



CHAPTER 3

Integral Calculus of

Functions of One Variable

IN THIS CHAPTER we discuss the Riemann on a finite interval Œa; b�, and improper inte-

grals in which either the function or the interval of integration is unbounded.

SECTION 3.1 begins with the definition of the Riemann integral and presents the geo-

metrical interpretation of the Riemann integral as the area under a curve. We show that

an unbounded function cannot be Riemann integrable. Then we define upper and lower

sums and upper and lower integrals of a bounded function. The section concludes with the

definition of the Riemann–Stieltjes integral.

SECTION 3.2 presents necessary and sufficient conditions for the existence of the Riemann

integral in terms of upper and lower sums and upper and lower integrals. We show that

continuous functions and bounded monotonic functions are Riemann integrable.

SECTION 3.3 begins with proofs that the sum and product of Riemann integrable functions

are integrable, and that jf j is Riemann integrable if f is Riemann integrable. Other topics

covered include the first mean value theorem for integrals, antiderivatives, the fundamental

theorem of calculus, change of variables, integration by parts, and the second mean value

theorem for integrals.

SECTION 3.4 presents a comprehensive discussion of improper integrals. Concepts de-

fined and considered include absolute and conditional convergence of an improper integral,

Dirichlet’s test, and change of variable in an improper integral.

SECTION 3.5 defines the notion of a set with Lebesgue measure zero, and presents a

necessary and sufficient condition for a bounded function f to be Riemann integrable on

an interval Œa; b�; namely, that the discontinuities of f form a set with Lebesgue masure

zero.

3.1 DEFINITION OF THE INTEGRAL

The integral that you studied in calculus is the Riemann integral, named after the German

mathematician Bernhard Riemann, who provided a rigorous formulation of the integral to

113
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replace the intuitive notion due to Newton and Leibniz. Since Riemann’s time, other kinds

of integrals have been defined and studied; however, they are all generalizations of the

Riemann integral, and it is hardly possible to understand them or appreciate the reasons for

developing them without a thorough understanding of the Riemann integral. In this section

we deal with functions defined on a finite interval Œa; b�. A partition of Œa; b� is a set of

subintervals

Œx0; x1�; Œx1; x2�; : : : ; Œxn�1; xn�; (3.1.1)

where

a D x0 < x1 � � � < xn D b: (3.1.2)

Thus, any set of n C 1 points satisfying (3.1.2) defines a partition P of Œa; b�, which we

denote by

P D fx0; x1; : : : ; xng:

The points x0, x1, . . . , xn are the partition points of P . The largest of the lengths of the

subintervals (3.1.1) is the norm of P , written as kP k; thus,

kP k D max
1�i�n

.xi � xi�1/:

If P and P 0 are partitions of Œa; b�, then P 0 is a refinement of P if every partition point

of P is also a partition point of P 0; that is, if P 0 is obtained by inserting additional points

between those of P . If f is defined on Œa; b�, then a sum

� D
nX

j D1

f .cj /.xj � xj �1/;

where

xj �1 � cj � xj ; 1 � j � n;

is a Riemann sum of f over the partitionP D fx0; x1; : : : ; xng. (Occasionally we will say

more simply that � is a Riemann sum of f over Œa; b�.) Since cj can be chosen arbitrarily

in Œxj ; xj �1�, there are infinitely many Riemann sums for a given function f over a given

partitionP .

Definition 3.1.1 Let f be defined on Œa; b�. We say that f is Riemann integrable on

Œa; b� if there is a number L with the following property: For every � > 0, there is a ı > 0

such that

j� �Lj < �

if � is any Riemann sum of f over a partitionP of Œa; b� such that kP k < ı. In this case,

we say that L is the Riemann integral of f over Œa; b�, and write

Z b

a

f .x/ dx D L:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html
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We leave it to you (Exercise 3.1.1) to show that
R b

a f .x/ dx is unique, if it exists; that is,

there cannot be more than one number L that satisfies Definition 3.1.1.

For brevity we will say “integrable” and “integral” when we mean “Riemann integrable”

and “Riemann integral.” Saying that
R b

a
f .x/ dx exists is equivalent to saying that f is

integrable on Œa; b�.

Example 3.1.1 If

f .x/ D 1; a � x � b;
then

nX

j D1

f .cj /.xj � xj �1/ D
nX

j D1

.xj � xj �1/:

Most of the terms in the sum on the right cancel in pairs; that is,

nX

j D1

.xj � xj �1/ D .x1 � x0/C .x2 � x1/C � � � C .xn � xn�1/

D �x0 C .x1 � x1/C .x2 � x2/C � � � C .xn�1 � xn�1/C xn

D xn � x0

D b � a:
Thus, every Riemann sum of f over any partition of Œa; b� equals b � a, so

Z b

a

dx D b � a:

Example 3.1.2 Riemann sums for the function

f .x/ D x; a � x � b;
are of the form

� D
nX

j D1

cj .xj � xj �1/: (3.1.3)

Since xj �1 � cj � xj and .xj C xj �1/=2 is the midpoint of Œxj �1; xj �, we can write

cj D
xj C xj �1

2
C dj ; (3.1.4)

where

jdj j �
xj � xj �1

2
� kP k

2
: (3.1.5)

Substituting (3.1.4) into (3.1.3) yields

� D
nX

j D1

xj C xj �1

2
.xj � xj �1/C

nX

j D1

dj .xj � xj �1/

D 1

2

nX

j D1

.x2
j � x2

j �1/C
nX

j D1

dj .xj � xj �1/:

(3.1.6)
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Because of cancellations like those in Example 3.1.1,

nX

j D1

.x2
j � x2

j �1/ D b2 � a2;

so (3.1.6) can be rewritten as

� D
b2 � a2

2
C

nX

j D1

dj .xj � xj �1/:

Hence,

ˇ̌
ˇ̌� � b

2 � a2

2

ˇ̌
ˇ̌ �

nX

j D1

jdj j.xj � xj �1/ �
kP k
2

nX

j D1

.xj � xj �1/ (see (3.1.5))

D kP k
2
.b � a/:

Therefore, every Riemann sum of f over a partitionP of Œa; b� satisfies

ˇ̌
ˇ̌� � b

2 � a2

2

ˇ̌
ˇ̌ < � if kP k < ı D 2�

b � a
:

Hence, Z b

a

x dx D b2 � a2

2
:

The Integral as the Area Under a Curve

An important application of the integral, indeed, the one invariably used to motivate its

definition, is the computation of the area bounded by a curve y D f .x/, the x-axis, and

the lines x D a and x D b (“the area under the curve”), as in Figure 3.1.1.
y

x
ba

y = f (x)

Figure 3.1.1
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For simplicity, suppose that f .x/ > 0. Then f .cj /.xj � xj �1/ is the area of a rectangle

with base xj � xj �1 and height f .cj /, so the Riemann sum

nX

j D1

f .cj /.xj � xj �1/

can be interpreted as the sum of the areas of rectangles related to the curve y D f .x/, as

shown in Figure 3.1.2.

y

x
a c

1
x

1
x

2
c

2
x

3
c

3
c

4
b

y = f (x)

Figure 3.1.2

An apparently plausible argument, that the Riemann sums approximate the area under

the curve more and more closely as the number of rectangles increases and the largest of

their widths is made smaller, seems to support the assertion that
R b

a
f .x/ dx equals the

area under the curve. This argument is useful as a motivation for Definition 3.1.1, which

without it would seem mysterious. Nevertheless, the logic is incorrect, since it is based

on the assumption that the area under the curve has been previously defined in some other

way. Although this is true for certain curves such as, for example, those consisting of line

segments or circular arcs, it is not true in general. In fact, the area under a more complicated

curve is defined to be equal to the integral, if the integral exists. That this new definition is

consistent with the old one, where the latter applies, is evidence that the integral provides

a useful generalization of the definition of area.

Example 3.1.3 Let f .x/ D x, 1 � x � 2 (Figure 3.1.3, page 118). The region under

the curve consists of a square of unit area, surmounted by a triangle of area 1=2; thus, the

area of the region is 3=2. From Example 3.1.2,

Z 2

1

x dx D 1

2
.22 � 12/ D 3

2
;

so the integral equals the area under the curve.
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y

x
21

y = x

Figure 3.1.3

y

x

y = x2

21

Figure 3.1.4

Example 3.1.4 If

f .x/ D x2; 1 � x � 2
(Figure 3.1.4), then Z 2

1

f .x/ dx D 1

3
.23 � 13/ D 7

3

(Exercise 3.1.4), so we say that the area under the curve is 7=3. However, this is the defini-

tion of the area rather than a confirmation of a previously known fact, as in Example 3.1.3.
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Theorem 3.1.2 If f is unbounded on Œa; b�; then f is not integrable on Œa; b�:

Proof We will show that if f is unbounded on Œa; b�, P is any partition of Œa; b�, and

M > 0, then there are Riemann sums � and � 0 of f over P such that

j� � � 0j �M: (3.1.7)

We leave it to you (Exercise 3.1.2) to complete the proof by showing from this that f

cannot satisfy Definition 3.1.1.

Let

� D
nX

j D1

f .cj /.xj � xj �1/

be a Riemann sum of f over a partition P of Œa; b�. There must be an integer i in

f1; 2; : : : ; ng such that

jf .c/ � f .ci /j �
M

xi � xi�1

(3.1.8)

for some c in Œxi�1xi �, because if there were not so, we would have

jf .x/� f .cj /j <
M

xj � xj �1

; xj �1 � x � xj ; 1 � j � n:

Then

jf .x/j D jf .cj /C f .x/ � f .cj /j � jf .cj /j C jf .x/� f .cj /j

� jf .cj /j C
M

xj � xj �1

; xj �1 � x � xj ; 1 � j � n:

which implies that

jf .x/j � max
1�j �n

jf .cj /j C
M

xj � xj �1

; a � x � b;

contradicting the assumption that f is unbounded on Œa; b�.

Now suppose that c satisfies (3.1.8), and consider the Riemann sum

� 0 D
nX

j D1

f .c0
j /.xj � xj �1/

over the same partitionP , where

c0
j D

�
cj ; j ¤ i;
c; j D i:
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Since

j� � � 0j D jf .c/� f .ci/j.xi � xi�1/;

(3.1.8) implies (3.1.7).

Upper and Lower Integrals

Because of Theorem 3.1.2, we consider only bounded functions throughout the rest of this

section.

To prove directly from Definition 3.1.1 that
R b

a
f .x/ dx exists, it is necessary to discover

its value L in one way or another and to show that L has the properties required by the

definition. For a specific function it may happen that this can be done by straightforward

calculation, as in Examples 3.1.1 and 3.1.2. However, this is not so if the objective is to find

general conditions which imply that
R b

a
f .x/ dx exists. The following approach avoids the

difficulty of having to discover L in advance, without knowing whether it exists in the first

place, and requires only that we compare two numbers that must exist if f is bounded on

Œa; b�. We will see that
R b

a
f .x/ dx exists if and only if these two numbers are equal.

Definition 3.1.3 If f is bounded on Œa; b� and P D fx0; x1; : : : ; xng is a partition of

Œa; b�, let

Mj D sup
xj �1�x�xj

f .x/

and

mj D inf
xj �1�x�xj

f .x/:

The upper sum of f over P is

S.P / D
nX

j D1

Mj .xj � xj �1/;

and the upper integral of f over, Œa; b�, denoted by

Z b

a

f .x/ dx;

is the infimum of all upper sums. The lower sum of f over P is

s.P / D
nX

j D1

mj .xj � xj �1/;

and the lower integral of f over Œa; b�, denoted by

Z b

a

f .x/ dx;

is the supremum of all lower sums.
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If m � f .x/ �M for all x in Œa; b�, then

m.b � a/ � s.P / � S.P / �M.b � a/

for every partition P ; thus, the set of upper sums of f over all partitions P of Œa; b� is

bounded, as is the set of lower sums. Therefore, Theorems 1.1.3 and 1.1.8 imply that
R b

a
f .x/ dx and

R b

a
f .x/ dx exist, are unique, and satisfy the inequalities

m.b � a/ �
Z b

a

f .x/ dx �M.b � a/

and

m.b � a/ �
Z b

a

f .x/ dx �M.b � a/:

Theorem 3.1.4 Let f be bounded on Œa; b�, and let P be a partition of Œa; b�: Then

(a) The upper sum S.P / of f over P is the supremum of the set of all Riemann sums of

f over P:

(b) The lower sum s.P / of f over P is the infimum of the set of all Riemann sums of f

over P:

Proof (a) If P D fx0; x1; : : : ; xng, then

S.P / D
nX

j D1

Mj .xj � xj �1/;

where

Mj D sup
xj �1�x�xj

f .x/:

An arbitrary Riemann sum of f over P is of the form

� D
nX

j D1

f .cj /.xj � xj �1/;

where xj �1 � cj � xj . Since f .cj / �Mj , it follows that � � S.P /.
Now let � > 0 and choose cj in Œxj �1; xj � so that

f .cj / > Mj �
�

n.xj � xj �1/
; 1 � j � n:

The Riemann sum produced in this way is

� D
nX

j D1

f .cj /.xj � xj �1/ >

nX

j D1

�
Mj �

�

n.xj � xj �1/
/

�
.xj � xj �1/ D S.P / � �:

Now Theorem 1.1.3 implies that S.P / is the supremum of the set of Riemann sums of f

over P .

(b) Exercise 3.1.7.
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Example 3.1.5 Let

f .x/ D
�
0 if x is irrational;

1 if x is rational;

and P D fx0; x1; : : : ; xng be a partition of Œa; b�. Since every interval contains both ratio-

nal and irrational numbers (Theorems 1.1.6 and 1.1.7),

mj D 0 and Mj D 1; 1 � j � n:
Hence,

S.P / D
nX

j D1

1 � .xj � xj �1/ D b � a

and

s.P /D
nX

j D1

0 � .xj � xj �1/ D 0:

Since all upper sums equal b � a and all lower sums equal 0, Definition 3.1.3 implies that

Z b

a

f .x/ dx D b � a and

Z b

a

f .x/ dx D 0:

Example 3.1.6 Let f be defined on Œ1; 2� by f .x/ D 0 if x is irrational and f .p=q/ D
1=q if p and q are positive integers with no common factors (Exercise 2.2.7). If P D
fx0; x1; : : : ; xng is any partition of Œ1; 2�, then mj D 0, 1 � j � n, so s.P / D 0; hence,

Z 2

1

f .x/ dx D 0:

We now show that Z 2

1

f .x/ dx D 0 (3.1.9)

also. Since S.P / > 0 for every P , Definition 3.1.3 implies that

Z 2

1

f .x/ dx � 0;

so we need only show that Z 2

1

f .x/ dx � 0;

which will follow if we show that no positive number is less than every upper sum. To this

end, we observe that if 0 < � < 2, then f .x/ � �=2 for only finitely many values of x in

Œ1; 2�.

Let k be the number of such points and let P0 be a partition of Œ1; 2� such that

kP0k <
�

2k
: (3.1.10)
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Consider the upper sum

S.P0/ D
nX

j D1

Mj .xj � xj �1/:

There are at most k values of j in this sum for which Mj � �=2, and Mj � 1 even for

these. The contribution of these terms to the sum is less than k.�=2k/ D �=2, because of

(3.1.10). SinceMj < �=2 for all other values of j , the sum of the other terms is less than

�

2

nX

j D1

.xj � xj �1/ D
�

2
.xn � x0/ D

�

2
.2 � 1/ D �

2
:

Therefore, S.P0/ < � and, since � can be chosen as small as we wish, no positive number

is less than all upper sums. This proves (3.1.9).

The motivation for Definition 3.1.3 can be seen by again considering the idea of area

under a curve. Figure 3.1.5 shows the graph of a positive function y D f .x/, a � x � b,

with Œa; b� partitioned into four subintervals.

a x
1

x
2

x
3

b

y = f (x)

y

x

Figure 3.1.5

The upper and lower sums of f over this partition can be interpreted as the sums of the areas

of the rectangles surmounted by the solid and dashed lines, respectively. This indicates that

a sensible definition of area A under the curve must admit the inequalities

s.P / � A � S.P /

for every partition P of Œa; b�. Thus, A must be an upper bound for all lower sums and a

lower bound for all upper sums of f over partitions of Œa; b�. If

Z b

a

f .x/ dx D
Z b

a

f .x/ dx; (3.1.11)
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there is only one number, the common value of the upper and lower integrals, with this

property, and we defineA to be that number; if (3.1.11) does not hold, thenA is not defined.

We will see below that this definition of area is consistent with the definition stated earlier

in terms of Riemann sums.

Example 3.1.7 Returning to Example 3.1.3, consider the function

f .x/ D x; 1 � x � 2:

If P D fx0; x1; : : : ; xng is a partition of Œ1; 2�, then, since f is increasing,

Mj D f .xj / D xj and mj D f .xj �1/ D xj �1:

Hence,

S.P / D
nX

j D1

xj .xj � xj �1/ (3.1.12)

and

s.P /D
nX

j D1

xj �1.xj � xj �1/: (3.1.13)

By writing

xj D
xj C xj �1

2
C xj � xj �1

2
;

we see from (3.1.12) that

S.P / D 1

2

nX

j D1

.x2
j � x2

j �1/C
1

2

nX

j D1

.xj � xj �1/
2

D
1

2
.22 � 12/C

1

2

nX

j D1

.xj � xj �1/
2:

(3.1.14)

Since

0 <

nX

j D1

.xj � xj �1/
2 � kP k

nX

j D1

.xj � xj �1/ D kP k.2 � 1/;

(3.1.14) implies that
3

2
< S.P / � 3

2
C kP k

2
:

Since kP k can be made as small as we please, Definition 3.1.3 implies that

Z b

a

f .x/ dx D 3

2
:

A similar argument starting from (3.1.13) shows that

3

2
� kP k

2
� s.P / < 3

2
;
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so Z b

a

f .x/ dx D 3

2
:

Since the upper and lower integrals both equal 3=2, the area under the curve is 3=2 accord-

ing to our new definition. This is consistent with the result in Example 3.1.3.

The Riemann–Stieltjes Integral

The Riemann–Stieltjes integral is an important generalization of the Riemann integral. We

define it here, but confine our study of it to the exercises in this and other sections of this

chapter.

Definition 3.1.5 Let f and g be defined on Œa; b�. We say that f is Riemann–Stieltjes

integrable with respect to g on Œa; b� if there is a number L with the following property:

For every � > 0, there is a ı > 0 such that

ˇ̌
ˇ̌
ˇ̌

nX

j D1

f .cj /
�
g.xj /� g.xj �1/

�
�L

ˇ̌
ˇ̌
ˇ̌ < �; (3.1.15)

provided only that P D fx0; x1; : : : ; xng is a partition of Œa; b� such that kP k < ı and

xj �1 � cj � xj ; j D 1; 2; : : : ; n:

In this case, we say that L is the Riemann–Stieltjes integral of f with respect to g over

Œa; b�, and write Z b

a

f .x/ dg.x/ D L:

The sum
nX

j D1

f .cj /
�
g.xj / � g.xj �1/

�

in (3.1.15) is a Riemann–Stieltjes sum of f with respect to g over the partitionP .

3.1 Exercises

1. Show that there cannot be more than one number L that satisfies Definition 3.1.1.

2. (a) Prove: If
R b

a
f .x/ dx exists, then for every � > 0, there is a ı > 0 such that

j�1 � �2j < � if �1 and �2 are Riemann sums of f over partitions P1 and P2

of Œa; b� with norms less than ı.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Stieltjes.html
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(b) Suppose that there is an M > 0 such that, for every ı > 0, there are Riemann

sums �1 and �2 over a partitionP of Œa; b�with kP k < ı such that j�1��2j �
M . Use (a) to prove that f is not integrable over Œa; b�.

3. Suppose that
R b

a
f .x/ dx exists and there is a number A such that, for every � > 0

and ı > 0, there is a partitionP of Œa; b� with kP k < ı and a Riemann sum � of f

over P that satisfies the inequality j� �Aj < �. Show that
R b

a
f .x/ dx D A.

4. Prove directly from Definition 3.1.1 that

Z b

a

x2 dx D b3 � a3

3
:

Do not assume in advance that the integral exists. The proof of this is part of the

problem. HINT: Let P D fx0; x2; : : : ; xng be an arbitrary partition of Œa; b�: Use

the mean value theorem to show that

b3 � a3

3
D

nX

j D1

d 2
j .xj � xj �1/

for some points d1; . . . , dn; where xj �1 < dj < xj . Then relate this sum to

arbitrary Riemann sums for f .x/ D x2 over P:

5. Generalize the proof of Exercise 3.1.4 to show directly from Definition 3.1.1 that

Z b

a

xm dx D bmC1 � amC1

mC 1

if m is an integer � 0.

6. Prove directly from Definition 3.1.1 that f .x/ is integrable on Œa; b� if and only if

f .�x/ is integrable on Œ�b;�a�, and, in this case,

Z b

a

f .x/ dx D
Z �a

�b

f .�x/ dx:

7. Let f be bounded on Œa; b� and let P be a partition of Œa; b�. Prove: The lower sum

s.P / of f over P is the infimum of the set of all Riemann sums of f over P .

8. Let f be defined on Œa; b� and let P D fx0; x1; : : : ; xng be a partition of Œa; b�.

(a) Prove: If f is continuous on Œa; b�, then s.P / and S.P / are Riemann sums of

f over P .

(b) Name another class of functions for which the conclusion of (a) is valid.

(c) Give an example where s.P / and S.P / are not Riemann sums of f over P .
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9. Find
R 1

0
f .x/ dx and

R 1

0
f .x/ dx if

(a) f .x/ D
�
x if x is rational;

�x if x is irrational:
(b) f .x/ D

�
1 if x is rational;

x if x is irrational:

10. Given that
R b

a
ex dx exists, evaluate it by using the formula

1C r C r2 C � � � C rn D 1 � rnC1

1 � r .r ¤ 1/

to calculate certain Riemann sums. HINT: See Exercise 3.1.3:

11. Given that
R b

0
sinx dx exists, evaluate it by using the identity

cos.j � 1/� � cos.j C 1/� D 2 sin � sin j�

to calculate certain Riemann sums. HINT: See Exercise 3.1.3:

12. Given that
R b

0
cos x dx exists, evaluate it by using the identity

sin.j C 1/� � sin.j � 1/� D 2 sin � cos j�

to calculate certain Riemann sums. HINT: See Exercise 3.1.3:

13. Show that if g.x/ D x C c (c=constant), then
R b

a f .x/ dg.x/ exists if and only ifR b

a
f .x/ dx exists, in which case

Z b

a

f .x/ dg.x/ D
Z b

a

f .x/ dx:

14. Suppose that �1 < a < d < c <1 and

g.x/ D
�
g1; a < x < d;

g2; d < x < b;
(g1; g2 D constants),

and let g.a/, g.b/, and g.d/ be arbitrary. Suppose that f is defined on Œa; b�,

continuous from the right at a and from the left at b, and continuous at d . Show thatR b

a
f .x/ dg.x/ exists, and find its value.

15. Suppose that �1 < a D a0 < a1 < � � � < ap D b < 1, let g.x/ D gm

(constant) on .am�1; am/, 1 � m � p, and let g.a0/, g.a1/, . . . , g.ap/ be arbitrary.

Suppose that f is defined on Œa; b�, continuous from the right at a and from the

left at b, and continuous at a1, a2, . . . , ap�1. Evaluate
R b

a
f .x/ dg.x/. HINT: See

Exercise 3.1.14:

16. (a) Give an example where
R b

a
f .x/ dg.x/ exists even though f is unbounded

on Œa; b�. (Thus, the analog of Theorem 3.1.2 does not hold for the Riemann–

Stieltjes integral.)

(b) State and prove an analog of Theorem 3.1.2 for the case where g is increasing.
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17. For the case where g is nondecreasing and f is bounded on Œa; b�, define upper and

lower Riemann–Stieltjes integrals in a way analogous to Definition 3.1.3.

3.2 EXISTENCE OF THE INTEGRAL

The following lemma is the starting point for our study of the integrability of a bounded

function f on a closed interval Œa; b�.

Lemma 3.2.1 Suppose that

jf .x/j �M; a � x � b; (3.2.1)

and let P 0 be a partition of Œa; b� obtained by adding r points to a partitionP D fx0; x1; : : : ; xng
of Œa; b�: Then

S.P / � S.P 0/ � S.P / � 2MrkP k (3.2.2)

and

s.P / � s.P 0/ � s.P /C 2MrkP k: (3.2.3)

Proof We will prove (3.2.2) and leave the proof of (3.2.3) to you (Exercise 3.2.1).

First suppose that r D 1, so P 0 is obtained by adding one point c to the partition P D
fx0; x1; : : : ; xng; then xi�1 < c < xi for some i in f1; 2; : : : ; ng. If j ¤ i , the prod-

uct Mj .xj � xj �1/ appears in both S.P / and S.P 0/ and cancels out of the difference

S.P / � S.P 0/. Therefore, if

Mi1 D sup
xi�1�x�c

f .x/ and Mi2 D sup
c�x�xi

f .x/;

then

S.P / � S.P 0/ DMi .xi � xi�1/ �Mi1.c � xi�1/ �Mi2.xi � c/

D .Mi �Mi1/.c � xi�1/C .Mi �Mi2/.xi � c/:
(3.2.4)

Since (3.2.1) implies that

0 �Mi �Mir � 2M; r D 1; 2;

(3.2.4) implies that

0 � S.P / � S.P 0/ � 2M.xi � xi�1/ � 2MkP k:

This proves (3.2.2) for r D 1.

Now suppose that r > 1 and P 0 is obtained by adding points c1, c2, . . . , cr to P . Let

P .0/ D P and, for j � 1, let P .j / be the partition of Œa; b� obtained by adding cj to

P .j �1/. Then the result just proved implies that

0 � S.P .j �1// � S.P .j // � 2MkP .j �1/k; 1 � j � r:
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Adding these inequalities and taking account of cancellations yields

0 � S.P .0//� S.P .r// � 2M.kP .0/k C kP .1/k C � � � C kP .r�1/k/: (3.2.5)

Since P .0/ D P , P .r/ D P 0, and kP .k/k � kP .k�1/k for 1 � k � r � 1, (3.2.5) implies

that

0 � S.P / � S.P 0/ � 2MrkP k;
which is equivalent to (3.2.2).

Theorem 3.2.2 If f is bounded on Œa; b�; then

Z b

a

f .x/ dx �
Z b

a

f .x/ dx: (3.2.6)

Proof Suppose that P1 and P2 are partitions of Œa; b� and P 0 is a refinement of both.

Letting P D P1 in (3.2.3) and P D P2 in (3.2.2) shows that

s.P1/ � s.P 0/ and S.P 0/ � S.P2/:

Since s.P 0/ � S.P 0/, this implies that s.P1/ � S.P2/. Thus, every lower sum is a lower

bound for the set of all upper sums. Since
R b

a
f .x/ dx is the infimum of this set, it follows

that

s.P1/ �
Z b

a

f .x/ dx

for every partition P1 of Œa; b�. This means that
R b

a
f .x/ dx is an upper bound for the set

of all lower sums. Since
R b

a
f .x/ dx is the supremum of this set, this implies (3.2.6).

Theorem 3.2.3 If f is integrable on Œa; b�; then

Z b

a

f .x/ dx D
Z b

a

f .x/ dx D
Z b

a

f .x/ dx:

Proof We prove that
R b

a
f .x/ dx D

R b

a
f .x/ dx and leave it to you to show that

R b

a
f .x/ dx D

R b

a
f .x/ dx (Exercise 3.2.2).

Suppose that P is a partition of Œa; b� and � is a Riemann sum of f over P . Since

Z b

a

f .x/ dx �
Z b

a

f .x/ dx D
 Z b

a

f .x/ dx � S.P /
!
C .S.P / � �/

C
 
� �

Z b

a

f .x/ dx

!
;
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the triangle inequality implies that

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx �
Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx � S.P /
ˇ̌
ˇ̌
ˇ C jS.P / � � j

C
ˇ̌
ˇ̌
ˇ� �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ:

(3.2.7)

Now suppose that � > 0. From Definition 3.1.3, there is a partitionP0 of Œa; b� such that

Z b

a

f .x/ dx � S.P0/ <

Z b

a

f .x/ dx C �

3
: (3.2.8)

From Definition 3.1.1, there is a ı > 0 such that

ˇ̌
ˇ̌
ˇ� �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ <

�

3
(3.2.9)

if kP k < ı. Now suppose that kP k < ı and P is a refinement of P0. Since S.P / � S.P0/

by Lemma 3.2.1, (3.2.8) implies that

Z b

a

f .x/ dx � S.P / <
Z b

a

f .x/ dx C �

3
;

so ˇ̌
ˇ̌
ˇS.P / �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ <

�

3
(3.2.10)

in addition to (3.2.9). Now (3.2.7), (3.2.9), and (3.2.10) imply that

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx �
Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ <

2�

3
C jS.P / � � j (3.2.11)

for every Riemann sum � of f over P . Since S.P / is the supremum of these Riemann

sums (Theorem 3.1.4), we may choose � so that

jS.P / � � j < �

3
:

Now (3.2.11) implies that

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx �
Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ < �:

Since � is an arbitrary positive number, it follows that

Z b

a

f .x/ dx D
Z b

a

f .x/ dx:
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Lemma 3.2.4 If f is bounded on Œa; b� and � > 0; there is a ı > 0 such that

Z b

a

f .x/ dx � S.P / <
Z b

a

f .x/ dx C � (3.2.12)

and Z b

a

f .x/ dx � s.P / >
Z b

a

f .x/ dx � �

if kP k < ı.

Proof We show that (3.2.12) holds if kP k is sufficiently small, and leave the rest of the

proof to you (Exercise 3.2.3).

The first inequality in (3.2.12) follows immediately from Definition 3.1.3. To establish

the second inequality, suppose that jf .x/j � K if a � x � b. From Definition 3.1.3, there

is a partitionP0 D fx0; x1; : : : ; xrC1g of Œa; b� such that

S.P0/ <

Z b

a

f .x/ dx C �

2
: (3.2.13)

If P is any partition of Œa; b�, let P 0 be constructed from the partition points of P0 and P .

Then

S.P 0/ � S.P0/; (3.2.14)

by Lemma 3.2.1. Since P 0 is obtained by adding at most r points to P , Lemma 3.2.1

implies that

S.P 0/ � S.P / � 2KrkP k: (3.2.15)

Now (3.2.13), (3.2.14), and (3.2.15) imply that

S.P / � S.P 0/C 2KrkP k
� S.P0/C 2KrkP k

<

Z b

a

f .x/ dx C �

2
C 2KrkP k:

Therefore, (3.2.12) holds if

kP k < ı D
�

4Kr
:
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Theorem 3.2.5 If f is bounded on Œa; b� and

Z b

a

f .x/ dx D
Z b

a

f .x/ dx D L; (3.2.16)

then f is integrable on Œa; b� and

Z b

a

f .x/ dx D L: (3.2.17)



Section 3.2 Existence of the Integral 133

Proof If � > 0, there is a ı > 0 such that

Z b

a

f .x/ dx � � < s.P / � S.P / <
Z b

a

f .x/ dx C � (3.2.18)

if kP k < ı (Lemma 3.2.4). If � is a Riemann sum of f over P , then

s.P / � � � S.P /;

so (3.2.16) and (3.2.18) imply that

L� � < � < LC �

if kP k < ı. Now Definition 3.1.1 implies (3.2.17).

Theorems 3.2.3 and 3.2.5 imply the following theorem.

Theorem 3.2.6 A bounded function f is integrable on Œa; b� if and only if

Z b

a

f .x/ dx D
Z b

a

f .x/ dx:

The next theorem translates this into a test that can be conveniently applied.

Theorem 3.2.7 If f is bounded on Œa; b�; then f is integrable on Œa; b� if and only if

for each � > 0 there is a partitionP of Œa; b� for which

S.P / � s.P / < �: (3.2.19)

Proof We leave it to you (Exercise 3.2.4) to show that if
R b

a
f .x/ dx exists, then (3.2.19)

holds for kP k sufficiently small. This implies that the stated condition is necessary for in-

tegrability. To show that it is sufficient, we observe that since

s.P / �
Z b

a

f .x/ dx �
Z b

a

f .x/ dx � S.P /

for all P , (3.2.19) implies that

0 �
Z b

a

f .x/ dx �
Z b

a

f .x/ dx < �:

Since � can be any positive number, this implies that

Z b

a

f .x/ dx D
Z b

a

f .x/ dx:

Therefore,
R b

a
f .x/ dx exists, by Theorem 3.2.5.

The next two theorems are important applications of Theorem 3.2.7.
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Theorem 3.2.8 If f is continuous on Œa; b�; then f is integrable on Œa; b�.

Proof Let P D fx0; x1; : : : ; xng be a partition of Œa; b�. Since f is continuous on Œa; b�,

there are points cj and c0
j in Œxj �1; xj � such that

f .cj / D Mj D sup
xj �1�x�xj

f .x/

and

f .c0
j / D mj D inf

xj �1�x�xj

f .x/

(Theorem 2.2.9). Therefore,

S.P / � s.P / D
nX

j D1

�
f .cj / � f .c0

j /
�
.xj � xj �1/: (3.2.20)

Since f is uniformly continuous on Œa; b� (Theorem 2.2.12), there is for each � > 0 a ı > 0

such that

jf .x0/ � f .x/j < �

b � a
if x and x0 are in Œa; b� and jx�x0j < ı. If kP k < ı, then jcj �c0

j j < ı and, from (3.2.20),

S.P / � s.P / < �

b � a

nX

j D1

.xj � xj �1/ D �:

Hence, f is integrable on Œa; b�, by Theorem 3.2.7.

Theorem 3.2.9 If f is monotonic on Œa; b�; then f is integrable on Œa; b�.

Proof Let P D fx0; x1; : : : ; xng be a partition of Œa; b�. Since f is nondecreasing,

f .xj / DMj D sup
xj �1�x�xj

f .x/

and

f .xj �1/ D mj D inf
xj �1�x�xj

f .x/:

Hence,

S.P / � s.P / D
nX

j D1

.f .xj / � f .xj �1//.xj � xj �1/:

Since 0 < xj � xj �1 � kP k and f .xj / � f .xj �1/ � 0,

S.P / � s.P / � kP k
nX

j D1

.f .xj /� f .xj �1//

D kP k.f .b/� f .a//:



Section 3.2 Existence of the Integral 135

Therefore,

S.P / � s.P / < � if kP k.f .b/� f .a// < �;
so f is integrable on Œa; b�, by Theorem 3.2.7.

The proof for nonincreasing f is similar.

We will also use Theorem 3.2.7 in the next section to establish properties of the integral.

In Section 3.5 we will study more general conditions for integrability.

3.2 Exercises

1. Complete the proof of Lemma 3.2.1 by verifying Eqn. (3.2.3).

2. Show that if f is integrable on Œa; b�, then
Z b

a

f .x/ dx D
Z b

a

f .x/ dx:

3. Prove: If f is bounded on Œa; b�, there is for each � > 0 a ı > 0 such that
Z b

a

f .x/ dx �
Z b

a

f .x/ dx � � < s.P /

if kP k < ı.
4. Prove: If f is integrable on Œa; b� and � > 0, then S.P / � s.P / < � if kP k is

sufficiently small. HINT: Use Theorem 3.1.4:

5. Suppose that f is integrable and g is bounded on Œa; b�, and g differs from f only

at points in a set H with the following property: For each � > 0, H can be covered

by a finite number of closed subintervals of Œa; b�, the sum of whose lengths is less

than �. Show that g is integrable on Œa; b� and that
Z b

a

g.x/ dx D
Z b

a

f .x/ dx:

HINT: Use Exercise 3.1.3:

6. Suppose that g is bounded on Œ˛; ˇ�, and let Q W ˛ D v0 < v1 < � � � < vL D ˇ be

a fixed partition of Œ˛; ˇ�. Prove:

(a)
Z ˇ

˛

g.u/ du D
LX

`D1

Z v`

v`�1

g.u/ duI (b)
Z ˇ

˛

g.u/ du D
LX

`D1

Z v`

v`�1

g.u/ du:

7. A function f is of bounded variation on Œa; b� if there is a number K such that

nX

j D1

ˇ̌
f .aj /� f .aj �1/

ˇ̌
� K

whenever a D a0 < a1 < � � � < an D b. (The smallest number with this property

is the total variation of f on Œa; b�.)
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(a) Prove: If f is of bounded variation on Œa; b�, then f is bounded on Œa; b�.

(b) Prove: If f is of bounded variation on Œa; b�, then f is integrable on Œa; b�.

HINT: Use Theorems 3.1.4 and 3.2.7:

8. Let P D fx0; x1; : : : ; xng be a partition of Œa; b�, c0 D x0 D a, cnC1 D xn D b,

and xj �1 � cj � xj , j D 1, 2, . . . , n. Verify that

nX

j D1

g.cj /Œf .xj /�f .xj �1/� D g.b/f .b/�g.a/f .a/�
nX

j D0

f .xj /Œg.cj C1/�g.cj /�:

Use this to prove that if
R b

a
f .x/ dg.x/ exists, then so does

R b

a
g.x/ df .x/, and

Z b

a

g.x/ df .x/ D f .b/g.b/ � f .a/g.a/ �
Z b

a

f .x/ dg.x/:

(This is the integration by parts formula for Riemann–Stieltjes integrals.)

9. Let f be continuous and g be of bounded variation (Exercise 3.2.7) on Œa; b�.

(a) Show that if � > 0, there is a ı > 0 such that j� � � 0j < �=2 if � and � 0

are Riemann–Stieltjes sums of f with respect to g over partitions P and P 0

of Œa; b�, where P 0 is a refinement of P and kP k < ı. HINT: Use Theo-

rem 2.2.12:

(b) Let ı be as chosen in (a). Suppose that �1 and �2 are Riemann–Stieltjes

sums of f with respect to g over any partitionsP1 and P2 of Œa; b� with norm

less than ı. Show that j�1 � �2j < �.
(c) If ı > 0, let L.ı/ be the supremum of all Riemann–Stieltjes sums of f with

respect to g over partitions of Œa; b� with norms less than ı. Show that L.ı/ is

finite. Then show that L D limı!0C L.ı/ exists. HINT: Use Theorem 2.1.9:

(d) Show that
R b

a
f .x/ dg.x/ D L.

10. Show that
R b

a f .x/ dg.x/ exists if f is of bounded variation and g is continuous on

Œa; b�. HINT: See Exercises 3.2.8 and 3.2.9:

3.3 PROPERTIES OF THE INTEGRAL

We now use the results of Sections 3.1 and 3.2 to establish the properties of the integral.

You are probably familiar with most of these properties, but not with their proofs.

Theorem 3.3.1 If f and g are integrable on Œa; b�; then so is f C g; and

Z b

a

.f C g/.x/ dx D
Z b

a

f .x/ dx C
Z b

a

g.x/ dx:
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Proof Any Riemann sum of f C g over a partitionP D fx0; x1; : : : ; xng of Œa; b� can

be written as

�f Cg D
nX

j D1

Œf .cj /C g.cj /�.xj � xj �1/

D
nX

j D1

f .cj /.xj � xj �1/C
nX

j D1

g.cj /.xj � xj �1/

D �f C �g ;

where �f and �g are Riemann sums for f and g. Definition 3.1.1 implies that if � > 0

there are positive numbers ı1 and ı2 such that
ˇ̌
ˇ̌
ˇ�f �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ <

�

2
if kP k < ı1

and ˇ̌
ˇ̌
ˇ�g �

Z b

a

g.x/ dx

ˇ̌
ˇ̌
ˇ <

�

2
if kP k < ı2:

If kP k < ı D min.ı1; ı2/, then
ˇ̌
ˇ̌
ˇ�f Cg �

Z b

a

f .x/ dx �
Z b

a

g.x/ dx

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

 
�f �

Z b

a

f .x/ dx

!
C
 
�g �

Z b

a

g.x/ dx

!ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ�f �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ�g �

Z b

a

g.x/ dx

ˇ̌
ˇ̌
ˇ

<
�

2
C �

2
D �;

so the conclusion follows from Definition 3.1.1.

The next theorem also follows from Definition 3.1.1 (Exercise 3.3.1).

Theorem 3.3.2 If f is integrable on Œa; b� and c is a constant; then cf is integrable

on Œa; b� and Z b

a

cf .x/ dx D c
Z b

a

f .x/ dx:

Theorems 3.3.1 and 3.3.2 and induction yield the following result (Exercise 3.3.2).

Theorem 3.3.3 If f1; f2; . . . ; fn are integrable on Œa; b� and c1; c2; . . . ; cn are

constants; then c1f1 C c2f2 C � � � C cnfn is integrable on Œa; b� and

Z b

a

.c1f1 C c2f2 C � � � C cnfn/.x/ dx D c1

Z b

a

f1.x/ dx C c2

Z b

a

f2.x/ dx

C � � � C cn

Z b

a

fn.x/ dx:
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Theorem 3.3.4 If f and g are integrable on Œa; b� and f .x/ � g.x/ for a � x � b;
then Z b

a

f .x/ dx �
Z b

a

g.x/ dx: (3.3.1)

Proof Since g.x/ � f .x/ � 0, every lower sum of g � f over any partition of Œa; b� is

nonnegative. Therefore, Z b

a

.g.x/ � f .x// dx � 0:

Hence, Z b

a

g.x/ dx �
Z b

a

f .x/ dx D
Z b

a

.g.x/ � f .x// dx

D
Z b

a

.g.x/ � f .x// dx � 0;
(3.3.2)

which yields (3.3.1). (The first equality in (3.3.2) follows from Theorems 3.3.1 and 3.3.2;

the second, from Theorem 3.2.3.)

Theorem 3.3.5 If f is integrable on Œa; b�; then so is jf j, and

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ �

Z b

a

jf .x/j dx: (3.3.3)

Proof Let P be a partition of Œa; b� and define

Mj D sup
˚
f .x/

ˇ̌
xj �1 � x � xj

	
;

mj D inf
˚
f .x/

ˇ̌
xj �1 � x � xj

	
;

M j D sup
˚
jf .x/j

ˇ̌
xj �1 � x � xj

	
;

mj D inf
˚
jf .x/j

ˇ̌
xj �1 � x � xj

	
:

Then
M j �mj D sup

˚
jf .x/j � jf .x0/j

ˇ̌
xj �1 � x; x0 � xj

	

� sup
˚
jf .x/ � f .x0/j

ˇ̌
xj �1 � x; x0 � xj

	

DMj �mj :

(3.3.4)

Therefore,

S.P / � s.P / � S.P / � s.P /;
where the upper and lower sums on the left are associated with jf j and those on the right are

associated with f . Now suppose that � > 0. Since f is integrable on Œa; b�, Theorem 3.2.7

implies that there is a partition P of Œa; b� such that S.P / � s.P / < �. This inequality

and (3.3.4) imply that S.P / � s.P / < �. Therefore, jf j is integrable on Œa; b�, again by

Theorem 3.2.7.

Since

f .x/ � jf .x/j and � f .x/ � jf .x/j; a � x � b;
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Theorems 3.3.2 and 3.3.4 imply that

Z b

a

f .x/ dx �
Z b

a

jf .x/j dx and �
Z b

a

f .x/ dx �
Z b

a

jf .x/j dx;

which implies (3.3.3).

Theorem 3.3.6 If f and g are integrable on Œa; b�; then so is the product fg:

Proof We consider the case where f and g are nonnegative, and leave the rest of the

proof to you (Exercise 3.3.4). The subscripts f , g, and fg in the following argument

identify the functions with which the various quantities are associated. We assume that

neither f nor g is identically zero on Œa; b�, since the conclusion is obvious if one of them

is.

If P D fx0; x1; : : : ; xng is a partition of Œa; b�, then

Sfg.P / � sfg.p/ D
nX

j D1

.Mfg;j �mfg;j /.xj � xj �1/: (3.3.5)

Since f and g are nonnegative, Mfg;j �Mf;jMg;j and mfg;j � mf;jmg;j . Hence,

Mfg;j �mfg;j � Mf;jMg;j �mf;jmg;j

D .Mf;j �mf;j /Mg;j Cmf;j .Mg;j �mg;j /

� Mg.Mf;j �mf;j /CMf .Mg;j �mg;j /;

where Mf and Mg are upper bounds for f and g on Œa; b�. From (3.3.5) and the last

inequality,

Sfg.P / � sfg.P / �Mg ŒSf .P / � sf .P /�CMf ŒSg.P / � sg.P /�: (3.3.6)

Now suppose that � > 0. Theorem 3.2.7 implies that there are partitions P1 and P2 of

Œa; b� such that

Sf .P1/� sf .P1/ <
�

2Mg

and Sg.P2/� sg.P2/ <
�

2Mf

: (3.3.7)

If P is a refinement of both P1 and P2, then (3.3.7) and Lemma 3.2.1 imply that

Sf .P / � sf .P / <
�

2Mg

and Sg.P / � sg.P / <
�

2Mf

:

This and (3.3.6) yield

Sfg.P / � sfg.P / <
�

2
C �

2
D �:

Therefore, fg is integrable on Œa; b�, by Theorem 3.2.7.



140 Chapter 3 Integral Calculus of Functions of One Variable

Theorem 3.3.7 (First Mean Value Theorem for Integrals) Suppose that

u is continuous and v is integrable and nonnegative on Œa; b�: Then

Z b

a

u.x/v.x/ dx D u.c/
Z b

a

v.x/ dx (3.3.8)

for some c in Œa; b�.

Proof From Theorem 3.2.8, u is integrable on Œa; b�. Therefore, Theorem 3.3.6 implies

that the integral on the left exists. Ifm D min
˚
u.x/

ˇ̌
a � x � b

	
andM D max

˚
u.x/

ˇ̌
a � x � b

	

(recall Theorem 2.2.9), then

m � u.x/ �M
and, since v.x/ � 0,

mv.x/ � u.x/v.x/ �Mv.x/:

Therefore, Theorems 3.3.2 and 3.3.4 imply that

m

Z b

a

v.x/ dx �
Z b

a

u.x/v.x/ dx �M
Z b

a

v.x/ dx: (3.3.9)

This implies that (3.3.8) holds for any c in Œa; b� if
R b

a
v.x/ dx D 0. If

R b

a
v.x/ dx ¤ 0,

let

u D

Z b

a

u.x/v.x/ dx

Z b

a

v.x/ dx

(3.3.10)

Since
R b

a v.x/ dx > 0 in this case (why?), (3.3.9) implies that m � u � M , and the

intermediate value theorem (Theorem 2.2.10) implies that u D u.c/ for some c in Œa; b�.

This implies (3.3.8).

If v.x/ � 1, then (3.3.10) reduces to

u D 1

b � a

Z b

a

u.x/ dx;

so u is the average of u.x/ over Œa; b�. More generally, if v is any nonnegative integrable

function such that
R b

a
v.x/ dx ¤ 0, then u in (3.3.10) is the weighted average of u.x/ over

Œa; b� with respect to v. Theorem 3.3.7 says that a continuous function assumes any such

weighted average at some point in Œa; b�.

Theorem 3.3.8 If f is integrable on Œa; b� and a � a1 < b1 � b; then f is integrable

on Œa1; b1�:
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Proof Suppose that � > 0. From Theorem 3.2.7, there is a partitionP D fx0; x1; : : : ; xng
of Œa; b� such that

S.P / � s.P / D
nX

j D1

.Mj �mj /.xj � xj �1/ < �: (3.3.11)

We may assume that a1 and b1 are partition points of P , because if not they can be inserted

to obtain a refinement P 0 such that S.P 0/ � s.P 0/ � S.P / � s.P / (Lemma 3.2.1). Let

a1 D xr and b1 D xs. Since every term in (3.3.11) is nonnegative,

sX

j DrC1

.Mj �mj /.xj � xj �1/ < �:

Thus, P D fxr ; xrC1; : : : ; xsg is a partition of Œa1; b1� over which the upper and lower

sums of f satisfy

S.P / � s.P / < �:
Therefore, f is integrable on Œa1; b1�, by Theorem 3.2.7.

We leave the proof of the next theorem to you (Exercise 3.3.8).

Theorem 3.3.9 If f is integrable on Œa; b� and Œb; c�; then f is integrable on Œa; c�;

and Z c

a

f .x/ dx D
Z b

a

f .x/ dx C
Z c

b

f .x/ dx: (3.3.12)

So far we have defined
R ˇ

˛
f .x/ dx only for the case where ˛ < ˇ. Now we define

Z ˛

ˇ

f .x/ dx D �
Z ˇ

˛

f .x/ dx

if ˛ < ˇ, and Z ˛

˛

f .x/ dx D 0:

With these conventions, (3.3.12) holds no matter what the relative order of a, b, and c,

provided that f is integrable on some closed interval containing them (Exercise 3.3.9).

Theorem 3.3.8 and these definitions enable us to define a function F.x/ D
R x

c f .t/ dt ,

where c is an arbitrary, but fixed, point in Œa; b�.

Theorem 3.3.10 If f is integrable on Œa; b� and a � c � b; then the function F

defined by

F.x/ D
Z x

c

f .t/ dt

satisfies a Lipschitz condition on Œa; b�; and is therefore continuous on Œa; b�:
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Proof If x and x0 are in Œa; b�, then

F.x/ � F.x0/ D
Z x

c

f .t/ dt �
Z x0

c

f .t/ dt D
Z x

x0

f .t/ dt;

by Theorem 3.3.9 and the conventions just adopted. Since jf .t/j � K .a � t � b/ for

some constant K, ˇ̌
ˇ̌
Z x

x0

f .t/ dt

ˇ̌
ˇ̌ � Kjx � x0j; a � x; x0 � b

(Theorem 3.3.5), so

jF.x/ � F.x0/j � Kjx � x0j; a � x; x0 � b:

Theorem 3.3.11 If f is integrable on Œa; b� and a � c � b; then F.x/ D
R x

c f .t/ dt

is differentiable at any point x0 in .a; b/ where f is continuous; with F 0.x0/ D f .x0/: If

f is continuous from the right at a; then F 0
C.a/ D f .a/. If f is continuous from the left

at b; then F 0
�.b/ D f .b/:

Proof We consider the case where a < x0 < b and leave the rest to you (Exer-

cise 3.3.14). Since
1

x � x0

Z x

x0

f .x0/ dt D f .x0/;

we can write

F.x/ � F.x0/

x � x0

� f .x0/ D
1

x � x0

Z x

x0

Œf .t/ � f .x0/� dt:

From this and Theorem 3.3.5,

ˇ̌
ˇ̌F.x/ � F.x0/

x � x0

� f .x0/

ˇ̌
ˇ̌ � 1

jx � x0j

ˇ̌
ˇ̌
Z x

x0

jf .t/ � f .x0/j dt
ˇ̌
ˇ̌ : (3.3.13)

(Why do we need the absolute value bars outside the integral?) Since f is continuous at

x0, there is for each � > 0 a ı > 0 such that

jf .t/ � f .x0/j < � if jx � x0j < ı

and t is between x and x0. Therefore, from (3.3.13),

ˇ̌
ˇ̌F.x/ � F.x0/

x � x0

� f .x0/

ˇ̌
ˇ̌ < � jx � x0j

jx � x0j
D � if 0 < jx � x0j < ı:

Hence, F 0.x0/ D f .x0/.
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Example 3.3.1 If

f .x/ D
(
x; 0 � x � 1;
x C 1; 1 < x � 2;

then the function

F.x/ D
Z x

0

f .t/ dt D

8
ˆ̂<
ˆ̂:

x2

2
; 0 < x � 1;

x2

2
C x � 1; 1 < x � 2;

is continuous on Œ0; 2�. As implied by Theorem 3.3.11,

F 0.x/ D

8
<
:
x D f .x/; 0 < x < 1;

x C 1 D f .x/; 1 < x < 2;

F 0
C.0/ D lim

x!0C

F.x/ � F.0/
x

D lim
x!0C

.x2=2/� 0
x

D 0 D f .0/;

F 0
�.2/ D lim

x!2�

F.x/ � F.2/
x � 2 D lim

x!2�

.x2=2/C x � 1 � 3
x � 2

D lim
x!2�

x C 4
2
D 3 D f .2/:

F does not have a derivative at x D 1, where f is discontinuous, since

F 0
�.1/ D 1 and F 0

C.1/ D 2:

The next theorem relates integration and differentiation in another way.

Theorem 3.3.12 Suppose that F is continuous on the closed interval Œa; b� and dif-

ferentiable on the open interval .a; b/; and f is integrable on Œa; b�: Suppose also that

F 0.x/ D f .x/; a < x < b:

Then Z b

a

f .x/ dx D F.b/ � F.a/: (3.3.14)

Proof If P D fx0; x1; : : : ; xng is a partition of Œa; b�, then

F.b/ � F.a/ D
nX

j D1

.F.xj / � F.xj �1//: (3.3.15)

From Theorem 2.3.11, there is in each open interval .xj �1; xj / a point cj such that

F.xj / � F.xj �1/ D f .cj /.xj � xj �1/:
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Hence, (3.3.15) can be written as

F.b/ � F.a/ D
nX

j D1

f .cj /.xj � xj �1/ D �;

where � is a Riemann sum for f over P . Since f is integrable on Œa; b�, there is for each

� > 0 a ı > 0 such that
ˇ̌
ˇ̌
ˇ� �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ < � if kP k < ı:

Therefore, ˇ̌
ˇ̌
ˇF.b/ � F.a/ �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ < �

for every � > 0, which implies (3.3.14).

Corollary 3.3.13 If f 0 is integrable on Œa; b�; then

Z b

a

f 0.x/ dx D f .b/ � f .a/:

Proof Apply Theorem 3.3.12 with F and f replaced by f and f 0, respectively.

A function F is an antiderivative of f on Œa; b� if F is continuous on Œa; b� and differ-

entiable on .a; b/, with

F 0.x/ D f .x/; a < x < b:

If F is an antiderivative of f on Œa; b�, then so is F C c for any constant c. Conversely,

if F1 and F2 are antiderivatives of f on Œa; b�, then F1 � F2 is constant on Œa; b� (Theo-

rem 2.3.12). Theorem 3.3.12 shows that antiderivatives can be used to evaluate integrals.

Theorem 3.3.14 (Fundamental Theorem of Calculus) If f is continu-

ous on Œa; b�; then f has an antiderivative on Œa; b�: Moreover; if F is any antiderivative

of f on Œa; b�; then Z b

a

f .x/ dx D F.b/ � F.a/:

Proof The function F0.x/ D
R x

a f .t/ dt is continuous on Œa; b� by Theorem 3.3.10,

and F 0
0.x/ D f .x/ on .a; b/ by Theorem 3.3.11. Therefore, F0 is an antiderivative of f

on Œa; b�. Now let F D F0C c (c D constant) be an arbitrary antiderivative of f on Œa; b�.

Then

F.b/ � F.a/ D
Z b

a

f .x/ dx C c �
Z a

a

f .x/ dx � c D
Z b

a

f .x/ dx:
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When applying this theorem, we will use the familiar notation

F.b/ � F.a/ D F.x/
ˇ̌
ˇ̌
b

a

:

Theorem 3.3.15 (Integration by Parts) If u0 and v0 are integrable on Œa; b�;

then Z b

a

u.x/v0.x/ dx D u.x/v.x/
ˇ̌
ˇ̌
b

a

�
Z b

a

v.x/u0.x/ dx: (3.3.16)

Proof Since u and v are continuous on Œa; b� (Theorem 2.3.3), they are integrable on

Œa; b�. Therefore, Theorems 3.3.1 and 3.3.6 imply that the function

.uv/0 D u0v C uv0

is integrable on Œa; b�, and Theorem 3.3.12 implies that

Z b

a

Œu.x/v0.x/C u0.x/v.x/� dx D u.x/v.x/
ˇ̌
ˇ̌
b

a

;

which implies (3.3.16).

We will use Theorem 3.3.15 here and in the next section to obtain other results.

Theorem 3.3.16 (Second Mean Value Theorem for Integrals) Suppose

that f 0 is nonnegative and integrable and g is continuous on Œa; b�: Then

Z b

a

f .x/g.x/ dx D f .a/
Z c

a

g.x/ dx C f .b/
Z b

c

g.x/ dx (3.3.17)

for some c in Œa; b�:

Proof Since f is differentiable on Œa; b�, it is continuous on Œa; b� (Theorem 2.3.3).

Since g is continuous on Œa; b�, so is fg (Theorem 2.2.5). Therefore, Theorem 3.2.8 implies

that the integrals in (3.3.17) exist. If

G.x/ D
Z x

a

g.t/ dt; (3.3.18)

thenG0.x/ D g.x/; a < x < b (Theorem 3.3.11). Therefore, Theorem 3.3.15 with u D f
and v D G yields

Z b

a

f .x/g.x/ dx D f .x/G.x/
ˇ̌
ˇ̌
b

a

�
Z b

a

f 0.x/G.x/ dx: (3.3.19)

Since f 0 is nonnegative and G is continuous, Theorem 3.3.7 implies that

Z b

a

f 0.x/G.x/ dx D G.c/
Z b

a

f 0.x/ dx (3.3.20)
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for some c in Œa; b�. From Corollary 3.3.12,

Z b

a

f 0.x/ dx D f .b/ � f .a/:

From this and (3.3.18), (3.3.20) can be rewritten as

Z b

a

f 0.x/G.x/ dx D .f .b/ � f .a//
Z c

a

g.x/ dx:

Substituting this into (3.3.19) and noting that G.a/ D 0 yields

Z b

a

f .x/g.x/ dx D f .b/
Z b

a

g.x/ dx � .f .b/ � f .a//
Z c

a

g.x/ dx;

D f .a/
Z c

a

g.x/ dx C f .b/
 Z b

a

g.x/ dx �
Z a

c

g.x/ dx

!

D f .a/
Z c

a

g.x/ dx C f .b/
Z b

c

g.x/ dx:

Change of Variable

The following theorem on change of variable is useful for evaluating integrals.

Theorem 3.3.17 Suppose that the transformation x D �.t/ maps the interval c �
t � d into the interval a � x � b; with �.c/ D ˛ and �.d/ D ˇ; and let f be continuous

on Œa; b�: Let �0 be integrable on Œc; d �: Then

Z ˇ

˛

f .x/ dx D
Z d

c

f .�.t//�0.t/ dt: (3.3.21)

Proof Both integrals in (3.3.21) exist: the one on the left by Theorem 3.2.8, the one on

the right by Theorems 3.2.8 and 3.3.6 and the continuity of f .�.t//. By Theorem 3.3.11,

the function

F.x/ D
Z x

a

f .y/ dy

is an antiderivative of f on Œa; b� and, therefore, also on the closed interval with endpoints

˛ and ˇ. Hence, by Theorem 3.3.14,

Z ˇ

˛

f .x/ dx D F.ˇ/ � F.˛/: (3.3.22)

By the chain rule, the function

G.t/ D F.�.t//
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is an antiderivative of f .�.t//�0 .t/ on Œc; d �, and Theorem 3.3.12 implies that

Z d

c

f .�.t//�0.t/ dt D G.d/� G.c/ D F.�.d// � F.�.c//

D F.ˇ/ � F.˛/:

Comparing this with (3.3.22) yields (3.3.21).

Example 3.3.2 To evaluate the integral

I D
Z 1=

p
2

�1=
p

2

.1 � 2x2/.1 � x2/�1=2dx

we let

f .x/ D .1 � 2x2/.1 � x2/�1=2; �1=
p
2 � x � 1=

p
2;

and

x D �.t/ D sin t; ��=4 � t � �=4:
Then �0.t/ D cos t and

I D
Z 1=

p
2

�1=
p

2

f .x/ dx D
Z �=4

��=4

f .sin t/ cos t dt

D
Z �=4

��=4

.1 � 2 sin2 t/.1 � sin2 t/�1=2 cos t dt :

(3.3.23)

.1 � sin2 t/1=2 D cos t;��=4 � t � �=4

and

1 � 2 sin2 t D cos 2t;

(3.3.23) yields

I D
Z �=4

��=4

cos 2t dt D sin 2t

2

ˇ̌
ˇ̌
�=4

��=4

D 1:

Example 3.3.3 To evaluate the integral

I D
Z 5�

0

sin t

2C cos t
dt;

we take �.t/ D cos t . Then �0.t/ D � sin t and

I D �
Z 5�

0

�0.t/

2C �.t/ dt D �
Z 5�

0

f .�.t//�0.t/ dt;

where

f .x/ D 1

2C x
:
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Therefore, since �.0/ D 1 and �.5�/ D �1,

I D �
Z �1

1

dx

2C x D � log.2C x/
ˇ̌
ˇ̌
�1

1

D log 3:

These examples illustrate two ways to use Theorem 3.3.17. In Example 3.3.2 we evalu-

ated the left side of (3.3.21) by transforming it to the right side with a suitable substitution

x D �.t/, while in Example 3.3.3 we evaluated the right side of (3.3.21) by recognizing

that it could be obtained from the left side by a suitable substitution.

The following theorem shows that the rule for change of variable remains valid under

weaker assumptions on f if � is monotonic.

Theorem 3.3.18 Suppose that �0 is integrable and � is monotonic on Œc; d �; and the

transformation x D �.t/ maps Œc; d � onto Œa; b�: Let f be bounded on Œa; b�: Then

g.t/ D f .�.t//�0.t/

is integrable on Œc; d � if and only if f is integrable over Œa; b�; and in this case

Z b

a

f .x/ dx D
Z d

c

f .�.t//j�0 .t/j dt:

Proof We consider the case where f is nonnegative and � is nondecreasing, and leave

the the rest of the proof to you (Exercises 3.3.20 and 3.3.21).

First assume that � is increasing. We show first that

Z b

a

f .x/ dx D
Z d

c

f .�.t//�0 .t/ dt: (3.3.24)

Let P D ft0; t1; : : : ; tng be a partition of Œc; d � and P D fx0; x1; : : : ; xng with xj D �.tj /
be the corresponding partition of Œa; b�. Define

Uj D sup
˚
�0.t/

ˇ̌
tj �1 � t � tj

	
;

uj D inf
˚
�0.t/

ˇ̌
tj �1 � t � tj

	
;

Mj D sup
˚
f .x/

ˇ̌
xj �1 � x � xj

	
;

and

M j D sup
˚
f .�.t//�0.t/

ˇ̌
tj �1 � t � tj

	
:

Since � is increasing, uj � 0. Therefore,

0 � uj � �0.t/ � Uj ; tj �1 � t � tj :

Since f is nonnegative, this implies that

0 � f .�.t//uj � f .�.t//�0.t/ � f .�.t//Uj ; tj �1 � t � tj :

Therefore,

Mjuj �M j �MjUj ;
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which implies that

M j D Mj�j ; (3.3.25)

where

uj � �j � Uj : (3.3.26)

Now consider the upper sums

S.P / D
nX

j D1

M j .tj � tj �1/ and S.P / D
nX

j D1

Mj .xj � xj �1/: (3.3.27)

From the mean value theorem,

xj � xj �1 D �.tj / � �.tj �1/ D �0.�j /.tj � tj �1/; (3.3.28)

where tj �1 < �j < tj , so

uj � �0.�j / � Uj : (3.3.29)

From (3.3.25), (3.3.27), and (3.3.28),

S.P / � S.P / D
nX

j D1

Mj .�j � �0.�j //.tj � tj �1/: (3.3.30)

Now suppose that jf .x/j � M , a � x � b. Then (3.3.26), (3.3.29), and (3.3.30) imply

that
ˇ̌
S.P /� S.P /

ˇ̌
�M

nX

j D1

.Uj � uj /.tj � tj �1/:

The sum on the right is the difference between the upper and lower sums of �0 over P .

Since �0 is integrable on Œc; d �, this can be made as small as we please by choosing kPk
sufficiently small (Exercise 3.2.4).

From (3.3.28), kP k � KkP k if j�0.t/j � K, c � t � d . Hence, Lemma 3.2.4 implies

that
ˇ̌
ˇ̌
ˇS.P / �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ <

�

3
and

ˇ̌
ˇ̌
ˇS.P / �

Z d

c

f .�.t//�0.t/ dt

ˇ̌
ˇ̌
ˇ <

�

3
(3.3.31)

if kPk is sufficiently small. Now
ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx �
Z d

c

f .�.t// �0.t/ dt

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx � S.P /
ˇ̌
ˇ̌
ˇ C jS.P / � S.P /j

C
ˇ̌
ˇ̌
ˇS.P /�

Z d

c

f .�.t//�0.t/ dt

ˇ̌
ˇ̌
ˇ :

Choosing P so that jS.P / � S.P j < �=3 in addition to (3.3.31) yields
ˇ̌
ˇ̌
ˇ

Z b

a

f .x/ dx �
Z d

c

f .�.t//�0.t/ dt

ˇ̌
ˇ̌
ˇ < �:

Since � is an arbitrary positive number, this implies (3.3.24).
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If � is nondecreasing (rather than increasing), it may happen that xj �1 D xj for some

values of j ; however, this is no real complication, since it simply means that some terms in

S.P / vanish.

By applying (3.3.24) to �f , we infer that

Z b

a

f .x/ dx D
Z d

c

f .�.t//�0 .t/ dt; (3.3.32)

since
Z b

a

.�f /.x/ dx D �
Z b

a

f .x/ dx

and
Z d

c

.�f .�.t/�0.t// dt D �
Z d

c

f .�.t//�0 .t/ dt:

Now suppose that f is integrable on Œa; b�. Then

Z b

a

f .x/ dx D
Z b

a

f .x/ dx D
Z b

a

f .x/ dx;

by Theorem 3.2.3. From this, (3.3.24), and (3.3.32),

Z d

c

f .�.t//�0.t/ dt D
Z d

c

f .�.t//�0.t/ dt D
Z b

a

f .x/ dx:

This and Theorem 3.2.5 (applied to f .�.t//�0 .t/) imply that f .�.t//�0 .t/ is integrable on

Œc; d � and Z b

a

f .x/ dx D
Z d

c

f .�.t//�0.t/ dt: (3.3.33)

A similar argument shows that if f .�.t//�0 .t/ is integrable on Œc; d �, then f is integrable

on Œa; b�, and (3.3.33) holds.

3.3 Exercises

1. Prove Theorem 3.3.2.

2. Prove Theorem 3.3.3.

3. Can jf j be integrable on Œa; b� if f is not?

4. Complete the proof of Theorem 3.3.6. HINT: The partial proof given above implies

that if m1 and m2 are lower bounds for f and g respectively on Œa; b�; then

.f �m1/.g �m2/ is integrable on Œa; b�:

5. Prove: If f is integrable on Œa; b� and jf .x/j � � > 0 for a � x � b, then 1=f is

integrable on Œa; b�
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6. Suppose that f is integrable on Œa; b� and define

f C.x/ D
(
f .x/ if f .x/ � 0;
0 if f .x/ < 0,

and f �.x/ D
(
0 if f .x/ � 0;
f .x/ if f .x/ < 0.

Show that f C and f � are integrable on Œa; b�, and

Z b

a

f .x/ dx D
Z b

a

f C.x/ dx C
Z b

a

f �.x/ dx:

7. Find the weighted average u of u.x/ over Œa; b� with respect to v, and find a point c

in Œa; b� such that u.c/ D u.

(a) u.x/ D x, v.x/ D x, Œa; b�D Œ0; 1�
(b) u.x/ D sin x, v.x/ D x2, Œa; b�D Œ�1; 1�

(c) u.x/ D x2, v.x/ D ex, Œa; b�D Œ0; 1�
8. Prove Theorem 3.3.9.

9. Show that Z c

a

f .x/ dx D
Z b

a

f .x/ dx C
Z c

b

f .x/ dx

for all possible relative orderings of a, b, and c, provided that f is integrable on a

closed interval containing them.

10. Prove: If f is integrable on Œa; b� and a D a0 < a1 < � � � < an D b, then

Z b

a

f .x/ dx D
Z a1

a0

f .x/ dx C
Z a2

a1

f .x/ dx C � � � C
Z an

an�1

f .x/ dx:

11. Suppose that f is continuous on Œa; b� and P D fx0; x1; : : : ; xng is a partition of

Œa; b�. Show that there is a Riemann sum of f over P that equals
R b

a
f .x/ dx.

12. Suppose that f 0 exists and jf 0.x/j � M on Œa; b�. Show that any Riemann sum �

of f over any partitionP of Œa; b� satisfies
ˇ̌
ˇ̌
ˇ� �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ �M.b � a/kP k:

HINT: See Exercise 3.3.11:

13. Prove: If f is integrable and f .x/ � 0 on Œa; b�, then
R b

a
f .x/ dx � 0, with strict

inequality if f is continuous and positive at some point in Œa; b�.

14. Complete the proof of Theorem 3.3.11.

15. State theorems analogous to Theorems 3.3.10 and 3.3.11 for the function

G.x/ D
Z c

x

f .t/ dt;

and show how your theorems can be obtained from them.
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16. The symbol
R
f .x/ dx denotes an antiderivative of f . A plausible analog of The-

orem 3.3.1 would state that if f and g have antiderivatives on Œa; b�, then so does

f C g, which is true, and

Z
.f C g/.x/ dx D

Z
f .x/ dx C

Z
g.x/ dx: .A/

However, this is not true in the usual sense.

(a) Why not?

(b) State a correct interpretation of (A).

17. (See Exercise 3.3.16.) Formulate a valid interpretation of the relation

Z
.cf /.x/ dx D c

Z
f .x/ dx .c ¤ 0/:

Is your interpretation valid if c D 0?

18. (a) Let f .nC1/ be integrable on Œa; b�. Show that

f .b/ D
nX

rD0

f .r/.a/

rŠ
.b � a/r C 1

nŠ

Z b

a

f .nC1/.t/.b � t/n dt:

HINT: Integrate by parts and use induction:

(b) What is the connection between (a) and Theorem 2.5.5?

19. In addition to the assumptions of Theorem 3.3.16, suppose that f .a/ D 0, f 6� 0,

and g.x/ > 0 .a < x < b/. Show that there is only one point c in Œa; b� with the

property stated in Theorem 3.3.16. HINT: Use Exercise 3.3.13:

20. Assuming that Theorem 3.3.18 is true under the additional assumption that f is

nonnegative on Œa; b�, show that it is true without this assumption.

21. Assuming that the conclusion of Theorem 3.3.18 is true if � is nondecreasing, show

that it is true if � is nonincreasing. HINT: Use Exercise 3.1.6:

22. Suppose g0 is integrable and f is continuous on Œa; b�. Show that
R b

a
f .x/ dg.x/

exists and equals
R b

a
f .x/g0.x/ dx.

23. Supposef and g00 are bounded and fg0 is integrable on Œa; b�. Show that
R b

a
f .x/ dg.x/

exists and equals
R b

a
f .x/g0.x/ dx. HINT: Use Theorem 2.5.4:

3.4 IMPROPER INTEGRALS

So far we have confined our study of the integral to bounded functions on finite closed

intervals. This was for good reasons:

� From Theorem 3.1.2, an unbounded function cannot be integrable on a finite closed

interval.
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� Attempting to formulate Definition 3.1.1 for a function defined on an infinite or semi-

infinite interval would introduce questions concerning convergence of the resulting

Riemann sums, which would be infinite series.

In this section we extend the definition of integral to include cases where f is unbounded

or the interval is unbounded, or both.

We say f is locally integrable on an interval I if f is integrable on every finite closed

subinterval of I . For example,

f .x/ D sinx

is locally integrable on .�1;1/;

g.x/ D 1

x.x � 1/

is locally integrable on .�1; 0/, .0; 1/, and .1;1/; and

h.x/ D
p
x

is locally integrable on Œ0;1/.

Definition 3.4.1 If f is locally integrable on Œa; b/, we define

Z b

a

f .x/ dx D lim
c!b�

Z c

a

f .x/ dx (3.4.1)

if the limit exists (finite). To include the case where b D 1, we adopt the convention that

1� D1.

The limit in (3.4.1) always exists if Œa; b/ is finite and f is locally integrable and bounded

on Œa; b/. In this case, Definitions 3.1.1 and 3.4.1 assign the same value to
R b

a
f .x/ dx no

matter how f .b/ is defined (Exercise 3.4.1). However, the limit may also exist in cases

where b D 1 or b < 1 and f is unbounded as x approaches b from the left. In these

cases, Definition 3.4.1 assigns a value to an integral that does not exist in the sense of Def-

inition 3.1.1, and
R b

a
f .x/ dx is said to be an improper integral that converges to the limit

in (3.4.1). We also say in this case that f is integrable on Œa; b/ and that
R b

a
f .x/ dx exists.

If the limit in (3.4.1) does not exist (finite), we say that the improper integral
R b

a
f .x/ dx

diverges, and f is nonintegrable on Œa; b/. In particular, if limc!b�
R c

a
f .x/ dx D ˙1,

we say that
R b

a
f .x/ dx diverges to˙1, and we write

Z b

a

f .x/ dx D 1 or

Z b

a

f .x/ dx D �1;

whichever the case may be.

Similar comments apply to the next two definitions.
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Definition 3.4.2 If f is locally integrable on .a; b�, we define

Z b

a

f .x/ dx D lim
c!aC

Z b

c

f .x/ dx

provided that the limit exists (finite). To include the case where a D �1, we adopt the

convention that �1C D �1.

Definition 3.4.3 If f is locally integrable on .a; b/; we define

Z b

a

f .x/ dx D
Z ˛

a

f .x/ dx C
Z b

˛

f .x/ dx;

where a < ˛ < b, provided that both improper integrals on the right exist (finite).

The existence and value of
R b

a
f .x/ dx according to Definition 3.4.3 do not depend on

the particular choice of ˛ in .a; b/ (Exercise 3.4.2).

When we wish to distinguish between improper integrals and integrals in the sense of

Definition 3.1.1, we will call the latter proper integrals.

In stating and proving theorems on improper integrals, we will consider integrals of

the kind introduced in Definition 3.4.1. Similar results apply to the integrals of Defini-

tions 3.4.2 and 3.4.3. We leave it to you to formulate and use them in the examples and

exercises as the need arises.

Example 3.4.1 The function

f .x/ D 2x sin
1

x
� cos

1

x

is locally integrable and the derivative of

F.x/ D x2 sin
1

x

on Œ�2=�; 0/. Hence,

Z c

�2=�

f .x/ dx D x2 sin
1

x

ˇ̌
ˇ̌
c

�2=�

D c2 sin
1

c
C 4

�2

and Z 0

�2=�

f .x/ dx D lim
c!0�

�
c2 sin

1

c
C 4

�2

�
D 4

�2
;

according to Definition 3.4.1. However, this is not an improper integral, even though f .0/

is not defined and cannot be defined so as to make f continuous at 0. If we define f .0/

arbitrarily (say f .0/ D 10), then f is bounded on the closed interval Œ�2=�; 0� and con-

tinuous except at 0. Therefore,
R 0

�2=�
f .x/ dx exists and equals 4=�2 as a proper integral

(Exercise 3.4.1), in the sense of Definition 3.1.1.
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Example 3.4.2 The function

f .x/ D .1 � x/�p

is locally integrable on Œ0; 1/ and, if p ¤ 1 and 0 < c < 1,

Z c

0

.1 � x/�p dx D .1 � x/�pC1

p � 1

ˇ̌
ˇ̌
c

0

D .1 � c/�pC1 � 1
p � 1 :

Hence,

lim
c!1�

Z c

0

.1 � x/�p dx D
�
.1 � p/�1; p < 1;

1; p > 1:

For p D 1,

lim
c!1�

Z c

0

.1 � x/�1 dx D � lim
c!1�

log.1 � c/ D1:

Hence, Z 1

0

.1 � x/�p dx D
�
.1 � p/�1; p < 1;

1; p � 1:

Example 3.4.3 The function

f .x/ D x�p

is locally integrable on Œ1;1/ and, if p ¤ 1 and c > 1,

Z c

1

x�p dx D x�pC1

�p C 1

ˇ̌
ˇ̌
c

1

D c�pC1 � 1
�p C 1 :

Hence,

lim
c!1

Z c

1

x�p dx D
�
.p � 1/�1; p > 1;

1; p < 1:

For p D 1,

lim
c!1

Z c

1

x�1 dx D lim
c!1

log c D1:

Hence, Z 1

1

x�p dx D
�
.p � 1/�1; p > 1;

1; p � 1:

Example 3.4.4 If 1 < c <1, then

Z c

1

1

x
log

1

x
dx D �

Z c

1

1

x
logx dx D �1

2
.logx/2

ˇ̌
ˇ̌
c

1

D �1
2
.log c/2:

Hence,

lim
c!1

Z c

1

1

x
log

1

x
dx D �1;

so Z 1

1

1

x
log

1

x
dx D �1:
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Example 3.4.5 The function f .x/ D cos x is locally integrable on Œ0;1/ and

lim
c!1

Z c

0

cos x dx D lim
c!1

sin c

does not exist; thus,
R1

0 cos x dx diverges, but not to˙1.

Example 3.4.6 The function f .x/ D logx is locally integrable on .0; 1�, but un-

bounded as x ! 0C. Since

lim
c!0C

Z 1

c

logx dx D lim
c!0C

.x logx � x/
ˇ̌
ˇ̌
1

c

D �1 � lim
c!0C

.c log c � c/ D �1;

Definition 3.4.2 yields Z 1

0

logx dx D �1:

Example 3.4.7 In connection with Definition 3.4.3, it is important to recognize that

the improper integrals
R ˛

a
f .x/ dx and

R b

˛
f .x/ dx must converge separately for

R b

a
f .x/ dx

to converge. For example, the existence of the symmetric limit

lim
R!1

Z R

�R

f .x/ dx;

which is called the principal value of
R1

�1 f .x/ dx, does not imply that
R1

�1 f .x/ dx

converges; thus,

lim
R!1

Z R

�R

x dx D lim
R!1

0 D 0;

but
R1

0
x dx and

R 0

�1 x dx diverge and therefore so does
R1

�1 x dx.

Theorem 3.4.4 Suppose that f1; f2; . . . ; fn are locally integrable on Œa; b/ and thatR b

a
f1.x/ dx;

R b

a
f2.x/ dx; . . . ;

R b

a
fn.x/ dx converge: Let c1; c2; . . . ; cn be constants:

Then
R b

a
.c1f C c2f1 C � � � C cnfn/.x/ dx converges and

Z b

a

.c1f1 C c2f2 C � � � C cnfn/.x/ dx D c1

Z b

a

f1.x/ dx C c2

Z b

a

f2.x/ dx

C � � � C cn

Z b

a

fn.x/ dx:

Proof If a < c < b, then

Z c

a

.c1f1 C c2f2 C � � � C cnfn/.x/ dx D c1

Z c

a

f1.x/ dx C c2

Z c

a

f2.x/ dx

C � � � C cn

Z c

a

fn.x/ dx;

by Theorem 3.3.3. Letting c ! b� yields the stated result.
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Improper Integrals of Nonnegative Functions

The theory of improper integrals of nonnegative functions is particularly simple.

Theorem 3.4.5 If f is nonnegative and locally integrable on Œa; b/; then
R b

a
f .x/ dx

converges if the function

F.x/ D
Z x

a

f .t/ dt

is bounded on Œa; b/, and
R b

a
f .x/ dx D1 if it is not. These are the only possibilities, and

Z b

a

f .t/ dt D sup
a�x<b

F.x/

in either case:

Proof Since F is nondecreasing on Œa; b/, Theorem 2.1.9(a) implies the conclusion.

We often write

Z b

a

f .x/ dx <1

to indicate that an improper integral of a nonnegative function converges. Theorem 3.4.5

justifies this convention, since it asserts that a divergent integral of this kind can only di-

verge to1. Similarly, if f is nonpositive and
R b

a
f .x/ dx converges, we write

Z b

a

f .x/ dx > �1

because a divergent integral of this kind can only diverge to �1. (To see this, apply

Theorem 3.4.5 to �f .) These conventions do not apply to improper integrals of functions

that assume both positive and negative values in .a; b/, since they may diverge without

diverging to˙1.

Theorem 3.4.6 (Comparison Test) If f and g are locally integrable on Œa; b/

and

0 � f .x/ � g.x/; a � x < b; (3.4.2)

then

(a)
Z b

a

f .x/ dx <1 if

Z b

a

g.x/ dx <1

and

(b)
Z b

a

g.x/ dx D 1 if

Z b

a

f .x/ dx D1.
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Proof (a) Assumption (3.4.2) implies that
Z x

a

f .t/ dt �
Z x

a

g.t/ dt; a � x < b

(Theorem 3.3.4), so

sup
a�x<b

Z x

a

f .t/ dt � sup
a�x�b

Z x

a

g.t/ dt:

If
R b

a g.x/ dx < 1, the right side of this inequality is finite by Theorem 3.4.5, so the left

side is also. This implies that
R b

a
f .x/ dx <1, again by Theorem 3.4.5.

(b) The proof is by contradiction. If
R b

a
g.x/ dx <1, then (a) implies that

R b

a
f .x/ dx <

1, contradicting the assumption that
R b

a
f .x/ dx D 1.

The comparison test is particularly useful if the integrand of the improper integral is

complicated but can be compared with a function that is easy to integrate.

Example 3.4.8 The improper integral

I D
Z 1

0

2C sin�x

.1 � x/p dx

converges if p < 1, since

0 <
2C sin�x

.1 � x/p
� 3

.1 � x/p
; 0 � x < 1;

and, from Example 3.4.2,
Z 1

0

3 dx

.1 � x/p <1; p < 1:

However, I diverges if p � 1, since

0 <
1

.1 � x/p
� 2C sin�x

.1 � x/p
; 0 � x < 1;

and Z 1

0

dx

.1 � x/p D1; p � 1:

If f is any function (not necessarily nonnegative) locally integrable on Œa; b/, then
Z c

a

f .x/ dx D
Z a1

a

f .x/ dx C
Z c

a1

f .x/ dx

if a1 and c are in Œa; b/. Since
R a1

a
f .x/ dx is a proper integral, on letting c ! b� we

conclude that if either of the improper integrals
R b

a
f .x/ dx and

R b

a1
f .x/ dx converges

then so does the other, and in this case
Z b

a

f .x/ dx D
Z a1

a

f .x/ dx C
Z b

a1

f .x/ dx:
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This means that any theorem implying convergence or divergence of an improper integralR b

a
f .x/ dx in the sense of Definition 3.4.1 remains valid if its hypotheses are satisfied

on a subinterval Œa1; b/ of Œa; b/ rather than on all of Œa; b/. For example, Theorem 3.4.6

remains valid if (3.4.2) is replaced by

0 � f .x/ � g.x/; a1 � x < b;

where a1 is any point in Œa; b/.

From this, you can see that if f .x/ � 0 on some subinterval Œa1; b/ of Œa; b/, but not

necessarily for all x in Œa; b/, we can still use the convention introduced earlier for positive

functions; that is, we can write
R b

a
f .x/ dx < 1 if the improper integral converges orR b

a
f .x/ dx D1 if it diverges.

Example 3.4.9 If p � 0, then

x�p

2
� .x � 1/

p.2C sin x/

.x � 1=3/2p
� 4x�p

for x sufficiently large. Therefore, Theorem 3.4.6 and Example 3.4.3 imply that
Z 1

1

.x � 1/p.2C sin x/

.x � 1=3/2p
dx

converges if p > 1 or diverges if p � 1.

Theorem 3.4.7 Suppose that f and g are locally integrable on Œa; b/; g.x/ > 0 and

f .x/ � 0 on some subinterval Œa1; b/ of Œa; b/; and

lim
x!b�

f .x/

g.x/
D M: (3.4.3)

(a) If 0 < M <1; then
R b

a
f .x/ dx and

R b

a
g.x/ dx converge or diverge together.

(b) If M D1 and
R b

a
g.x/ dx D1; then

R b

a
f .x/ dx D1.

(c) If M D 0 and
R b

a
g.x/ dx <1; then

R b

a
f .x/ dx <1.

Proof (a) From (3.4.3), there is a point a2 in Œa1; b/ such that

0 <
M

2
<
f .x/

g.x/
<
3M

2
; a2 � x < b;

and therefore
M

2
g.x/ < f .x/ <

3M

2
g.x/; a2 � x < b: (3.4.4)

Theorem 3.4.6 and the first inequality in (3.4.4) imply that

Z b

a2

g.x/ dx <1 if

Z b

a2

f .x/ dx <1:
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Theorem 3.4.6 and the second inequality in (3.4.4) imply that

Z b

a2

f .x/ dx <1 if

Z b

a2

g.x/ dx <1:

Therefore,
R b

a2
f .x/ dx and

R b

a2
g.x/ dx converge or diverge together, and in the latter case

they must diverge to1, since their integrands are nonnegative (Theorem 3.4.5).

(b) If M D1, there is a point a2 in Œa1; b/ such that

f .x/ � g.x/; a2 � x � b;

so Theorem 3.4.6(b) implies that
R b

a
f .x/ dx D1.

(c) If M D 0, there is a point a2 in Œa1; b/ such that

f .x/ � g.x/; a2 � x � b;

so Theorem 3.4.6(a) implies that
R b

a
f .x/ dx <1.

The hypotheses of Theorem 3.4.7(b) and (c) do not imply that
R b

a
f .x/ dx and

R b

a
g.x/ dx

necessarily converge or diverge together. For example, if b D 1, then f .x/ D 1=x

and g.x/ D 1=x2 satisfy the hypotheses of Theorem 3.4.7(b), while f .x/ D 1=x2 and

g.x/ D 1=x satisfy the hypotheses of Theorem 3.4.7(c). However,
R1

1
1=x dx D 1,

while
R1

1
1=x2 dx <1.

Example 3.4.10 Let f .x/ D .1C x/�p and g.x/ D x�p . Since

lim
x!1

f .x/

g.x/
D 1

and
R1

1
x�p dx converges if p > 1 or diverges if p � 1 (Example 3.4.3), Theorem 3.4.7

implies that the same is true of

Z 1

1

.1C x/�p dx:

Example 3.4.11 The function

f .x/ D x�p.1C x/�q

is locally integrable on .0;1/. To see whether

I D
Z 1

0

x�p.1C x/�q dx

converges according to Definition 3.4.3, we consider the improper integrals

I1 D
Z 1

0

x�p.1C x/�q dx and I2 D
Z 1

1

x�p.1C x/�q dx
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separately. (The choice of 1 as the upper limit of I1 and the lower limit of I2 is completely

arbitrary; any other positive number would do just as well.) Since

lim
x!0C

f .x/

x�p
D lim

x!0C
.1C x/�q D 1

and Z 1

0

x�p dx D
�
.1 � p/�1; p < 1;

1; p � 1;
Theorem 3.4.7 implies that I1 converges if and only if p < 1. Since

lim
x!1

f .x/

x�p�q
D lim

x!1
.1C x/�qxq D 1

and Z 1

1

x�p�q dx D
�
.p C q � 1/�1; pC q > 1;
1; pC q � 1;

Theorem 3.4.7 implies that I2 converges if and only if p C q > 1. Combining these

results, we conclude that I converges according to Definition 3.4.3 if and only if p < 1

and p C q > 1.

Absolute Integrability

Definition 3.4.8 We say that f is absolutely integrable on Œa; b/ if f is locally inte-

grable on Œa; b/ and
R b

a
jf .x/j dx <1. In this case we also say that

R b

a
f .x/ dx converges

absolutely or is absolutely convergent.

Example 3.4.12 If f is nonnegative and integrable on Œa; b/, then f is absolutely

integrable on Œa; b/, since jf j D f .

Example 3.4.13 Since ˇ̌
ˇ̌ sinx

xp

ˇ̌
ˇ̌ � 1

xp

and
R1

1 x�p dx <1 if p > 1 (Example 3.4.3), Theorem 3.4.6 implies that

Z 1

1

j sinxj
xp

dx <1; p > 1I

that is, the function

f .x/ D
sinx

xp

is absolutely integrable on Œ1;1/ if p > 1. It is not absolutely integrable on Œ1;1/ if

p � 1. To see this, we first consider the case where p D 1. Let k be an integer greater

than 3. Then
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Z k�

1

j sinxj
x

dx >

Z k�

�

j sinxj
x

dx

D
k�1X

j D1

Z .j C1/�

j�

j sinxj
x

dx

>

k�1X

j D1

1

.j C 1/�

Z .j C1/�

j�

j sin xj dx:

(3.4.5)

But Z .j C1/�

j�

j sinxj dx D
Z �

0

sinx dx D 2;

so (3.4.5) implies that
Z k�

1

j sinxj
x

dx >
2

�

k�1X

j D1

1

j C 1
: (3.4.6)

However,
1

j C 1
�
Z j C2

j C1

dx

x
; j D 1; 2; : : : ;

so (3.4.6) implies that

Z k�

1

j sinxj
x

>
2

�

k�1X

j D1

Z j C2

j C1

dx

x

D 2

�

Z kC1

2

dx

x
D 2

�
log

k C 1
2

:

Since limk!1 logŒ.k C 1/=2�D 1, Theorem 3.4.5 implies that

Z 1

1

j sinxj
x

dx D1:

Now Theorem 3.4.6(b) implies that

Z 1

1

j sinxj
xp

dx D1; p � 1: (3.4.7)

Theorem 3.4.9 If f is locally integrable on Œa; b/ and
R b

a
jf .x/j dx < 1; thenR b

a
f .x/ dx convergesI that is; an absolutely convergent integral is convergent:

Proof If

g.x/ D jf .x/j � f .x/;
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then

0 � g.x/ � 2jf .x/j

and
R b

a
g.x/ dx <1, because of Theorem 3.4.6 and the absolute integrability of f . Since

f D jf j � g;

Theorem 3.4.4 implies that
R b

a f .x/ dx converges.

Conditional Convergence

We say that f is nonoscillatory at b� .D 1 if b D 1/ if f is defined on Œa; b/ and

does not change sign on some subinterval Œa1; b/ of Œa; b/. If f changes sign on every

such subinterval, f is oscillatory at b�. For a function that is locally integrable on Œa; b/

and nonoscillatory at b�, convergence and absolute convergence of
R b

a
f .x/ dx amount

to the same thing (Exercise 3.4.16), so absolute convergence is not an interesting concept

in connection with such functions. However, an oscillatory function may be integrable,

but not absolutely integrable, on Œa; b/, as the next example shows. We then say that f is

conditionally integrable on Œa; b/, and that
R b

a f .x/ dx converges conditionally.

Example 3.4.14 We saw in Example 3.4.13 that the integral

I.p/ D
Z 1

1

sinx

xp
dx

is not absolutely convergent if 0 < p � 1. We will show that it converges conditionally for

these values of p.

Integration by parts yields

Z c

1

sinx

xp
dx D � cos c

cp
C cos 1 � p

Z c

1

cos x

xpC1
dx: (3.4.8)

Since ˇ̌
ˇ

cos x

xpC1

ˇ̌
ˇ �

1

xpC1

and
R1

1
x�p�1 dx < 1 if p > 0, Theorem 3.4.6 implies that x�p�1 cos x is absolutely

integrable Œ1;1/ if p > 0. Therefore, Theorem 3.4.9 implies that x�p�1 cos x is integrable

Œ1;1/ if p > 0. Letting c !1 in (3.4.8), we find that I.p/ converges, and

I.p/ D cos 1 � p
Z 1

1

cos x

xpC1
dx if p > 0:

This and (3.4.7) imply that I.p/ converges conditionally if 0 < p � 1.

The method used in Example 3.4.14 is a special case of the following test for convergence

of improper integrals.
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Theorem 3.4.10 (Dirichlet’s Test) Suppose that f is continuous and its an-

tiderivative F.x/ D
R x

a
f .t/ dt is bounded on Œa; b/: Let g0 be absolutely integrable on

Œa; b/; and suppose that

lim
x!b�

g.x/ D 0: (3.4.9)

Then
R b

a f .x/g.x/ dx converges:

Proof The continuous function fg is locally integrable on Œa; b/. Integration by parts

yields

Z c

a

f .x/g.x/ dx D F.c/g.c/ �
Z c

a

F.x/g0.x/ dx; a � c < b: (3.4.10)

Theorem 3.4.6 implies that the integral on the right converges absolutely as c ! b�, sinceR b

a
jg0.x/j dx <1 by assumption, and

jF.x/g0.x/j �M jg0.x/j;

whereM is an upper bound for jF j on Œa; b/. Moreover, (3.4.9) and the boundedness of F

imply that limc!b� F.c/g.c/ D 0. Letting c ! b� in (3.4.10) yields

Z b

a

f .x/g.x/ dx D �
Z b

a

F.x/g0.x/ dx;

where the integral on the right converges absolutely.

Dirichlet’s test is useful only if f is oscillatory at b�, since it can be shown that if f is

nonoscillatory at b� and F is bounded on Œa; b/, then
R b

a
jf .x/g.x/j dx <1 if only g is

locally integrable and bounded on Œa; b/ (Exercise 3.4.14).

Example 3.4.15 Dirichlet’s test can also be used to show that certain integrals di-

verge. For example, Z 1

1

xq sinx dx

diverges if q > 0, but none of the other tests that we have studied so far implies this. It

is not enough to argue that the integrand does not approach zero as x ! 1 (a common

mistake), since this does not imply divergence (Exercise 4.4.31). To see that the integral

diverges, we observe that if it converged for some q > 0, then F.x/ D
R x

1
xq sin x dx

would be bounded on Œ1;1/, and we could let

f .x/ D xq sinx and g.x/ D x�q

in Theorem 3.4.10 and conclude that
Z 1

1

sinx dx

also converges. This is false.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Dirichlet.html
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The method used in Example 3.4.15 is a special case of the following test for divergence

of improper integrals.

Theorem 3.4.11 Suppose that u is continuous on Œa; b/ and
R b

a
u.x/ dx diverges: Let

v be positive and differentiable on Œa; b/; and suppose that limx!b� v.x/ D 1 and v0=v2

is absolutely integrable on Œa; b/: Then
R b

a
u.x/v.x/ dx diverges:

Proof The proof is by contradiction. Let f D uv and g D 1=v, and suppose thatR b

a
u.x/v.x/ dx converges. Then f has the bounded antiderivativeF.x/ D

R x

a
u.t/v.t/ dt

on Œa; b/, limx!1 g.x/ D 0 and g0 D �v0=v2 is absolutely integrable on Œa; b/. Therefore,

Theorem 3.4.10 implies that
R b

a
u.x/ dx converges, a contradiction.

If Dirichlet’s test shows that
R b

a
f .x/g.x/ dx converges, there remains the question of

whether it converges absolutely or conditionally. The next theorem sometimes answers this

question. Its proof can be modeled after the method of Example 3.4.13 (Exercise 3.4.17).

The idea of an infinite sequence, which we will discuss in Section 4.1, enters into the

statement of this theorem. We assume that you recall the concept sufficiently well from

calculus to understand the meaning of the theorem.

Theorem 3.4.12 Suppose that g is monotonic on Œa; b/ and
R b

a
g.x/ dx D 1: Let f

be locally integrable on Œa; b/ and

Z xj C1

xj

jf .x/j dx � �; j � 0;

for some positive �; where fxj g is an increasing infinite sequence of points in Œa; b/ such

that limj !1 xj D b and xj C1 � xj �M; j � 0; for someM: Then

Z b

a

jf .x/g.x/j dx D1:

Change of Variable in an Improper Integral

The next theorem enables us to investigate an improper integral by transforming it into

another whose convergence or divergence is known. It follows from Theorem 3.3.18 and

Definitions 3.4.1, 3.4.2, and 3.4.3. We omit the proof.

Theorem 3.4.13 Suppose that � is monotonic and �0 is locally integrable on either

of the half-open intervals I D Œc; d / or .c; d �; and let x D �.t/ map I onto either of the

half-open intervals J D Œa; b/ or J D .a; b�: Let f be locally integrable on J: Then the

improper integrals

Z b

a

f .x/ dx and

Z d

c

f .�.t// j�0.t/j dt
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diverge or converge together; in the latter case to the same value. The same conclusion

holds if � and �0 have the stated properties only on the open interval .a; b/; the transfor-

mation x D �.t/ maps .c; d / onto .a; b/; and f is locally integrable on .a; b/:

Example 3.4.16 To apply Theorem 3.4.13 to

Z 1

0

sinx2 dx;

we use the change of variable x D �.t/ D
p
t , which takes Œc; d / D Œ0;1/ into Œa; b/ D

Œ0;1/, with �0.t/ D 1=.2
p
t/. Theorem 3.4.13 implies that

Z 1

0

sin x2 dx D 1

2

Z 1

0

sin tp
t
dt:

Since the integral on the right converges (Example 3.4.14), so does the one on the left.

Example 3.4.17 The integral

Z 1

1

x�p dx

converges if and only if p > 1 (Example 3.4.3). Defining �.t/ D 1=t and applying

Theorem 3.4.13 yields

Z 1

1

x�p dx D
Z 1

0

tpj � t�2j dt D
Z 1

0

tp�2 dt;

which implies that
R 1

0
tq dt converges if and only if q > �1.

3.4 Exercises

1. (a) Let f be locally integrable and bounded on Œa; b/, and let f .b/ be defined

arbitrarily. Show that f is properly integrable on Œa; b�, that
R b

a
f .x/ dx does

not depend on f .b/, and that

Z b

a

f .x/ dx D lim
c!b�

Z c

a

f .x/ dx:

(b) State a result analogous to (a) which ends with the conclusion that

Z b

a

f .x/ dx D lim
c!aC

Z b

c

f .x/ dx:

2. Show that neither the existence nor the value of the improper integral of Defini-

tion 3.4.3 depends on the choice of the intermediate point ˛.
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3. Prove: If
R b

a f .x/ dx exists according to Definition 3.4.1 or 3.4.2, then
R b

a f .x/ dx

also exists according to Definition 3.4.3.

4. Find all values of p for which the following integrals exist (i) as proper integrals

(perhaps after defining f at the endpoints of the interval) or (ii) as improper inte-

grals. (iii) Evaluate the integrals for the values of p for which they converge.

(a)
Z 1=�

0

�
pxp�1 sin

1

x
� xp�2 cos

1

x

�
dx

(b)
Z 2=�

0

�
pxp�1 cos

1
x C xp�2 sin

1

x

�
dx

(c)
Z 1

0

e�px dx (d)
Z 1

0

x�p dx (e)
Z 1

0

x�p dx.

5. Evaluate

(a)
Z 1

0

e�xxn dx .n D 0; 1; : : : / (b)
Z 1

0

e�x sinx dx

(c)
Z 1

�1

x dx

x2 C 1
(d)

Z 1

0

x dx
p
1 � x2

(e)
Z �

0

�
cos x

x
� sin x

x2

�
dx (f)

Z 1

�=2

�
sin x

x
C cos x

x2

�
dx

6. Prove: If
R b

a
f .x/ dx exists as a proper or improper integral, then

lim
x!b�

Z b

x

f .t/ dt D 0:

7. Prove: If f is locally integrable on Œa; b/, then
R b

a
f .x/ dx exists if and only if for

each � > 0 there is a number r in .a; b/ such that
ˇ̌
ˇ̌
Z x2

x1

f .t/ dt

ˇ̌
ˇ̌ < �

whenever r � x1, x2 < b. HINT: See Exercise 2.1.38.

8. Determine whether the integral converges or diverges.

(a)
Z 1

1

logx C sin xp
x

dx (b)
Z 1

�1

.x2 C 3/3=2

.x4 C 1/3=2
sin2 x dx

(c)
Z 1

0

1C cos2 xp
1C x2

dx (d)
Z 1

0

4C cos x

.1C x/
p
x
dx

(e)
Z 1

0

.x27 C sinx/e�x dx (f)
Z 1

0

x�p.2C sin x/ dx
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9. Find all values of p for which the integral converges.

(a)
Z �=2

0

sin x

xp
dx (b)

Z �=2

0

cos x

xp
dx (c)

Z 1

0

xpe�x dx

(d)
Z �=2

0

sin x

.tan x/p
dx (e)

Z 1

1

dx

x.logx/p
(f)

Z 1

0

dx

x.j logxj/p

(g)
Z �

0

x dx

.sin x/p

10. Let Ln.x/ be the iterated logarithm defined in Exercise 2.4.42. Show that

Z 1

a

dx

L0.x/L1.x/ � � �Lk.x/ŒLkC1.x/�p

converges if and only if p > 1. Here a is any number such that LkC1.x/ > 0 for

x � a.

11. Find conditions on p and q such that the integral converges.

(a)
Z 1

�1

.cos �x=2/q

.1 � x2/p
dx (b)

Z 1

�1

.1 � x/p.1C x/q dx

(c)
Z 1

0

xp dx

.1C x2/q
(d)

Z 1

1

Œlog.1C x/�p .log x/q

xpCq
dx

(e)
Z 1

1

.log.1C x/� logx/q

xp
dx (f)

Z 1

0

.x � sinx/q

xp
dx

12. Let f and g be polynomials and suppose that g has no real zeros. Find necessary

and sufficient conditions for convergence of

Z 1

�1

f .x/

g.x/
dx:

13. Prove: If f and g are locally integrable on Œa; b/ and the improper integrals
R b

a
f 2.x/ dx

and
R b

a
g2.x/ dx converge, then

R b

a
f .x/g.x/ dx converges absolutely. HINT: .f ˙

g/2 � 0:
14. Suppose that f is locally integrable and F.x/ D

R x

a
f .t/ dt is bounded on Œa; b/,

and let f be nonoscillatory at b�. Let g be locally integrable and bounded on Œa; b/.

Show that Z b

a

jf .x/g.x/j dx <1:

15. Suppose that g is positive and nonincreasing on Œa; b/ and
R b

a
f .x/ dx exists as

a proper or absolutely convergent improper integral. Show that
R b

a f .x/g.x/ dx

exists and
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lim
x!b�

1

g.x/

Z b

x

f .t/g.t/ dt D 0:

HINT: Use Exercise 3.4.6:

16. Show that if f is locally integrable on Œa; b/ and nonoscillatory at b�, then
R b

a
f .x/ dx

exists if and only if
R b

a
jf .x/j dx <1.

17. (a) Prove Theorem 3.4.12. HINT: See Example 3.4.13:

(b) Show that g satisfies the assumptions of Theorem 3.4.10 if g0 is locally inte-

grable, g is monotonic on Œa; b/, and limx!b� g.x/ D 0.

18. Find all values of p for which the integral converges (i) absolutely; (ii) condition-

ally.

(a)
Z 1

1

cos x

xp
dx (b)

Z 1

2

sin x

x.logx/p
dx (c)

Z 1

2

sin x

xp logx
dx

(d)
Z 1

1

sin 1=x

xp
dx (e)

Z 1

0

sin2 x sin 2x

xp
dx (f)

Z 1

�1

sinx

.1C x2/p
dx

19. Suppose that g00 is absolutely integrable on Œ0;1/, limx!1 g0.x/ D 0, and limx!1 g.x/ D
L (finite or infinite). Show that

R1
0
g.x/ sin x dx converges if and only if L D 0.

HINT: Integrate by parts:

20. Let h be continuous on Œ0;1/. Prove:

(a) If
R1

0
e�s0xh.x/ dx converges absolutely, then

R1
0
e�sxh.x/ dx converges

absolutely if s > s0.

(b) If
R1

0
e�s0xh.x/ dx converges, then

R1
0
e�sxh.x/ dx converges if s > s0.

21. Suppose that f is locally integrable on Œ0;1/, limx!1 f .x/ D A, and ˛ > �1.

Find limx!1 x�˛�1
R x

0
f .t/t˛ dt , and prove your answer.

22. Suppose that f is continuous and F.x/ D
R x

a
f .t/ dt is bounded on Œa; b/. Suppose

also that g > 0, g0 is nonnegative and locally integrable on Œa; b/, and limx!b� g.x/ D
1. Show that

lim
x!b�

1

Œg.x/��

Z x

a

f .t/g.t/ dt D 0; � > 1:

HINT: Integrate by parts:

23. In addition to the assumptions of Exercise 3.4.22, assume that
R b

a
f .t/ dt converges.

Show that

lim
x!b�

1

g.x/

Z x

a

f .t/g.t/ dt D 0:

HINT: Let F.x/ D
R b

x
f .t/ dt; integrate by parts; and use Exercise 3.4.6:
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24. Suppose that f is continuous, g0.x/ � 0, and g.x/ > 0 on Œa; b/. Show that if g0 is

integrable on Œa; b/ and
R b

a
f .x/ dx exists, then

R b

a
f .x/g.x/ dx exists and

lim
x!b�

1

g.x/

Z b

x

f .t/g.t/ dt D 0:

HINT: Let F.x/ D
R b

x
f .t/ dt; integrate by parts; and use Exercise 3.4.6:

25. Find all values of p for which the integral converges (i) absolutely; (ii) condition-

ally.

(a)
Z 1

0

xp sin 1=x dx (b)
Z 1

0

j logxjp dx (c)
Z 1

1

xp cos.logx/ dx

(d)
Z 1

1

.log x/p dx (e)
Z 1

0

sinxp dx

26. Let u1 be positive and satisfy the differential equation

u00 C p.x/u D 0; 0 � x <1: .A/

(a) Prove: If Z 1

0

dx

u2
1.x/

<1;

then the function

u2.x/ D u1.x/

Z 1

x

dt

u2
1.t/

also satisfies (A), while if

Z 1

0

dx

u2
1.x/

D1;

then the function

u2.x/ D u1.x/

Z x

0

dt

u2
1.t/

also satisfies (A).

(b) Prove: If (A) has a solution that is positive on Œ0;1/, then (A) has solutions

y1 and y2 that are positive on .0;1/ and have the following properties:

y1.x/y
0
2.x/ � y0

1.x/y2.x/ D 1; x > 0;
�
y1.x/

y2.x/

�0
< 0; x > 0;

and

lim
x!1

y1.x/

y2.x/
D 0:
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27. (a) Prove: If h is continuous on Œ0;1/, then the function

u.x/ D c1e
�x C c2e

x C
Z x

0

h.t/ sinh.x � t/ dt

satisfies the differential equation

u00 � u D h.x/; x > 0:

(b) Rewrite u in the form

u.x/ D a.x/e�x C b.x/ex

and show that

u0.x/ D �a.x/e�x C b.x/ex:

(c) Show that if limx!1 a.x/ D A (finite), then

lim
x!1

e2x Œb.x/� B� D 0

for some constant B . HINT: Use Exercise 3.4.24: Show also that

lim
x!1

ex Œu.x/ �Ae�x � Bex� D 0:

(d) Prove: If limx!1 b.x/ D B (finite), then

lim
x!1

u.x/e�x D lim
x!1

u0.x/e�x D B:

HINT: Use Exercise 3.4.23:

28. Suppose that the differential equation

u00C p.x/u D 0 .A/

has a positive solution on Œ0;1/, and therefore has two solutionsy1 and y2 with the

properties given in Exercise 3.4.26(b).

(a) Prove: If h is continuous on Œ0;1/ and c1 and c2 are constants, then

u.x/ D c1y1.x/C c2y2.x/C
Z x

0

h.t/ Œy1.t/y2.x/ � y1.x/y2.t/� dt .B/

satisfies the differential equation

u00 C p.x/u D h.x/:

For convenience in (b) and (c), rewrite (B) as

u.x/ D a.x/y1.x/C b.x/y2.x/:
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(b) Prove: If
R1

0
h.t/y2.t/ dt converges, then

R1
0
h.t/y1.t/ dt converges, and

lim
x!1

u.x/ �Ay1.x/ � By2.x/

y1.x/
D 0

for some constants A and B . HINT: Use Exercise 3.4.24 with f D hy2 and

g D y1=y2:

(c) Prove: If
R1

0
h.t/y1.t/ dt converges, then

lim
x!1

u.x/

y2.x/
D B

for some constant B . HINT: Use Exercise 3.4.23 with f D hy1 and g D
y2=y1:

29. Suppose that f , f1, and g are continuous, f > 0, and .f1=f /
0 is absolutely inte-

grable on Œa; b/. Show that
R b

a
f1.x/g.x/ dx converges if

R b

a
f .x/g.x/ dx does.

30. Let g be locally integrable and f continuous, with f .x/ � � > 0 on Œa; b/. Sup-

pose that for some positive M and for every r in Œa; b/ there are points x1 and x2

such that (a) r < x1 < x2 < b; (b) g does not change sign in Œx1; x2�; and

(c)
R x2

x1
jg.x/j dx � M . Show that

R b

a
f .x/g.x/ dx diverges. HINT: Use Exer-

cise 3.4.7 and Theorem 3.3.7:

3.5 A MORE ADVANCED LOOK AT THE EXISTENCE OF
THE PROPER RIEMANN INTEGRAL

In Section 3.2 we found necessary and sufficient conditions for existence of the proper

Riemann integral, and in Section 3.3 we used them to study the properties of the integral.

However, it is awkward to apply these conditions to a specific function and determine

whether it is integrable, since they require computations of upper and lower sums and

upper and lower integrals, which may be difficult. The main result of this section is an

integrability criterion due to Lebesgue that does not require computation, but has to do

with how badly discontinuous a function may be and still be integrable.

We emphasize that we are again considering proper integrals of bounded functions on

finite intervals.

Definition 3.5.1 If f is bounded on Œa; b�, the oscillation of f on Œa; b� is defined by

Wf Œa; b�D sup
a�x;x0�b

jf .x/� f .x0/j;

which can also be written as

Wf Œa; b� D sup
a�x�b

f .x/ � inf
a�x�b

f .x/

http://www-history.mcs.st-and.ac.uk/Mathematicians/Lebesgue.html
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( Exercise 3.5.1). If a < x < b, the oscillation of f at x is defined by

wf .x/ D lim
h!0C

Wf .x � h; xC h/:

The corresponding definitions for x D a and x D b are

wf .a/ D lim
h!0C

Wf .a; aC h/ and wf .b/ D lim
h!0C

Wf .b � h; b/:

For a fixed x in .a; b/, Wf .x � h; x C h/ is a nonnegative and nondecreasing function

of h for 0 < h < min.x � a; b � x/; therefore, wf .x/ exists and is nonnegative, by

Theorem 2.1.9. Similar arguments apply to wf .a/ and wf .b/.

Theorem 3.5.2 Let f be defined on Œa; b�: Then f is continuous at x0 in Œa; b� if

and only if wf .x0/ D 0: .Continuity at a or b means continuity from the right or left,

respectively./

Proof Suppose that a < x0 < b. First, suppose that wf .x0/ D 0 and � > 0. Then

Wf Œx0 � h; x0 C h� < �

for some h > 0, so

jf .x/� f .x0/j < � if x0 � h � x; x0 � x0 C h:

Letting x0 D x0, we conclude that

jf .x/� f .x0/j < � if jx � x0j < h:

Therefore, f is continuous at x0.

Conversely, if f is continuous at x0 and � > 0, there is a ı > 0 such that

jf .x/� f .x0/j <
�

2
and jf .x0/� f .x0/j <

�

2

if x0 � ı � x, x0 � x0 C ı. From the triangle inequality,

jf .x/� f .x0/j � jf .x/ � f .x0/j C jf .x0/ � f .x0/j < �;

so

Wf Œx0 � h; x0 C h� � � if h < ıI
therefore, wf .x0/ D 0. Similar arguments apply if x0 D a or x0 D b.

Lemma 3.5.3 If wf .x/ < � for a � x � b; then there is a ı > 0 such that

Wf Œa1; b1� � �; provided that Œa1; b1� � Œa; b� and b1 � a1 < ı:

Proof We use the Heine–Borel theorem (Theorem 1.3.7). If wf .x/ < �, there is an

hx > 0 such that

jf .x0/ � f .x00/j < � (3.5.1)
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if

x � 2hx < x
0; x00 < x C 2hx and x0; x00 2 Œa; b�: (3.5.2)

If Ix D .x � hx; x C hx/, then the collection

H D
˚
Ix

ˇ̌
a � x � b

	

is an open covering of Œa; b�, so the Heine–Borel theorem implies that there are finitely

many points x1, x2, . . . , xn in Œa; b� such that Ix1
, Ix2

, . . . , Ixn cover Œa; b�. Let

h D min
1�i�n

hxi

and suppose that Œa1; b1� � Œa; b� and b1 � a1 < h. If x0 and x00 are in Œa1; b1�, then

x0 2 Ixr for some r .1 � r � n/, so

jx0 � xr j < hxr :

Therefore,

jx00 � xr j � jx00 � x0j C jx0 � xr j < b1 � a1 C hxr

< hC hxr � 2hxr :

Thus, any two points x0 and x00 in Œa1; b1� satisfy (3.5.2) with x D xr , so they also satisfy

(3.5.1). Therefore, � is an upper bound for the set
˚
jf .x0/� f .x00/j

ˇ̌
x0; x00 2 Œa1; b1�

	
;

which has the supremumWf Œa1; b1�. Hence, Wf Œa1; b1� � �.
In the following,L.I / is the length of the interval I .

Lemma 3.5.4 Let f be bounded on Œa; b� and define

E� D
˚
x 2 Œa; b�

ˇ̌
wf .x/ � �

	
:

Then E� is closed; and f is integrable on Œa; b� if and only if for every pair of positive

numbers � and ı; E� can be covered by finitely many open intervals I1; I2;. . . ; Ip such

that
pX

j D1

L.Ij / < ı: (3.5.3)

Proof We first show that E� is closed. Suppose that x0 is a limit point of E� . If h > 0,

there is an x from E� in .x0 � h; x0 C h/. Since Œx � h1; x C h1� � Œx0 � h; x0 C h� for

sufficiently small h1 and Wf Œx � h1; xC h1� � �, it follows thatWf Œx0 � h; x0C h� � �
for all h > 0. This implies that x0 2 E�, so E� is closed (Corollary 1.3.6).

Now we will show that the stated condition in necessary for integrability. Suppose that

the condition is not satisfied; that is, there is a � > 0 and a ı > 0 such that

pX

j D1

L.Ij / � ı
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for every finite set fI1; I2; : : : ; Ipg of open intervals covering E�. If P D fx0; x1; : : : ; xng
is a partition of Œa; b�, then

S.P / � s.P / D
X

j 2A

.Mj �mj /.xj � xj �1/C
X

j 2B

.Mj �mj /.xj � xj �1/; (3.5.4)

where

A D
˚
j
ˇ̌
Œxj �1; xj � \E� ¤ ;

	
and B D

˚
j
ˇ̌
Œxj �1; xj � \ E� D ;

	
:

Since
S

j 2A.xj �1; xj / contains all points of E� except any of x0, x1, . . . , xn that may

be in E�, and each of these finitely many possible exceptions can be covered by an open

interval of length as small as we please, our assumption on E� implies that

X

j 2A

.xj � xj �1/ � ı:

Moreover, if j 2 A, then

Mj �mj � �;
so (3.5.4) implies that

S.P / � s.P / � �
X

j 2A

.xj � xj �1/ � �ı:

Since this holds for every partition of Œa; b�, f is not integrable on Œa; b�, by Theorem 3.2.7.

This proves that the stated condition is necessary for integrability.

For sufficiency, let � and ı be positive numbers and let I1, I2, . . . , Ip be open intervals

that cover E� and satisfy (3.5.3). Let

eI j D Œa; b�\ I j :

(I j D closure of I .) After combining any ofeI 1,eI 2, . . . , eIp that overlap, we obtain a set

of pairwise disjoint closed subintervals

Cj D Œ˛j ; ˇj �; 1 � j � q .� p/;

of Œa; b� such that

a � ˛1 < ˇ1 < ˛2 < ˇ2 � � � < ˛q�1 < ˇq�1 < ˛q < ˇq � b; (3.5.5)

qX

iD1

.ˇi � ˛i / < ı (3.5.6)

and

wf .x/ < �; ˇj � x � ˛j C1; 1 � j � q � 1:

Also, wf .x/ < � for a � x � ˛1 if a < ˛1 and for ˇq � x � b if ˇq < b.
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Let P0 be the partition of Œa; b� with the partition points indicated in (3.5.5), and refine

P0 by partitioning each subinterval Œˇj ; ˛j C1� (as well as Œa; ˛1� if a < ˛1 and Œˇq; b�

if ˇq < b) into subintervals on which the oscillation of f is not greater than �. This is

possible by Lemma 3.5.3. In this way, after renaming the entire collection of partition

points, we obtain a partitionP D fx0; x1; : : : ; xng of Œa; b� for which S.P / � s.P / can be

written as in (3.5.4), with

X

j 2A

.xj � xj �1/ D
qX

iD1

.ˇi � ˛i/ < ı

(see (3.5.6)) and

Mj �mj � �; j 2 B:

For this partition,

X

j 2A

.Mj �mj /.xj � xj �1/ � 2K
X

j 2A

.xj � xj �1/ < 2Kı;

where K is an upper bound for jf j on Œa; b� and

X

j 2B

.Mj �mj /.xj � xj �1/ � �.b � a/:

We have now shown that if � and ı are arbitrary positive numbers, there is a partitionP of

Œa; b� such that

S.P / � s.P / < 2Kı C �.b � a/: (3.5.7)

If � > 0, let

ı D �

4K
and � D �

2.b � a/
:

Then (3.5.7) yields

S.P / � s.P / < �;
and Theorem 3.2.7 implies that f is integrable on Œa; b�.

We need the next definition to state Lebesgue’s integrability condition.

Definition 3.5.5 A subset S of the real line is of Lebesgue measure zero if for every

� > 0 there is a finite or infinite sequence of open intervals I1, I2, . . . such that

S �
[

j

Ij (3.5.8)

and
nX

j D1

L.Ij / < �; n � 1: (3.5.9)
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Note that any subset of a set of Lebesgue measure zero is also of Lebesgue measure zero.

(Why?)

Example 3.5.1 The empty set is of Lebesgue measure zero, since it is contained in

any open interval.

Example 3.5.2 Any finite set S D fx1; x2; : : : ; xng is of Lebesgue measure zero,

since we can choose open intervals I1, I2, . . . , In such that xj 2 Ij and L.Ij / < �=n,

1 � j � n.

Example 3.5.3 An infinite set is denumerable if its members can be listed in a se-

quence (that is, in a one-to-one correspondence with the positive integers); thus,

S D fx1; x2; : : : ; xn; : : : g: (3.5.10)

An infinite set that does not have this property is nondenumerable. Any denumerable set

(3.5.10) is of Lebesgue measure zero, since if � > 0, it is possible to choose open intervals

I1, I2, . . . , so that xj 2 Ij and L.Ij / < 2
�j �, j � 1. Then (3.5.9) holds because

1

2
C 1

22
C 1

23
C � � � C 1

2n
D 1 � 1

2n
< 1: (3.5.11)

There are also nondenumerable sets of Lebesgue measure zero, but it is beyond the scope

of this book to discuss examples.

The next theorem is the main result of this section.

Theorem 3.5.6 A bounded function f is integrable on a finite interval Œa; b� if and

only if the set S of discontinuities of f in Œa; b� is of Lebesgue measure zero:

Proof From Theorem 3.5.2,

S D
˚
x 2 Œa; b�

ˇ̌
wf .x/ > 0

	
:

Since wf .x/ > 0 if and only if wf .x/ � 1=i for some positive integer i , we can write

S D
1[

iD1

Si ; (3.5.12)

where

Si D
˚
x 2 Œa; b�

ˇ̌
wf .x/ � 1=i

	
:

Now suppose that f is integrable on Œa; b� and � > 0. From Lemma 3.5.4, each Si can

be covered by a finite number of open intervals Ii1, Ii2, . . . , Iin of total length less than

�=2i . We simply renumber these intervals consecutively; thus,

I1; I2; � � � D I11; : : : ; I1n1
; I21; : : : ; I2n2

; : : : ; Ii1; : : : ; Iini
; : : : :

Now (3.5.8) and (3.5.9) hold because of (3.5.11) and (3.5.12), and we have shown that the

stated condition is necessary for integrability.
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For sufficiency, suppose that the stated condition holds and � > 0. Then S can be

covered by open intervals I1; I2; : : : that satisfy (3.5.9). If � > 0, then the set

E� D
˚
x 2 Œa; b�

ˇ̌
wf .x/ � �

	

of Lemma 3.5.4 is contained inS (Theorem 3.5.2), and thereforeE� is covered by I1; I2; : : : .

Since E� is closed (Lemma 3.5.4) and bounded, the Heine–Borel theorem implies that E�

is covered by a finite number of intervals from I1; I2; : : : . The sum of the lengths of the

latter is less than �, so Lemma 3.5.4 implies that f is integrable on Œa; b�.

3.5 Exercises

1. In connection with Definition 3.5.1, show that

sup
x;x0 2Œa;b�

jf .x/� f .x0/j D sup
a�x�b

f .x/ � inf
a�x�b

f .x/:

2. Use Theorem 3.5.6 to show that if f is integrable on Œa; b�, then so is jf j and, if

f .x/ � � > 0 .a � x � b/, so is 1=f .

3. Prove: The union of two sets of Lebesgue measure zero is of Lebesgue measure

zero.

4. Use Theorem 3.5.6 and Exercise 3.5.3 to show that if f and g are integrable on

Œa; b�, then so are f C g and fg.

5. Suppose f is integrable on Œa; b�, ˛ D infa�x�b f .x/, and ˇ D supa�x�b f .x/.

Let g be continuous on Œ˛; ˇ�. Show that the composition h D g ı f is integrable

on Œa; b�.

6. Let f be integrable on Œa; b�, let ˛ D infa�x�b f .x/ and ˇ D supa�x�b f .x/, and

suppose that G is continuous on Œ˛; ˇ�. For each n � 1, let

aC .j � 1/.b � a/
n

� uj n; vj n � aC
j.b � a/

n
; 1 � j � n:

Show that

lim
n!1

1

n

nX

j D1

jG.f .uj n// �G.f .vj n//j D 0:

7. Let h.x/ D 0 for all x in Œa; b� except for x in a set of Lebesgue measure zero.

Show that if
R b

a
h.x/ dx exists, it equals zero. HINT: Any subset of a set of measure

zero is also of measure zero:

8. Suppose that f and g are integrable on Œa; b� and f .x/ D g.x/ except for x in a set

of Lebesgue measure zero. Show that

Z b

a

f .x/ dx D
Z b

a

g.x/ dx:



CHAPTER 4

Infinite Sequences and Series

IN THIS CHAPTER we consider infinite sequences and series of constants and functions

of a real variable.

SECTION 4.1 introduces infinite sequences of real numbers. The concept of a limit of a

sequence is defined, as is the concept of divergence of a sequence to ˙1. We discuss

bounded sequences and monotonic sequences. The limit inferior and limit superior of a

sequence are defined. We prove the Cauchy convergence criterion for sequences of real

numbers.

SECTION 4.2 defines a subsequence of an infinite sequence. We show that if a sequence

converges to a limit or diverges to˙1, then so do all subsequences of the sequence. Limit

points and boundedness of a set of real numbers are discussed in terms of sequences of

members of the set. Continuity and boundedness of a function are discussed in terms of the

values of the function at sequences of points in its domain.

SECTION 4.3 introduces concepts of convergence and divergence to˙1 for infinite series

of constants. We prove Cauchy’s convergence criterion for a series of constants. In con-

nection with series of positive terms, we consider the comparison test, the integral test, the

ratio test, and Raabe’s test. For general series, we consider absolute and conditional con-

vergence, Dirichlet’s test, rearrangement of terms, and multiplication of one infinite series

by another.

SECTION 4.4 deals with pointwise and uniform convergence of sequences and series of

functions. Cauchy’s uniform convergence criteria for sequences and series are proved, as

is Dirichlet’s test for uniform convergence of a series. We give sufficient conditions for

the limit of a sequence of functions or the sum of an infinite series of functions to be

continuous, integrable, or differentiable.

SECTION 4.5 considers power series. It is shown that a power series that converges on

an open interval defines an infinitely differentiable function on that interval. We define

the Taylor series of an infinitely differentiable function, and give sufficient conditions for

the Taylor series to converge to the function on some interval. Arithmetic operations with

power series are discussed.

178
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4.1 SEQUENCES OF REAL NUMBERS

An infinite sequence (more briefly, a sequence) of real numbers is a real-valued function

defined on a set of integers
˚
n
ˇ̌
n � k

	
. We call the values of the function the terms of the

sequence. We denote a sequence by listing its terms in order; thus,

fsng1k D fsk; skC1; : : : g: (4.1.1)

For example,

�
1

n2 C 1

�1

0

D
�
1;
1

2
;
1

5
; : : : ;

1

n2 C 1
; : : :

�
;

f.�1/ng10 D f1;�1; 1; : : : ; .�1/n; : : : g ;

and �
1

n � 2

�1

3

D
�
1;
1

2
;
1

3
; : : : ;

1

n� 2; : : :
�
:

The real number sn is the nth term of the sequence. Usually we are interested only in the

terms of a sequence and the order in which they appear, but not in the particular value of k

in (4.1.1). Therefore, we regard the sequences

�
1

n � 2

�1

3

and

�
1

n

�1

1

as identical.

We will usually write fsng rather than fsng1k . In the absence of any indication to the

contrary, we take k D 0 unless sn is given by a rule that is invalid for some nonnegative

integer, in which case k is understood to be the smallest positive integer such that sn is

defined for all n � k. For example, if

sn D
1

.n � 1/.n � 5/ ;

then k D 6.

The interesting questions about a sequence fsng concern the behavior of sn for large n.

Limit of a Sequence

Definition 4.1.1 A sequence fsng converges to a limit s if for every � > 0 there is an

integer N such that

jsn � sj < � if n � N: (4.1.2)

In this case we say that fsng is convergent and write

lim
n!1

sn D s:

A sequence that does not converge diverges, or is divergent
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As we saw in Section 2.1 when discussing limits of functions, Definition 4.1.1 is not

changed by replacing (4.1.2) with

jsn � sj < K� if n � N;

where K is a positive constant.

Example 4.1.1 If sn D c for n � k, then jsn�cj D 0 for n � k, and limn!1 sn D c.

Example 4.1.2 If

sn D
�
2nC 1
nC 1

�
;

then limn!1 sn D 2, since

jsn � 2j D
ˇ̌
ˇ̌2nC 1
nC 1 �

2nC 2
nC 1

ˇ̌
ˇ̌ D 1

nC 1 I

hence, if � > 0, then (4.1.2) holds with s D 2 if N � 1=�.

Definition 4.1.1 does not require that there be an integer N such that (4.1.2) holds for

all �; rather, it requires that for each positive � there be an integer N that satisfies (4.1.2)

for that particular �. Usually, N depends on � and must be increased if � is decreased. The

constant sequences (Example 4.1.1) are essentially the only ones for which N does not

depend on � (Exercise 4.1.5).

We say that the terms of a sequence fsng1k satisfy a given condition for all n if sn satisfies

the condition for all n � k, or for large n if there is an integer N > k such that sn satisfies

the condition whenever n � N . For example, the terms of f1=ng11 are positive for all n,

while those of f1� 7=ng11 are positive for large n (take N D 8).

Uniqueness of the Limit

Theorem 4.1.2 The limit of a convergent sequence is unique:

Proof Suppose that

lim
n!1

sn D s and lim
n!1

sn D s0:

We must show that s D s0. Let � > 0. From Definition 4.1.1, there are integers N1 and N2

such that

jsn � sj < � if n � N1

(because limn!1 sn D s), and

jsn � s0j < � if n � N2
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(because limn!1 sn D s0). These inequalities both hold if n � N D max.N1; N2/, which

implies that

js � s0j D j.s � sN /C .sN � s0/j
� js � sN j C jsN � s0j < � C � D 2�:

Since this inequality holds for every � > 0 and js � s0j is independent of �, we conclude

that js � s0j D 0; that is, s D s0.

Sequences Diverging to ˙1

We say that

lim
n!1

sn D1

if for any real number a, sn > a for large n. Similarly,

lim
n!1

sn D �1

if for any real number a, sn < a for large n. However, we do not regard fsng as convergent

unless limn!1 sn is finite, as required by Definition 4.1.1. To emphasize this distinction,

we say that fsng diverges to1 .�1/ if limn!1 sn D1 .�1/.

Example 4.1.3 The sequence fn=2C 1=ng diverges to1, since, if a is any real num-

ber, then
n

2
C 1

n
> a if n � 2a:

The sequence fn � n2g diverges to �1, since, if a is any real number, then

�n2 C n D �n.n � 1/ < a if n > 1C
p
jaj:

Therefore, we write

lim
n!1

�
n

2
C 1

n

�
D1

and

lim
n!1

.�n2 C n/ D �1:

The sequence f.�1/nn3g diverges, but not to �1 or1.

Bounded Sequences

Definition 4.1.3 A sequence fsng is bounded above if there is a real number b such

that

sn � b for all n;

bounded below if there is a real number a such that

sn � a for all n;

or bounded if there is a real number r such that

jsnj � r for all n:
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Example 4.1.4 If sn D Œ1 C .�1/n�n, then fsng is bounded below .sn � 0/ but

unbounded above, and f�sng is bounded above .�sn � 0/ but unbounded below. If sn D
.�1/n, then fsng is bounded. If sn D .�1/nn, then fsng is not bounded above or below.

Theorem 4.1.4 A convergent sequence is bounded:

Proof By taking � D 1 in (4.1.2), we see that if limn!1 sn D s, then there is an integer

N such that

jsn � sj < 1 if n � N:
Therefore,

jsnj D j.sn � s/C sj � jsn � sj C jsj < 1C jsj if n � N;

and

jsnj � maxfjs0j; js1j; : : : ; jsN�1j; 1C jsjg
for all n, so fsng is bounded.

Monotonic Sequences

Definition 4.1.5 A sequence fsng is nondecreasing if sn � sn�1 for all n, or nonin-

creasing if sn � sn�1 for all n: A monotonic sequence is a sequence that is either nonin-

creasing or nondecreasing. If sn > sn�1 for all n, then fsng is increasing, while if sn < sn�1

for all n, fsng is decreasing.

Theorem 4.1.6

(a) If fsng is nondecreasing; then limn!1 sn D supfsng:
(b) If fsng is nonincreasing; then limn!1 sn D inffsng:

Proof (a). Let ˇ D supfsng. If ˇ <1, Theorem 1.1.3 implies that if � > 0 then

ˇ � � < sN � ˇ

for some integer N . Since sN � sn � ˇ if n � N , it follows that

ˇ � � < sn � ˇ if n � N:

This implies that jsn�ˇj < � if n � N , so limn!1 sn D ˇ, by Definition 4.1.1. If ˇ D 1
and b is any real number, then sN > b for some integer N . Then sn > b for n � N , so

limn!1 sn D 1.

We leave the proof of (b) to you (Exercise 4.1.8)

Example 4.1.5 If s0 D 1 and sn D 1�e�sn�1 , then 0 < sn � 1 for all n, by induction.

Since

snC1 � sn D �.e�sn � esn�1/ if n � 1;
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the mean value theorem (Theorem 2.3.11) implies that

snC1 � sn D e�tn.sn � sn�1/ if n � 1; (4.1.3)

where tn is between sn�1 and sn. Since s1 � s0 D �1=e < 0, it follows by induction from

(4.1.3) that snC1 � sn < 0 for all n. Hence, fsng is bounded and decreasing, and therefore

convergent.

Sequences of Functional Values

The next theorem enables us to apply the theory of limits developed in Section 2.1 to some

sequences. We leave the proof to you (Exercise 4.1.13).

Theorem 4.1.7 Let limx!1 f .x/ D L; whereL is in the extended reals; and suppose

that sn D f .n/ for large n: Then

lim
n!1

sn D L:

Example 4.1.6 Let

sn D
logn

n
and f .x/ D logx

x
:

By L’Hospital’s rule,

lim
x!1

logx

x
D lim

x!1
1=x

1
D 0:

Hence, limn!1 logn=n D 0.

Example 4.1.7 Let sn D .1C 1=n/n and

f .x/ D
�
1C 1

x

�x

D ex log.1C1=x/:

By L’Hospital’s rule,

lim
x!1

x log

�
1C 1

x

�
D lim

x!1
log.1C 1=x/

1=x

D lim
x!1

� 1
x2

1

1C 1=x
�1=x2

D 1I

hence,

lim
x!1

�
1C 1

x

�x

D e1 D e and lim
n!1

�
1C 1

n

�n

D e:

The last equation is sometimes used to define e.
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Example 4.1.8 Suppose that sn D �n with � > 0, and let f .x/ D �x D ex log � . Since

lim
x!1

ex log � D

8
<̂

:̂

0; if log� < 0 .0 < � < 1/;

1; if log� D 0 .� D 1/;
1; if log� > 0 .� > 1/;

it follows that

lim
n!1

�n D

8
<
:
0; 0 < � < 1;

1; � D 1;
1; � > 1:

Therefore,

lim
n!1

rn D

8
<
:
0; �1 < r < 1;
1; r D 1;
1; r > 1;

a result that we will use often.

A Useful Limit Theorem

The next theorem enables us to investigate convergence of sequences by examining simpler

sequences. It is analogous to Theorem 2.1.4.

Theorem 4.1.8 Let

lim
n!1

sn D s and lim
n!1

tn D t; (4.1.4)

where s and t are finite: Then

lim
n!1

.csn/ D cs (4.1.5)

if c is a constantI

lim
n!1

.sn C tn/ D sC t; (4.1.6)

lim
n!1

.sn � tn/ D s � t; (4.1.7)

lim
n!1

.sntn/ D st; (4.1.8)

and

lim
n!1

sn

tn
D s

t
(4.1.9)

if tn is nonzero for all n and t ¤ 0.

Proof We prove (4.1.8) and (4.1.9) and leave the rest to you (Exercises 4.1.15 and

4.1.17). For (4.1.8), we write

sntn � st D sntn � stn C stn � st D .sn � s/tn C s.tn � t/I
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hence,

jsntn � st j � jsn � sj jtnj C jsj jtn � t j: (4.1.10)

Since ftng converges, it is bounded (Theorem 4.1.4). Therefore, there is a number R such

that jtnj � R for all n, and (4.1.10) implies that

jsntn � st j � Rjsn � sj C jsj jtn � t j: (4.1.11)

From (4.1.4), if � > 0 there are integers N1 and N2 such that

jsn � sj< � if n � N1 (4.1.12)

and

jtn � t j < � if n � N2: (4.1.13)

If N D max.N1; N2/, then (4.1.12) and (4.1.13) both hold when n � N , and (4.1.11)

implies that

jsntn � st j � .R C jsj/� if n � N:
This proves (4.1.8).

Now consider (4.1.9) in the special case where sn D 1 for all n and t ¤ 0; thus, we want

to show that

lim
n!1

1

tn
D 1

t
:

First, observe that since limn!1 tn D t ¤ 0, there is an integerM such that jtnj � jt j=2
if n � M . To see this, we apply Definition 4.1.1 with � D jt j=2; thus, there is an integer

M such that jtn � t j < jt=2j if n �M . Therefore,

jtnj D jt C .tn � t/j � jjt j � jtn � t jj �
jt j
2

if n �M:

If � > 0, choose N0 so that jtn � t j < � if n � N0, and let N D max.N0;M/. Then
ˇ̌
ˇ̌ 1
tn
�
1

t

ˇ̌
ˇ̌ D jt � tnjjtnj jt j

�
2�

jt j2 if n � N I

hence, limn!1 1=tn D 1=t . Now we obtain (4.1.9) in the general case from (4.1.8) with

ftng replaced by f1=tng.

Example 4.1.9 To determine the limit of the sequence defined by

sn D
1

n
sin

n�

4
C 2.1C 3=n/

1C 1=n
;

we apply the applicable parts of Theorem 4.1.8 as follows:

lim
n!1

sn D lim
n!1

1

n
sin

n�

4
C
2
h

lim
n!1

1C 3 lim
n!1

.1=n/
i

lim
n!1

1C lim
n!1

.1=n/

D 0C 2.1C 3 � 0/
1C 0

D 2:
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Example 4.1.10 Sometimes preliminary manipulations are necessary before applying

Theorem 4.1.8. For example,

lim
n!1

.n=2/C logn

3nC 4
p
n
D lim

n!1
1=2C .log n/=n

3C 4n�1=2

D
lim

n!1
1=2C lim

n!1
.logn/=n

lim
n!1

3C 4 lim
n!1

n�1=2

D 1=2C 0
3C 0 (see Example 4.1.6)

D 1

6
:

Example 4.1.11 Suppose that �1 < r < 1 and

s0 D 1; s1 D 1C r; s2 D 1C r C r2; : : : ; sn D 1C r C � � � C rn:

Since

sn � rsn D .1C r C � � � C rn/ � .r C r2 C � � � C rnC1/ D 1 � rnC1;

it follows that

sn D
1 � rnC1

1 � r : (4.1.14)

From Example 4.1.8, limn!1 rnC1 D 0, so (4.1.14) and Theorem 4.1.8 yield

lim
n!1

.1C r C � � � C rn/ D 1

1 � r if � 1 < r < 1:

Equations (4.1.5)–(4.1.8) are valid even if s and t are arbitrary extended reals, provided

that their right sides are defined in the extended reals (Exercises 4.1.16, 4.1.18, and 4.1.21);

(4.1.9) is valid if s=t is defined in the extended reals and t ¤ 0 (Exercise 4.1.22).

Example 4.1.12 If �1 < r < 1, then

lim
n!1

rn

nŠ
D

lim
n!1

rn

lim
n!1

nŠ
D 0

1
D 0;

from (4.1.9) and Example 4.1.8. However, if r > 1, (4.1.9) and Example 4.1.8 yield

lim
n!1

rn

nŠ
D

lim
n!1

rn

lim
n!1

nŠ
D 11 ;

an indeterminate form. If r � �1, then limn!1 rn does not exist in the extended reals, so

(4.1.9) is not applicable. Theorem 4.1.7 does not help either, since there is no elementary

function f such that f .n/ D rn=nŠ. However, the following argument shows that
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lim
n!1

rn

nŠ
D 0; �1 < r <1: (4.1.15)

There is an integer M such that

jr j
n
<
1

2
if n �M:

Let K D rm=MŠ. Then

jr jn
nŠ
� K jr j

M C 1
jr j

M C 2
� � � jr j

n
< K

�
1

2

�n�M

; n > M:

Given � > 0, choose N � M so that K=2N�M < �. Then jr jn=nŠ < � if n � N , which

verifies (4.1.15).

Limits Superior and Inferior

Requiring a sequence to converge may be unnecessarily restrictive in some situations. Of-

ten, useful results can be obtained from assumptions on the limit superior and limit inferior

of a sequence, which we consider next.

Theorem 4.1.9

(a) If fsng is bounded above and does not diverge to �1; then there is a unique real

number s such that; if � > 0;

sn < s C � for large n (4.1.16)

and

sn > s � � for infinitely many n: (4.1.17)

(b) If fsng is bounded below and does not diverge to 1; then there is a unique real

number s such that; if � > 0;

sn > s � � for large n (4.1.18)

and

sn < s C � for infinitely many n: (4.1.19)

Proof We will prove (a) and leave the proof of (b) to you (Exercise 4.1.23). Since

fsng is bounded above, there is a number ˇ such that sn < ˇ for all n. Since fsng does not

diverge to �1, there is a number ˛ such that sn > ˛ for infinitely many n. If we define

Mk D supfsk; skC1; : : : ; skCr ; : : : g;
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then ˛ �Mk � ˇ, so fMkg is bounded. Since fMkg is nonincreasing (why?), it converges,

by Theorem 4.1.6. Let

s D lim
k!1

Mk : (4.1.20)

If � > 0, then Mk < s C � for large k, and since sn �Mk for n � k, s satisfies (4.1.16).

If (4.1.17) were false for some positive �, there would be an integer K such that

sn � s � � if n � K:

However, this implies that

Mk � s � � if k � K;

which contradicts (4.1.20). Therefore, s has the stated properties.

Now we must show that s is the only real number with the stated properties. If t < s, the

inequality

sn < t C
s � t
2
D s � s � t

2

cannot hold for all large n, because this would contradict (4.1.17) with � D .s � t/=2. If

s < t , the inequality

sn > t �
t � s
2
D s C t � s

2

cannot hold for infinitely many n, because this would contradict (4.1.16) with � D .t�s/=2.

Therefore, s is the only real number with the stated properties.

Definition 4.1.10 The numbers s and s defined in Theorem 4.1.9 are called the limit

superior and limit inferior, respectively, of fsng, and denoted by

s D lim
n!1

sn and s D lim
n!1

sn:

We also define

lim
n!1

sn D 1 if fsng is not bounded above;

lim
n!1

sn D �1 if lim
n!1

sn D �1;

lim
n!1

sn D �1 if fsng is not bounded below;

and
lim

n!1
sn D 1 if lim

n!1
sn D1:

Theorem 4.1.11 Every sequence fsng of real numbers has a unique limit superior; s;

and a unique limit inferior; s, in the extended reals; and

s � s: (4.1.21)
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Proof The existence and uniqueness of s and s follow from Theorem 4.1.9 and Defini-

tion 4.1.10. If s and s are both finite, then (4.1.16) and (4.1.18) imply that

s � � < s C �

for every � > 0, which implies (4.1.21). If s D �1 or s D1, then (4.1.21) is obvious. If

s D1 or s D �1, then (4.1.21) follows immediately from Definition 4.1.10.

Example 4.1.13

lim
n!1

rn D

8
<
:
1; jr j > 1;
1; jr j D 1;
0; jr j < 1I

and

lim
n!1

rn D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1; r > 1;

1; r D 1;
0; jr j < 1;
�1; r D �1;
�1; r < �1:

Also,

lim
n!1

n2 D lim
n!1

n2 D1;

lim
n!1

.�1/n
�
1 �

1

n

�
D 1; lim

n!1
.�1/n

�
n�

1

n

�
D �1;

and

lim
n!1

Œ1C .�1/n� n2 D1; lim
n!1

Œ1C .�1/n� n2 D 0:

Theorem 4.1.12 If fsng is a sequence of real numbers, then

lim
n!1

sn D s (4.1.22)

if and only if

lim
n!1

sn D lim
n!1

sn D s: (4.1.23)

Proof If s D ˙1, the equivalence of (4.1.22) and (4.1.23) follows immediately from

their definitions. If limn!1 sn D s (finite), then Definition 4.1.1 implies that (4.1.16)–

(4.1.19) hold with s and s replaced by s. Hence, (4.1.23) follows from the uniqueness of

s and s. For the converse, suppose that s D s and let s denote their common value. Then

(4.1.16) and (4.1.18) imply that

s � � < sn < sC �

for large n, and (4.1.22) follows from Definition 4.1.1 and the uniqueness of limn!1 sn
(Theorem 4.1.2).
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Cauchy’s Convergence Criterion

To determine from Definition 4.1.1 whether a sequence has a limit, it is necessary to guess

what the limit is. (This is particularly difficult if the sequence diverges!) To use Theo-

rem 4.1.12 for this purpose requires finding s and s. The following convergence criterion

has neither of these defects.

Theorem 4.1.13 (Cauchy’s Convergence Criterion) A sequence fsng of

real numbers converges if and only if; for every � > 0; there is an integer N such that

jsn � smj < � if m; n � N: (4.1.24)

Proof Suppose that limn!1 sn D s and � > 0. By Definition 4.1.1, there is an integer

N such that

jsr � sj <
�

2
if r � N:

Therefore,

jsn � smj D j.sn � s/C .s � sm/j � jsn � sj C js � smj < � if n;m � N:

Therefore, the stated condition is necessary for convergence of fsng. To see that it is suffi-

cient, we first observe that it implies that fsng is bounded (Exercise 4.1.27), so s and s are

finite (Theorem 4.1.9). Now suppose that � > 0 and N satisfies (4.1.24). From (4.1.16)

and (4.1.17),

jsn � sj < �; (4.1.25)

for some integer n > N and, from (4.1.18) and (4.1.19),

jsm � sj < � (4.1.26)

for some integer m > N . Since

js � sj D j.s � sn/C .sn � sm/C .sm � s/j
� js � snj C jsn � smj C jsm � sj;

(4.1.24)–(4.1.26) imply that

js � sj < 3�:
Since � is an arbitrary positive number, this implies that s D s, so fsng converges, by

Theorem 4.1.12.

Example 4.1.14 Suppose that

jf 0.x/j � r < 1; �1 < x <1: (4.1.27)

Show that the equation

x D f .x/ (4.1.28)

has a unique solution.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Cauchy.html
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Solution To see that (4.1.28) cannot have more than one solution, suppose that x D
f .x/ and x0 D f .x0/. From (4.1.27) and the mean value theorem (Theorem 2.3.11),

x � x0 D f 0.c/.x � x0/

for some c between x and x0. This and (4.1.27) imply that

jx � x0j � r jx � x0j:

Since r < 1, x D x0.

We will now show that (4.1.28) has a solution. With x0 arbitrary, define

xn D f .xn�1/; n � 1: (4.1.29)

We will show that fxng converges. From (4.1.29) and the mean value theorem,

xnC1 � xn D f .xn/� f .xn�1/ D f 0.cn/.xn � xn�1/;

where cn is between xn�1 and xn. This and (4.1.27) imply that

jxnC1 � xnj � r jxn � xn�1j if n � 1: (4.1.30)

The inequality

jxnC1 � xnj � rnjx1 � x0j if n � 0; (4.1.31)

follows by induction from (4.1.30). Now, if n > m,

jxn � xmj D j.xn � xn�1/C .xn�1 � xn�2/C � � � C .xmC1 � xm/j
� jxn � xn�1j C jxn�1 � xn�2j C � � � C jxmC1 � xmj;

and (4.1.31) yields

jxn � xmj � jx1 � x0j rm.1C r C � � � C rn�m�1/: (4.1.32)

In Example 4.1.11 we saw that the sequence fskg defined by

sk D 1C r C � � � C rk

converges to 1=.1 � r/ if jr j < 1; moreover, since we have assumed here that 0 < r < 1,

fskg is nondecreasing, and therefore sk < 1=.1 � r/ for all k. Therefore, (4.1.32) yields

jxn � xmj <
jx1 � x0j
1 � r rm if n > m:

Now it follows that

jxn � xmj <
jx1 � x0j
1 � r rN if n;m > N;

and, since limN!1 rN D 0, fxng converges, by Theorem 4.1.13. Ifbx D limn!1 xn, then

(4.1.29) and the continuity of f imply thatbx D f .bx/.
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4.1 Exercises

1. Prove: If sn � 0 for n � k and limn!1 sn D s, then s � 0.

2. (a) Show that limn!1 sn D s (finite) if and only if limn!1 jsn � sj D 0.

(b) Suppose that jsn � sj � tn for large n and limn!1 tn D 0. Show that

limn!1 sn D s.
3. Find limn!1 sn. Justify your answers from Definition 4.1.1.

(a) sn D 2C
1

nC 1
(b) sn D

˛ C n
ˇ C n

(c) sn D
1

n
sin

n�

4

4. Find limn!1 sn. Justify your answers from Definition 4.1.1.

(a) sn D
n

2nC
p
nC 1

(b) sn D
n2 C 2nC 2
n2 C n

(c) sn D
sinnp
n

(d) sn D
p
n2 C n � n

5. State necessary and sufficient conditions on a convergent sequence fsng such that

the integer N in Definition 4.1.1 does not depend upon �.

6. Prove: If limn!1 sn D s then limn!1 jsnj D jsj.
7. Suppose that limn!1 sn D s (finite) and, for each � > 0, jsn � tnj < � for large n.

Show that limn!1 tn D s.
8. Complete the proof of Theorem 4.1.6.

9. Use Theorem 4.1.6 to show that fsng converges.

(a) sn D
˛C n
ˇ C n .ˇ > 0/ (b) sn D

nŠ

nn

(c) sn D
rn

1C rn
.r > 0/ (d) sn D

.2n/Š

22n.nŠ/2

10. Let y D Tan�1x be the solution of x D tan y such that ��=2 < y < �=2. Prove:

If x0 > 0 and xnC1 D Tan�1xn .n � 0/, then fxng converges.

11. Suppose that s0 and A are positive numbers. Let

snC1 D
1

2

�
sn C

A

sn

�
; n � 0:

(a) Show that snC1 �
p
A if n � 0.

(b) Show that snC1 � sn if n � 1.

(c) Show that s D limn!1 sn exists.

(d) Find s.

12. Prove: If fsng is unbounded and monotonic, then either limn!1 sn D1 or limn!1 sn D
�1.

13. Prove Theorem 4.1.7.
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14. Use Theorem 4.1.7 to find limn!1 sn.

(a) sn D
˛C n
ˇ C n .ˇ > 0/ (b) sn D cos

1

n

(c) sn D n sin
1

n
(d) sn D logn� n

(e) sn D log.nC 1/ � log.n � 1/
15. Suppose that limn!1 sn D s (finite). Show that if c is a constant, then limn!1.csn/ D

cs.

16. Suppose that limn!1 sn D s where s D ˙1. Show that if c is a nonzero constant,

then limn!1.csn/ D cs.
17. Prove: If limn!1 sn D s and limn!1 tn D t , where s and t are finite, then

lim
n!1

.sn C tn/ D sC t and lim
n!1

.sn � tn/ D s � t:

18. Prove: If limn!1 sn D s and limn!1 tn D t , where s and t are in the extended

reals, then

lim
n!1

.sn C tn/ D s C t

if s C t is defined.

19. Suppose that limn!1 tn D t , where 0 < jt j < 1, and let 0 < � < 1. Show that

there is an integer N such that tn > �t for n � N if t > 0, or tn < �t for n � N if

t < 0. In either case, jtnj > �jt j if n � N .

20. Prove: If

lim
n!1

sn � s
sn C s

D 0; then lim
n!1

sn D s:

HINT: Define tn D .sn � s/=.sn C s/ and solve for sn:

21. Prove: if limn!1 sn D s and limn!1 tn D t , where s and t are in the extended

reals, then

lim
n!1

sntn D st

provided that st is defined in the extended reals.

22. Prove: If limn!1 sn D s and limn!1 tn D t , then

lim
n!1

sn

tn
D s

t
.A/

if s=t is defined in the extended reals and t ¤ 0. Give an example where s=t is

defined in the extended plane, but (A) does not hold.

23. Prove Theorem 4.1.9(b).

24. Find s and s.

(a) sn D Œ.�1/n C 1� n2 (b) sn D .1 � rn/ sin
n�

2
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(c) sn D
r2n

1C rn
.r ¤ �1/ (d) sn D n2 � n

(e) sn D .�1/ntn where limn!1 tn D t
25. Find s and s.

(a) sn D .�1/n (b) sn D .�1/n
�
2C 3

n

�

(c) sn D
nC .�1/n.2nC 1/

n
(d) sn D sin

n�

3

26. Suppose that limn!1 jsnj D  (finite). Show that fsng diverges unless  D 0 or the

terms in fsng have the same sign for large n. HINT: Use Exercise 4.1.19:

27. Prove: The sequence fsng is bounded if, for some positive �, there is an integer N

such that jsn � smj < � whenever n, m � N .

In Exercises 4.1.28–4.1.31, assume that s, s .or s/, t , and t are in the extended reals, and

show that the given inequalities or equations hold whenever their right sides are defined

.not indeterminate/.

28. (a) lim
n!1

.�sn/ D �s (b) lim
n!1

.�sn/ D �s

29. (a) lim
n!1

.sn C tn/ � s C t (b) lim
n!1

.sn C tn/ � s C t

30. (a) If sn � 0, tn � 0, then (i) lim
n!1

sntn � st and (ii) lim
n!1

sntn � st .

(b) If sn � 0, tn � 0, then (i) lim
n!1

sntn � st and (ii) lim
n!1

sntn � st .

31. (a) If lim
n!1

sn D s > 0 and tn � 0, then (i) lim
n!1

sntn D st and (ii) lim
n!1

sntn D st .

(b) If lim
n!1

sn D s < 0 and tn � 0, then (i) lim
n!1

sntn D st and (ii) lim
n!1

sntn D st .

32. Suppose that fsng converges and has only finitely many distinct terms. Show that sn
is constant for large n.

33. Let s0 and s1 be arbitrary, and

snC1 D
sn C sn�1

2
; n � 1:

Use Cauchy’s convergence criterion to show that fsng converges.

34. Let tn D
s1 C s2 C � � � C sn

n
, n � 1.

(a) Prove: If limn!1 sn D s then limn!1 tn D s.
(b) Give an example to show that ftng may converge even though fsng does not.
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35. (a) Show that

lim
n!1

�
1 � ˛

1

� �
1 � ˛

2

�
� � �
�
1 � ˛

n

�
D 0; if ˛ > 0:

HINT: Look at the logarithm of the absolute value of the product:

(b) Conclude from (a) that

lim
n!1

 
q

n

!
D 0 if q > �1;

where

 
q

n

!
is the generalized binomial coefficient of Example 2.5.3.

4.2 EARLIER TOPICS REVISITED WITH SEQUENCES

In Chapter 2.3 we used �–ı definitions and arguments to develop the theory of limits,

continuity, and differentiability; for example, f is continuous at x0 if for each � > 0 there

is a ı > 0 such that jf .x/ � f .x0/j < � when jx � x0j < ı. The same theory can be

developed by methods based on sequences. Although we will not carry this out in detail,

we will develop it enough to give some examples. First, we need another definition about

sequences.

Definition 4.2.1 A sequence ftkg is a subsequence of a sequence fsng if

tk D snk
; k � 0;

where fnkg is an increasing infinite sequence of integers in the domain of fsng. We denote

the subsequence ftkg by fsnk
g.

Note that fsng is a subsequence of itself, as can be seen by taking nk D k. All other

subsequences of fsng are obtained by deleting terms from fsng and leaving those remaining

in their original relative order.

Example 4.2.1 If

fsng D
�
1

n

�
D
�
1;
1

2
;
1

3
; : : : ;

1

n
; : : :

�
;

then letting nk D 2k yields the subsequence

fs2kg D
�
1

2k

�
D
�
1

2
;
1

4
; : : : ;

1

2k
; : : :

�
;

and letting nk D 2k C 1 yields the subsequence

fs2kC1g D
�

1

2k C 1

�
D
�
1;
1

3
; : : : ;

1

2k C 1; : : :
�
:
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Since a subsequence fsnk
g is again a sequence (with respect to k), we may ask whether

fsnk
g converges.

Example 4.2.2 The sequence fsng defined by

sn D .�1/n
�
1C 1

n

�

does not converge, but fsng has subsequences that do. For example,

fs2kg D
�
1C 1

2k

�
and lim

k!1
s2k D 1;

while

fs2kC1g D
�
�1 � 1

2k C 1

�
and lim

k!1
s2kC1 D �1:

It can be shown (Exercise 4.2.1) that a subsequence fsnk
g of fsng converges to 1 if and

only if nk is even for k sufficiently large, or to �1 if and only if nk is odd for k sufficiently

large. Otherwise, fsnk
g diverges.

The sequence in this example has subsequences that converge to different limits. The

next theorem shows that if a sequence converges to a finite limit or diverges to ˙1, then

all its subsequences do also.

Theorem 4.2.2 If

lim
n!1

sn D s .�1 � s �1/; (4.2.1)

then

lim
k!1

snk
D s (4.2.2)

for every subsequence fsnk
g of fsng:

Proof We consider the case where s is finite and leave the rest to you (Exercise 4.2.4).

If (4.2.1) holds and � > 0, there is an integer N such that

jsn � sj < � if n � N:

Since fnkg is an increasing sequence, there is an integer K such that nk � N if k � K.

Therefore,

jsnk
�Lj < � if k � K;

which implies (4.2.2).

Theorem 4.2.3 If fsng is monotonic and has a subsequence fsnk
g such that

lim
k!1

snk
D s .�1 � s � 1/;

then

lim
n!1

sn D s:
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Proof We consider the case where fsng is nondecreasing and leave the rest to you (Ex-

ercise 4.2.6). Since fsnk
g is also nondecreasing in this case, it suffices to show that

supfsnk
g D supfsng (4.2.3)

and then apply Theorem 4.1.6(a). Since the set of terms of fsnk
g is contained in the set of

terms of fsng,
supfsng � supfsnk

g: (4.2.4)

Since fsng is nondecreasing, there is for every n an integer nk such that sn � snk
. This

implies that

supfsng � supfsnk
g:

This and (4.2.4) imply (4.2.3).

Limit Points in Terms of Sequences

In Section 1.3 we defined limit point in terms of neighborhoods: x is a limit point of a set

S if every neighborhood of x contains points of S distinct from x. The next theorem shows

that an equivalent definition can be stated in terms of sequences.

Theorem 4.2.4 A point x is a limit point of a set S if and only if there is a sequence

fxng of points in S such that xn ¤ x for n � 1; and

lim
n!1

xn D x:

Proof For sufficiency, suppose that the stated condition holds. Then, for each � > 0,

there is an integerN such that 0 < jxn�xj < � if n � N . Therefore, every �-neighborhood

of x contains infinitely many points of S . This means that x is a limit point of S .

For necessity, let x be a limit point of S . Then, for every integer n � 1, the interval

.x � 1=n; x C 1=n/ contains a point xn .¤ x/ in S . Since jxm � xj � 1=n if m � n,

limn!1 xn D x.

We will use the next theorem to show that continuity can be defined in terms of se-

quences.

Theorem 4.2.5

(a) If fxng is bounded; then fxng has a convergent subsequence:

(b) If fxng is unbounded above; then fxng has a subsequence fxnk
g such that

lim
k!1

xnk
D1:

(c) If fxng is unbounded below; then fxng has a subsequence fxnk
g such that

lim
k!1

xnk
D �1:
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Proof We prove (a) and leave (b) and (c) to you (Exercise 4.2.7). Let S be the

set of distinct numbers that occur as terms of fxng. (For example, if fxng D f.�1/ng,
S D f1;�1g; if fxng D f1; 1

2
; 1; 1

3
; : : : ; 1; 1=n; : : :g, S D f1; 1

2
; : : : ; 1=n; : : : g.) If S

contains only finitely many points, then some x in S occurs infinitely often in fxng; that is,

fxng has a subsequence fxnk
g such that xnk

D x for all k. Then limk!1 xnk
D x, and we

are finished in this case.

If S is infinite, then, since S is bounded (by assumption), the Bolzano–Weierstrass the-

orem (Theorem 1.3.8) implies that S has a limit point x. From Theorem 4.2.4, there is a

sequence of points fyj g in S , distinct from x, such that

lim
j !1

yj D x: (4.2.5)

Although each yj occurs as a term of fxng, fyj g is not necessarily a subsequence of fxng,
because if we write

yj D xnj
;

there is no reason to expect that fnj g is an increasing sequence as required in Defini-

tion 4.2.1. However, it is always possible to pick a subsequence fnjk
g of fnj g that is

increasing, and then the sequence fyjk
g D fsnjk

g is a subsequence of both fyj g and fxng.
Because of (4.2.5) and Theorem 4.2.2 this subsequence converges to x.

Continuity in Terms of Sequences

We now show that continuity can be defined and studied in terms of sequences.

Theorem 4.2.6 Let f be defined on a closed interval Œa; b� containing x: Then f is

continuous at x .from the right if x D a; from the left if x D b/ if and only if

lim
n!1

f .xn/ D f .x/ (4.2.6)

whenever fxng is a sequence of points in Œa; b� such that

lim
n!1

xn D x: (4.2.7)

Proof Assume that a < x < b; only minor changes in the proof are needed if x D a or

x D b. First, suppose that f is continuous at x and fxng is a sequence of points in Œa; b�

satisfying (4.2.7). If � > 0, there is a ı > 0 such that

jf .x/� f .x/j < � if jx � xj < ı: (4.2.8)

From (4.2.7), there is an integer N such that jxn � xj < ı if n � N . This and (4.2.8)

imply that jf .xn/� f .x/j < � if n � N . This implies (4.2.6), which shows that the stated

condition is necessary.

For sufficiency, suppose that f is discontinuous at x. Then there is an �0 > 0 such that,

for each positive integer n, there is a point xn that satisfies the inequality

jxn � xj <
1

n
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while

jf .xn/ � f .x/j � �0:

The sequence fxng therefore satisfies (4.2.7), but not (4.2.6). Hence, the stated condition

cannot hold if f is discontinuous at x. This proves sufficiency.

Armed with the theorems we have proved so far in this section, we could develop the

theory of continuous functions by means of definitions and proofs based on sequences and

subsequences. We give one example, a new proof of Theorem 2.2.8, and leave others for

exercises.

Theorem 4.2.7 If f is continuous on a closed interval Œa; b�; then f is bounded on

Œa; b�:

Proof The proof is by contradiction. If f is not bounded on Œa; b�, there is for each

positive integer n a point xn in Œa; b� such that jf .xn/j > n. This implies that

lim
n!1

jf .xn/j D 1: (4.2.9)

Since fxng is bounded, fxng has a convergent subsequence fxnk
g (Theorem 4.2.5(a)). If

x D lim
k!1

xnk
;

then x is a limit point of Œa; b�, so x 2 Œa; b�. If f is continuous on Œa; b�, then

lim
k!1

f .xnk
/ D f .x/

by Theorem 4.2.6, so

lim
k!1

jf .xnk
/j D jf .x/j

(Exercise 4.1.6), which contradicts (4.2.9). Therefore, f cannot be both continuous and

unbounded on Œa; b�

4.2 Exercises

1. Let sn D .�1/n.1C 1=n/. Show that limk!1 snk
D 1 if and only if nk is even for

large k, limk!1 snk
D �1 if and only if nk is odd for large k, and fsnk

g diverges

otherwise.

2. Find all numbersL in the extended reals that are limits of some subsequence of fsng
and, for each such L, choose a subsequence fsnk

g such that limk!1 snk
D L.

(a) sn D .�1/nn (b) sn D
�
1C 1

n

�
cos

n�

2

(c) sn D
�
1 � 1

n2

�
sin

n�

2
(d) sn D

1

n

(e) sn D Œ.�1/n C 1� n2 (f) sn D
nC 1
nC 2

�
sin

n�

4
C cos

n�

4

�
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3. Construct a sequence fsng with the following property, or show that none exists: for

each positive integer m, fsng has a subsequence converging tom.

4. Complete the proof of Theorem 4.2.2.

5. Prove: If limn!1 sn D s and fsng has a subsequence fsnk
g such that .�1/ksnk

� 0,

then s D 0.

6. Complete the proof of Theorem 4.2.3.

7. Prove Theorem 4.2.5(b) and (c).

8. Suppose that fsng is bounded and all convergent subsequences of fsng converge to

the same limit. Show that fsng is convergent. Give an example showing that the

conclusion need not hold if fsng is unbounded.

9. (a) Let f be defined on a deleted neighborhoodN of x. Show that

lim
x!x

f .x/ D L

if and only if limn!1 f .xn/ D L whenever fxng is a sequence of points inN

such that limn!1 xn D x. HINT: See the proof of Theorem 4.2.6:

(b) State a result like (a) for one-sided limits.

10. Give a proof based on sequences for Theorem 2.2.9. HINT: Use Theorems 4.1.6;

4.2.2; 4.2.5; and 4.2.6:

11. Give a proof based on sequences for Theorem 2.2.12.

12. Suppose that f is defined on a deleted neighborhood N of x and ff .xn/g ap-

proaches a limit whenever fxng is a sequence of points in N and limn!1 xn D
x. Show that if fxng and fyng are two such sequences, then limn!1 f .xn/ D
limn!1 f .yn/. Infer from this and Exercise 4.2.9 that limx!x f .x/ exists.

13. Prove: If f is defined on a neighborhoodN of x, then f is differentiable at x if and

only if

lim
n!1

f .xn/ � f .x/
xn � x

exists whenever fxng is a sequence of points inN such that xn ¤ x and limn!1 xn D
x. HINT: Use Exercise 4.2.12:

4.3 INFINITE SERIES OF CONSTANTS

The theory of sequences developed in the last two sections can be combined with the fa-

miliar notion of a finite sum to produce the theory of infinite series. We begin the study of

infinite series in this section.

Definition 4.3.1 If fang1k is an infinite sequence of real numbers, the symbol

1X

nDk

an
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is an infinite series, and an is the nth term of the series. We say that
P1

nDk an converges to

the sum A, and write
1X

nDk

an D A;

if the sequence fAng1k defined by

An D ak C akC1 C � � � C an; n � k;

converges to A. The finite sum An is the nth partial sum of
P1

nDk an. If fAng1k diverges,

we say that
P1

nDk an diverges; in particular, if limn!1 An D 1 or �1, we say thatP1
nDk an diverges to1 or �1, and write

1X

nDk

an D 1 or

1X

nDk

an D �1:

A divergent infinite series that does not diverge to˙1 is said to oscillate, or be oscillatory.

We will usually refer to infinite series more briefly as series.

Example 4.3.1 Consider the series

1X

nD0

rn; �1 < r < 1:

Here an D rn .n � 0/ and

An D 1C r C r2 C � � � C rn D 1 � rnC1

1 � r
; (4.3.1)

which converges to 1=.1 � r/ as n!1 (Example 4.1.11); thus, we write

1X

nD0

rn D 1

1 � r ; �1 < r < 1:

If jr j > 1, then (4.3.1) is still valid, but
P1

nD0 r
n diverges; if r > 1, then

1X

nD0

rn D1; (4.3.2)

while if r < �1,
P1

nD0 r
n oscillates, since its partial sums alternate in sign and their

magnitudes become arbitrarily large for large n. If r D �1, then A2mC1 D 0 and A2m D 1
for m � 0, while if r D 1, An D nC 1; in both cases the series diverges, and (4.3.2) holds

if r D 1.
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The series
P1

nD0 r
n is called the geometric series with ratio r . It occurs in many appli-

cations.

An infinite series can be viewed as a generalization of a finite sum

A D
NX

nDk

an D ak C akC1 C � � � C aN

by thinking of the finite sequence fak; akC1; : : : ; aN g as being extended to an infinite se-

quence fang1k with an D 0 for n > N . Then the partial sums of
P1

nDk an are

An D ak C akC1 C � � � C an; k � n < N;
and

An D A; n � N I
that is, the terms of fAng1k equal the finite sum A for n � k. Therefore, limn!1 An

D A.

The next two theorems can be proved by applying Theorems 4.1.2 and 4.1.8 to the partial

sums of the series in question (Exercises 4.3.1 and 4.3.2).

Theorem 4.3.2 The sum of a convergent series is unique:

Theorem 4.3.3 Let
1X

nDk

an D A and

1X

nDk

bn D B;

where A and B are finite: Then
1X

nDk

.can/ D cA

if c is a constant;
1X

nDk

.an C bn/ D AC B;

and
1X

nDk

.an � bn/ D A� B:

These relations also hold if one or both of A and B is infinite, provided that the right sides

are not indeterminate:

Dropping finitely many terms from a series does not alter convergence or divergence,

although it does change the sum of a convergent series if the terms dropped have a nonzero

sum. For example, suppose that we drop the first k terms of a series
P1

nD0 an, and consider

the new series
P1

nDk an. Denote the partial sums of the two series by

An D a0 C a1 C � � � C an; n � 0;

and

A0
n D ak C akC1 C � � � C an; n � k:
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Since

An D .a0 C a1 C � � � C ak�1/C A0
n; n � k;

it follows thatA D limn!1 An exists (in the extended reals) if and only ifA0 D limn!1 A0
n

does, and in this case

A D .a0 C a1 C � � � C ak�1/C A0:

An important principle follows from this.

Lemma 4.3.4 Suppose that for n sufficiently large .that is; for n � some integer N/

the terms of
P1

nDk an satisfy some condition that implies convergence of an infinite series:

Then
P1

nDk an converges: Similarly, suppose that for n sufficiently large the terms
P1

nDk an

satisfy some condition that implies divergence of an infinite series: Then
P1

nDk an diverges:

Example 4.3.2 Consider the alternating series test, which we will establish later as a

special case of a more general test:

The series
P1

k an converges if .�1/nan > 0; janC1j < janj; and limn!1 an D 0:

The terms of
1X

nD1

16C .�2/n
n2n

do not satisfy these conditions for all n � 1, but they do satisfy them for sufficiently large

n. Hence, the series converges, by Lemma 4.3.4.

We will soon give several conditions concerning convergence of a series
P1

nDk an with

nonnegative terms. According to Lemma 4.3.4, these results apply to series that have at

most finitely many negative terms, as long as an is nonnegative and satisfies the conditions

for n sufficiently large.

When we are interested only in whether
P1

nDk an converges or diverges and not in its

sum, we will simply say “
P
an converges” or “

P
an diverges.” Lemma 4.3.4 justifies

this convention, subject to the understanding that
P
an stands for

P1
nDk an, where k is an

integer such that an is defined for n � k. (For example,

X 1

.n � 6/2 stands for

1X

nDk

1

.n � 6/2 ;

where k � 7.) We write
P
an D 1 .�1/ if

P
an diverges to1 .�1/. Finally, let us

agree that
1X

nDk

an and

1X

nDk�j

anCj

(where we obtain the second expression by shifting the index in the first) both represent the

same series.
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Cauchy’s Convergence Criterion for Series

The Cauchy convergence criterion for sequences (Theorem 4.1.13) yields a useful criterion

for convergence of series.

Theorem 4.3.5 (Cauchy’s Convergence Criterion for Series) A seriesP
an converges if and only if for every � > 0 there is an integer N such that

jan C anC1 C � � � C amj < � if m � n � N: (4.3.3)

Proof In terms of the partial sums fAng of
P
an,

an C anC1 C � � � C am D Am �An�1:

Therefore, (4.3.3) can be written as

jAm �An�1j < � if m � n � N:

Since
P
an converges if and only if fAng converges, Theorem 4.1.13 implies the conclu-

sion.

Intuitively, Theorem 4.3.5 means that
P
an converges if and only if arbitrarily long sums

an C anC1 C � � � C am; m � n;

can be made as small as we please by picking n large enough.

Example 4.3.3 Consider the geometric series
P
rn of Example 4.3.1. If jr j � 1, then

frng does not converge to zero. Therefore
P
rn diverges, as we saw in Example 4.3.1. If

jr j < 1 and m � n, then

jAm �Anj D jrnC1 C rnC2 C � � � C rmj
� jr jnC1.1C jr j C � � � C jr jm�n�1/

D jr jnC1
1 � jr jm�n

1 � jr j <
jr jnC1

1 � jr j :

(4.3.4)

If � > 0, choose N so that
jr jNC1

1� jr j
< �:

Then (4.3.4) implies that

jAm �Anj < � if m � n � N:

Now Theorem 4.3.5 implies that
P
rn converges if jr j < 1, as in Example 4.3.1.

Lettingm D n in (4.3.3) yields the following important corollary of Theorem 4.3.5.

Corollary 4.3.6 If
P
an converges; then limn!1 an D 0:
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It must be emphasized that Corollary 4.3.6 gives a necessary condition for convergence;

that is,
P
an cannot converge unless limn!1 an D 0. The condition is not sufficient;

P
an

may diverge even if limn!1 an D 0. We will see examples below.

We leave the proof of the following corollary of Theorem 4.3.5 to you (Exercise 4.3.5).

Corollary 4.3.7 If
P
an converges; then for each � > 0 there is an integer K such

that ˇ̌
ˇ̌
ˇ

1X

nDk

an

ˇ̌
ˇ̌
ˇ < � if k � KI

that is;

lim
k!1

1X

nDk

an D 0:

Example 4.3.4 If jr j < 1, then
ˇ̌
ˇ̌
ˇ

1X

nDk

rn

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇr

k

1X

nDk

rn�k

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇr

k

1X

nD0

rn

ˇ̌
ˇ̌
ˇ D

jr jk
1 � r :

Therefore, if
jr jK
1 � r

< �;

then ˇ̌
ˇ̌
ˇ

1X

nDk

rn

ˇ̌
ˇ̌
ˇ < � if k � K;

which implies that limk!1
P1

nDk r
n D 0.

Series of Nonnegative Terms

The theory of series
P
an with terms that are nonnegative for sufficiently large n is simpler

than the general theory, since such a series either converges to a finite limit or diverges to

1, as the next theorem shows.

Theorem 4.3.8 If an � 0 for n � k; then
P
an converges if its partial sums are

bounded; or diverges to1 if they are not: These are the only possibilities and; in either

case;
1X

nDk

an D sup
˚
An

ˇ̌
n � k

	
;

where

An D ak C akC1 C � � � C an; n � k:
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Proof SinceAn D An�1Can and an � 0 .n � k/, the sequence fAng is nondecreasing,

so the conclusion follows from Theorem 4.1.6(a) and Definition 4.3.1.

If an � 0 for sufficiently large n, we will write
P
an <1 if

P
an converges. This con-

vention is based on Theorem 4.3.8, which says that such a series diverges only if
P
an D

1. The convention does not apply to series with infinitely many negative terms, because

such series may diverge without diverging to1; for example, the series
P1

nD0.�1/n os-

cillates, since its partial sums are alternately 1 and 0.

Theorem 4.3.9 (The Comparison Test) Suppose that

0 � an � bn; n � k: (4.3.5)

Then

(a)
P
an <1 if

P
bn <1:

(b)
P
bn D 1 if

P
an D 1:

Proof (a) If

An D ak C akC1 C � � � C an and Bn D bk C bkC1 C � � � C bn; n � k;

then, from (4.3.5),

An � Bn: (4.3.6)

Now we use Theorem 4.3.8. If
P
bn <1, then fBng is bounded above and (4.3.6) implies

that fAng is also; therefore,
P
an < 1. On the other hand, if

P
an D 1, then fAng is

unbounded above and (4.3.6) implies that fBng is also; therefore,
P
bn D 1.

We leave it to you to show that (a) implies (b).

Example 4.3.5 Since
rn

n
< rn; n � 1;

and
P
rn <1 if 0 < r < 1, the series

P
rn=n converges if 0 < r < 1, by the comparison

test. Comparing these two series is inconclusive if r > 1, since it does not help to know

that the terms of
P
rn=n are smaller than those of the divergent series

P
rn. If r < 0, the

comparison test does not apply, since the series then have infinitely many negative terms.

Example 4.3.6 Since

rn < nrn

and
P
rn D 1 if r � 1, the comparison test implies that

P
nrn D 1 if r � 1. Compar-

ing these two series is inconclusive if 0 < r < 1, since it does not help to know that the

terms of
P
nrn are larger than those of the convergent series

P
rn.
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The comparison test is useful if we have a collection of series with nonnegative terms

and known convergence properties. We will now use the comparison test to build such a

collection.

Theorem 4.3.10 (The Integral Test) Let

cn D f .n/; n � k; (4.3.7)

where f is positive; nonincreasing; and locally integrable on Œk;1/: Then

X
cn <1 (4.3.8)

if and only if Z 1

k

f .x/ dx <1: (4.3.9)

Proof We first observe that (4.3.9) holds if and only if

1X

nDk

Z nC1

n

f .x/ dx <1 (4.3.10)

(Exercise 4.3.9), so it is enough to show that (4.3.8) holds if and only if (4.3.10) does. From

(4.3.7) and the assumption that f is nonincreasing,

cnC1 D f .nC 1/ � f .x/ � f .n/ D cn; n � x � nC 1; n � k:

Therefore,

cnC1 D
Z nC1

n

cnC1 dx �
Z nC1

n

f .x/ dx �
Z nC1

n

cn dx D cn; n � k

(Theorem 3.3.4). From the first inequality and Theorem 4.3.9(a) with an D cnC1 and

bn D
R nC1

n
f .x/ dx, (4.3.10) implies that

P
cnC1 < 1, which is equivalent to (4.3.8).

From the second inequality and Theorem 4.3.9(a) with an D
R nC1

n
f .x/ dx and bn D cn,

(4.3.8) implies (4.3.10).

Example 4.3.7 The integral test implies that the series

X 1

np
;

X 1

n.log n/p
; and

X 1

n logn Œlog.log n/�p

converge if p > 1 and diverge if 0 < p � 1, because the same is true of the integrals
Z 1

a

dx

xp
;

Z 1

a

dx

x.logx/p
; and

Z 1

a

dx

x logx Œlog.logx/�p

if a is sufficiently large. (See Example 3.4.3 and Exercise 3.4.10.) The three series di-

verge if p � 0: the first by Corollary 4.3.6, the second by comparison with the divergent

series
P
1=n, and the third by comparison with the divergent series

P
1=.n logn/. (The
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divergence of the last two series for p � 0 also follows from the integral test, but the

divergence of the first does not. Why not?) These results can be generalized: If

L0.x/ D x and Lk.x/ D logŒLk�1.x/�; k � 1;

then X 1

L0.n/L1.n/ � � �Lk.n/ŒLkC1.n/�p

converges if and only if p > 1 (Exercise 4.3.11).

This example provides an infinite family of series with known convergence properties

that can be used as standards for the comparison test.

Except for the series of Example 4.3.7, the integral test is of limited practical value,

since convergence or divergence of most of the series to which it can be applied can be

determined by simpler tests that do not require integration. However, the method used to

prove the integral test is often useful for estimating the rate of convergence or divergence

of a series. This idea is developed in Exercises 4.3.13 and 4.3.14.

Example 4.3.8 The series
1X 1

.n2 C n/q (4.3.11)

converges if q > 1=2, by comparison with the convergent series
P
1=n2q , since

1

.n2 C n/q
<

1

n2q
; n � 1:

This comparison is inconclusive if q � 1=2, since then

X 1

n2q
D1;

and it does not help to know that the terms of (4.3.11) are smaller than those of a divergent

series. However, we can use the comparison test here, after a little trickery. We observe

that
1X

nDk�1

1

.nC 1/2q
D

1X

nDk

1

n2q
D 1; q � 1=2;

and
1

.nC 1/2q
<

1

.n2 C n/q :

Therefore, the comparison test implies that

X 1

.n2 C n/q
D1; q � 1=2:
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The next theorem is often applicable where the integral test is not. It does not require the

kind of trickery that we used in Example 4.3.8.

Theorem 4.3.11 Suppose that an � 0 and bn > 0 for n � k: Then

(a)
X

an <1 if
X

bn <1 and lim
n!1

an=bn <1:

(b)
X

an D1 if
X

bn D 1 and lim
n!1

an=bn > 0:

Proof (a) If limn!1 an=bn <1, then fan=bng is bounded, so there is a constant M

and an integer k such that

an �Mbn; n � k:

Since
P
bn < 1, Theorem 4.3.3 implies that

P
.Mbn/ < 1. Now

P
an < 1, by the

comparison test.

(b) If limn!1 an=bn > 0, there is a constantm and an integer k such that

an � mbn; n � k:

Since
P
bn D 1, Theorem 4.3.3 implies that

P
.mbn/ D 1. Now

P
an D 1, by the

comparison test.

Example 4.3.9 Let

X
bn D

X 1

npCq
and

X
an D

X 2C sin n�=6

.nC 1/p.n � 1/q :

Then
an

bn

D 2C sinn�=6

.1C 1=n/p.1 � 1=n/q
;

so

lim
n!1

an

bn

D 3 and lim
n!1

an

bn

D 1:

Since
P
bn <1 if and only if p C q > 1, the same is true of

P
an, by Theorem 4.3.11.

The following corollary of Theorem 4.3.11 is often useful, although it does not apply to

the series of Example 4.3.9.

Corollary 4.3.12 Suppose that an � 0 and bn > 0 for n � k; and

lim
n!1

an

bn

D L;

where 0 < L <1: Then
P
an and

P
bn converge or diverge together:



210 Chapter 4 Infinite Sequences and Series

Example 4.3.10 With this corollary we can avoid the kind of trickery used in the

second part of Example 4.3.8, since

lim
n!1

1

.n2 C n/q

�
1

n2q
D lim

n!1
1

.1C 1=n/q
D 1;

so X 1

.n2 C n/q and
X 1

n2q

converge or diverge together.

The Ratio Test

It is sometimes possible to determine whether a series with positive terms converges by

comparing the ratios of successive terms with the corresponding ratios of a series known to

converge or diverge.

Theorem 4.3.13 Suppose that an > 0; bn > 0; and

anC1

an

�
bnC1

bn

: (4.3.12)

Then

(a)
P
an <1 if

P
bn <1:

(b)
P
bn D 1 if

P
an D 1:

Proof Rewriting (4.3.12) as
anC1

bnC1

� an

bn

;

we see that fan=bng is nonincreasing. Therefore, limn!1 an=bn <1, and Theorem 4.3.11(a)
implies (a).

To prove (b), suppose that
P
an D 1. Since fan=bng is nonincreasing, there is a

number � such that bn � �an for large n. Since
P
.�an/ D 1 if

P
an D 1, Theo-

rem 4.3.9(b) (with an replaced by �an) implies that
P
bn D1.

We will use this theorem to obtain two other widely applicable tests: the ratio test and

Raabe’s test.

Theorem 4.3.14 (The Ratio Test) Suppose that an > 0 for n � k: Then

(a)
P
an <1 if limn!1 anC1=an < 1:

(b)
P
an D1 if limn!1 anC1=an > 1:

If

lim
n!1

anC1

an

� 1 � lim
n!1

anC1

an

; (4.3.13)

then the test is inconclusiveI that is;
P
an may converge or diverge:
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Proof (a) If

lim
n!1

anC1

an

< 1;

there is a number r such that 0 < r < 1 and

anC1

an

< r

for n sufficiently large. This can be rewritten as

anC1

an

<
rnC1

rn
:

Since
P
rn <1, Theorem 4.3.13(a) with bn D rn implies that

P
an <1.

(b) If

lim
n!1

anC1

an

> 1;

there is a number r such that r > 1 and

anC1

an

> r

for n sufficiently large. This can be rewritten as

anC1

an

>
rnC1

rn
:

Since
P
rn D 1, Theorem 4.3.13(b) with an D rn implies that

P
bn D1.

To see that no conclusion can be drawn if (4.3.13) holds, consider

X
an D

X 1

np
:

This series converges if p > 1 or diverges if p � 1; however,

lim
n!1

anC1

an

D lim
n!1

anC1

an

D 1

for every p.

Example 4.3.11 If

X
an D

X�
2C sin

n�

2

�
rn;

then

anC1

an

D r
2C sin

.nC 1/�
2

2C sin
n�

2

which assumes the values 3r=2, 2r=3, r=2, and 2r , each infinitely many times; hence,

lim
n!1

anC1

an

D 2r and lim
n!1

anC1

an

D
r

2
:

Therefore,
P
an converges if 0 < r < 1=2 and diverges if r > 2. The ratio test is

inconclusive if 1=2 � r � 2.
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The following corollary of the ratio test is the familiar ratio rest from calculus.

Corollary 4.3.15 Suppose that an > 0 .n � k/ and

lim
n!1

anC1

an

D L:
Then

(a)
P
an <1 if L < 1:

(b)
P
an D1 if L > 1:

The test is inconclusive if L D 1:

Example 4.3.12 The series
P
an D

P
nrn�1 converges if 0 < r < 1 or diverges if

r > 1, since
anC1

an

D .nC 1/rn

nrn�1
D
�
1C 1

n

�
r;

so

lim
n!1

anC1

an

D r:

Corollary 4.3.15 is inconclusive if r D 1, but then Corollary 4.3.6 implies that the series

diverges.

The ratio test does not imply that
P
an <1 if merely

anC1

an

< 1 (4.3.14)

for large n, since this could occur with limn!1 anC1=an D 1, in which case the test is

inconclusive. However, the next theorem shows that
P
an <1 if (4.3.14) is replaced by

the stronger condition that
anC1

an

� 1 � p
n

for some p > 1 and large n. It also shows that
P
an D1 if

anC1

an

� 1 � q
n

for some q < 1 and large n.

Theorem 4.3.16 (Raabe’s Test) Suppose that an > 0 for large n: Let

M D lim
n!1

n

�
anC1

an

� 1
�

and m D lim
n!1

n

�
anC1

an

� 1
�
:

Then

(a)
P
an <1 ifM < �1:

(b)
P
an D1 ifm > �1:

The test is inconclusive ifm � �1 �M:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Raabe.html
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Proof (a) We need the inequality

1

.1C x/p > 1 � px; x > 0; p > 0: (4.3.15)

This follows from Taylor’s theorem (Theorem 2.5.4), which implies that

1

.1C x/p D 1 � px C
1

2

p.pC 1/
.1C c/pC2

x2;

where 0 < c < x. (Verify.) Since the last term is positive if p > 0, this implies (4.3.15).

Now suppose thatM < �p < �1. Then there is an integer k such that

n

�
anC1

an

� 1
�
< �p; n � k;

so
anC1

an

< 1 � p
n
; n � k:

Hence,
anC1

an

<
1

.1C 1=n/p
; n � k;

as can be seen by letting x D 1=n in (4.3.15). From this,

anC1

an

<
1

.nC 1/p

�
1

np
; n � k:

Since
P
1=np <1 if p > 1, Theorem 4.3.13(a) implies that

P
an <1.

(b) Here we need the inequality

.1 � x/q < 1 � qx; 0 < x < 1; 0 < q < 1: (4.3.16)

This also follows from Taylor’s theorem, which implies that

.1 � x/q D 1 � qx C q.q � 1/.1 � c/q�2 x
2

2
;

where 0 < c < x.

Now suppose that �1 < �q < m. Then there is an integer k such that

n

�
anC1

an

� 1
�
> �q; n � k;

so
anC1

an

� 1 � q
n
; n � k:

If q � 0, then
P
an D 1, by Corollary 4.3.6. Hence, we may assume that 0 < q < 1, so

the last inequality implies that

anC1

an

>

�
1 � 1

n

�q

; n � k;
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as can be seen by setting x D 1=n in (4.3.16). Hence,

anC1

an

>
1

nq

�
1

.n � 1/q ; n � k:

Since
P
1=nq D1 if q < 1, Theorem 4.3.13(b) implies that

P
an D1.

Example 4.3.13 If

X
an D

X nŠ

˛.˛ C 1/.˛ C 2/ � � � .˛ C n � 1/ ; ˛ > 0;

then

lim
n!1

anC1

an

D lim
n!1

nC 1
˛ C n D 1;

so the ratio test is inconclusive. However,

lim
n!1

n

�
anC1

an

� 1
�
D lim

n!1
n

�
nC 1
˛ C n

� 1
�

D lim
n!1

n.1 � ˛/
˛ C n D 1 � ˛;

so Raabe’s test implies that
P
an < 1 if ˛ > 2 and

P
an D 1 if 0 < ˛ < 2. Raabe’s

test is inconclusive if ˛ D 2, but then the series becomes

X nŠ

.nC 1/Š
D
X 1

nC 1
;

which we know is divergent.

Example 4.3.14 Consider the series
P
an, where

a2m D
.mŠ/2

˛.˛ C 1/ � � � .˛ Cm/ˇ.ˇ C 1/ � � � .ˇ Cm/
and

a2mC1 D
.mŠ/2.mC 1/

˛.˛ C 1/ � � � .˛ Cm/ˇ.ˇ C 1/ � � � .ˇ CmC 1/ ;

with 0 < ˛ < ˇ. Since

2m

�
a2mC1

a2m

� 1
�
D 2m

�
mC 1

ˇ CmC 1 � 1
�
D � 2mˇ

ˇ CmC 1
and

.2mC 1/
�
a2mC2

a2mC1

� 1
�
D .2mC 1/

�
mC 1

˛CmC 1
� 1

�
D � .2mC 1/˛

˛CmC 1
;

we have

lim
n!1

n

�
anC1

an

� 1
�
D �2˛ and lim

n!1
n

�
anC1

an

� 1
�
D �2ˇ:

Raabe’s test implies that
P
an < 1 if ˛ > 1=2 and

P
an D 1 if ˇ < 1=2. The test is

inconclusive if 0 < ˛ � 1=2 � ˇ.
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The next theorem, which will be useful when we study power series (Section 4.5), con-

cludes our discussion of series with nonnegative terms.

Theorem 4.3.17 (Cauchy’s Root Test) If an � 0 for n � k; then

(a)
P
an <1 if limn!1 a

1=n
n < 1:

(b)
P
an D1 if limn!1 a

1=n
n > 1:

The test is inconclusive if limn!1 a
1=n
n D 1:

Proof (a) If limn!1 a
1=n
n < 1, there is an r such that 0 < r < 1 and a

1=n
n < r for

large n. Therefore, an < r
n for large n. Since

P
rn <1, the comparison test implies thatP

an <1.

(b) If limn!1 a
1=n
n > 1, then a

1=n
n > 1 for infinitely many values of n, so

P
an D1,

by Corollary 4.3.6.

Example 4.3.15 Cauchy’s root test is inconclusive if

X
an D

X 1

np
;

because then

lim
n!1

a1=n
n D lim

n!1

�
1

np

�1=n

D lim
n!1

exp
�
�p
n

logn
�
D 1

for all p. However, we know from the integral test that
P
1=np < 1 if p > 1 andP

1=np D1 if p � 1.

Example 4.3.16 If

X
an D

X�
2C sin

n�

4

�n

rn;

then

lim
n!1

a1=n
n D lim

n!1

�
2C sin

n�

4

�
r D 3r;

and so
P
an < 1 if r < 1=3 and

P
an D 1 if r > 1=3. The test is inconclusive if

r D 1=3, but then ja8mC2j D 1 for m � 0, so
P
an D1, by Corollary 4.3.6.

Absolute and Conditional Convergence

We now drop the assumption that the terms of
P
an are nonnegative for large n. In this

case,
P
an may converge in two quite different ways. The first is defined as follows.

Definition 4.3.18 A series
P
an converges absolutely, or is absolutely convergent; ifP

janj <1:
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Example 4.3.17 A convergent series
P
an of nonnegative terms is absolutely conver-

gent, since
P
an and

P
janj are the same. More generally, any convergent series whose

terms are of the same sign for sufficiently large n converges absolutely (Exercise 4.3.22).

Example 4.3.18 Consider the series

X sinn�

np
; (4.3.17)

where � is arbitrary and p > 1. Since

ˇ̌
ˇ̌sinn�

np

ˇ̌
ˇ̌ � 1

np

and
P
1=np <1 if p > 1, the comparison test implies that

Xˇ̌
ˇ̌sinn�

np

ˇ̌
ˇ̌ <1; p > 1:

Therefore, (4.3.17) converges absolutely if p > 1.

Example 4.3.19 If 0 < p < 1, then the series

X .�1/n
np

does not converge absolutely, since

Xˇ̌
ˇ̌ .�1/

n

np

ˇ̌
ˇ̌ D

X 1

np
D 1:

However, the series converges, by the alternating series test, which we prove below.

Any test for convergence of a series with nonnegative terms can be used to test an arbi-

trary series
P
an for absolute convergence by applying it to

P
janj. We used the compar-

ison test this way in Examples 4.3.18 and 4.3.19.

Example 4.3.20 To test the series

X
an D

X
.�1/n nŠ

˛.˛ C 1/ � � � .˛ C n� 1/
; ˛ > 0;

for absolute convergence, we apply Raabe’s test to

X
an D

X nŠ

˛.˛C 1/ � � � .˛ C n� 1/
:

From Example 4.3.13,
P
janj <1 if ˛ > 2 and

P
janj D 1 if ˛ < 2. Therefore,

P
an

converges absolutely if ˛ > 2, but not if ˛ < 2. Notice that this does not imply that
P
an

diverges if ˛ < 2.
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The proof of the next theorem is analogous to the proof of Theorem 3.4.9. We leave it to

you (Exercise 4.3.24).

Theorem 4.3.19 If
P
an converges absolutely; then

P
an converges:

For example, Theorem 4.3.19 implies that

X sin n�

np

converges if p > 1, since it then converges absolutely (Example 4.3.18).

The converse of Theorem 4.3.19 is false; a series may converge without converging abso-

lutely. We say then that the series converges conditionally, or is conditionally convergent;

thus,
P
.�1/n=np converges conditionally if 0 < p � 1.

Dirichlet’s Test for Series

Except for Theorem 4.3.5 and Corollary 4.3.6, the convergence tests we have studied so

far apply only to series whose terms have the same sign for large n. The following theo-

rem does not require this. It is analogous to Dirichlet’s test for improper integrals (Theo-

rem 3.4.10).

Theorem 4.3.20 (Dirichlet’s Test for Series) The series
P1

nDk anbn con-

verges if limn!1 an D 0; X
janC1 � anj <1; (4.3.18)

and

jbk C bkC1 C � � � C bnj �M; n � k; (4.3.19)

for some constantM:

Proof The proof is similar to the proof of Dirichlet’s test for integrals. Define

Bn D bk C bkC1 C � � � C bn; n � k

and consider the partial sums of
P1

nDk anbn:

Sn D akbk C akC1bkC1 C � � � C anbn; n � k: (4.3.20)

By substituting

bk D Bk and bn D Bn � Bn�1; n � k C 1;

into (4.3.20), we obtain

Sn D akBk C akC1.BkC1 � Bk/C � � � C an.Bn � Bn�1/;

which we rewrite as

Sn D .ak � akC1/Bk C .akC1 � akC2/BkC1 C � � �
C .an�1 � an/Bn�1 C anBn:

(4.3.21)
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(The procedure that led from (4.3.20) to (4.3.21) is called summation by parts. It is analo-

gous to integration by parts.) Now (4.3.21) can be viewed as

Sn D Tn�1 C anBn; (4.3.22)

where

Tn�1 D .ak � akC1/Bk C .akC1 � akC2/BkC1 C � � � C .an�1 � an/Bn�1I

that is, fTng is the sequence of partial sums of the series

1X

j Dk

.aj � aj C1/Bj : (4.3.23)

Since

j.aj � aj C1/Bj j �M jaj � aj C1j
from (4.3.19), the comparison test and (4.3.18) imply that the series (4.3.23) converges

absolutely. Theorem 4.3.19 now implies that fTng converges. Let T D limn!1 Tn. Since

fBng is bounded and limn!1 an D 0, we infer from (4.3.22) that

lim
n!1

Sn D lim
n!1

Tn�1 C lim
n!1

anBn D T C 0 D T:

Therefore,
P
anbn converges.

Example 4.3.21 To apply Dirichlet’s test to

1X

nD2

sin n�

nC .�1/n
; � ¤ k� (k D integer);

we take

an D
1

nC .�1/n and bn D sin n�:

Then limn!1 an D 0, and

janC1 � anj <
3

n.n � 1/
(verify), so X

janC1 � anj <1:
Now

Bn D sin 2� C sin 3� C � � � C sin n�:

To show that fBng is bounded, we use the trigonometric identity

sin r� D
cos

�
r � 1

2

�
� � cos

�
r C 1

2

�
�

2 sin.�=2/
; � ¤ 2k�;
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to write

Bn D
.cos 3

2
� � cos 5

2
�/C .cos 5

2
� � cos 7

2
�/C � � � C

�
cos

�
n � 1

2

�
� � cos.nC 1

2
/�
�

2 sin.�=2/

D
cos 3

2
� � cos.nC 1

2
/�

2 sin.�=2/
;

which implies that

jBnj �
ˇ̌
ˇ̌ 1

sin.�=2/

ˇ̌
ˇ̌ ; n � 2:

Since fang and fbng satisfy the hypotheses of Dirichlet’s theorem,
P
anbn converges.

Dirichlet’s test takes a simpler form if fang is nonincreasing, as follows.

Corollary 4.3.21 (Abel’s Test) The series
P
anbn converges if anC1 � an for

n � k; limn!1 an D 0; and

jbk C bkC1 C � � � C bnj �M; n � k;

for some constantM:

Proof If anC1 � an, then

mX

nDk

janC1 � anj D
mX

nDk

.an � anC1/ D ak � amC1:

Since limm!1 amC1 D 0, it follows that

1X

nDk

janC1 � anj D ak <1:

Therefore, the hypotheses of Dirichlet’s test are satisfied, so
P
anbn converges.

Example 4.3.22 The series
X sinn�

np
;

which we know is convergent if p > 1 (Example 4.3.18), also converges if 0 < p � 1.

This follows from Abel’s test, with an D 1=np and bn D sinn� (see Example 4.3.21).

The alternating series test from calculus follows easily from Abel’s test.

Corollary 4.3.22 (Alternating Series Test) The series
P
.�1/nan converges

if 0 � anC1 � an and limn!1 an D 0:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Abel.html
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Proof Let bn D .�1/n; then fjBnjg is a sequence of zeros and ones and therefore

bounded. The conclusion now follows from Abel’s test.

Grouping Terms in a Series

The terms of a finite sum can be grouped by inserting parentheses arbitrarily. For example,

.1C 7/C .6C 5/C 4 D .1C 7C 6/C .5C 4/ D .1C 7/C .6C 5C 4/:

According to the next theorem, the same is true of an infinite series that converges or

diverges to˙1.

Theorem 4.3.23 Suppose that
P1

nDk an D A; where �1 � A � 1: Let fnj g11 be

an increasing sequence of integers, with n1 � k. Define

b1 D ak C � � � C an1
;

b2 D an1C1 C � � � C an2
;

:::

br D anr�1C1 C � � � C anr :

Then
1X

j D1

bnj
D A:

Proof If Tr is the r th partial sum of
P1

j D1 bnj
and fAng is the nth partial sum ofP1

sDk as , then

Tr D b1 C b2 C � � � C br

D .a1 C � � � C an1
/C .an1C1 C � � � C an2

/C � � � C .anr�1C1 C � � � C anr /

D Anr :

Thus, fTrg is a subsequence of fAng, so limr!1 Tr D limn!1 An D A by Theorem 4.2.2.

Example 4.3.23 If
P1

nD0.�1/nan satisfies the hypotheses of the alternating series

test and converges to the sum S , Theorem 4.3.23 enables us to write

S D
kX

nD0

.�1/nan C .�1/kC1

1X

j D1

.akC2j �1 � akC2j /

and
S D

kX

nD0

.�1/nan C .�1/kC1

2
4akC1 �

1X

j D1

.akC2j � akC2j �1/

3
5:

Since 0 � anC1 � an, these two equations imply that S�Sk is between 0 and .�1/k�1akC1.
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Example 4.3.24 Introducing parentheses in some divergent series can yield seem-

ingly contradictory results. For example, it is tempting to write

1X

nD1

.�1/nC1 D .1 � 1/C .1 � 1/C � � � D 0C 0C � � �

and conclude that
P1

nD1.�1/n D 0, but equally tempting to write

1X

nD1

.�1/nC1 D 1 � .1 � 1/ � .1 � 1/� � � �

D 1 � 0 � 0 � � � �

and conclude that
P1

nD1.�1/nC1 D 1. Of course, there is no contradiction here, since

Theorem 4.3.23 does not apply to this series, and neither of these operations is legitimate.

Rearrangement of Series

A finite sum is not changed by rearranging its terms; thus,

1C 3C 7 D 1C 7C 3 D 3C 1C 7 D 3C 7C 1 D 7C 1C 3 D 7C 3C 1:

This is not true of all infinite series. Let us say that
P
bn is a rearrangement of

P
an if

the two series have the same terms, written in possibly different orders. Since the partial

sums of the two series may form entirely different sequences, there is no apparent reason

to expect them to exhibit the same convergence properties, and in general they do not.

We are interested in what happens if we rearrange the terms of a convergent series. We

will see that every rearrangement of an absolutely convergent series has the same sum, but

that conditionally convergent series fail, spectacularly, to have this property.

Theorem 4.3.24 If
P1

nD1 bn is a rearrangement of an absolutely convergent seriesP1
nD1 an; then

P1
nD1 bn also converges absolutely; and to the same sum:

Proof Let

An D ja1j C ja2j C � � � C janj and Bn D jb1j C jb2j C � � � C jbnj:

For each n � 1, there is an integer kn such that b1, b2, . . . , bn are included among a1, a2,

. . . , akn
, so Bn � Akn

. Since fAng is bounded, so is fBng, and therefore
P
jbnj < 1

(Theorem 4.3.8).

Now let

An D a1 C a2 C � � � C an; Bn D b1 C b2 C � � � C bn;

A D
1X

nD1

an; and B D
1X

nD1

bn:
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We must show that A D B . Suppose that � > 0. From Cauchy’s convergence criterion for

series and the absolute convergence of
P
an, there is an integer N such that

jaNC1j C jaNC2j C � � � C jaNCk j < �; k � 1:

Choose N1 so that a1, a2, . . . , aN are included among b1, b2, . . . , bN1
. If n � N1,

then An and Bn both include the terms a1, a2, . . . , aN , which cancel on subtraction; thus,

jAn�Bnj is dominated by the sum of the absolute values of finitely many terms from
P
an

with subscripts greater than N . Since every such sum is less than �,

jAn � Bnj < � if n � N1:

Therefore, limn!1.An � Bn/ D 0 and A D B .

To investigate the consequences of rearranging a conditionally convergent series, we

need the next theorem, which is itself important.

Theorem 4.3.25 IfP D fani
g11 andQ D famj

g11 are respectively the subsequences

of all positive and negative terms in a conditionally convergent series
P
an; then

1X

iD1

ani
D1 and

1X

j D1

amj
D �1: (4.3.24)

Proof If both series in (4.3.24) converge, then
P
an converges absolutely, while if one

converges and the other diverges, then
P
an diverges to 1 or �1. Hence, both must

diverge.

The next theorem implies that a conditionally convergent series can be rearranged to

produce a series that converges to any given number, diverges to˙1, or oscillates.

Theorem 4.3.26 Suppose that
P1

nD1 an is conditionally convergent and � and � are

arbitrarily given in the extended reals; with � � �: Then the terms of
P1

nD1 an can be

rearranged to form a series
P1

nD1 bn with partial sums

Bn D b1 C b2 C � � � C bn; n � 1;

such that

lim
n!1

Bn D � and lim
n!1

Bn D �: (4.3.25)

Proof We consider the case where � and � are finite and leave the other cases to you

(Exercise 4.3.36). We may ignore any zero terms that occur in
P1

nD1 an. For convenience,

we denote the positive terms by P D f˛i g11 and and the negative terms by Q D f�ˇj g11 .

We construct the sequence

fbng11 D f˛1; : : : ; ˛m1
;�ˇ1; : : : ;�ˇn1

; ˛m1C1; : : : ; ˛m2
;�ˇn1C1; : : : ;�ˇn2

; : : : g;
(4.3.26)
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with segments chosen alternately from P and Q. Let m0 D n0 D 0. If k � 1, let mk and

nk be the smallest integers such thatmk > mk�1, nk > nk�1,

mkX

iD1

˛i �
nk�1X

j D1

ˇj � �; and

mkX

iD1

˛i �
nkX

j D1

ˇj � �:

Theorem 4.3.25 implies that this construction is possible: since
P
˛i D

P
ˇj D 1, we

can choose mk and nk so that

mkX

iDmk�1

˛i and

nkX

j Dnk�1

ˇj

are as large as we please, no matter how large mk�1 and nk�1 are (Exercise 4.3.23). Since

mk and nk are the smallest integers with the specified properties,

� � BmkCnk�1
< � C ˛mk

; k � 2; (4.3.27)

and

�� ˇnk
< BmkCnk

� �; k � 2: (4.3.28)

From (4.3.26), bn < 0 if mk C nk�1 < n � mk C nk , so

BmkCnk
� Bn � BmkCnk�1

; mk C nk�1 � n � mk C nk; (4.3.29)

while bn > 0 if mk C nk < n � mkC1 C nk , so

BmkCnk
� Bn � BmkC1Cnk

; mk C nk � n � mkC1 C nk: (4.3.30)

Because of (4.3.27) and (4.3.28), (4.3.29) and (4.3.30) imply that

� � ˇnk
< Bn < � C ˛mk

; mk C nk�1 � n � mk C nk; (4.3.31)

and

� � ˇnk
< Bn < � C ˛mkC1

; mk C nk � n � mkC1 C nk: (4.3.32)

From the first inequality of (4.3.27), Bn � � for infinitely many values of n. However,

since limi!1 ˛i D 0, the second inequalities in (4.3.31) and (4.3.32) imply that if � > 0

then Bn > � C � for only finitely many values of n. Therefore, limn!1 Bn D �. From

the second inequality in (4.3.28), Bn � � for infinitely many values of n. However, since

limj !1 ˇj D 0, the first inequalities in (4.3.31) and (4.3.32) imply that if � > 0 then

Bn < � � � for only finitely many values of n. Therefore, limn!1 Bn D �.

Multiplication of Series

The product of two finite sums can be written as another finite sum: for example,

.a0 C a1 C a2/.b0 C b1 C b2/ D a0b0 C a0b1 C a0b2

Ca1b0 C a1b1 C a1b2

Ca2b0 C a2b1 C a2b2;
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where the sum on the right contains each product aibj .i; j D 0; 1; 2/ exactly once. These

products can be rearranged arbitrarily without changing their sum. The corresponding

situation for series is more complicated.

Given two series

1X

nD0

an and

1X

nD0

bn

(because of applications in Section 4.5, it is convenient here to start the summation index

at zero), we can arrange all possible products aibj .i; j � 0/ in a two-dimensional array:

a0b0 a0b1 a0b2 a0b3 � � �
a1b0 a1b1 a1b2 a1b3 � � �
a2b0 a2b1 a2b2 a2b3 � � �
a3b0 a3b1 a3b2 a3b3 � � �
:::

:::
:::

:::

(4.3.33)

where the subscript on a is constant in each row and the subscript on b is constant in each

column. Any sensible definition of the product

 1X

nD0

an

! 1X

nD0

bn

!

clearly must involve every product in this array exactly once; thus, we might define the

product of the two series to be the series
P1

nD0 pn, where fpng is a sequence obtained

by ordering the products in (4.3.33) according to some method that chooses every product

exactly once. One way to do this is indicated by

a0b0 ! a0b1 a0b2 ! a0b3 � � �
# " #

a1b0  a1b1 a1b2 a1b3 � � �
# " #
a2b0 ! a2b1 ! a2b2 a2b3 � � �

#
a3b0  a3b1  a3b2  a3b3 � � �
#
:::

:::
:::

:::

(4.3.34)
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and another by

a0b0 ! a0b1 a0b2 ! a0b3 a0b4 � � �
. % . %

a1b0 a1b1 a1b2 a1b3 � � �
# % . %
a2b0 a2b1 a2b2 a2b3 � � �

. %
a3b0 a3b1 a3b2 a3b3 � � �
# %

a4b0

:::
:::

:::

(4.3.35)

There are infinitely many others, and to each corresponds a series that we might consider

to be the product of the given series. This raises a question: If

1X

nD0

an D A and

1X

nD0

bn D B

where A and B are finite, does every product series
P1

nD0 pn constructed by ordering the

products in (4.3.33) converge to AB?

The next theorem tells us when the answer is yes.

Theorem 4.3.27 Let

1X

nD0

an D A and

1X

nD0

bn D B;

where A andB are finite, and at least one term of each series is nonzero. Then
P1

nD0 pn D
AB for every sequence fpng obtained by ordering the products in (4.3.33) if and only ifP
an and

P
bn converge absolutely:Moreover; in this case,

P
pn converges absolutely:

Proof First, let fpng be the sequence obtained by arranging the products faibj g accord-

ing to the scheme indicated in (4.3.34), and define

An D a0 C a1 C � � � C an; An D ja0j C ja1j C � � � C janj;

Bn D b0 C b1 C � � � C bn; Bn D jb0j C jb1j C � � � C jbnj;

Pn D p0 C p1 C � � � C pn; P n D jp0j C jp1j C � � � C jpnj:

From (4.3.34), we see that

P0 D A0B0; P3 D A1B1; P8 D A2B2;

and, in general,

P.mC1/2�1 D AmBm: (4.3.36)
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Similarly,

P .mC1/2�1 D AmBm: (4.3.37)

If
P
janj <1 and

P
jbnj <1, then fAmBmg is bounded and, since Pm � P .mC1/2�1,

(4.3.37) implies that fPmg is bounded. Therefore,
P
jpnj <1, so

P
pn converges. Now

1X

nD0

pn D lim
n!1

Pn (by definition)

D lim
m!1

P.mC1/2�1 (by Theorem 4.2.2)

D lim
m!1

AmBm (from (4.3.36))

D
�

lim
m!1

Am

� �
lim

m!1
Bm

�
(by Theorem 4.1.8)

D AB:

Since any other ordering of the products in (4.3.33) produces a a rearrangement of the

absolutely convergent series
P1

nD0 pn, Theorem 4.3.24 implies that
P
jqnj <1 for every

such ordering and that
P1

nD0 qn D AB . This shows that the stated condition is sufficient.

For necessity, again let
P1

nD0 pn be obtained from the ordering indicated in (4.3.34),

and suppose that
P1

nD0 pn and all its rearrangements converge to AB . Then
P
pn must

converge absolutely, by Theorem 4.3.26. Therefore, fPm2�1g is bounded, and (4.3.37)

implies that fAmg and fBmg are bounded. (Here we need the assumption that neither
P
an

nor
P
bn consists entirely of zeros. Why?) Therefore,

P
janj <1 and

P
jbnj <1.

The following definition of the product of two series is due to Cauchy. We will see the

importance of this definition in Section 4.5.

Definition 4.3.28 The Cauchy product of
P1

nD0 an and
P1

nD0 bn is
P1

nD0 cn, where

cn D a0bn C a1bn�1 C � � � C an�1b1 C anb0: (4.3.38)

Thus, cn is the sum of all products aibj , where i � 0, j � 0, and i C j D n; thus,

cn D
nX

rD0

arbn�r D
nX

rD0

bran�r : (4.3.39)

Henceforth,
�P1

nD0 an

� �P1
nD0 bn

�
should be interpreted as the Cauchy product. Notice

that  1X

nD0

an

! 1X

nD0

bn

!
D
 1X

nD0

bn

! 1X

nD0

an

!
;

and that the Cauchy product of two series is defined even if one or both diverge. In the case

where both converge, it is natural to inquire about the relationship between the product of

their sums and the sum of the Cauchy product. Theorem 4.3.27 yields a partial answer to

this question, as follows.



Section 4.3 Infinite Series of Constants 227

Theorem 4.3.29 If
P1

nD0 an and
P1

nD0 bn converge absolutely to sums A and B;

then the Cauchy product of
P1

nD0 an and
P1

nD0 bn converges absolutely to AB:

Proof Let Cn be the nth partial sum of the Cauchy product; that is,

Cn D c0 C c1 C � � � C cn

(see (4.3.38)). Let
P1

nD0 pn be the series obtained by ordering the products fai ; bj g ac-

cording to the scheme indicated in (4.3.35), and define Pn to be its nth partial sum; thus,

Pn D p0 C p1 C � � � C pn:

Inspection of (4.3.35) shows that cn is the sum of the nC1 terms connected by the diagonal

arrows. Therefore, Cn D Pmn , where

mn D 1C 2C � � � C .nC 1/� 1 D
n.nC 3/

2
:

From Theorem 4.3.27, limn!1 Pmn D AB , so limn!1 Cn D AB . To see that
P
jcnj <

1, we observe that
nX

rD0

jcrj �
mnX

sD0

jps j

and recall that
P
jpsj <1, from Theorem 4.3.27.

Example 4.3.25 Consider the Cauchy product of
P1

nD0 r
n with itself. Here an D

bn D rn and (4.3.39) yields

cn D r0rn C r1rn�1 C � � � C rn�1r1 C rnr0 D .nC 1/rn;

so  1X

nD0

rn

!2

D
1X

nD0

.nC 1/rn:

Since
1X

nD0

rn D 1

1 � r ; jr j < 1;

and the convergence is absolute, Theorem 4.3.29 implies that

1X

nD0

.nC 1/rn D 1

.1 � r/2 ; jr j < 1:

Example 4.3.26 If

1X

nD0

an D
1X

nD0

˛n

nŠ
and

1X

nD0

bn D
1X

nD0

ˇn

nŠ
;
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then (4.3.39) yields

cn D
nX

mD0

˛n�mˇm

.n �m/ŠmŠ D
1

nŠ

nX

mD0

 
n

m

!
˛n�mˇm D

.˛ C ˇ/n
nŠ

I

thus,  1X

nD0

˛n

nŠ

! 1X

nD0

ˇn

nŠ

!
D

1X

nD0

.˛ C ˇ/n
nŠ

: (4.3.40)

You probably know from calculus that
P1

nD0 x
n=nŠ converges absolutely for all x to ex.

Thus, (4.3.40) implies that

e˛eˇ D e˛Cˇ ;

a familiar result.

The Cauchy product of two series may converge under conditions weaker than those

of Theorem 4.3.29. If one series converges absolutely and the other converges condi-

tionally, the Cauchy product of the two series converges to the product of the two sums

(Exercise 4.3.40). If two series and their Cauchy product all converge, then the sum of

the Cauchy product equals the product of the sums of the two series (Exercise 4.5.32).

However, the next example shows that the Cauchy product of two conditionally convergent

series may diverge.

Example 4.3.27 If

an D bn D
.�1/nC1

p
nC 1

;

then
P1

nD0 an and
P1

nD0 bn converge conditionally. From (4.3.39), the general term of

their Cauchy product is

cn D
nX

rD0

.�1/rC1.�1/n�rC1

p
r C 1

p
n� r C 1

D .�1/n
nX

rD0

1p
r C 1

1p
n � r C 1

;

so

jcnj �
nX

rD0

1
p
nC 1

1
p
nC 1

D
nC 1
nC 1 D 1:

Therefore, the Cauchy product diverges, by Corollary 4.3.6.

4.3 Exercises

1. Prove Theorem 4.3.2.

2. Prove Theorem 4.3.3.

3. (a) Prove: If an D bn except for finitely many values of n, then
P
an and

P
bn

converge or diverge together.
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(b) Let bnk
D ak for some increasing sequence fnkg11 of positive integers, and

bn D 0 if n is any other positive integer. Show that

1X

nD1

bn and

1X

nD1

an

diverge or converge together, and that in the latter case they have the same sum.

(Thus, the convergence properties of a series are not changed by inserting zeros

between its terms.)

4. (a) Prove: If
P
an converges, then

lim
n!1

.an C anC1 C � � � C anCr / D 0; r � 0:

(b) Does (a) imply that
P
an converges? Give a reason for your answer.

5. Prove Corollary 4.3.7.

6. (a) Verify Corollary 4.3.7 for the convergent series
P
1=np .p > 1/. HINT: See

the proof of Theorem 4.3.10:

(b) Verify Corollary 4.3.7 for the convergent series
P
.�1/n=n.

7. Prove: If 0 � bn � an � bnC1, then
P
an and

P
bn converge or diverge together.

8. Determine convergence or divergence.

(a)
X p

n2 � 1p
n5 C 1

(b)
X 1

n2
�
1C 1

2
sin.n�=4/

�

(c)
X 1 � e�n logn

n
(d)

X
cos

�

n2

(e)
X

sin
�

n2
(f)

X 1

n
tan

�

n

(g)
X 1

n
cot

�

n
(h)

X logn

n2

9. Suppose that f .x/ � 0 for x � k. Prove that
R1

k
f .x/ dx <1 if and only if

1X

nDk

Z nC1

n

f .x/ dx <1:

HINT: Use Theorems 3.4.5 and 4.3.8.

10. Use the integral test to find all values of p for which the series converges.

(a)
X n

.n2 � 1/p
(b)

X n2

.n3 C 4/p
(c)

X sinhn

.cosh n/p
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11. Let Ln be the nth iterated logarithm. Show that

X 1

L0.n/L1.n/ � � �Lk.n/ ŒLkC1.n/�
p

converges if and only if p > 1. HINT: See Exercise 3.4.10.

12. Suppose that g, g0, and .g0/2 � gg00 are all positive on ŒR;1/. Show that

X g0.n/

g.n/
<1

if and only if limx!1 g.x/ <1.

13. Let

S.p/ D
1X

nD1

1

np
; p > 1:

Show that

1

.p � 1/.N C 1/p�1
< S.p/ �

NX

nD1

1

np
<

1

.p � 1/N p�1
:

HINT: See the proof of Theorem 4.3.10.

14. Suppose that f is positive, decreasing, and locally integrable on Œ1;1�, and let

an D
nX

kD1

f .k/ �
Z n

1

f .x/ dx:

(a) Show that fang is nonincreasing and nonnegative, and

0 < lim
n!1

an < f .1/:

(b) Deduce from(a) that

 D lim
n!1

�
1C 1

2
C 1

3
C � � � C 1

n
� logn

�

exists, and 0 <  < 1. ( is Euler’s constant;  � 0:577.)

15. Determine convergence or divergence.

(a)
X 2C sin n�

n2 C sinn�
(b)

X nC 1
n

rn .r > 0/

(c)
X

e�n� cosh n� .� > 0/ (d)
X nC logn

n2.logn/2

(e)
X nC logn

n2 logn
(f)

X .1C 1=n/n
2n

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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16. Let Ln be the nth iterated logarithm. Prove that

X 1

ŒL0.n/�
q0C1 ŒL1.n/�

q1C1 � � � ŒLm.n/�
qmC1

converges if and only if there is at least one nonzero number in fq0; q1; : : : ; qmg and

the first such is positive. HINT: See Exercises 4.3.11 and 2.4.42.b/:

17. Determine convergence or divergence.

(a)
X 2C sin2.n�=4/

3n
(b)

X n.nC 1/
4n

(c)
X 3 � sin.n�=2/

n.n C 1/
(d)

X nC .�1/n
n.nC 1/

18. Determine convergence or divergence, with r > 0.

(a)
X nŠ

rn
(b)

X
nprn (c)

X rn

nŠ

(d)
X r2nC1

.2nC 1/Š (e)
X r2n

.2n/Š

19. Determine convergence or divergence.

(a)
X .2n/Š

22n.nŠ/2
(b)

X .3n/Š

33nnŠ.nC 1/Š.nC 3/Š

(c)
X 2nnŠ

5 � � � 7 � .2nC 3/ (d)
X ˛.˛C 1/ � � � .˛ C n� 1/

ˇ.ˇ C 1/ � � � .ˇ C n � 1/ .˛; ˇ > 0/

20. Determine convergence or divergence.

(a)
X nn .2C .�1/n/

2n
(b)

X�
1C sin 3n�

3

�n

(c)
X

.nC 1/
�
1C sin.n�=6/

3

�n

(d)
X�

1 � 1
n

�n2

21. Give counterexamples showing that the following statements are false unless it is

assumed that the terms of the series have the same sign for n sufficiently large.

(a)
P
an converges if its partial sums are bounded.

(b) If bn ¤ 0 for n � k and limn!1 an=bn D L, where 0 < L <1, then
P
an

and
P
bn converge or diverge together.

(c) If an ¤ 0 and limn!1 anC1=an < 1, then
P
an converges.

(d) If an ¤ 0 and limn!1 n Œ.anC1=an/ � 1� < �1, then
P
an converges.

22. Prove: If the terms of a convergent series
P
an have the same sign for n � k, thenP

an converges absolutely.

23. Suppose that an � 0 for n � m and
P
an D 1. Prove: If N is an arbitrary integer

� m and J is an arbitrary positive number, then
PNCk

nDN an > J for some positive

integer k.

24. Prove Theorem 4.3.19.
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25. Show that the series converges absolutely.

(a)
X

.�1/n 1

n.log n/2
(b)

X sinn�

2n

(c)
X

.�1/n 1p
n

sin
�

n
(d)

X cosn�p
n3 � 1

26. Show that the series converges.

(a)
X n sin n�

n2 C .�1/n .�1 < � <1/ (b)
X cosn�

n
.� ¤ 2k�; k D integer/

27. Determine whether the series is absolutely convergent, conditionally convergent, or

divergent.

(a)
X bnp

n
.b4m D b4mC1 D 1; b4mC2 D b4mC3 D �1/

(b)
X 1

n
sin

n�

6
(c)

X 1

n2
cos

n�

7

(d)
X 1 � 3 � 5 � � � .2nC 1/

4 � 6 � 8 � � � .2nC 4/
sin n�

28. Let g be a rational function (ratio of two polynomials). Show that
P
g.n/rn con-

verges absolutely if jr j < 1 or diverges if jr j > 1. Discuss the possibilities for

jr j D 1.

29. Prove: If
P
a2

n <1 and
P
b2

n <1, then
P
anbn converges absolutely.

30. (a) Prove: If
P
an converges and

P
a2

n D 1, then
P
an converges condition-

ally.

(b) Give an example of a series with the properties described in (a).

31. Suppose that 0 � anC1 < an and

lim
n!1

b1 C b2 C � � � C bn

wn

> 0;

where fwng is a sequence of positive numbers such that

X
wn.an � anC1/ D 1:

Show that
P
anbn D1. HINT: Use summation by parts.

32. (a) Prove: If 0 < 2� < � < � � 2�, then

lim
n!1

j sin � j C j sin 2� j C � � � C j sinn� j
n

� sin �

2
:

HINT: Show that j sinn� j > sin � at least “half the time”; more precisely,

show that if j sinm� j � sin � for some integerm then j sin.mC 1/� j > sin �.
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(b) Show that
X sin n�

np

converges conditionally if 0 < p � 1 and � ¤ k� (k D integer). HINT: Use

Exercise 4.3.31 and see Example 4.3.22.

33. Show that
1X

nD1

.�1/nC1

n
D 1

2

1X

nD1

1

n.2n � 1/ :

34. Let b3mC1, b3mC2 D �2, and b3mC3 D 1 for m � 0. Show that

1X

nD1

bn

n
D 2

3

1X

mD0

1

.mC 1/.3mC 1/.3mC 2/
:

35. Let
P
bn be obtained by rearranging finitely many terms of a convergent seriesP

an. Show that the two series have the same sum.

36. Prove Theorem 4.3.26 for the case where (a) � is finite and � D1; (b) � D �1
and � D1; (c) � D � D1.

37. Give necessary and sufficient conditions for a divergent series to have a convergent

rearrangement.

38. A series diverges unconditionally to1 if every rearrangement of the series diverges

to1. State necessary and sufficient conditions for a series to have this property.

39. Suppose that f and g have derivatives of all orders at 0, and let h D fg. Show

formally that

 1X

nD0

f .n/.0/

nŠ
xn

! 1X

nD0

g.n/.0/

nŠ
xn

!
D

1X

nD0

h.n/.0/

nŠ
xn

in the sense of the Cauchy product. HINT: See Exercise 2.3.12.

40. Prove: If
P
janj <1 and

P
bn converges (perhaps conditionally), with

P1
nD0 an D

A and
P1

nD0 bn D B , then the Cauchy product

1X

nD0

cn D
 1X

nD0

an

! 1X

nD0

bn

!

converges to AB . HINT: Let fAng, fBng, and fCng be the partial sums of the series.

Show that

Cn � AnB D
nX

rD0

ar .Bn�r � B/

and apply Theorem 4.3.5 to
P
janj.
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41. Suppose that ar � 0 for all r � 0 and and
P1

0 ar D A <1. Show that

lim
n!1

1

n

n�1X

r;sD0

arCs D 0 and lim
n!1

1

n

n�1X

r;sD0

ar�s D 2A� a0:

42. Prove: If limi!1 a
.i/
j D aj (j � 1) and ja.i/

j j � �j (i; j � 1), where
P1

j D1 �j <

1, then limi!1
P1

j D1 a
.i/
j D

P1
j D1 aj .

43. Prove: If an > 0, n � 1, and
P1

nD1 an D 1, then
P1

nD1 an=.1C an/ D1.

4.4 SEQUENCES AND SERIES OF FUNCTIONS

Until now we have considered sequences and series of constants. Now we turn our attention

to sequences and series of real-valued functions defined on subsets of the reals. Throughout

this section, “subset” means “nonempty subset.”

If Fk , FkC1, . . . , Fn; : : : are real-valued functions defined on a subset D of the reals,

we say that fFng is an infinite sequence or (simply a sequence) of functions on D. If the

sequence of values fFn.x/g converges for each x in some subset S ofD, then fFng defines

a limit function on S . The formal definition is as follows.

Definition 4.4.1 Suppose that fFng is a sequence of functions on D and the sequence

of values fFn.x/g converges for each x in some subset S of D. Then we say that fFng
converges pointwise on S to the limit function F , defined by

F.x/ D lim
n!1

Fn.x/; x 2 S:

Example 4.4.1 The functions

Fn.x/ D
�
1 � nx

nC 1

�n=2

; n � 1;

define a sequence on D D .�1; 1�, and

lim
n!1

Fn.x/ D

8
<
:
1; x < 0;

1; x D 0;
0; 0 < x � 1:

Therefore, fFng converges pointwise on S D Œ0; 1� to the limit function F defined by

F.x/ D
�
1; x D 0;
0; 0 < x � 1:

Example 4.4.2 Consider the functions

Fn.x/ D xne�nx ; x � 0; n � 1;

(Figure 4.4.1).
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y

x

y =Fn(x)=xne−nx

y = e−n

Figure 4.4.1

Equating the derivative

F 0
n.x/ D nxn�1e�nx.1 � x/

to zero shows that the maximum value of Fn.x/ on Œ0;1/ is e�n, attained at x D 1.

Therefore,

jFn.x/j � e�n; x � 0;
so limn!1 Fn.x/ D 0 for all x � 0. The limit function in this case is identically zero on

Œ0;1/.

Example 4.4.3 For n � 1, let Fn be defined on .�1;1/ by

Fn.x/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

0; x < � 2
n
;

�n.2C nx/; � 2
n
� x < � 1

n
;

n2x; � 1
n
� x < 1

n
;

n.2 � nx/; 1
n
� x < 2

n
;

0; x � 2
n

(Figure 4.4.2, page 236),

Since Fn.0/ D 0 for all n, limn!1 Fn.0/ D 0. If x ¤ 0, then Fn.x/ D 0 if n � 2=jxj.
Therefore,

lim
n!1

Fn.x/ D 0; �1 < x <1;

so the limit function is identically zero on .�1;1/.

Example 4.4.4 For each positive integer n, let Sn be the set of numbers of the form

x D p=q, where p and q are integers with no common factors and 1 � q � n. Define

Fn.x/ D
�
1; x 2 Sn;

0; x 62 Sn:
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If x is irrational, then x 62 Sn for any n, so Fn.x/ D 0, n � 1. If x is rational, then x 2 Sn

and Fn.x/ D 1 for all sufficiently large n. Therefore,

lim
n!1

Fn.x/ D F.x/ D
�
1 if x is rational;

0 if x is irrational:

y

x

y = −n

y = n

n
1

n
1

n
2

n
2

y =Fn(x)

−−

Figure 4.4.2

Uniform Convergence

The pointwise limit of a sequence of functions may differ radically from the functions in

the sequence. In Example 4.4.1, each Fn is continuous on .�1; 1�, but F is not. In

Example 4.4.3, the graph of each Fn has two triangular spikes with heights that tend to

1 as n ! 1, while the graph of F (the x-axis) has none. In Example 4.4.4, each Fn

is integrable, while F is nonintegrable on every finite interval. (Exercise 4.4.3). There is

nothing in Definition 4.4.1 to preclude these apparent anomalies; although the definition

implies that for each x0 in S , Fn.x0/ approximates F.x0/ if n is sufficiently large, it

does not imply that any particular Fn approximates F well over all of S . To formulate a

definition that does, it is convenient to introduce the notation

kgkS D sup
x2S

jg.x/j

and to state the following lemma. We leave the proof to you (Exercise 4.4.4).

Lemma 4.4.2 If g and h are defined on S; then

kg C hkS � kgkS C khkS

and

kghkS � kgkSkhkS :

Moroever; if either g or h is bounded on S; then

kg � hkS � jkgkS � khkSkj :
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Definition 4.4.3 A sequence fFng of functions defined on a set S converges uniformly

to the limit function F on S if

lim
n!1

jjFn � F kS D 0:

Thus, fFng converges uniformly to F on S if for each � > 0 there is an integer N such that

kFn � F kS < � if n � N: (4.4.1)

If S D Œa; b� and F is the function with graph shown in Figure 4.4.3, then (4.4.1) implies

that the graph of

y D Fn.x/; a � x � b;

lies in the shaded band

F.x/ � � < y < F.x/C �; a � x � b;

if n � N .

From Definition 4.4.3, if fFng converges uniformly on S , then fFng converges uniformly

on any subset of S (Exercise 4.4.6).

y

x
a b

y =F (x) −

y =F (x) +

y =F (x)

Figure 4.4.3

Example 4.4.5 The sequence fFng defined by

Fn.x/ D xne�nx ; n � 1;

converges uniformly to F � 0 (that is, to the identically zero function) on S D Œ0;1/,
since we saw in Example 4.4.2 that

kFn � F kS D kFnkS D e�n;
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so

kFn � F kS < �

if n > � log �. For these values of n, the graph of

y D Fn.x/; 0 � x <1;

lies in the strip

�� � y � �; x � 0
(Figure 4.4.4).

The next theorem provides alternative definitions of pointwise and uniform convergence.

It follows immediately from Definitions 4.4.1 and 4.4.3.

Theorem 4.4.4 Let fFng be defined on S: Then

(a) fFng converges pointwise to F on S if and only if there is, for each � > 0 and x 2 S ,

an integer N .which may depend on x as well as �/ such that

jFn.x/ � F.x/j < � if n � N:

(b) fFng converges uniformly to F on S if and only if there is for each � > 0 an integer

N .which depends only on � and not on any particular x in S/ such that

jFn.x/ � F.x/j < � for all x in S if n � N:

y

x

y = e−n

y = e

y = −e

y =xne−nx

Figure 4.4.4

The next theorem follows immediately from Theorem 4.4.4 and Example 4.4.6.



Section 4.4 Sequences and Series of Functions 239

Theorem 4.4.5 If fFng converges uniformly to F on S; then fFng converges pointwise

to F on S: The converse is falseI that is; pointwise convergence does not imply uniform

convergence.

Example 4.4.6 The sequence fFng of Example 4.4.3 converges pointwise to F � 0

on .�1;1/, but not uniformly, since

kFn � F k.�1;1/ D Fn

�
1

n

�
D
ˇ̌
ˇ̌Fn

��1
n

�ˇ̌
ˇ̌ D n;

so

lim
n!1

kFn � F k.�1;1/ D1:

However, the convergence is uniform on

S� D .�1; �� [ Œ�;1/

for any � > 0, since

kFn � F kS� D 0 if n >
2

�
:

Example 4.4.7 If Fn.x/ D xn, n � 1, then fFng converges pointwise on S D Œ0; 1�

to

F.x/ D
�
1; x D 1;
0; 0 � x < 1:

The convergence is not uniform on S . To see this, suppose that 0 < � < 1. Then

jFn.x/ � F.x/j > 1 � � if .1 � �/1=n < x < 1:

Therefore,

1 � � � kFn � F kS � 1
for all n � 1. Since � can be arbitrarily small, it follows that

kFn � F kS D 1

for all n � 1.

However, the convergence is uniform on Œ0; �� if 0 < � < 1, since then

kFn � F kŒ0;�� D �n

and limn!1 �n D 0. Another way to say the same thing: fFng converges uniformly on

every closed subset of Œ0; 1/.

The next theorem enables us to test a sequence for uniform convergence without guessing

what the limit function might be. It is analogous to Cauchy’s convergence criterion for

sequences of constants (Theorem 4.1.13).
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Theorem 4.4.6 (Cauchy’s Uniform Convergence Criterion) A sequence

of functions fFng converges uniformly on a set S if and only if for each � > 0 there is an

integer N such that

kFn � FmkS < � if n;m � N: (4.4.2)

Proof For necessity, suppose that fFng converges uniformly to F on S . Then, if � > 0,

there is an integer N such that

kFk � F kS <
�

2
if k � N:

Therefore,

kFn � FmkS D k.Fn � F /C .F � Fm/kS

� kFn � F kS C kF � FmkS (Lemma 4.4.2)

<
�

2
C �

2
D � if m; n � N:

For sufficiency, we first observe that (4.4.2) implies that

jFn.x/ � Fm.x/j < � if n;m � N;

for any fixed x in S . Therefore, Cauchy’s convergence criterion for sequences of constants

(Theorem 4.1.13) implies that fFn.x/g converges for each x in S ; that is, fFng converges

pointwise to a limit function F on S . To see that the convergence is uniform, we write

jFm.x/ � F.x/j D jŒFm.x/ � Fn.x/�C ŒFn.x/ � F.x/�j
� jFm.x/ � Fn.x/j C jFn.x/ � F.x/j
� kFm � FnkS C jFn.x/ � F.x/j:

This and (4.4.2) imply that

jFm.x/ � F.x/j < � C jFn.x/ � F.x/j if n;m � N: (4.4.3)

Since limn!1 Fn.x/ D F.x/,

jFn.x/ � F.x/j < �

for some n � N , so (4.4.3) implies that

jFm.x/ � F.x/j < 2� if m � N:

But this inequality holds for all x in S , so

kFm � F kS � 2� if m � N:

Since � is an arbitrary positive number, this implies that fFng converges uniformly to F

on S .

The next example is similar to Example 4.1.14.
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Example 4.4.8 Suppose that g is differentiable on S D .�1;1/ and

jg0.x/j � r < 1; �1 < x <1: (4.4.4)

Let F0 be bounded on S and define

Fn.x/ D g.Fn�1.x//; n � 1: (4.4.5)

We will show that fFng converges uniformly on S . We first note that if u and v are any two

real numbers, then (4.4.4) and the mean value theorem imply that

jg.u/ � g.v/j � r ju� vj: (4.4.6)

Recalling (4.4.5) and applying this inequality with u D Fn�1.x/ and v D 0 shows that

jFn.x/j D jg.0/ C .g.Fn�1.x// � g.0//j � jg.0/j C jg.Fn�1.x// � g.0/j
� jg.0/j C r jFn�1.x/jI

therefore, since F0 is bounded on S , it follows by induction that Fn is bounded on S for

n � 1. Moreover, if n � 1, then (4.4.5) and (4.4.6) with u D Fn.x/ and v D Fn�1.x/

imply that

jFnC1.x/�Fn.x/j D jg.Fn.x//�g.Fn�1 .x//j � r jFn.x/�Fn�1.x/j; �1 < x <1;

so

kFnC1 � FnkS � rkFn � Fn�1kS :

By induction, this implies that

kFnC1 � FnkS � rnkF1 � F0kS : (4.4.7)

If n > m, then

kFn � FmkS D k.Fn � Fn�1/C .Fn�1 � Fn�2/C � � � C .FmC1 � Fm/kS

� kFn � Fn�1kS C kFn�1 � Fn�2kS C � � � C kFmC1 � FmkS ;

from Lemma 4.4.2. Now (4.4.7) implies that

kFn � FmkS � kF1 � F0kS .1C r C r2 C � � � C rn�m�1/rm

< kF1 � F0kS

rm

1 � r
:

Therefore, if

kF1 � F0kS

rN

1 � r
< �;

then kFn � FmkS < � if n, m � N . Therefore, fFng converges uniformly on S , by

Theorem 4.4.6.
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Properties Preserved by Uniform Convergence

We now study properties of the functions of a uniformly convergent sequence that are

inherited by the limit function. We first consider continuity.

Theorem 4.4.7 If fFng converges uniformly to F on S and each Fn is continuous at

a point x0 in S; then so is F . Similar statements hold for continuity from the right and left:

Proof Suppose that each Fn is continuous at x0. If x 2 S and n � 1, then

jF.x/ � F.x0/j � jF.x/ � Fn.x/j C jFn.x/ � Fn.x0/j C jFn.x0/ � F.x0/j
� jFn.x/ � Fn.x0/j C 2kFn � F kS :

(4.4.8)

Suppose that � > 0. Since fFng converges uniformly to F on S , we can choose n so that

kFn � F kS < �. For this fixed n, (4.4.8) implies that

jF.x/ � F.x0/j < jFn.x/ � Fn.x0/j C 2�; x 2 S: (4.4.9)

Since Fn is continuous at x0, there is a ı > 0 such that

jFn.x/ � Fn.x0/j < � if jx � x0j < ı;

so, from (4.4.9),

jF.x/ � F.x0/j < 3�; if jx � x0j < ı:

Therefore, F is continuous at x0. Similar arguments apply to the assertions on continuity

from the right and left.

Corollary 4.4.8 If fFng converges uniformly to F on S and each Fn is continuous on

S; then so is F I that is; a uniform limit of continuous functions is continuous.

Now we consider the question of integrability of the uniform limit of integrable func-

tions.

Theorem 4.4.9 Suppose that fFng converges uniformly to F on S D Œa; b�. Assume

that F and all Fn are integrable on Œa; b�: Then

Z b

a

F.x/ dx D lim
n!1

Z b

a

Fn.x/ dx: (4.4.10)

Proof Since
ˇ̌
ˇ̌
ˇ

Z b

a

Fn.x/ dx �
Z b

a

F.x/ dx

ˇ̌
ˇ̌
ˇ �

Z b

a

jFn.x/ � F.x/j dx

� .b � a/kFn � F kS

and limn!1 kFn � F kS D 0, the conclusion follows.
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In particular, this theorem implies that (4.4.10) holds if each Fn is continuous on Œa; b�,

because then F is continuous (Corollary 4.4.8) and therefore integrable on Œa; b�.

The hypotheses of Theorem 4.4.9 are stronger than necessary. We state the next theorem

so that you will be better informed on this subject. We omit the proof, which is inaccessible

if you skipped Section 3.5, and quite involved in any case.

Theorem 4.4.10 Suppose that fFng converges pointwise to F and each Fn is inte-

grable on Œa; b�:

(a) If the convergence is uniform; then F is integrable on Œa; b� and (4.4.10) holds.

(b) If the sequence fkFnkŒa;b�g is bounded and F is integrable on Œa; b�; then (4.4.10)

holds.

Part (a) of this theorem shows that it is not necessary to assume in Theorem 4.4.9 that F

is integrable on Œa; b�, since this follows from the uniform convergence. Part (b) is known

as the bounded convergence theorem. Neither of the assumptions of (b) can be omitted.

Thus, in Example 4.4.3, where fkFnkŒ0;1�g is unbounded while F is integrable on Œ0; 1�,

Z 1

0

Fn.x/ dx D 1; n � 1; but

Z 1

0

F.x/ dx D 0:

In Example 4.4.4, where kFnkŒa;b� D 1 for every finite interval Œa; b�, Fn is integrable for

all n � 1, and F is nonintegrable on every interval (Exercise 4.4.3).

After Theorems 4.4.7 and 4.4.9, it may seem reasonable to expect that if a sequence fFng
of differentiable functions converges uniformly to F on S , then F 0 D limn!1 F 0

n on S .

The next example shows that this is not true in general.

Example 4.4.9 The sequence fFng defined by

Fn.x/ D xn sin
1

xn�1

converges uniformly to F � 0 on Œr1; r2� if 0 < r1 < r2 < 1 (or, equivalently, on every

compact subset of .0; 1/). However,

F 0
n.x/ D nxn�1 sin

1

xn�1
� .n � 1/ cos

1

xn�1
;

so fF 0
n.x/g does not converge for any x in .0; 1/.

Theorem 4.4.11 Suppose that F 0
n is continuous on Œa; b� for all n � 1 and fF 0

ng
converges uniformly on Œa; b�: Suppose also that fFn.x0/g converges for some x0 in Œa; b�:

Then fFng converges uniformly on Œa; b� to a differentiable limit function F; and

F 0.x/ D lim
n!1

F 0
n.x/; a < x < b; (4.4.11)

while

F 0
C.a/ D lim

n!1
F 0

n.aC/ and F 0
�.b/ D lim

n!1
F 0

n.b�/: (4.4.12)
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Proof Since F 0
n is continuous on Œa; b�, we can write

Fn.x/ D Fn.x0/C
Z x

x0

F 0
n.t/ dt; a � x � b (4.4.13)

(Theorem 3.3.12). Now let

L D lim
n!1

Fn.x0/

and

G.x/ D lim
n!1

F 0
n.x/: (4.4.14)

Since F 0
n is continuous and fF 0

ng converges uniformly to G on Œa; b�, G is continuous on

Œa; b� (Corollary 4.4.8); therefore, (4.4.13) and Theorem 4.4.9 (with F and Fn replaced by

G and F 0
n) imply that fFng converges pointwise on Œa; b� to the limit function

F.x/ D LC
Z x

x0

G.t/ dt: (4.4.15)

The convergence is actually uniform on Œa; b�, since subtracting (4.4.13) from (4.4.15)

yields

jF.x/ � Fn.x/j � jL � Fn.x0/j C
ˇ̌
ˇ̌
Z x

x0

jG.t/ � F 0
n.t/j dt

ˇ̌
ˇ̌

� jL � Fn.x0/j C jx � x0j kG � F 0
nkŒa;b�;

so

kF � FnkŒa;b� � jL� Fn.x0/j C .b � a/kG � F 0
nkŒa;b�;

where the right side approaches zero as n!1.

Since G is continuous on Œa; b�, (4.4.14), (4.4.15), Definition 2.3.6, and Theorem 3.3.11

imply (4.4.11) and (4.4.12).

Infinite Series of Functions

In Section 4.3 we defined the sum of an infinite series of constants as the limit of the

sequence of partial sums. The same definition can be applied to series of functions, as

follows.

Definition 4.4.12 If ffj g1k is a sequence of real-valued functions defined on a set D

of reals, then
P1

j Dk fj is an infinite series (or simply a series) of functions on D. The

partial sums of ,
P1

j Dk fj are defined by

Fn D
nX

j Dk

fj ; n � k:

If fFng1k converges pointwise to a function F on a subset S of D, we say that
P1

j Dk fj

converges pointwise to the sum F on S , and write

F D
1X

j Dk

fj ; x 2 S:
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If fFng converges uniformly to F on S , we say that
P1

j Dk fj converges uniformly to F

on S .

Example 4.4.10 The functions

fj .x/ D xj ; j � 0;

define the infinite series
1X

j D0

xj

on D D .�1;1/. The nth partial sum of the series is

Fn.x/ D 1C x C x2 C � � � C xn;

or, in closed form,

Fn.x/ D

8
<
:

1 � xnC1

1 � x
; x ¤ 1;

nC 1; x D 1
(Example 4.1.11). We have seen earlier that fFng converges pointwise to

F.x/ D 1

1 � x
if jxj < 1 and diverges if jxj � 1; hence, we write

1X

j D0

xj D 1

1 � x
; �1 < x < 1:

Since the difference

F.x/ � Fn.x/ D
xnC1

1 � x
can be made arbitrarily large by taking x close to 1,

kF � Fnk.�1;1/ D1;

so the convergence is not uniform on .�1; 1/. Neither is it uniform on any interval .�1; r�
with �1 < r < 1, since

kF � Fnk.�1;r/ �
1

2

for every n on every such interval. (Why?) The series does converge uniformly on any

interval Œ�r; r � with 0 < r < 1, since

kF � FnkŒ�r;r � D
rnC1

1 � r
and limn!1 rn D 0. Put another way, the series converges uniformly on closed subsets of

.�1; 1/.
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As for series of constants, the convergence, pointwise or uniform, of a series of functions

is not changed by altering or omitting finitely many terms. This justifies adopting the

convention that we used for series of constants: when we are interested only in whether a

series of functions converges, and not in its sum, we will omit the limits on the summation

sign and write simply
P
fn.

Tests for Uniform Convergence of Series

Theorem 4.4.6 is easily converted to a theorem on uniform convergence of series, as fol-

lows.

Theorem 4.4.13 (Cauchy’s Uniform Convergence Criterion) A seriesP
fn converges uniformly on a set S if and only if for each � > 0 there is an integer N

such that

kfn C fnC1 C � � � C fmkS < � if m � n � N: (4.4.16)

Proof Apply Theorem 4.4.6 to the partial sums of
P
fn, observing that

fn C fnC1 C � � � C fm D Fm � Fn�1:

Setting m D n in (4.4.16) yields the following necessary, but not sufficient, condition

for uniform convergence of series. It is analogous to Corollary 4.3.6.

Corollary 4.4.14 If
P
fn converges uniformly on S; then limn!1 kfnkS D 0:

Theorem 4.4.13 leads immediately to the following important test for uniform conver-

gence of series.

Theorem 4.4.15 (Weierstrass’s Test) The series
P
fn converges uniformly

on S if

kfnkS �Mn; n � k; (4.4.17)

where
P
Mn <1:

Proof From Cauchy’s convergence criterion for series of constants, there is for each

� > 0 an integer N such that

Mn CMnC1 C � � � CMm < � if m � n � N;

which, because of (4.4.17), implies that

kfnkS C kfnC1kS C � � � C kfmkS < � if m; n � N:

Lemma 4.4.2 and Theorem 4.4.13 imply that
P
fn converges uniformly on S .
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Example 4.4.11 TakingMn D 1=n2 and recalling that

X 1

n2
<1;

we see that X 1

x2 C n2
and

X sinnx

n2

converge uniformly on .�1;1/.

Example 4.4.12 The series

X
fn.x/ D

X�
x

1C x

�n

converges uniformly on any set S such that

ˇ̌
ˇ̌ x

1C x

ˇ̌
ˇ̌ � r < 1; x 2 S; (4.4.18)

because if S is such a set, then

kfnkS � rn

and Weierstrass’s test applies, with

X
Mn D

X
rn <1:

Since (4.4.18) is equivalent to

�r
1C r � x �

r

1 � r ; x 2 S;

this means that the series converges uniformly on any compact subset of .�1=2;1/.
(Why?) From Corollary 4.4.14, the series does not converge uniformly on S D .�1=2; b/
with b < 1 or on S D Œa;1/ with a > �1=2, because in these cases kfnkS D 1 for all

n.

Weierstrass’s test is very important, but applicable only to series that actually exhibit a

stronger kind of convergence than we have considered so far. We say that
P
fn converges

absolutely on S if
P
jfnj converges pointwise on S , and absolutely uniformly on S ifP

jfnj converges uniformly on S . We leave it to you (Exercise 4.4.21) to verify that our

proof of Weierstrass’s test actually shows that
P
fn converges absolutely uniformly on S .

We also leave it to you to show that if a series converges absolutely uniformly on S , then it

converges uniformly on S (Exercise 4.4.20).

The next theorem applies to series that converge uniformly, but perhaps not absolutely

uniformly, on a set S .
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Theorem 4.4.16 (Dirichlet’s Test for Uniform Convergence) The se-

ries
1X

nDk

fngn

converges uniformly on S if ffng converges uniformly to zero on S;
P
.fnC1 � fn/ con-

verges absolutely uniformly on S; and

kgk C gkC1 C � � � C gnkS �M; n � k; (4.4.19)

for some constantM:

Proof The proof is similar to the proof of Theorem 4.3.20. Let

Gn D gk C gkC1 C � � � C gn;

and consider the partial sums of
P1

nDk fngn:

Hn D fkgk C fkC1gkC1 C � � � C fngn: (4.4.20)

By substituting

gk D Gk and gn D Gn �Gn�1; n � k C 1;

into (4.4.20), we obtain

Hn D fkGk C fkC1.GkC1 �Gk/C � � � C fn.Gn � Gn�1/;

which we rewrite as

Hn D .fk � fkC1/Gk C .fkC1 � fkC2/GkC1 C � � � C .fn�1 � fn/Gn�1 C fnGn;

or

Hn D Jn�1 C fnGn; (4.4.21)

where

Jn�1 D .fk � fkC1/Gk C .fkC1 � fkC2/GkC1 C � � � C .fn�1 � fn/Gn�1: (4.4.22)

That is, fJng is the sequence of partial sums of the series

1X

j Dk

.fj � fj C1/Gj : (4.4.23)

From (4.4.19) and the definition of Gj ,

ˇ̌
ˇ̌
ˇ̌

mX

j Dn

Œfj .x/ � fj C1.x/�Gj .x/

ˇ̌
ˇ̌
ˇ̌ �M

mX

j Dn

jfj .x/ � fj C1.x/j; x 2 S;
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so 

mX

j Dn

.fj � fj C1/Gj


S

�M



mX

j Dn

jfj � fj C1j


S

:

Now suppose that � > 0. Since
P
.fj � fj C1/ converges absolutely uniformly on S , The-

orem 4.4.13 implies that there is an integer N such that the right side of the last inequality

is less than � if m � n � N . The same is then true of the left side, so Theorem 4.4.13

implies that (4.4.23) converges uniformly on S .

We have now shown that fJng as defined in (4.4.22) converges uniformly to a limit

function J on S . Returning to (4.4.21), we see that

Hn � J D Jn�1 � J C fnGn:

Hence, from Lemma 4.4.2 and (4.4.19),

kHn � JkS � kJn�1 � JkS C kfnkSkGnkS

� kJn�1 � JkS CMkfnkS :

Since fJn�1�J g and ffng converge uniformly to zero on S , it now follows that limn!1 kHn�
JkS D 0. Therefore, fHng converges uniformly on S .

Corollary 4.4.17 The series
P1

nDk fngn converges uniformly on S if

fnC1.x/ � fn.x/; x 2 S; n � k;

ffng converges uniformly to zero on S; and

kgk C gkC1 C � � � C gnkS �M; n � k;

for some constantM:

The proof is similar to that of Corollary 4.3.21. We leave it to you (Exercise 4.4.22).

Example 4.4.13 Consider the series

1X

nD1

sinnx

n

with fn D 1=n (constant), gn.x/ D sinnx, and

Gn.x/ D sinx C sin 2x C � � � C sin nx:

We saw in Example 4.3.21 that

jGn.x/j �
1

j sin.x=2/j ; n � 1; n ¤ 2k� (k D integer):
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Therefore, fkGnkS g is bounded, and the series converges uniformly on any set S on which

sinx=2 is bounded away from zero. For example, if 0 < ı < � , then

ˇ̌
ˇsin

x

2

ˇ̌
ˇ � sin

ı

2

if x is at least ı away from any multiple of 2� ; hence, the series converges uniformly on

S D
1[

kD�1
Œ2k� C ı; 2.k C 1/� � ı�:

Since Xˇ̌
ˇ̌sinnx

n

ˇ̌
ˇ̌ D 1; x ¤ k�

(Exercise 4.3.32(b)), this result cannot be obtained from Weierstrass’s test.

Example 4.4.14 The series
1X

nD1

.�1/n
nC x2

satisfies the hypotheses of Corollary 4.4.17 on .�1;1/, with

fn.x/ D
1

nC x2
; gn D .�1/n; G2m D 0; and G2mC1 D �1:

Therefore, the series converges uniformly on .�1;1/. This result cannot be obtained by

Weierstrass’s test, since X 1

nC x2
D 1

for all x.

Continuity, Differentiability, and Integrability of Series

We can obtain results on the continuity, differentiability, and integrability of infinite series

by applying Theorems 4.4.7, 4.4.9, and 4.4.11 to their partial sums. We will state the

theorems and give some examples, leaving the proofs to you.

Theorem 4.4.7 implies the following theorem (Exercise 4.4.23).

Theorem 4.4.18 If
P1

nDk fn converges uniformly to F on S and each fn is contin-

uous at a point x0 in S; then so is F: Similar statements hold for continuity from the right

and left:

Example 4.4.15 In Example 4.4.12 we saw that the series

F.x/ D
1X

nD0

�
x

1C x

�n
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converges uniformly on every compact subset of .�1=2;1/. Since the terms of the series

are continuous on every such subset, Theorem 4.4.4 implies that F is also. In fact, we can

state a stronger result: F is continuous on .�1=2;1/, since every point in .�1=2;1/ lies

in a compact subinterval of .�1=2;1/.
The same argument and the results of Example 4.4.13 show that the function

G.x/ D
1X

nD1

sinnx

n

is continuous except perhaps at xk D 2k� (k D integer).

From Example 4.4.14, the function

H.x/ D
1X

nD1

.�1/n 1

nC x2

is continuous for all x.

The next theorem gives conditions that permit the interchange of summation and inte-

gration of infinite series. It follows from Theorem 4.4.9 (Exercise 4.4.25). We leave it to

you to formulate an analog of Theorem 4.4.10 for series (Exercise 4.4.26).

Theorem 4.4.19 Suppose that
P1

nDk fn converges uniformly to F on S D Œa; b�:

Assume that F and fn; n � k; are integrable on Œa; b�: Then

Z b

a

F.x/ dx D
1X

nDk

Z b

a

fn.x/ dx:

We say in this case that
P1

nDk fn can be integrated term by term over Œa; b�.

Example 4.4.16 From Example 4.4.10,

1

1 � x
D

1X

nD0

xn; �1 < x < 1:

The series converges uniformly, and the limit function is integrable on any closed subinter-

val Œa; b� of .�1; 1/; hence,

Z b

a

dx

1 � x
D

1X

nD0

Z b

a

xn dx;

so

log.1 � a/ � log.1 � b/ D
1X

nD0

bnC1 � anC1

nC 1
:

Letting a D 0 and b D x yields

log.1 � x/ D �
1X

nD0

xnC1

nC 1 ; �1 < x < 1:
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The next theorem gives conditions that permit the interchange of summation and differ-

entiation of infinite series. It follows from Theorem 4.4.11 (Exercise 4.4.28).

Theorem 4.4.20 Suppose that fn is continuously differentiable on Œa; b� for each n �
k;
P1

nDk fn.x0/ converges for some x0 in Œa; b�; and
P1

nDk f
0

n converges uniformly on

Œa; b�: Then
P1

nDk fn converges uniformly on Œa; b� to a differentiable function F; and

F 0.x/ D
1X

nDk

f 0
n.x/; a < x < b;

while

F 0.aC/ D
1X

nDk

f 0
n.aC/ and F 0.b�/ D

1X

nDk

f 0
n.b�/:

We say in this case that
P1

nDk fn can be differentiated term by term on Œa; b�. To apply

Theorem 4.4.20, we first verify that
P1

nDk fn.x0/ converges for some x0 in Œa; b� and then

differentiate
P1

nDk fn term by term. If the resulting series converges uniformly, then term

by term differentiation was legitimate.

Example 4.4.17 The series

1X

nD1

.�1/n 1
n

cos
x

n
(4.4.24)

converges at x0 D 0. Differentiating term by term yields the series

1X

nD1

.�1/nC1 1

n2
sin

x

n
(4.4.25)

of continuous functions. This series converges uniformly on .�1;1/, by Weierstrass’s

test. By Theorem 4.4.20, the series (4.4.24) converges uniformly on every finite interval to

the differentiable function

F.x/ D
1X

nD1

.�1/n 1
n

cos
x

n
; �1 < x <1;

and

F 0.x/ D
1X

nD1

.�1/nC1 1

n2
sin

x

n
; �1 < x <1:

Example 4.4.18 The series

E.x/ D
1X

nD0

xn

nŠ
D 1C x C x2

2Š
C x3

3Š
C � � � (4.4.26)
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converges uniformly on every interval Œ�r; r � by Weierstrass’s test, because

jxjn
nŠ
� r

n

nŠ
; jxj � r;

and
X rn

nŠ
<1

for all r , by the ratio test. Differentiating the right side of (4.4.26) term by term yields the

series
1X

nD1

xn�1

.n � 1/Š D
1X

nD0

xn

nŠ
;

which is the same as (4.4.26). Therefore, the differentiated series is also uniformly conver-

gent on Œ�r; r � for every r , so the term by term differentiation is legitimate and

E 0.x/ D E.x/; �1 < x <1:

This is not surprising if you recognize that E.x/ D ex.

Example 4.4.19 Failure to verify that the given series converges at some point can

lead to erroneous conclusions. For example, differentiating

1X

nD1

cos
x

n
(4.4.27)

term by term yields

�
1X

nD1

1

n
sin

x

n
;

which converges uniformly on Œ�r; r � for every r , since

ˇ̌
ˇ̌1
n

sin
x

n

ˇ̌
ˇ̌ � jxj

n2
(Exercise 2.3.19)

� r

n2
if jxj � r;

and
P
1=n2 < 1. We cannot conclude from this that (4.4.27) converges uniformly on

Œ�r; r �. In fact, it diverges for every x. (Why?)

4.4 Exercises

1. Find the set S on which fFng converges pointwise, and find the limit function.

(a) Fn.x/ D xn.1 � x2/ (b) Fn.x/ D nxn.1 � x2/
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(c) Fn.x/ D xn.1 � xn/ (d) Fn.x/ D sin

�
1C 1

n

�
x

(e) Fn.x/ D
1C xn

1C x2n
(f) Fn.x/ D n sin

x

n

(g) Fn.x/ D n2
�
1 � cos

x

n

�
(h) Fn.x/ D nxe�nx2

(i) Fn.x/ D
.x C n/2
x2 C n2

2. Prove: If fFng converges to F on Œa; b� and Fn is nondecreasing for each n, then F

is nondecreasing.

3. Show that the functions fFng of Example 4.4.4 are integrable and F D limn!1 Fn.x/

is nonintegrable on every finite interval.

4. Prove Lemma 4.4.2.

5. Find F.x/ D limn!1 Fn.x/ on S . Show that fFng converges uniformly to F on

closed subsets of S , but not on S .

(a) Fn.x/ D xn sinnx, S D .�1; 1/

(b) Fn.x/ D
1

1C x2n
, S D fx j x ¤ ˙1g

(c) Fn.x/ D
n2 sinx

1C n2x
, S D .0;1/ HINT: See Exercise 2.3.19:

6. (a) Show that if fFng converges uniformly on S , then fFng converges uniformly

on every subset of S .

(b) Show that if fFng converges uniformly on S1, S2, . . . , Sm, then fFng con-

verges uniformly on
Sm

kD1 Sk .

(c) Give an example where fFng converges uniformly on each of an infinite se-

quence of sets S1, S2, . . . , but not on
S1

kD1 Sk .

7. Describe the sets on which the sequences of Exercise 4.4.1 converge uniformly. Re-

strict your attention to sets that are the union of finitely many intervals and singleton

sets.

8. Suppose that fFng converges pointwise on Œa; b� and, for each x in Œa; b�, there is

an open interval Ix containing x such that fFng converges uniformly on Ix \ Œa; b�.
Show that fFng converges uniformly on Œa; b�.

9. Prove: If fFng converges uniformly to F on S , then limn!1 kFnkS D kFkS .

10. Prove: If fFng converges uniformly to F on S , then F is bounded on S if and only

if limn!1fkFnkSg <1.

11. Prove: If fFng and fGng converge uniformly to F and G on S , then fFn C Gng
converges uniformly to F CG on S .

12. (a) Prove: If fFng and fGng converge uniformly to bounded functions F and G

on S , then fFnGng converges uniformly to FG on S .
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(b) Give an example showing that the conclusion of (a) may fail to hold if F or

G is unbounded on S .

13. (a) Suppose that fFng converges uniformly to F on .a; b/. Prove: If x0 < a < b

and Ln D limx!x0
Fn.x/ exists (finite) for every n, then L D limn!1 Ln

exists (finite) and

lim
x!x0

F.x/ D L:

(b) State similar results for limits from the right and left.

14. Find the limits.

(a) lim
n!1

Z 4

1

n

x
sin

x

n
dx (b) lim

n!1

Z 2

0

dx

1C x2n

(c) lim
n!1

Z 1

0

nxe�nx2

dx (d) lim
n!1

Z 1

0

�
1C x

n

�n

dx

15. Prove (without using Theorem 4.4.10): If each Fn is integrable and fFng converges

uniformly on Œa; b�, then limn!1
R b

a
Fn.x/ dx exists.

16. Prove (without using Theorem 4.4.10): If each Fn is nondecreasing and fFng con-

verges uniformly to F on Œa; b�, then

lim
n!1

Z b

a

Fn.x/ dx D
Z b

a

F.x/ dx:

17. Use Weierstrass’s test to determine sets on which the series converges absolutely

uniformly.

(a)
X 1

n1=2

�
x

1C x

�n

(b)
X 1

n3=2

�
x

1C x

�n

(c)
X

nxn.1 � x/n (d)
X 1

n.x2 C n/

(e)
X 1

nx
(f)

X .1 � x2/n

.1C x2/n
sinnx

18. Show that if
P
janj < 1, then

P
an cosnx and

P
an sinnx define continuous

functions on .�1;1/.
19. (a) Give an example showing that the following “comparison test” is invalid: IfP

fn converges uniformly on S and kgnkS � kfnkS , then
P
gn converges

uniformly on S .

(b) This “comparison test” can be corrected by adding one word to its hypothesis

and conclusion. What is the word?

20. (a) Explain the difference between the following statements: (i)
P
fn converges

absolutely and uniformly on S ; (ii)
P
fn converges absolutely uniformly

on S .
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(b) Show that if
P
fn converges absolutely uniformly on S , then

P
fn converges

uniformly on S .

21. Show that the hypotheses of Weierstrass’s test imply that
P
fn converges absolutely

uniformly on S .

22. Prove Corollary 4.4.17.

23. Prove Theorem 4.4.18.

24. Suppose that fang11 is monotonic and limn!1 an D 0. Show that

1X

nD1

an sin nx and

1X

nD1

an cosnx

define functions continuous for all x ¤ 2k� (k D integer).

25. Prove Theorem 4.4.19.

26. Formulate an analog of Theorem 4.4.10 for series.

27. In Section 4.5 we will see that

e�x2 D
1X

nD0

.�1/n x
2n

nŠ
and sin x D

1X

nD0

.�1/n x2nC1

.2nC 1/Š

for all x, and in both cases the convergence is uniform on every finite interval. Find

series that converge to

(a) F.x/ D
Z x

0

e�t2

dt and (b) G.x/ D
Z x

0

sin t

t
dt

for all x.

28. Prove Theorem 4.4.20.

29. Show from Example 4.4.17 that
P1

nD1.�1/n sin.x=n/ converges uniformly on any

finite interval.

30. Prove: If 0 < anC1 < an and
P
ak

n < 1 for some positive integer k, thenP
.�1/n sinanx converges uniformly on any finite interval.

31. For n � 2, define

fn.x/ D

8
ˆ̂<
ˆ̂:

n4.x � nC 1=n3/; n � 1=n3 � x � n;

�n4.x � n � 1=n3/; n � x � nC 1=n3;

0; jx � nj > 1=n3;

and let F.x/ D
P1

nD2 fn.x/. Show that
R1

0 F.x/ dx <1, and conclude that ab-

solute convergence of an improper integral
R1

0
F.x/ dx does not imply that limn!1 F.x/ D

0, even if F is continuous on Œ0;1/.
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4.5 POWER SERIES

We now consider a class of series sufficiently general to be interesting, but sufficiently

specialized to be easily understood.

Definition 4.5.1 An infinite series of the form

1X

nD0

an.x � x0/
n; (4.5.1)

where x0 and a0, a1, . . . , are constants, is called a power series in x � x0.

The following theorem summarizes the convergence properties of power series.

Theorem 4.5.2 In connection with the power series (4.5.1); define R in the extended

reals by
1

R
D lim

n!1
janj1=n: (4.5.2)

In particular; R D 0 if limn!1 janj1=n D 1, and R D 1 if limn!1 janj1=n D 0: Then

the power series converges

(a) only for x D x0 if R D 0I
(b) for all x if R D1; and absolutely uniformly in every bounded setI
(c) for x in .x0 � R; x0 C R/ if 0 < R <1; and absolutely uniformly in every closed

subset of this interval.

The series diverges if jx�x0j > R: No general statement can be made concerning conver-

gence at the endpoints x D x0 CR and x D x0 � R W the series may converge absolutely

or conditionally at both; converge conditionally at one and diverge at the other; or diverge

at both:

Proof In any case, the series (4.5.1) converges to a0 if x D x0. If

X
janjrn <1 (4.5.3)

for some r > 0, then
P
an.x � x0/

n converges absolutely uniformly in Œx0 � r; x0 C
r�, by Weierstrass’s test (Theorem 4.4.15) and Exercise 4.4.21. From Cauchy’s root test

(Theorem 4.3.17), (4.5.3) holds if

lim
n!1

.janjrn/1=n < 1;

which is equivalent to

r lim
n!1

janj1=n < 1

(Exercise 4.1.30(a)). From (4.5.2), this can be rewritten as r < R, which proves the

assertions concerning convergence in (b) and (c).

If 0 � R <1 and jx � x0j > R, then
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1

R
>

1

jx � x0j
;

so (4.5.2) implies that

janj1=n � 1

jx � x0j
and therefore jan.x � x0/

nj � 1

for infinitely many values of n. Therefore,
P
an.x � x0/

n diverges (Corollary 4.3.6) if

jx � x0j > R. In particular, the series diverges for all x ¤ x0 if R D 0.

To prove the assertions concerning the possibilities at x D x0 C R and x D x0 � R
requires examples, which follow. (Also, see Exercise 4.5.1.)

The number R defined by (4.5.2) is the radius of convergence of
P
an.x � x0/

n. If

R > 0, the open interval .x0 � R; x0 C R/, or .�1;1/ if R D 1, is the interval of

convergence of the series. Theorem 4.5.2 says that a power series with a nonzero radius

of convergence converges absolutely uniformly in every compact subset of its interval of

convergence and diverges at every point in the exterior of this interval. On this last we can

make a stronger statement: Not only does
P
an.x � x0/

n diverge if jx � x0j > R, but the

sequence fan.x � x0/
ng is unbounded in this case (Exercise 4.5.3(b)).

Example 4.5.1 For the series

X sinn�=6

2n
.x � 1/n;

we have

lim
n!1

janj1=n D lim
n!1

� j sinn�=6

2n

�1=n

D 1

2
lim

n!1
.j sin n�=6j/1=n (Exercise 4.1.30(a))

D 1

2
.1/ D 1

2
:

Therefore, R D 2 and Theorem 4.5.2 implies that the series converges absolutely uniformly

in closed subintervals of .�1; 3/ and diverges if x < �1 or x > 3. Theorem 4.5.2 does not

tell us what happens when x D �1 or x D 3, but we can see that the series diverges in both

these cases since its general term does not approach zero.

Example 4.5.2 For the series
X xn

n
;

lim
n!1

janj1=n D lim
n!1

�
1

n

�1=n

D lim
n!1

exp

�
1

n
log

1

n

�
D e0 D 1:

Therefore, R D 1 and the series converges absolutely uniformly in closed subintervals

of .�1; 1/ and diverges if jxj > 1. For x D �1 the series becomes
P
.�1/n=n, which

converges conditionally, and at x D 1 the series becomes
P
1=n, which diverges.
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The next theorem provides an expression forR that, if applicable, is usually easier to use

than (4.5.2).

Theorem 4.5.3 The radius of convergence of
P
an.x � x0/

n is given by

1

R
D lim

n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌

if the limit exists in the extended reals:

Proof From Theorem 4.5.2, it suffices to show that if

L D lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ (4.5.4)

exists in the extended reals, then

L D lim
n!1

janj1=n: (4.5.5)

We will show that this is so if 0 < L <1 and leave the cases where L D 0 or L D 1 to

you (Exercise 4.5.7).

If (4.5.4) holds with 0 < L <1 and 0 < � < L, there is an integer N such that

L � � <
ˇ̌
ˇ̌amC1

am

ˇ̌
ˇ̌ < LC � if m � N;

so

jamj.L � �/ < jamC1j < jamj.LC �/ if m � N:
By induction,

jaN j.L � �/n�N < janj < jaN j.LC �/n�N if n > N:

Therefore, if

K1 D jaN j.L � �/�N and K2 D jaN j.LC �/�N ;

then

K
1=n
1 .L � �/ < janj1=n < K

1=n
2 .LC �/: (4.5.6)

Since limn!1 K1=n D 1 if K is any positive number, (4.5.6) implies that

L � � � lim
n!1

janj1=n � lim
n!1

janj1=n � LC �:

Since � is an arbitrary positive number, it follows that

lim
n!1

janj1=n D L;

which implies (4.5.5).
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Example 4.5.3 For the power series

X xn

nŠ
;

lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D lim

n!1
nŠ

.nC 1/Š D lim
n!1

1

nC 1 D 0:

Therefore, R D1; that is, the series converges for all x, and absolutely uniformly in every

bounded set.

Example 4.5.4 For the power series

X
nŠxn;

lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D lim

n!1
.nC 1/Š
nŠ

D lim
n!1

.nC 1/ D1:

Therefore, R D 0, and the series converges only if x D 0.

Example 4.5.5 Theorem 4.5.3 does not apply directly to

X .�1/n
4nnp

x2n (p D constant); (4.5.7)

which has infinitely many zero coefficients (of odd powers of x). However, by setting

y D x2, we obtain the series
X .�1/n

4nnp
yn; (4.5.8)

which has nonzero coefficients for which

lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D lim

n!1
4nnp

4nC1.nC 1/p D
1

4
lim

n!1

�
1C 1

n

��p

D 1

4
:

Therefore, (4.5.8) converges if jyj < 4 and diverges if jyj > 4. Setting y D x2, we

conclude that (4.5.7) converges if jxj < 2 and diverges if jxj > 2. At x D ˙2, (4.5.7)

becomes
P
.�1/n=np , which diverges if p � 0, converges conditionally if 0 < p � 1, and

converges absolutely if p > 1.

Properties of Functions Defined by Power Series

We now study the properties of functions defined by power series. Henceforth, we consider

only power series with nonzero radii of convergence.

Theorem 4.5.4 A power series

f .x/ D
1X

nD0

an.x � x0/
n
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with positive radius of convergence R is continuous and differentiable in its interval of

convergence; and its derivative can be obtained by differentiating term by termI that is;

f 0.x/ D
1X

nD1

nan.x � x0/
n�1; (4.5.9)

which can also be written as

f 0.x/ D
1X

nD0

.nC 1/anC1.x � x0/
n: (4.5.10)

This series also has radius of convergence R:

Proof First, the series in (4.5.9) and (4.5.10) are the same, since the latter is obtained

by shifting the index of summation in the former. Since

lim
n!1

..nC 1/janj/1=n D lim
n!1

.nC 1/1=njanj1=n

D
�

lim
n!1

.nC 1/1=n
��

lim
n!1

janj1=n
�

(Exercise 4.1.30(a)/

D
�

lim
n!1

exp

�
log.nC 1/

n

���
lim

n!1
janj1=n

�
D e0

R
D 1

R
;

the radius of convergence of the power series in (4.5.10) is R (Theorem 4.5.2). Therefore,

the power series in (4.5.10) converges uniformly in every interval Œx0� r; x0C r� such that

0 < r < R, and Theorem 4.4.20 now implies (4.5.10) for all x in .x0 �R; x0 CR/.
Theorem 4.5.4 can be strengthened as follows.

Theorem 4.5.5 A power series

f .x/ D
1X

nD0

an.x � x0/
n

with positive radius of convergence R has derivatives of all orders in its interval of convergence;

which can be obtained by repeated term by term differentiationI thus;

f .k/.x/ D
1X

nDk

n.n � 1/ � � � .n � k C 1/an.x � x0/
n�k : (4.5.11)

The radius of convergence of each of these series is R:

Proof The proof is by induction. The assertion is true for k D 1, by Theorem 4.5.4.

Suppose that it is true for some k � 1. By shifting the index of summation, we can rewrite

(4.5.11) as

f .k/.x/ D
1X

nD0

.nC k/.n C k � 1/ � � � .nC 1/anCk .x � x0/
n; jx � x0j < R:
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Defining

bn D .nC k/.nC k � 1/ � � � .nC 1/anCk ; (4.5.12)

we rewrite this as

f .k/.x/ D
1X

nD0

bn.x � x0/
n; jx � x0j < R:

By Theorem 4.5.4, we can differentiate this series term by term to obtain

f .kC1/.x/ D
1X

nD1

nbn.x � x0/
n�1; jx � x0j < R:

Substituting from (4.5.12) for bn yields

f .kC1/.x/ D
1X

nD1

.nC k/.n C k � 1/ � � � .nC 1/nanCk .x � x0/
n�1; jx � x0j < R:

Shifting the summation index yields

f .kC1/.x/ D
1X

nDkC1

n.n � 1/ � � � .n � k/an.x � x0/
n�k�1 ; jx � x0j < R;

which is (4.5.11) with k replaced by k C 1. This completes the induction.

Example 4.5.6 In Example 4.4.10 we saw that

1

1 � x D
1X

nD0

xn; jxj < 1:

Repeated differentiation yields

kŠ

.1 � x/kC1
D

1X

nDk

n.n � 1/ � � � .n � k C 1/xn�k

D
1X

nD0

.nC k/.nC k � 1/ � � � .nC 1/xn; jxj < 1;

so

1

.1 � x/kC1
D

1X

nD0

 
nC k
k

!
xn; jxj < 1:

Example 4.5.7 By the method of Example 4.5.5, it can be shown that the series

S.x/ D
1X

nD0

.�1/n x2nC1

.2nC 1/Š and C.x/ D
1X

nD0

.�1/n x2n

.2n/Š
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converge for all x. Differentiating yields

S 0.x/ D
1X

nD0

.�1/n xn

.2n/Š
D C.x/

and

C 0.x/ D
1X

nD1

.�1/n x2n�1

.2n � 1/Š
D �

1X

nD0

.�1/n x2nC1

.2nC 1/Š
D �S.x/:

These results should not surprise you if you recall that

S.x/ D sin x and C.x/ D cos x:

(We will soon prove this.)

Theorem 4.5.5 has two important corollaries.

Corollary 4.5.6 If

f .x/ D
1X

nD0

an.x � x0/
n; jx � x0j < R;

then

an D
f .n/.x0/

nŠ
:

Proof Setting x D x0 in (4.5.11) yields

f .k/.x0/ D kŠak:

Corollary 4.5.7 (Uniqueness of Power Series) If

1X

nD0

an.x � x0/
n D

1X

nD0

bn.x � x0/
n (4.5.13)

for all x in some interval .x0 � r; x0C r/; then

an D bn; n � 0: (4.5.14)

Proof Let

f .x/ D
1X

nD0

an.x � x0/
n and g.x/ D

1X

nD0

bn.x � x0/
n:

From Corollary 4.5.6,

an D
f .n/.x0/

nŠ
and bn D

g.n/.x0/

nŠ
: (4.5.15)
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From (4.5.13), f D g in .x0 � r; x0C r/. Therefore,

f .n/.x0/ D g.n/.x0/; n � 0:

This and (4.5.15) imply (4.5.14).

Theorems 4.4.19 and 4.5.2 imply the following theorem. We leave the proof to you

(Exercise 4.5.15).

Theorem 4.5.8 If x1 and x2 are in the interval of convergence of

f .x/ D
1X

nD0

an.x � x0/
n;

then Z x2

x1

f .x/ dx D
1X

nD0

an

nC 1
�
.x2 � x0/

nC1 � .x1 � x0/
nC1

�
I

that is; a power series may be integrated term by term between any two points in its interval

of convergence:

Example 4.5.16 presents an application of this theorem.

Taylor’s Series

So far we have asked for what values of x a given power series converges, and what are

the properties of its sum. Now we ask a related question: What properties guarantee that a

given function f can be represented as the sum of a convergent power series in x � x0? A

partial answer to this question is provided by what we already know: Theorem 4.5.5 tells us

that f must have derivatives of all orders in some neighborhood of x0, and Corollary 4.5.6

tells us that the only power series in x � x0 that can possibly converge to f in such a

neighborhood is
1X

nD0

f .n/.x0/

nŠ
.x � x0/

n: (4.5.16)

This is called the Taylor series of f about x0 (also, the Maclaurin series of f , if x0 D 0).

The mth partial sum of (4.5.16) is the Taylor polynomial

Tm.x/ D
mX

nD0

f .n/.x0/

nŠ
.x � x0/

n;

defined in Section 2.5.

The Taylor series of an infinitely differentiable function f may converge to a sum dif-

ferent from f . For example, the function

f .x/ D
�
e�1=x2

; x ¤ 0;
0; x D 0;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Maclaurin.html
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is infinitely differentiable on .�1;1/ and f .n/.0/ D 0 for n � 0 (Exercise 2.5.1), so its

Maclaurin series is identically zero.

The answer to our question is provided by Taylor’s theorem (Theorem 2.5.4), which

says that if f is infinitely differentiable on .a; b/ and x and x0 are in .a; b/ then, for every

integer n � 0,

f .x/ � Tn.x/ D
f .nC1/.cn/

.nC 1/Š .x � x0/
n�1; (4.5.17)

where cn is between x and x0. Therefore,

f .x/ D
1X

nD0

f .n/.x0/

nŠ
.x � x0/

n

for an x in .a; b/ if and only if

lim
n!1

f .nC1/.cn/

.nC 1/Š
.x � x0/

nC1 D 0:

It is not always easy to check this condition, because the sequence fcng is usually not pre-

cisely known, or even uniquely defined; however, the next theorem is sufficiently general

to be useful.

Theorem 4.5.9 Suppose that f is infinitely differentiable on an interval I and

lim
n!1

rn

nŠ
kf .n/kI D 0: (4.5.18)

Then; if x0 2 I 0; the Taylor series

1X

nD0

f .n/.x0/

nŠ
.x � x0/

n

converges uniformly to f on

Ir D I \ Œx0 � r; x0 C r�:

Proof From (4.5.17),

kf � TnkIr �
rnC1

.nC 1/Š
kf .nC1/kIr �

rnC1

.nC 1/Š
kf .nC1/kI ;

so (4.5.18) implies the conclusion.

Example 4.5.8 If f .x/ D sinx, then kf .k/k.�1;1/ D 1; k � 0. Since

lim
n!1

rn

nŠ
D 0; 0 < r <1
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(Example 4.1.12), (4.5.18) holds for all r . Since

f .2m/.0/ D 0 and f .2mC1/.0/ D .�1/m; m � 0;

we see from Theorem 4.5.9, with I D .�1;1/, x0 D 0, and r arbitrary, that

sin x D
1X

nD0

.�1/n x2nC1

.2nC 1/Š ; �1 < x <1;

and the convergence is uniform on bounded sets.

A similar argument shows that

cos x D
1X

nD0

.�1/n x2n

.2n/Š
; �1 < x <1;

with uniform convergence on bounded sets.

Example 4.5.9 If f .x/ D ex, then f .k/.x/ D ex and kf .k/kI D er , k � 0, if

I D Œ�r; r �. Since

lim
n!1

rn

nŠ
er D 0;

we conclude as in Example 4.5.8 that

ex D
1X

nD0

xn

nŠ
; �1 < x <1;

with uniform convergence on bounded sets.

Example 4.5.10 If f .x/ D .1C x/q , then

f .n/.x/

nŠ
D
 
q

n

!
.1C x/q�n; so

f .n/.0/

nŠ
D
 
q

n

!
(4.5.19)

(Example 2.5.3). The Maclaurin series

1X

nD0

 
q

n

!
xn

is called the binomial series. We saw in Example 2.5.3 that this series equals .1C x/q for

all x if q is a nonnegative integer. We will now show that if q is an arbitrary real number,

then
1X

nD0

 
q

n

!
xn D f .x/ D .1C x/q; 0 � x < 1: (4.5.20)

Since
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lim
n!1

ˇ̌
ˇ̌
ˇ

 
q

nC 1

!� 
q

n

!ˇ̌
ˇ̌
ˇ D lim

n!1

ˇ̌
ˇ̌ q � n
nC 1

ˇ̌
ˇ̌ D 1;

the radius of convergence of the series in (4.5.20) is 1. From (4.5.19),

kf .n/kŒ0;1�

nŠ
� Œmax.1; 2q/�

ˇ̌
ˇ̌
ˇ

 
q

n

!ˇ̌
ˇ̌
ˇ ; n � 0:

Therefore, if 0 < r < 1,

lim
n!1

rn

nŠ
kf .n/kŒ0;1� � Œmax.1; 2q/� lim

n!1

ˇ̌
ˇ̌
ˇ

 
q

n

!ˇ̌
ˇ̌
ˇ r

n D 0;

where the last equality follows from the absolute convergence of the series in (4.5.20) on

.�1; 1/. Now Theorem 4.5.9 implies (4.5.20).

We cannot prove in this way that the binomial series converges to .1 C x/q on .�1; 0/.
This requires a form of the remainder in Taylor’s theorem that we have not considered, or

a different kind of proof altogether (Exercise 4.5.20). The complete result is that

.1C x/q D
1X

nD0

 
q

n

!
xn; �1 < x < 1; (4.5.21)

for all q, and, as we said earlier, the identity holds for all x if q is a nonnegative integer.

Arithmetic Operations with Power Series

We now consider addition and multiplication of power series, and division of one by an-

other.

We leave the proof of the next theorem to you (Exercise 4.5.21).

Theorem 4.5.10 If

f .x/ D
1X

nD0

an.x � x0/
n; jx � x0j < R1; (4.5.22)

g.x/ D
1X

nD0

bn.x � x0/
n; jx � x0j < R2; (4.5.23)

and ˛ and ˇ are constants; then

f̨ .x/C ˇg.x/ D
1X

nD0

.˛an C ˇbn/.x � x0/
n; jx � x0j < R;

where R � minfR1; R2g:



268 Chapter 4 Infinite Sequences and Series

Theorem 4.5.11 If f and g are given by (4.5.22) and (4.5.23); then

f .x/g.x/ D
1X

nD0

cn.x � x0/
n; jx � x0j < R; (4.5.24)

where
cn D

nX

rD0

arbn�r D
nX

rD0

an�rbr

and R � minfR1; R2g:

Proof Suppose that R1 � R2. Since the series (4.5.22) and (4.5.23) converge abso-

lutely to f .x/ and g.x/ if jx � x0j < R1, their Cauchy product converges to f .x/g.x/ if

jx � x0j < R1, by Theorem 4.3.29. The nth term of this product is

nX

rD0

ar.x � x0/
rbn�r .x � x0/

n�r D
 

nX

rD0

arbn�r

!
.x � x0/

n D cn.x � x0/
n:

Example 4.5.11 If

f .x/ D 1

1 � x
D

1X

nD0

xn; jxj < 1;

and

g.x/ D
1X

nD0

bnx
n; jxj < R;

then

g.x/

1 � x
D

1X

nD0

snx
n; jxj < minf1; Rg;

where

sn D .1/b0 C .1/b1 C � � � C .1/bn

D b0 C b1 C � � � C bn:

Example 4.5.12 From the paragraph following Example 4.5.10,

.1C x/p D
1X

nD0

 
p

n

!
xn; jxj < 1;

and

.1C x/q D
1X

nD0

 
q

n

!
xn; jxj < 1:
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Since

.1C x/p.1C x/q D .1C x/pCq D
1X

nD0

 
p C q
n

!
xn;

while the Cauchy product is
P1

nD0 cnx
n, with

cn D
nX

rD0

 
p

r

! 
q

n � r

!
;

Corollary 4.5.7 implies that

cn D
 
p C q
n

!
:

This yields the identity  
p C q
n

!
D

nX

rD0

 
p

r

! 
q

n � r

!
;

valid for all p and q.

The quotient

f .x/ D h.x/

g.x/
(4.5.25)

of two power series

h.x/ D
1X

nD0

cn.x � x0/
n; jx � x0j < R1;

and

g.x/ D
1X

nD0

bn.x � x0/
n; jx � x0j < R2;

can be represented as a power series

f .x/ D
1X

nD0

an.x � x0/
n (4.5.26)

with a positive radius of convergence, provided that

b0 D g.x0/ ¤ 0:

This is surely plausible. Since g.x0/ ¤ 0 and g is continuous near x0, the denominator

of (4.5.25) differs from zero on an interval about x0. Therefore, f has derivatives of all

orders on this interval, because g and h do. However, the proof that the Taylor series of f

about x0 converges to f near x0 requires the use of the theory of functions of a complex

variable. Therefore, we omit it. However, it is straightforward to compute the coefficients

in (4.5.26) if we accept the validity of the expansion. Since

f .x/g.x/ D h.x/;



270 Chapter 4 Infinite Sequences and Series

Theorem 4.5.11 implies that

nX

rD0

arbn�r D cn; n � 0:

Solving these equations successively yields

a0 D
c0

b0

;

an D
1

b0

 
cn �

n�1X

rD0

bn�rar

!
; n � 1:

It is not worthwhile to memorize these formulas. Rather, it is usually better to view the

procedure as follows: Multiply the series f (with unknown coefficients) and g according

to the procedure of Theorem 4.5.11, equate the resulting coefficients with those of h, and

solve the resulting equations successively for a0, a1, . . . .

Example 4.5.13 Suppose that we wish to find the coefficients in the Maclaurin series

tanx D a0 C a1x C a2x
2 C � � � :

We first observe that since tan x is an odd function, its derivatives of even order vanish at

x0 D 0, so a2m D 0,m � 0. Therefore,

tanx D a1x C a3x
3 C a5x

5 C � � � :

Since

tanx D
sin x

cos x
;

it follows from Example 4.5.8 that

a1x C a3x
3 C a5x

5 C � � � D
x � x

3

6
C x5

120
C � � �

1 � x
2

2
C x4

24
C � � �

so

.a1x C a3x
3 C a5x

5 C � � � /
�
1 � x

2

2
C x4

24
C � � �

�
D x � x

3

6
C x5

120
C � � � ;

or, according to Theorem 4.5.11,

a1x C
�
a3 �

a1

2

�
x3 C

�
a5 �

a3

2
C a1

24

�
x5 C � � � D x � x

3

6
C x5

120
C � � � :

From Corollary 4.5.7, coefficients of like powers of x on the two sides of this equation

must be equal; hence,

a1 D 1; a3 �
a1

2
D �1

6
; a5 �

a3

2
C a1

24
D 1

120
;

so

a1 D 1; a3 D �
1

6
C 1

2
.1/ D 1

3
; a5 D

1

120
C 1

2

�
1

3

�
� 1

24
.1/ D 2

15
:
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Therefore,

tan x D x C
x3

3
C

2

15
x5 C � � � :

Example 4.5.14 To find the reciprocal of the power series

g.x/ D 1C ex D 2C
1X

nD1

xn

nŠ
;

we let h D 1 in (4.5.25). If

1

g.x/
D

1X

nD0

anx
n;

then

1D .a0 C a1x C a2x
2 C a3x

3 C � � � /
�
2C x C x2

2
C x3

6
C � � �

�

D 2a0 C .a0 C 2a1/x C
�a0

2
C a1 C 2a2

�
x2

C
�a0

6
C a1

2
C a2 C 2a3

�
x3 C � � � :

From Corollary 4.5.7,

2a0 D 1;
a0 C 2a1 D 0;

a0

2
C a1 C 2a2 D 0;

a0

6
C a1

2
C a2 C 2a3 D 0:

Solving these equations successively yields

a0 D
1

2
;

a1 D �
a0

2
D �1

4
;

a2 D �
1

2

�a0

2
C a1

�
D �1

2

�
1

4
� 1
4

�
D 0;

a3 D �
1

2

�a0

6
C
a1

2
C a2

�
D �

1

2

�
1

12
�
1

8
C 0

�
D

1

48
;

so
1

1C ex
D
1

2
�
x

4
C
x3

48
C � � � :
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Example 4.5.15 To find the reciprocal of

g.x/ D ex D
1X

nD0

xn

nŠ
; (4.5.27)

we again let h D 1 in (4.5.25). If

.ex/�1 D
1X

nD0

anx
n;

then

1 D
 1X

nD0

anx
n

! 1X

nD0

xn

nŠ

!
D

1X

nD0

cnx
n;

where

cn D
nX

rD0

ar

.n � r/Š :

From Corollary 4.5.7, c0 D a0 D 1 and cn D 0 if n � 1; hence,

an D �
n�1X

rD0

ar

.n � r/Š ; n � 1: (4.5.28)

Solving these equations successively for a0, a1, . . . yields

a1 D �
1

1Š
(4.5.1) D �1;

a2 D �
�
1

2Š
.1/C 1

1Š
.�1/

�
D 1

2
;

a3 D �
�
1

3Š
.1/C 1

2Š
.�1/C 1

1Š

�
1

2

��
D �1

6

a4 D �
�
1

4Š
.1/C

1

3Š
.�1/C

1

2Š

�
1

2

�
C
1

1Š

�
�
1

6

��
D

1

24
:

From this, we see that

ak D
.�1/k
kŠ

for 0 � k � 4 and are led to conjecture that this holds for all k. To prove this by induction,

we assume that it is so for 0 � k � n � 1 and compute from (4.5.28):

an D �
n�1X

rD0

1

.n � r/Š
.�1/r
rŠ

D � 1
nŠ

n�1X

rD0

.�1/r
 
n

r

!
(Exercise 1.2.19(a))

D .�1/n
nŠ

(Exercise 1.2.19(b)):
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Thus, we have shown that

.ex/�1 D
1X

nD0

.�1/n x
n

nŠ
:

Since this is precisely the series that results if x is replaced by �x in (4.5.27), we have

verified a fundamental property of the exponential function: that

.ex/�1 D e�x:

This also follows from Example 4.3.26.

Abel’s Theorem

From Theorem 4.5.4, we know that a function f defined by a convergent power series

f .x/ D
1X

nD0

an.x � x0/
n; jx � x0j < R; (4.5.29)

is continuous in the open interval .x0�R; x0CR/. The next theorem concerns the behavior

of f as x approaches an endpoint of the interval of convergence.

Theorem 4.5.12 (Abel’s Theorem) Let f be defined by a power series (4.5.29)

with finite radius of convergence R:

(a) If
P1

nD0 anR
n converges; then

lim
x!.x0CR/�

f .x/ D
1X

nD0

anR
n:

(b) If
P1

nD0.�1/nanR
n converges; then

lim
x!.x0�R/C

f .x/ D
1X

nD0

.�1/nanR
n:

Proof We consider a simpler problem first. Let

g.y/ D
1X

nD0

bny
n

and
1X

nD0

bn D s (finite):

We will show that

lim
y!1�

g.y/ D s: (4.5.30)
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From Example 4.5.11,

g.y/ D .1 � y/
1X

nD0

sny
n; (4.5.31)

where

sn D b0 C b1 C � � � C bn:

Since

1

1 � y
D

1X

nD0

yn and therefore 1 D .1 � y/
1X

nD0

yn; jyj < 1; (4.5.32)

we can multiply through by s and write

s D .1 � y/
1X

nD0

syn; jyj < 1:

Subtracting this from (4.5.31) yields

g.y/ � s D .1 � y/
1X

nD0

.sn � s/yn; jyj < 1:

If � > 0, choose N so that

jsn � sj < � if n � N C 1:

Then, if 0 < y < 1,

jg.y/ � sj � .1 � y/
NX

nD0

jsn � sjyn C .1 � y/
1X

nDNC1

jsn � sjyn

< .1 � y/
NX

nD0

jsn � sjyn C .1 � y/�yNC1

1X

nD0

yn

< .1 � y/
NX

nD0

jsn � sj C �;

because of the second equality in (4.5.32). Therefore,

jg.y/ � sj < 2�

if

.1 � y/
NX

nD0

jsn � sj < �:

This proves (4.5.30).

To obtain (a) from this, let bn D anR
n and g.y/ D f .x0 C Ry/; to obtain (b), let

bn D .�1/nanR
n and g.y/ D f .x0 � Ry/.
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Example 4.5.16 The series

f .x/ D 1

1C x D
1X

nD0

.�1/nxn

diverges at x D 1, while limx!1� f .x/ D 1=2. This shows that the converse of Abel’s

theorem is false. Integrating the series term by term yields

log.1C x/ D
1X

nD0

.�1/n x
nC1

nC 1 ; jxj < 1;

where the power series converges at x D 1, and Abel’s theorem implies that

log 2 D
1X

nD0

.�1/nC1

nC 1 :

Example 4.5.17 If q � 0, the binomial series

1X

nD0

 
q

n

!
xn

converges absolutely for x D ˙1. This is obvious if q is a nonnegative integer, and it

follows from Raabe’s test for other positive values of q, since

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ

 
q

nC 1

!� 
q

n

!ˇ̌
ˇ̌
ˇ D

n � q
nC 1

; n > q;

and

lim
n!1

n

�ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ � 1

�
D lim

n!1
n

�
n� q
nC 1 � 1

�

D lim
n!1

n

nC 1.�q � 1/ D �q � 1:

Therefore, Abel’s theorem and (4.5.21) imply that

1X

nD0

 
q

n

!
D 2q and

1X

nD0

.�1/n
 
q

n

!
D 0; q � 0:

4.5 Exercises

1. The possibilities listed in Theorem 4.5.2(c) for behavior of a power series at the

endpoints of its interval of convergence do not include absolute convergence at one

endpoint and conditional convergence or divergence at the other. Why can’t these

occur?
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2. Find the radius of convergence.

(a)
X�

nC 1
n

�n2

Œ2C .�1/n�n xn (b)
P
2

p
n.x � 1/n

(c)
X�

2C sin
n�

6

�n

.x C 2/n (d)
P
n

p
nxn

(e)
X�x

n

�n

3. (a) Prove: If fanr
ng is bounded and jx1 � x0j < r , then

P
an.x1 � x0/

n con-

verges.

(b) Prove: If
P
an.x � x0/

n has radius of convergence R and jx1 � x0j > R,

then fan.x1 � x0/
ng is unbounded.

4. Prove: If g is a rational function defined for all nonnegative integers, then
P
anx

n

and
P
ang.n/x

n have the same radius of convergence. HINT: Use Exercise 4.1.30.a/:

5. Suppose that f .x/ D
P
an.x � x0/

n has radius of convergence R and 0 < r <

R1 < R. Show that there is an integer k such that
ˇ̌
ˇ̌
ˇf .x/�

kX

nD0

an.x � x0/
n

ˇ̌
ˇ̌
ˇ �

�
r

R1

�kC1 R1

R1 � r

if jx � x0j � r and k � k.

6. Suppose that k is a positive integer and

f .x/ D
1X

nD0

anx
n

has radius of convergence R. Show that the series

g.x/ D f .xk/ D
1X

nD0

anx
kn

has radius of convergence R1=k.

7. Complete the proof of Theorem 4.5.3 by showing that

(a) R D 0 if limn!1 janC1j
ı
janj D 1;

(b) R D1 if limn!1 janC1j
ı
janj D 0.

8. Find the radius of convergence.

(a)
P
.log n/xn (b)

P
2nnp.x C 1/n

(c)
X

.�1/n
 
2n

n

!
xn (d)

X
.�1/n n

2 C 1
n4n

.x � 1/n

(e)
X nn

nŠ
.x C 2/n (f)

X ˛.˛ C 1/ � � � .˛ C n� 1/
ˇ.ˇ C 1/ � � � .ˇ C n � 1/

xn

(˛, ˇ ¤ negative integer)
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9. Suppose that an ¤ 0 for n sufficiently large. Show that

(a) lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ � lim

n!1
janj1=n and (b) lim

n!1
janj1=n � lim

n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ :

Show that this implies Theorem 4.5.3.

10. Given that
1

1 � x
D

1X

nD0

xn; jxj < 1;

use Theorem 4.5.4 to express
P1

nD0 n
2xn in closed form.

11. The function

Jp.x/ D
1X

nD0

.�1/n
nŠ.nC p/Š

�x
2

�2nCp

.p D integer � 0/

is the Bessel function of order p. Show that

(a) J 0
0 D �J1.

(b) J 0
p D 1

2
.Jp�1 � JpC1/; p � 1.

(c) x2J 00
p C xJ 0

p C .x2 � p2/Jp D 0.

12. Given that the power series f .x/ D
P1

nD0 anx
n satisfies

f 0.x/ D �2xf .x/; f .0/ D 1;

find fang. Do you recognize f ?

13. Let

f .x/ D
1X

nD0

anx
n; jxj < R;

and g.x/ D f .xk/, where k is a positive integer. Show that

g.r/.0/ D 0 if r ¤ kn and g.kn/.0/ D .kn/Š

nŠ
f .n/.0/; n � 0:

14. Let

f .x/ D
1X

nD0

an.x � x0/
n; jx � x0j < R;

and f .tn/ D 0, where tn ¤ x0 and limn!1 tn D x0. Show that f .x/ � 0

.jx � x0j < R/. HINT: Rolle’s theorem helps here:

15. Prove Theorem 4.5.8.

16. Express Z x

1

log t

t � 1dt

as a power series in x � 1 and find the radius of convergence of the series.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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17. By substituting�x2 for x in the geometric series, we obtain

1

1C x2
D

1X

nD0

.�1/nx2n; jxj < 1:

Use this to express f .x/ D Tan�1x .f .0/ D 0/ as a power series in x. Then

evaluate all derivatives of f at x0 D 0, and find a series of constants that converges

to �=6.

18. Prove: If

f .x/ D
1X

nD0

an.x � x0/
n; jx � x0j < R;

and F is an antiderivative of f on .x0 � R; x0CR/, then

F.x/ D C C
1X

nD0

an

nC 1.x � x0/
nC1 ; jx � x0j < R;

where C is a constant.

19. Suppose that some derivative of f can be represented by a power series in x � x0

in an interval about x0. Show that f and all its derivatives can also.

20. Verify Eqn. (4.5.21) by showing that

.1C x/�q

1X

nD0

 
q

n

!
xn D 1; jxj < 1;

HINT: Differentiate:

21. Prove Theorem 4.5.10.

22. Find the Maclaurin series of cosh x and sinhx from the definition in Eqn. (4.5.16),

and also by applying Theorem 4.5.10 to the Maclaurin series for ex and e�x.

23. Give an example where the radius of convergence of the product of two power series

is greater than the smaller of the radii of convergence of the factors.

24. Use Theorem 4.5.11 to find the first four nonzero terms in the Maclaurin.

(a) ex sinx (b)
e�x

1C x2
(c)

cos x

1C x6
(d) .sin x/ log.1C x/

25. Derive the identity

2 sinx cos x D sin 2x

from the Maclaurin series for sinx, cos x, and sin 2x.

26. (a) Given that

.1 � 2xt C x2/�1=2 D
1X

nD0

Pn.t/x
n; jxj < 1; .A/
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if �1 < t < 1, show that P0.t/ D 1, P1.t/ D t , and

PnC1.t/ D
2nC 1
nC 1

tPn.t/ �
n

nC 1
Pn�1.t/; n � 1:

HINT: First differentiate (A) with respect to x:

(b) Show from (a) that Pn is a polynomial of degree n. It is the nth Legendre

polynomial, and .1�2xtCx2/�1=2 is the generating function of the sequence

fPng.

27. Define (if necessary) the given function so as to be continuous at x0 D 0, and find

the first four nonzero terms of its Maclaurin series.

(a)
xex

sinx
(b)

cos x

1C x C x2
(c) sec x

(d) x csc x (e)
sin 2x

sinx

28. Let a0 D a1 D 5 and anC1 D an � 6an�1; n � 1.

(a) Express F.x/ D
P1

nD0 anx
n in closed form.

(b) Write F as the difference of two geometric series, and find an explicit formula

for an.

29. Starting from the Maclaurin series

log.1 � x/ D �
1X

nD0

xnC1

nC 1
; jxj < 1;

use Abel’s theorem to evaluate
1X

nD0

1

.nC 1/.nC 2/
:

30. In Example 4.5.17 we saw that

1X

nD0

 
q

n

!
D 2q; q � 0:

Show that this also holds for �1 < q < 0, but not for q � �1. HINT: See Exer-

cise 4.1.35:

31. (a) Prove: If
P1

nD0 bn converges, then the series g.x/ D
P1

nD0 bnx
n converges

uniformly on Œ0; 1�. HINT: If � > 0, there is an integer N such that

jbn C bnC1 C � � � C bmj < � if n;m � N:
Use summation by parts to show that then

jbnx
n C bn�1x

n�1 C � � � C bmx
mj < 2� if 0 � x < 1; n;m � N:

This is also known as Abel’s theorem:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Legendre.html
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(b) Show that (a) implies the restricted form of Theorem 4.5.12 (concerning g)

proved in the text.

32. Use Exercise 4.5.31 to show that if
P1

nD0 an,
P1

nD0 bn, and their Cauchy productP1
nD0 cn all converge, then

 1X

nD0

an

! 1X

nD0

bn

!
D

1X

nD0

cn:

33. Prove: If

g.x/ D
1X

nD0

bnx
n; jxj < 1;

and bn � 0, then

1X

nD0

bn D lim
x!1�

g.x/ (finite or infinite):

34. Use the binomial series and the relation

d

dx
.sin�1 x/ D .1 � x2/�1=2

to obtain the Maclaurin series for sin�1 x .sin�1 0 D 0/. Deduce from this series

and Exercise 4.5.33 that

1X

nD0

 
2n

n

!
1

22n.2nC 1/
D �

2
:



CHAPTER 5

Real-Valued Functions

of Several Variables

IN THIS CHAPTER we consider real-valued function of n variables, where n > 1.

SECTION 5.1 deals with the structure of R
n, the space of ordered n-tuples of real numbers,

which we call vectors. We define the sum of two vectors, the product of a vector and a

real number, the length of a vector, and the inner product of two vectors. We study the

arithmetic properties of R
n, including Schwarz’s inequality and the triangle inequality. We

define neighborhoods and open sets in R
n, define convergence of a sequence of points in

R
n, and extend the Heine–Borel theorem to R

n. The section concludes with a discussion

of connected subsets of R
n.

SECTION 5.2 deals with boundedness, limits, continuity, and uniform continuity of a func-

tion of n variables; that is, a function defined on a subset of R
n.

SECTION 5.3 defines directional and partial derivatives of a real-valued function of n

variables. This is followed by the definition of differentiablity of such functions. We define

the differential of such a function and give a geometric interpretation of differentiablity.

SECTION 5.4 deals with the chain rule and Taylor’s theorem for a real-valued function of

n variables.

5.1 STRUCTURE OF RRR
n

In this chapter we study functions defined on subsets of the real n-dimensional space R
n,

which consists of all ordered n-tuples X D .x1; x2; : : : ; xn/ of real numbers, called the

coordinates or components of X. This space is sometimes called Euclidean n-space.

In this section we introduce an algebraic structure for R
n. We also consider its topologi-

cal properties; that is, properties that can be described in terms of a special class of subsets,

the neighborhoods in R
n. In Section 1.3 we studied the topological properties of R

1, which

we will continue to denote simply as R. Most of the definitions and proofs in Section 1.3

were stated in terms of neighborhoods in R. We will see that they carry over to R
n if the

concept of neighborhood in R
n is suitably defined.

281
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Members of R have dual interpretations: geometric, as points on the real line, and alge-

braic, as real numbers. We assume that you are familiar with the geometric interpretation

of members of R
2 and R

3 as the rectangular coordinates of points in a plane and three-

dimensional space, respectively. Although R
n cannot be visualized geometrically if n � 4,

geometric ideas from R, R
2, and R

3 often help us to interpret the properties of R
n for

arbitrary n.

As we said in Section 1.3, the idea of neighborhood is always associated with some

definition of “closeness” of points. The following definition imposes an algebraic structure

on R
n, in terms of which the distance between two points can be defined in a natural way.

In addition, this algebraic structure will be useful later for other purposes.

Definition 5.1.1 The vector sum of

X D .x1; x2; : : : ; xn/ and Y D .y1; y2; : : : ; yn/

is

XC Y D .x1 C y1; x2C y2; : : : ; xnC yn/: (5.1.1)

If a is a real number, the scalar multiple of X by a is

aX D .ax1; ax2; : : : ; axn/: (5.1.2)

Note that “C” has two distinct meanings in (5.1.1): on the left, “C” stands for the newly

defined addition of members of R
n and, on the right, for addition of real numbers. However,

this can never lead to confusion, since the meaning of “C” can always be deduced from

the symbols on either side of it. A similar comment applies to the use of juxtaposition to

indicate scalar multiplication on the left of (5.1.2) and multiplication of real numbers on

the right.

Example 5.1.1 In R
4, let

X D .1;�2; 6; 5/ and Y D
�
3;�5; 4; 1

2

�
:

Then

XC Y D
�
4;�7; 10; 11

2

�

and

6X D .6;�12; 36; 30/:

We leave the proof of the following theorem to you (Exercise 5.1.2).
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Theorem 5.1.2 If X; Y; and Z are in R
n and a and b are real numbers; then

(a) XC Y D YC X .vector addition is commutative/:

(b) .XC Y/CZ D XC .YC Z/ .vector addition is associative/:

(c) There is a unique vector 0; called the zero vector; such that XC 0 D X for all X in

R
n:

(d) For each X in R
n there is a unique vector �X such that XC .�X/ D 0:

(e) a.bX/ D .ab/X:
(f) .a C b/X D aXC bX:

(g) a.XC Y/ D aXC aY:

(h) 1X D X:

Clearly, 0 D .0; 0; : : : ; 0/ and, if X D .x1; x2; : : : ; xn/, then

�X D .�x1;�x2; : : : ;�xn/:

We write XC .�Y/ as X �Y. The point 0 is called the origin.

A nonempty set V D fX;Y;Z; : : : g, together with rules such as (5.1.1), associating a

unique member of V with every ordered pair of its members, and (5.1.2), associating a

unique member of V with every real number and member of V , is said to be a vector space

if it has the properties listed in Theorem 5.1.2. The members of a vector space are called

vectors. When we wish to emphasize that we are regarding a member of R
n as part of this

algebraic structure, we will speak of it as a vector; otherwise, we will speak of it as a point.

Length, Distance, and Inner Product

Definition 5.1.3 The length of the vector X D .x1; x2; : : : ; xn/ is

jXj D .x2
1 C x2

2 C � � � C x2
n/

1=2:

The distance between points X and Y is jX �Yj; in particular, jXj is the distance between

X and the origin. If jXj D 1, then X is a unit vector.

If n D 1, this definition of length reduces to the familiar absolute value, and the distance

between two points is the length of the interval having them as endpoints; for n D 2 and

n D 3, the length and distance of Definition 5.1.3 reduce to the familiar definitions for the

plane and three-dimensional space.

Example 5.1.2 The lengths of the vectors

X D .1;�2; 6; 5/ and Y D
�
3;�5; 4; 1

2

�

are

jXj D .12 C .�2/2 C 62 C 52/1=2 D
p
66
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and

jYj D .32 C .�5/2 C 42 C .1
2
/2/1=2 D

p
201

2
:

The distance between X and Y is

jX � Yj D ..1 � 3/2 C .�2C 5/2 C .6 � 4/2 C .5 � 1
2
/2/1=2 D

p
149

2
:

Definition 5.1.4The inner product X�Y of X D .x1; x2; : : : ; xn/ and Y D .y1; y2; : : : ; yn/

is

X � Y D x1y1 C x2y2 C � � � C xnyn:

Lemma 5.1.5 (Schwarz’s Inequality) If X and Y are any two vectors in R
n;

then

jX � Yj � jXj jYj; (5.1.3)

with equality if and only if one of the vectors is a scalar multiple of the other:

Proof If Y D 0, then both sides of (5.1.3) are 0, so (5.1.3) holds, with equality. In this

case, Y D 0X. Now suppose that Y ¤ 0 and t is any real number. Then

0 �
nX

iD1

.xi � tyi /
2

D
nX

iD1

x2
i � 2t

nX

iD1

xiyi C t2
nX

iD1

y2
i

D jXj2 � 2.X � Y/t C t2jYj2:

(5.1.4)

The last expression is a second-degree polynomial p in t . From the quadratic formula, the

zeros of p are

t D .X � Y/˙
p
.X � Y/2 � jXj2jYj2
jYj2 :

Hence,

.X � Y/2 � jXj2jYj2; (5.1.5)

because if not, then p would have two distinct real zeros and therefore be negative between

them (Figure 5.1.1), contradicting the inequality (5.1.4). Taking square roots in (5.1.5)

yields (5.1.3) if Y ¤ 0.

If X D tY, then jX � Yj D jXjjYj D jt jjYj2 (verify), so equality holds in (5.1.3).

Conversely, if equality holds in (5.1.3), then p has the real zero t0 D .X � Y/=jYk2, and

nX

iD1

.xi � t0yi /
2 D 0

from (5.1.4); therefore, X D t0Y.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Schwarz.html
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y

t

y = p (t)

r
1
 r

2

Figure 5.1.1

Theorem 5.1.6 (Triangle Inequality) If X and Y are in R
n; then

jXC Yj � jXj C jYj; (5.1.6)

with equality if and only if one of the vectors is a nonnegative multiple of the other:

Proof By definition,

jXC Yj2 D
nX

iD1

.xi C yi /
2 D

nX

iD1

x2
i C 2

nX

iD1

xiyi C
nX

iD1

y2
i

D jXj2 C 2.X � Y/C jYj2

� jXj2 C 2jXj jYj C jYj2 (by Schwarz’s inequality)

D .jXj C jYj/2:

(5.1.7)

Hence,

jXC Yj2 � .jXj C jYj/2:
Taking square roots yields (5.1.6).

From the third line of (5.1.7), equality holds in (5.1.6) if and only if X � Y D jXjjYj,
which is true if and only if one of the vectors X and Y is a nonnegative scalar multiple of

the other (Lemma 5.1.5).

Corollary 5.1.7 If X; Y; and Z are in R
n; then

jX � Zj � jX �Yj C jY � Zj:

Proof Write

X � Z D .X �Y/C .Y � Z/;

and apply Theorem 5.1.6 with X and Y replaced by X �Y and Y � Z.
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Corollary 5.1.8 If X and Y are in R
n; then

jX �Yj � jjXj � jYjj :

Proof Since

X D YC .X �Y/;

Theorem 5.1.6 implies that

jXj � jYj C jX �Yj;
which is equivalent to

jXj � jYj � jX � Yj:
Interchanging X and Y yields

jYj � jXj � jY � Xj:

Since jX �Yj D jY �Xj, the last two inequalities imply the stated conclusion.

Example 5.1.3 The angle between two nonzero vectors X D .x1; x2; x3/ and Y D
.y1; y2; y3/ in R

3 is the angle between the directed line segments from the origin to the

points X and Y (Figure 5.1.2).
X

0

Y

Y

X

X−Y

θ

Figure 5.1.2

Applying the law of cosines to the triangle in Figure 5.1.2 yields

jX � Yj2 D jXj2 C jYj2 � 2jXjjYj cos�: (5.1.8)

However,

jX �Yj2 D .x1 � y1/
2 C .x2 � y2/

2 C .x3 � y3/
2

D .x2
1 C x2

2 C x2
3/C .y2

1 C y2
2 C y2

3 / � 2.x1y1 C x2y2 C x3y3/

D jXj2 C jYj2 � 2X � Y:
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Comparing this with (5.1.8) yields

X � Y D jXj jYj cos �:

Since j cos � j � 1, this verifies Schwarz’s inequality in R
3.

Example 5.1.4 Connecting the points 0, X, Y, and XC Y in R
2 or R

3 (Figure 5.1.3)

produces a parallelogram with sides of length jXj and jYj and a diagonal of length jXCYj.

0

X

Y

Y

YX

X

X+Y
X+Y

Figure 5.1.3

Thus, there is a triangle with sides jXj, jYj, and jXC Yj. From this, we see geometrically

that

jXC Yj � jXj C jYj

in R
2 or R

3, since the length of one side of a triangle cannot exceed the sum of the lengths

of the other two. This verifies (5.1.6) for R
2 and R

3 and indicates why (5.1.6) is called the

triangle inequality.

The next theorem lists properties of length, distance, and inner product that follow di-

rectly from Definitions 5.1.3 and 5.1.4. We leave the proof to you (Exercise 5.1.6).

Theorem 5.1.9 If X; Y; and Z are members of R
n and a is a scalar, then

(a) jaXj D jaj jXj:
(b) jXj � 0; with equality if and only if X D 0:

(c) jX � Yj � 0; with equality if and only if X D Y:

(d) X � Y D Y � X:
(e) X � .YC Z/ D X � YC X � Z:
(f) .cX/ � Y D X � .cY/ D c.X � Y/:
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Line Segments in RRR
n

The equation of a line through a point X0 D .x0; y0; ´0/ in R
3 can be written parametri-

cally as

x D x0 C u1t; y D y0 C u2t; ´ D ´0 C u3t; �1 < t <1;

where u1, u2, and u3 are not all zero. We write this in vector form as

X D X0 C tU; �1 < t <1; (5.1.9)

with U D .u1; u2; u3/, and we say that the line is through X0 in the direction of U.

There are many ways to represent a given line parametrically. For example,

X D X0 C sV; �1 < s <1; (5.1.10)

represents the same line as (5.1.9) if and only if V D aU for some nonzero real number a.

Then the line is traversed in the same direction as s and t vary from �1 to1 if a > 0, or

in opposite directions if a < 0.

To write the parametric equation of a line through two points X0 and X1 in R
3, we take

U D X1 � 0 in (5.1.9), which yields

X D X0 C t.X1 �X0/ D tX1 C .1 � t/X0; �1 < t <1:

The line segment from X0 to X1 consists of those points for which 0 � t � 1.

Example 5.1.5 The line L defined by

x D �1C 2t; y D 3 � 4t; ´ D �1; �1 < t <1;

which can be rewritten as

X D .�1; 3;�1/C t.2;�4; 0/; �1 < t <1; (5.1.11)

is through X0 D .�1; 3;�1/ in the direction of U D .2;�4; 0/. The same line can be

represented by

X D .�1; 3;�1/C s.1;�2; 0/; �1 < s <1; (5.1.12)

or by

X D .�1; 3;�1/C �.�4; 8; 0/; �1 < � <1: (5.1.13)

Since

.1;�2; 0/ D 1

2
.2;�4; 0/;

L is traversed in the same direction as t and s vary from �1 to1 in (5.1.11) and (5.1.12).

However, since

.�4; 8; 0/D �2.2;�4; 0/;
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L is traversed in opposite directions as t and � vary from�1 to1 in (5.1.11) and (5.1.13).

Setting t D 1 in (5.1.11), we see that X1 D .1;�1;�1/ is also on L. The line segment

from X0 to X1 consists of all points of the form

X D t.1;�1;�1/C .1 � t/.�1; 3;�1/; 0 � t � 1:

These familiar notions can be generalized to R
n, as follows:

Definition 5.1.10 Suppose that X0 and U are in R
n and U ¤ 0. Then the line through

X0 in the direction of U is the set of all points in R
n of the form

X D X0 C tU; �1 < t <1:

A set of points of the form

X D X0 C tU; t1 � t � t2;

is called a line segment. In particular, the line segment from X0 to X1 is the set of points of

the form

X D X0 C t.X1 � X0/ D tX1 C .1 � t/X0; 0 � t � 1:

Neighborhoods and Open Sets in RRR
n

Having defined distance in R
n, we are now able to say what we mean by a neighborhood

of a point in R
n.

Definition 5.1.11 If � > 0, the �-neighborhood of a point X0 in R
n is the set

N�.X0/j D
˚
X
ˇ̌
jX � X0j < �

	
:

An �-neighborhood of a point X0 in R
2 is the inside, but not the circumference, of the

circle of radius � about X0. In R
3 it is the inside, but not the surface, of the sphere of radius

� about X0.

In Section 1.3 we stated several other definitions in terms of �-neighborhoods: neigh-

borhood, interior point, interior of a set, open set, closed set,limit point, boundary point,

boundary of a set, closure of a set, isolated point, exterior point, and exterior of a set. Since

these definitions are the same for R
n as for R, we will not repeat them. We advise you to

read them again in Section 1.3, substituting R
n for R and X0 for x0.

Example 5.1.6 Let S be the set of points in R
2 in the square bounded by the lines

x D ˙1, y D ˙1, except for the origin and the points on the vertical lines x D ˙1
(Figure 5.1.4, page 290); thus,

S D
˚
.x; y/

ˇ̌
.x; y/ ¤ .0; 0/; �1 < x < 1; �1 � y � 1

	
:
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Every point of S not on the lines y D ˙1 is an interior point, so

S0 D
˚
.x; y/

ˇ̌
.x; y/ ¤ .0; 0/; �1 < x; y < 1

	
:

S is a deleted neighborhood of .0; 0/ and is neither open nor closed. The closure of S is

S D
˚
.x; y/

ˇ̌
� 1 � x; y � 1

	
;

and every point of S is a limit point of S . The origin and the perimeter of S form @S , the

boundary of S . The exterior of S consists of all points .x; y/ such that jxj > 1 or jyj > 1.

The origin is an isolated point of Sc .

y

x

(1, 1)(−1, 1)

(1, −1)(−1, −1)

x

Figure 5.1.4

Example 5.1.7 If X0 is a point in R
n and r is a positive number, the open n-ball of

radius r about X0 is the set Br.X0/ D
˚
X
ˇ̌
jX �X0j < r

	
. (Thus, �-neighborhoods are

open n-balls.) If X1 is in Sr.X0/ and

jX � X1j < � D r � jX �X0j;

then X is in Sr.X0/. (The situation is depicted in Figure 5.1.5 for n D 2.)

Thus, Sr.X0/ contains an �-neighborhood of each of its points, and is therefore open.

We leave it to you (Exercise 5.1.13) to show that the closure of Br.X0/ is the closed n-ball

of radius r about X0, defined by
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Sr .X0/ D
˚
X
ˇ̌
jX �X0j � r

	
:

X
0
 

X
1
 

X

r 

r −  X
1
− X

0

Figure 5.1.5

Open and closed n-balls are generalizations to R
n of open and closed intervals.

The following lemma will be useful later in this section, when we consider connected

sets.

Lemma 5.1.12 If X1 and X2 are in Sr.X0/ for some r > 0, then so is every point on

the line segment from X1 to X2:

Proof The line segment is given by

X D tX2 C .1 � t/X1; 0 < t < 1:

Suppose that r > 0. If

jX1 �X0j < r; jX2 � X0j < r;

and 0 < t < 1, then

jX �X0j D jtX2 C .1 � t/X1 � tX0 � .1 � t/X0j
D jt.X2 � X0/C .1 � t/X1 �X0/j
� t jX2 �X0j C .1 � t/jX1 �X0j
< tr C .1 � t/r D r:

The proofs in Section 1.3 of Theorem 1.3.3 (the union of open sets is open, the intersec-

tion of closed sets is closed) and Theorem 1.3.5 and its Corollary 1.3.6 (a set is closed if

and only if it contains all its limit points) are also valid in R
n. You should reread them now.
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The Heine–Borel theorem (Theorem 1.3.7) also holds in R
n, but the proof in Section 1.3

is valid only for n D 1. To prove the Heine–Borel theorem for general n, we need some

preliminary definitions and results that are of interest in their own right.

Definition 5.1.13 A sequence of points fXrg in R
n converges to the limit X if

lim
r!1

jXr �Xj D 0:

In this case we write

lim
r!1

Xr D X:

The next two theorems follow from this, the definition of distance in R
n, and what we

already know about convergence in R. We leave the proofs to you (Exercises 5.1.16 and

5.1.17).

Theorem 5.1.14 Let

X D .x1; x2; : : : ; xn/ and Xr D .x1r ; x2r ; : : : ; xnr/; r � 1:

Then limr!1 Xr D X if and only if

lim
r!1

xir D xi ; 1 � i � nI

that is; a sequence fXrg of points in R
n converges to a limit X if and only if the sequences

of components of fXrg converge to the respective components of X:

Theorem 5.1.15 (Cauchy’s Convergence Criterion) A sequence fXrg in

R
n converges if and only if for each � > 0 there is an integerK such that

jXr �Xs j < � if r; s � K:

The next definition generalizes the definition of the diameter of a circle or sphere.

Definition 5.1.16 If S is a nonempty subset of R
n, then

d.S/ D sup
˚
jX �Yj

ˇ̌
X;Y 2 S

	

is the diameter of S . If d.S/ <1; S is boundedI if d.S/ D1, S is unbounded.

Theorem 5.1.17 (Principle of Nested Sets) If S1; S2; . . . are closed nonempty

subsets of R
n such that

S1 � S2 � � � � � Sr � � � � (5.1.14)

and

lim
r!1

d.Sr / D 0; (5.1.15)

then the intersection

I D
1\

rD1

Sr

contains exactly one point:
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Proof Let fXrg be a sequence such that Xr 2 Sr .r � 1/. Because of (5.1.14), Xr 2 Sk

if r � k, so

jXr �Xs j < d.Sk/ if r; s � k:

From (5.1.15) and Theorem 5.1.15, Xr converges to a limit X. Since X is a limit point of

every Sk and every Sk is closed, X is in every Sk (Corollary 1.3.6). Therefore, X 2 I , so

I ¤ ;. Moreover, X is the only point in I , since if Y 2 I , then

jX �Yj � d.Sk/; k � 1;

and (5.1.15) implies that Y D X.

We can now prove the Heine–Borel theorem for R
n. This theorem concerns compact

sets. As in R, a compact set in R
n is a closed and bounded set.

Recall that a collection H of open sets is an open covering of a set S if

S � [
˚
H
ˇ̌
H 2 H

	
:

Theorem 5.1.18 (Heine–Borel Theorem) If H is an open covering of a com-

pact subset S; then S can be covered by finitely many sets from H :

Proof The proof is by contradiction. We first consider the case where n D 2, so that

you can visualize the method. Suppose that there is a covering H for S from which it is

impossible to select a finite subcovering. Since S is bounded, S is contained in a closed

square

T D f.x; y/ja1 � x � a1 C L; a2 � x � a2 C Lg
with sides of length L (Figure 5.1.6).

T (1)

S (1) S (2)

S (3)S (4)

T (2)

T (3)T (4)

Figure 5.1.6
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Bisecting the sides of T as shown by the dashed lines in Figure 5.1.6 leads to four closed

squares, T .1/; T .2/, T .3/, and T .4/, with sides of length L=2. Let

S .i/ D S \ T .i/; 1 � i � 4:

Each S .i/, being the intersection of closed sets, is closed, and

S D
4[

iD1

S .i/:

Moreover, H covers each S .i/, but at least one S .i/ cannot be covered by any finite sub-

collection of H , since if all the S .i/ could be, then so could S . Let S1 be a set with this

property, chosen from S .1/, S .2/, S .3/, and S .4/. We are now back to the situation we

started from: a compact set S1 covered by H , but not by any finite subcollection of H .

However, S1 is contained in a square T1 with sides of length L=2 instead of L. Bisecting

the sides of T1 and repeating the argument, we obtain a subset S2 of S1 that has the same

properties as S , except that it is contained in a square with sides of length L=4. Continuing

in this way produces a sequence of nonempty closed sets S0 .D S/, S1, S2, . . . , such that

Sk � SkC1 and d.Sk/ � L=2k�1=2 .k � 0/. From Theorem 5.1.17, there is a point X inT1
kD1 Sk. Since X 2 S , there is an open set H in H that contains X, and thisH must also

contain some �-neighborhood of X. Since every X in Sk satisfies the inequality

jX �Xj � 2�kC1=2L;

it follows that Sk � H for k sufficiently large. This contradicts our assumption on H ,

which led us to believe that no Sk could be covered by a finite number of sets from H .

Consequently, this assumption must be false: H must have a finite subcollection that covers

S . This completes the proof for n D 2.

The idea of the proof is the same for n > 2. The counterpart of the square T is the

hypercube with sides of length L:

T D
˚
.x1; x2; : : : ; xn/

ˇ̌
ai � xi � ai CL; i D 1; 2; : : : ; n

	
:

Halving the intervals of variation of the n coordinates x1, x2, . . . , xn divides T into 2n

closed hypercubes with sides of length L=2:

T .i/ D
˚
.x1; x2; : : : ; xn/

ˇ̌
bi � xi � bi CL=2; 1 � i � n

	
;

where bi D ai or bi D ai C L=2. If no finite subcollection of H covers S , then at least

one of these smaller hypercubes must contain a subset of S that is not covered by any finite

subcollection of S . Now the proof proceeds as for n D 2.

The Bolzano–Weierstrass theorem is valid in R
n; its proof is the same as in R.

Connected Sets and Regions

Although it is legitimate to consider functions defined on arbitrary domains, we restricted
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our study of functions of one variable mainly to functions defined on intervals. There are

good reasons for this. If we wish to raise questions of continuity and differentiability at

every point of the domain D of a function f , then every point of D must be a limit point

of D0. Intervals have this property. Moreover, the definition of
R b

a
f .x/ dx is obviously

applicable only if f is defined on Œa; b�.

It is not productive to consider questions of continuity and differentiability of functions

defined on the union of disjoint intervals, since many important results simply do not hold

for such domains. For example, the intermediate value theorem (Theorem 2.2.10; see also

Exercise 2.2.25) says that if f is continuous on an interval I and f .x1/ < � < f .x2/

for some x1 and x2 in I , then f .x/ D � for some x in I . Theorem 2.3.12 says that f is

constant on an interval I if f 0 � 0 on I . Neither of these results holds if I is the union of

disjoint intervals rather than a single interval; thus, if f is defined on I D .0; 1/ [ .2; 3/
by

f .x/ D
�
1; 0 < x < 1;

0; 2 < x < 3;

then f is continuous on I , but does not assume any value between 0 and 1, and f 0 � 0 on

I , but f is not constant.

It is not difficult to see why these results fail to hold for this function: the domain of f

consists of two disconnected pieces. It would be more sensible to regard f as two entirely

different functions, one defined on .0; 1/ and the other on .2; 3/. The two results mentioned

are valid for each of these functions.

As we will see when we study functions defined on subsets of R
n, considerations like

those just cited as making it natural to consider functions defined on intervals in R lead

us to single out a preferred class of subsets as domains of functions of n variables. These

subsets are called regions. To define this term, we first need the following definition.

Definition 5.1.19 A subset S of R
n is connected if it is impossible to represent S as

the union of two disjoint nonempty sets such that neither contains a limit point of the other;

that is, if S cannot be expressed as S D A[ B , where

A ¤ ;; B ¤ ;; A\ B D ;; and A\ B D ;: (5.1.16)

If S can be expressed in this way, then S is disconnected.

Example 5.1.8 The empty set and singleton sets are connected, because they cannot

be represented as the union of two disjoint nonempty sets.

Example 5.1.9 The space R
n is connected, because if R

n D A[ B with A\ B D ;
and A \ B D ;, then A � A and B � B; that is, A and B are both closed and therefore

are both open. Since the only nonempty subset of R
n that is both open and closed is R

n

itself (Exercise 5.1.21), one of A and B is R
n and the other is empty.
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y

x

(3, 3)

(3, 2)

(1, 1)

(1, 2)

Figure 5.1.7

If X1;X2; : : : ;Xk are points in R
n and Li is the line segment from Xi to XiC1, 1 � i �

k � 1, we say that L1, L2, . . . , Lk�1 form a polygonal path from X1 to Xk , and that X1

and Xk are connected by the polygonal path. For example, Figure 5.1.7 shows a polygonal

path in R
2 connecting .0; 0/ to .3; 3/. A set S is polygonally connected if every pair of

points in S can be connected by a polygonal path lying entirely in S .

Theorem 5.1.20 An open set S in R
n is connected if and only if it is polygonally

connected:

Proof For sufficiency, we will show that if S is disconnected, then S is not polygonally

connected. Let S D A [ B , where A and B satisfy (5.1.16). Suppose that X1 2 A and

X2 2 B , and assume that there is a polygonal path in S connecting X1 to X2. Then some

line segment L in this path must contain a point Y1 in A and a point Y2 in B . The line

segment

X D tY2 C .1 � t/Y1; 0 � t � 1;
is part of L and therefore in S . Now define

� D sup
˚
�
ˇ̌
tY2 C .1 � t/Y1 2 A; 0 � t � � � 1

	
;

and let

X� D �Y2 C .1 � �/Y1:

Then X� 2 A\B . However, since X� 2 A[B andA\B D A\B D ;, this is impossible.

Therefore, the assumption that there is a polygonal path in S from X1 to X2 must be false.
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For necessity, suppose that S is a connected open set and X0 2 S . Let A be the set

consisting of X0 and the points in S can be connected to X0 by polygonal paths in S . Let

B be set of points in S that cannot be connected to X0 by polygonal paths. If Y0 2 S , then

S contains an �-neighborhoodN�.Y0/ of Y0, since S is open. Any point Y1 in N�.Y0 can

be connected to Y0 by the line segment

X D tY1 C .1 � t/Y0; 0 � t � 1;

which lies in N�.Y0/ (Lemma 5.1.12) and therefore in S . This implies that Y0 can be

connected to X0 by a polygonal path in S if and only if every member of N�.Y0/ can also.

Thus, N�.Y0/ � A if Y0 2 A, and N�.Y0/ 2 B if Y0 2 B . Therefore, A and B are open.

Since A \ B D ;, this implies that A \ B D A \ B D ; (Exercise 5.1.14). Since A is

nonempty .X0 2 A/, it now follows that B D ;, since if B ¤ ;, S would be disconnected

(Definition 5.1.19). Therefore, A D S , which completes the proof of necessity.

We did not use the assumption that S is open in the proof of sufficiency. In fact, we actu-

ally proved that any polygonally connected set, open or not, is connected. The converse is

false. A set (not open) may be connected but not polygonally connected (Exercise 5.1.29).

Our study of functions on R
n will deal mostly with functions whose domains are regions,

defined next.

Definition 5.1.21 A region S in R
n is the union of an open connected set with some,

all, or none of its boundary; thus, S0 is connected, and every point of S is a limit point of

S0.

Example 5.1.10 Intervals are the only regions in R (Exercise 5.1.31). The n-ball

Br.X0/ (Example 5.1.7) is a region in R
n, as is its closure S r.X0/. The set

S D
˚
.x; y/

ˇ̌
x2 C y2 � 1 or x2 C y2 � 4

	

(Figure 5.1.8(a), page 298) is not a region in R
2, since it is not connected. The set S1

obtained by adding the line segment

L1W X D t.0; 2/C .1 � t/.0; 1/; 0 < t < 1;

to S (Figure 5.1.8(b)) is connected but is not a region, since points on the line segment are

not limit points of S0
1 . The set S2 obtained by adding to S1 the points in the first quadrant

bounded by the circles x2 C y2 D 1 and x2 C y2 D 4 and the line segments L1 and

L2W X D t.2; 0/C .1 � t/.1; 0/; 0 < t < 1

(Figure 5.1.8(c)), is a region.

More about Sequences in RRR
n

From Definition 5.1.13, a sequence fXrg of points in R
n converges to a limit X if and only

if for every � > 0 there is an integer K such that

jXr �Xj < � if r � K:
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The R
n definitions of divergence, boundedness, subsequence, and sums, differences, and

constant multiples of sequences are analogous to those given in Sections 4.1 and 4.2 for

the case where n D 1. Since R
n is not ordered for n > 1, monotonicity, limits inferior and

superior of sequences in R
n, and divergence to˙1 are undefined for n > 1. Products and

quotients of members of R
n are also undefined if n > 1.

L
2

L
1

(c)

(a)

L
1

(b)

y

x

y

x

y

x

Figure 5.1.8

Several theorems from Sections 4.1 and 4.2 remain valid for sequences in R
n, with proofs

unchanged, provided that “j j" is interpreted as distance in R
n. (A trivial change is re-

quired: the subscript n, used in Sections 4.1 and 4.2 to identify the terms of the sequence,

must be replaced, since n here stands for the dimension of the space.) These include The-

orems 4.1.2 (uniqueness of the limit), 4.1.4 (boundedness of a convergent sequence), parts

of 4.1.8 (concerning limits of sums, differences, and constant multiples of convergent se-

quences), and 4.2.2 (every subsequence of a convergent sequence converges to the limit of

the sequence).
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5.1 Exercises

With R replaced by R
n, the following exercises from Section 1:3 are also suitable for this

section: 1.3.7-1.3.10; 1.3.12-1.3.15; 1.3.19; 1.3.20 .except (e)/; and 1.3.21:

1. Find aXC bY.

(a) X D .1; 2;�3; 1/, Y D .0;�1; 2; 0/, a D 3, b D 6
(b) X D .1;�1; 2/, Y D .0;�1; 3/, a D �1, b D 2
(c) X D .1

2
; 3

2
; 1

4
; 1

6
/, Y D .�1

2
; 1; 5; 1

3
/, a D 1

2
, b D 1

6

2. Prove Theorem 5.1.2.

3. Find jXj.
(a) .1; 2;�3; 1/ (b)

�
1
2
; 1

3
; 1

4
; 1

6

�

(c) .1; 2;�1; 3; 4/ (d) .0; 1; 0;�1; 0;�1/
4. Find jX �Yj.

(a) X D .3; 4; 5;�4/, Y D .2; 0;�1; 2/
(b) X D .�1

2
; 1

2
; 1

4
;�1

4
/, Y D .1

3
;�1

6
; 1

6
;�1

3
/

(c) X D .0; 0; 0/, Y D .2;�1; 2/
(d) X D .3;�1; 4; 0;�1/, Y D .2; 0; 1;�4; 1/

5. Find X � Y.

(a) X D .3; 4; 5;�4/, Y D .3; 0; 3; 3/
(b) X D .1

6
; 11

12
; 9

8
; 5

2
/, Y D .�1

2
; 1

2
; 1

4
;�1

4
/

(c) X D .1; 2;�3; 1; 4/, Y D .1; 2;�1; 3; 4/
6. Prove Theorem 5.1.9.

7. Find a parametric equation of the line through X0 in the direction of U.

(a) X0 D .1; 2;�3; 1/, U D .3; 4; 5;�4/
(b) X0 D .2; 0;�1; 2; 4/, U D .�1; 0; 1; 3; 2/
(c) X0 D .�1

2
; 1

2
; 1

4
;�1

4
/, U D .1

3
;�1

6
; 1

6
;�1

3
/

8. Suppose that U ¤ 0 and V ¤ 0. Complete the sentence: The equations

X D X0 C tU; �1 < t <1;

and

X D X1 C sV; �1 < s <1;
represent the same line in R

n if and only if ...

9. Find the equation of the line segment from X0 to X1.

(a) X0 D .1;�3; 4; 2/, X1 D .2; 0;�1; 5/
(b) X0 D .3; 1 � 2; 1; 4/, X1 D .2; 0;�1; 4;�3/
(c) X0 D .1; 2;�1/, X1 D .0;�1;�1/
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10. Find sup
˚
�
ˇ̌
N�.X0/ � S

	
.

(a) X0 D .1; 2;�1; 3/; S D the open 4-ball of radius 7 about .0; 3;�2; 2/
(b) X0 D .1; 2;�1; 3/; S D

˚
.x1; x2; x3; x4/

ˇ̌
jxi j � 5; 1 � i � 4

	

(c) X0 D .3; 5
2
/; S D the closed triangle with vertices .2; 0/, .2; 2/, and .4; 4/

11. Find (i) @S ; (ii) S ; (iii) S0; (iv) exterior of S .

(a) S D
˚
.x1; x2; x3; x4/

ˇ̌
jxi j < 3; i D 1; 2; 3

	

(b) S D
˚
.x; y; 1/

ˇ̌
x2 C y2 � 1

	

12. Describe the following sets as open, closed, or neither.

(a) S D
˚
.x1; x2; x3; x4/

ˇ̌
jx1j > 0; x2 < 1; x3 ¤ �2

	

(b) S D
˚
.x1; x2; x3; x4/

ˇ̌
x1 D 1; x3 ¤ �4

	

(c) S D
˚
.x1; x2; x3; x4/

ˇ̌
x1 D 1;�3 � x2 � 1; x4 D �5

	

13. Show that the closure of the open n-ball

Br.X0/ D
˚
X
ˇ̌
jX �X0j < r

	

is the closed n-ball

Br.X0/ D
˚
X
ˇ̌
jX �X0j � r

	
:

14. Prove: If A and B are open and A \ B D ;, then A\ B D A \ B D ;.

15. Show that if limr!1 Xr exists, then it is unique.

16. Prove Theorem 5.1.14.

17. Prove Theorem 5.1.15.

18. Find limr!1 Xr .

(a) Xr D
�
r sin

�

r
; cos

�

r
; e�r

�

(b) Xr D
�
1 � 1

r2
; log

r C 1
r C 2

;

�
1C 1

r

�r�

19. Find d.S/.

(a) S D
˚
.x; y; x/

ˇ̌
jxj � 2; jyj � 1; j´� 2j � 2

	

(b) S D
�
.x; y/

ˇ̌ .x � 1/2
9

C .y � 2/2
4

D 1
�

(c) S D the triangle in R
2 with vertices .2; 0/, .2; 2/, and .4; 4/

(d) S D
˚
.x1; x2; : : : ; xn/

ˇ̌
jxi j � L; i D 1; 2; : : : ; n

	

(e) S D
˚
.x; y; ´/

ˇ̌
x ¤ 0; jyj � 1; ´ > 2

	

20. Prove that d.S/ D d.S/ for any set S in R
n.

21. Prove: If a nonempty subset S of R
n is both open and closed, then S D R

n.
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22. Use the Bolzano–Weierstrass theorem to show that if S1, S2, . . . , Sm, . . . is an

infinite sequence of nonempty compact sets and S1 � S2 � � � � � Sm � � � � , thenT1
mD1 Sm is nonempty. Show that the conclusion does not follow if the sets are

assumed to be closed rather than compact.

23. Suppose that a sequence U1, U2, . . . of open sets covers a compact set S . Without

using the Heine–Borel theorem, show that S �
SN

mD1 Um for some N . HINT:

Apply Exercise 5.1.22 to the sets Sn D S \
�Sn

mD1 Um

�c
:

(This is a seemingly restricted version of the Heine–Borel theorem, valid for the

case where the covering collection H is denumerable. However, it can be shown

that there is no loss of generality in assuming this.)

24. The distance from a point X0 to a nonempty set S is defined by

dist.X0; S/ D inf
˚
jX �X0j

ˇ̌
X 2 S

	
:

(a) Prove: If S is closed and X0 2 R
n, there is a point X in S such that

jX �X0j D dist.X0; S/:

HINT: Apply Exercise 5.1.22 to the sets

Cm D
˚
X
ˇ̌
X 2 S and jX �X0j � dist.X0; S/C 1=m

	
; m � 1:

(b) Show that if S is closed and X0 62 S , then dist.X0; S/ > 0.

(c) Show that the conclusions of (a) and (b) may fail to hold if S is not closed.

25. The distance between two nonempty sets S and T is defined by

dist.S; T / D inf
˚
jX �Yj

ˇ̌
X 2 S;Y 2 T

	
:

(a) Prove: If S is closed and T is compact, there are points X in S and Y in T

such that

jX �Yj D dist.S; T /:

HINT: Use Exercises 5.1.22 and 5.1.24:

(b) Under the assumptions of (a), show that dist.S; T / > 0 if S \ T D ;.

(c) Show that the conclusions of (a) and (b) may fail to hold if S or T is not

closed or T is unbounded.

26. (a) Prove: If a compact set S is contained in an open set U , there is a positive

number r such that the set

Sr D
˚
X
ˇ̌

dist.X; S/ � r
	

is contained in U . (You will need Exercise 5.1.24 here.)

(b) Show that Sr is compact.
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27. Let D1 and D2 be compact subsets of R
n. Show that

D D
˚
.X;Y/

ˇ̌
X 2 D1;Y 2 D2

	

is a compact subset of R2n.

28. Prove: If S is open and S D A[ B where A\ B D A\ B D ;, then A and B are

open.

29. Give an example of a connected set in R
n that is not polygonally connected.

30. Prove that a region is connected.

31. Show that the intervals are the only regions in R.

32. Prove: A bounded sequence in R
n has a convergent subsequence. HINT: Use Theo-

rems 5.1.14; 4.2.2; and 4.2.5.a/:

33. Define “limr!1 Xr D1” if fXrg is a sequence in R
n, n � 2.

5.2 CONTINUOUS REAL-VALUED FUNCTIONS OF n VARI-
ABLES

We now study real-valued functions of n variables. We denote the domain of a function f

by Df and the value of f at a point X D .x1; x2; : : : ; xn/ by f .X/ or f .x1; x2; : : : ; xn/.

We continue the convention adopted in Section 2.1 for functions of one variable: If a func-

tion is defined by a formula such as

f .X/ D
�
1 � x2

1 � x2
2 � � � � � x2

n

�1=2
(5.2.1)

or

g.X/ D
�
1 � x2

1 � x2
2 � � � � � x2

n

��1
(5.2.2)

without specification of its domain, it is to be understood that its domain is the largest

subset of R
n for which the formula defines a unique real number. Thus, in the absence of

any other stipulation, the domain of f in (5.2.1) is the closed n-ball
˚
X
ˇ̌
jXj � 1

	
, while

the domain of g in (5.2.2) is the set
˚
X
ˇ̌
jXj ¤ 1

	
.

The main objective of this section is to study limits and continuity of functions of n

variables. The proofs of many of the theorems here are similar to the proofs of their coun-

terparts in Sections 2.1 and . We leave most of them to you.

Definition 5.2.1 We say that f .X/ approaches the limit L as X approaches X0 and

write

lim
X!X0

f .X/ D L

if X0 is a limit point of Df and, for every � > 0, there is a ı > 0 such that

jf .X/ �Lj < �

for all X in Df such that

0 < jX � X0j < ı:
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Example 5.2.1 If

g.x; y/ D 1 � x2 � 2y2;

then

lim
.x;y/!.x0 ;y0/

g.x; y/ D 1 � x2
0 � 2y2

0 (5.2.3)

for every .x0; y0/. To see this, we write

jg.x; y/ � .1 � x2
0 � 2y2

0/j D j.1 � x2 � 2y2/� .1 � x2
0 � 2y2

0/j

� jx2 � x2
0 j C 2jy2 � y2

0 j
D j.x C x0/.x � x0/j C 2j.y C y0/.y � y0/j

� jX �X0j.jx C x0j C 2jy C y0/j/;

(5.2.4)

since

jx � x0j � jX �X0j and jy � y0j � jX �X0j:
If jX �X0j < 1, then jxj < jx0j C 1 and jyj < jy0j C 1. This and (5.2.4) imply that

jg.x; y/ � .1 � x2
0 � 2y2

0/j < KjX �X0j if jX �X0j < 1;

where

K D .2jx0j C 1/C 2.2jy0j C 1/:
Therefore, if � > 0 and

jX �X0j < ı D minf1; �=Kg;
then ˇ̌

g.x; y/ � .1 � x2
0 � 2y2

0/
ˇ̌
< �:

This proves (5.2.3).

Definition 5.2.1 does not require that f be defined at X0, or even on a deleted neighbor-

hood of X0.

Example 5.2.2 The function

h.x; y/ D
sin
p
1 � x2 � 2y2

p
1 � x2 � 2y2

is defined only on the interior of the region bounded by the ellipse

x2 C 2y2 D 1

(Figure 5.2.1(a), page 304). It is not defined at any point of the ellipse itself or on any

deleted neighborhood of such a point. Nevertheless,

lim
.x;y/!.x0 ;y0/

h.x; y/ D 1 (5.2.5)
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if

x2
0 C 2y2

0 D 1: (5.2.6)

To see this, let

u.x; y/ D
p
1 � x2 � 2y2:

Then

h.x; y/ D sinu.x; y/

u.x; y/
: (5.2.7)

Recall that

lim
r!0

sin r

r
D 1I

therefore, if � > 0, there is a ı1 > 0 such that
ˇ̌
ˇ̌ sinu

u
� 1

ˇ̌
ˇ̌ < � if 0 < juj < ı1: (5.2.8)

From (5.2.3),

lim
.x;y/!.x0 ;y0/

.1 � x2 � 2y2/ D 0

if (5.2.6) holds, so there is a ı > 0 such that

0 < u2.x; y/ D .1 � x2 � 2y2/ < ı2
1

if X D .x; y/ is in the interior of the ellipse and jX �X0j < ı; that is, if X is in the shaded

region of Figure 5.2.1(b).

Therefore,

0 < u D
p
1 � x2 � 2y2 < ı1 (5.2.9)

if X is in the interior of the ellipse and jX�X0j < ı; that is, if X is in the shaded region of

Figure 5.2.1(b). This, (5.2.7), and (5.2.8) imply that

jh.x; y/ � 1j < �

for such X, which implies (5.2.5).

(a)

y

x

x2+ 2y2 = 1

(b)

y

x

x2+ 2y2 = 1

 X − X
0
  =  δ

X
0

Figure 5.2.1
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The following theorem is analogous to Theorem 2.1.3. We leave its proof to you (Exer-

cise 5.2.2).

Theorem 5.2.2 If limX!X0
f .X/ exists; then it is unique.

When investigating whether a function has a limit at a point X0, no restriction can be

made on the way in which X approaches X0, except that X must be in Df . The next

example shows that incorrect restrictions can lead to incorrect conclusions.

Example 5.2.3 The function

f .x; y/ D xy

x2 C y2

is defined everywhere in R
2 except at .0; 0/. Does lim.x;y/!.0;0/ f .x; y/ exist? If we try

to answer this question by letting .x; y/ approach .0; 0/ along the line y D x, we see the

functional values

f .x; x/ D x2

2x2
D 1

2

and conclude that the limit is 1=2. However, if we let .x; y/ approach .0; 0/ along the line

y D �x, we see the functional values

f .x;�x/ D � x
2

2x2
D �1

2

and conclude that the limit equals �1=2. From Theorem 5.2.2, these two conclusions

cannot both be correct. In fact, they are both incorrect. What we have shown is that

lim
x!0

f .x; x/ D 1

2
and lim

x!0
f .x;�x/ D �1

2
:

Since limx!0 f .x; x/ and limx!0 f .x;�x/ must both equal lim.x;y/!.0;0/ f .x; y/ if the

latter exists (Exercise 5.2.3(a)), we conclude that the latter does not exist.

The sum, difference, and product of functions of n variables are defined in the same

way as they are for functions of one variable (Definition 2.1.1), and the proof of the next

theorem is the same as the proof of Theorem 2.1.4.

Theorem 5.2.3 Suppose that f and g are defined on a set D; X0 is a limit point of

D; and

lim
X!X0

f .X/ D L1; lim
X!X0

g.X/ D L2:

Then

lim
X!X0

.f C g/.X/ D L1 C L2; (5.2.10)

lim
X!X0

.f � g/.X/ D L1 �L2; (5.2.11)

lim
X!X0

.fg/.X/ D L1L2; (5.2.12)

and; if L2 ¤ 0;

lim
X!X0

�
f

g

�
.X/ D L1

L2

: (5.2.13)
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Infinite Limits and Limits as jXj!1

Definition 5.2.4 We say that f .X/ approaches1 as X approaches X0 and write

lim
X!X0

f .X/ D 1

if X0 is a limit point of Df and, for every real number M , there is a ı > 0 such that

f .X/ > M whenever 0 < jX � X0j < ı and X 2 Df :

We say that

lim
X!X0

f .X/ D �1

if

lim
X!X0

.�f /.X/ D1:

Example 5.2.4 If

f .X/ D .1 � x2
1 � x2

2 � � � � � x2
n/

�1=2;

then

lim
X!X0

f .X/ D 1

if jX0j D 1, because

f .X/ D 1

jX �X0j
;

so

f .X/ > M if 0 < jX � X0j < ı D
1

M
:

Example 5.2.5 If

f .x; y/ D 1

x C 2y C 1 ;

then lim.x;y/!.1;�1/ f .x; y/ does not exist (why not?), but

lim
.x;y/!.1;�1/

jf .x; y/j D 1:

To see this, we observe that

jx C 2y C 1j D j.x � 1/C 2.y C 1/j

�
p
5jX � X0j (by Schwarz’s inequality),

where X0 D .1;�1/, so

jf .x; y/j D 1

jx C 2y C 1j
� 1p

5jX � X0j
:
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Therefore,

jf .x; y/j > M if 0 < jX � X0j <
1

M
p
5
:

Example 5.2.6 The function

f .x; y; ´/ D

ˇ̌
ˇ̌sin

�
1

x2 C y2 C ´2

�ˇ̌
ˇ̌

x2 C y2 C ´2

assumes arbitrarily large values in every neighborhood of .0; 0; 0/. For example, if Xk D
.xk; yk; ´k/, where

xk D yk D ´k D
1q

3
�
k C 1

2

�
�

;

then

f .Xk/ D
�
k C 1

2

�
�:

However, this does not imply that limX!0 f .X/ D1, since, for example, every neighbor-

hood of .0; 0; 0/ also contains points

Xk D
�

1p
3k�

;
1p
3k�

;
1p
3k�

�

for which f .Xk/ D 0.

Definition 5.2.5 If Df is unbounded;we say that

lim
jXj!1

f .X/ D L (finite)

if for every � > 0, there is a number R such that

jf .X/ �Lj < � whenever jXj � R and X 2 Df :

Example 5.2.7 If

f .x; y; ´/ D cos

�
1

x2 C 2y2 C ´2

�
;

then

lim
jXj!1

f .X/ D 1: (5.2.14)

To see this, we recall that the continuity of cos u at u D 0 implies that for each � > 0 there

is a ı > 0 such that

j cosu� 1j < � if juj < ı:
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Since
1

x2 C 2y2 C ´2
� 1

jXj2
;

it follows that if jXj > 1=
p
ı, then

1

x2 C 2y2 C ´2
< ı:

Therefore,

jf .X/ � 1j < �:
This proves (5.2.14).

Example 5.2.8 Consider the function defined only on the domain

D D
˚
.x; y/

ˇ̌
0 < y � ax

	
; 0 < a < 1

(Figure 5.2.2), by

f .x; y/ D 1

x � y
:

We will show that

lim
jXj!1

f .x; y/ D 0: (5.2.15)

It is important to keep in mind that we need only consider .x; y/ in D, since f is not

defined elsewhere.

InD,

x � y � x.1 � a/ (5.2.16)

and

jXj2 D x2 C y2 � x2.1C a2/;

so

x � jXjp
1C a2

:

This and (5.2.16) imply that

x � y � 1 � ap
1C a2

jXj; X 2 D;

so

jf .x; y/j �
p
1C a2

1 � a
1

jXj ; X 2 D:

Therefore,

jf .x; y/j < �
if X 2 D and

jXj >
p
1C a2

1 � a
1

�
:

This implies (5.2.15).



Section 5.2 Continuous Real-Valued Functions of n Variables 309

y

x

y = ax

Figure 5.2.2

We leave it to you to define limjXj!1 f .X/ D 1 and limjXj!1 f .X/ D �1 (Exer-

cise 5.2.6).

We will continue the convention adopted in Section 2.1: “limX!X0
f .X/ exists” means

that limX!X0
f .X/ D L, where L is finite; to leave open the possibility that L D ˙1, we

will say that “limX!X0
f .X/ exists in the extended reals.” A similar convention applies to

limits as jXj ! 1.

Theorem 5.2.3 remains valid if “limX!X0
” is replaced by “limjXj!1,” provided that

D is unbounded. Moreover, (5.2.10), (5.2.11), and (5.2.12) are valid in either version of

Theorem 5.2.3 if either or both of L1 and L2 is infinite, provided that their right sides are

not indeterminate, and (5.2.13) remains valid if L2 ¤ 0 and L1=L2 is not indeterminate.

Continuity

We now define continuity for functions of n variables. The definition is quite similar to the

definition for functions of one variable.

Definition 5.2.6 If X0 is in Df and is a limit point of Df , then we say that f is

continuous at X0 if

lim
X!X0

f .X/ D f .X0/:

The next theorem follows from this and Definition 5.2.1.
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Theorem 5.2.7 Suppose that X0 is in Df and is a limit point of Df : Then f is con-

tinuous at X0 if and only if for each � > 0 there is a ı > 0 such that

jf .X/ � f .X0/j < �

whenever

jX �X0j < ı and X 2 Df :

In applying this theorem when X0 2 D0
f

, we will usually omit “and X 2 Df ,” it being

understood that Sı .X0/ � Df .

We will say that f is continuous on S if f is continuous at every point of S .

Example 5.2.9 From Example 5.2.1, we now see that the function

f .x; y/ D 1 � x2 � 2y2

is continuous on R
2.

Example 5.2.10 If we extend the definition of h in Example 5.2.2 so that

h.x; y/ D

8
<̂

:̂

sin
p
1 � x2 � 2y2

p
1 � x2 � 2y2

; x2 C 2y2 < 1;

1; x2 C 2y2 D 1;

then it follows from Example 5.2.2 that h is continuous on the ellipse

x2 C 2y2 D 1:

We will see in Example 5.2.13 that h is also continuous on the interior of the ellipse.

Example 5.2.11 It is impossible to define the function

f .x; y/ D xy

x2 C y2

at the origin to make it continuous there, since we saw in Example 5.2.3 that

lim
.x;y/!.0;0/

f .x; y/

does not exist.

Theorem 5.2.3 implies the next theorem, which is analogous to Theorem 2.2.5 and, like

the latter, permits us to investigate continuity of a given function by regarding the function

as the result of addition, subtraction, multiplication, and division of simpler functions.
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Theorem 5.2.8 If f and g are continuous on a set S in R
n; then so are f Cg; f �g;

and fg: Also; f =g is continuous at each X0 in S such that g.X0/ ¤ 0:

Vector-Valued Functions and Composite Functions

Suppose that g1, g2, . . . , gn are real-valued functions defined on a subset T of R
m, and

define the vector-valued function G on T by

G.U/ D .g1.U/; g2.U/; : : : ; gn.U// ; U 2 T:

Then g1, g2, . . . , gn are the component functions of G D .g1; g2; : : : ; gn/. We say that

lim
U!U0

G.U/ D L D .L1; L2; : : : ; Ln/

if

lim
U!U0

gi .U/ D Li ; 1 � i � n;

and that G is continuous at U0 if g1, g2, . . . , gn are each continuous at U0.

The next theorem follows from Theorem 5.1.14 and Definitions 5.2.1 and 5.2.6. We omit

the proof.

Theorem 5.2.9 For a vector-valued function G;

lim
U!U0

G.U/ D L

if and only if for each � > 0 there is a ı > 0 such that

jG.U/ � Lj < � whenever 0 < jU �U0j < ı and U 2 DG:

Similarly, G is continuous at U0 if and only if for each � > 0 there is a ı > 0 such that

jG.U/ � G.U0/j < � whenever jU � U0j < ı and U 2 DG:

The following theorem on the continuity of a composite function is analogous to Theo-

rem 2.2.7.

Theorem 5.2.10 Let f be a real-valued function defined on a subset of R
n; and let

the vector-valued function G D .g1; g2; : : : ; gn/ be defined on a domain DG in R
m: Let

the set

T D
˚
U
ˇ̌
U 2 DG and G.U/ 2 Df

	

.Figure 5.2.3/, be nonempty; and define the real-valued composite function

h D f ıG

on T by

h.U/ D f .G.U//; U 2 T:
Now suppose that U0 is in T and is a limit point of T; G is continuous at U0; and f is

continuous at X0 D G.U0/: Then h is continuous at U0:
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m
n

R(G)  = range of G

G

DG

Df

Figure 5.2.3

Proof Suppose that � > 0. Since f is continuous at X0 D G.U0/, there is an �1 > 0

such that

jf .X/ � f .G.U0//j < � (5.2.17)

if

jX �G.U0/j < �1 and X 2 Df : (5.2.18)

Since G is continuous at U0, there is a ı > 0 such that

jG.U/ � G.U0/j < �1 if jU �U0j < ı and U 2 DG:

By taking X D G.U/ in (5.2.17) and (5.2.18), we see that

jh.U/ � h.U0/j D jf .G.U/ � f .G.U0//j < �

if

jU �U0j < ı and U 2 T:

Example 5.2.12 If

f .s/ D
p
s

and

g.x; y/ D 1 � x2 � 2y2;

then Df D Œ0;1�,Dg D R
2, and

T D
˚
.x; y/

ˇ̌
x2 C 2y2 � 1

	
:

From Theorem 5.2.7 and Example 5.2.1, g is continuous on R
2. (We can obtain the same

conclusion by observing that the functions p1.x; y/ D x and p2.x; y/ D y are continuous

on R
2 and applying Theorem 5.2.8.) Since f is continuous on Df , the function

h.x; y/ D f .g.x; y// D
p
1 � x2 � 2y2

is continuous on T .
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Example 5.2.13 If

g.x; y/ D
p
1 � x2 � 2y2

and

f .s/ D

8
<
:

sin s

s
; s ¤ 0;

1; s D 0;
then Df D .�1;1/ and

Dg D T D
˚
.x; y/

ˇ̌
x2 C 2y2 � 1

	
:

In Example 5.2.12 we saw that g (we called it h there) is continuous on T . Since f is

continuous onDf , the composite function h D f ı g defined by

h.x; y/ D

8
<̂

:̂

sin
p
1 � x2 � 2y2

p
1 � x2 � 2y2

; x2 C 2y2 < 1;

1; x2 C 2y2 D 1;

is continuous on T . This implies the result of Example 5.2.2.

Bounded Functions

The definitions of bounded above, bounded below, and bounded on a set S are the same for

functions of n variables as for functions of one variable, as are the definitions of supremum

and infimum of a function on a set S (Section 2.2). The proofs of the next two theorems are

similar to those of Theorems 2.2.8 and 2.2.9 (Exercises 5.2.12 and 5.2.13).

Theorem 5.2.11 If f is continuous on a compact set S in R
n; then f is bounded

on S:

Theorem 5.2.12 Let f be continuous on a compact set S in R
n and

˛ D inf
X2S

f .X/; ˇ D sup
X2S

f .X/:

Then

f .X1/ D ˛ and f .X2/ D ˇ
for some X1 and X2 in S:

The next theorem is analogous to Theorem 2.2.10.

Theorem 5.2.13 (Intermediate Value Theorem) Let f be continuous on

a region S in R
n: Suppose that A and B are in S and

f .A/ < u < f .B/:

Then f .C/ D u for some C in S:
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Proof If there is no such C, then S D R [ T , where

R D
˚
X
ˇ̌
X 2 S and f .X/ < u

	

and

T D
˚
X
ˇ̌
X 2 S and f .X/ > u

	
:

If X0 2 R, the continuity of f implies that there is a ı > 0 such that f .X/ < u if jX�X0j <
ı and X 2 S . This means that X0 62 T . Therefore, R \ T D ;. Similarly, R \ T D ;.

Therefore, S is disconnected (Definition 5.1.19), which contradicts the assumption that S

is a region (Exercise 5.1.30). Hence, we conclude that f .C/ D u for some C in S .

Uniform Continuity

The definition of uniform continuity for functions of n variables is the same as for functions

of one variable; f is uniformly continuous on a subset S of its domain in R
n if for every

� > 0 there is a ı > 0 such that

jf .X/ � f .X0/j < �

whenever jX � X0j < ı and X;X0 2 S . We emphasize again that ı must depend only on �

and S , and not on the particular points X and X0.

The proof of the next theorem is analogous to that of Theorem 2.2.12. We leave it to you

(Exercise 5.2.14).

Theorem 5.2.14 If f is continuous on a compact set S in R
n; then f is uniformly

continuous on S:

5.2 Exercises

With R replaced by R
n; the following exercises from Sections 2:1 and 2:2 have analogs for

this section: 2.1.5, 2.1.8–2.1.11, 2.1.26, 2.1.28, 2.1.29, 2.1.33, 2.2.8; 2.2.9; 2.2.10, 2.2.15,

2.2.16, 2.2.20, 2.2.29, 2.2.30.

1. Find limX!X0
f .X/ and justify your answer with an �–ı argument, as required by

Definition 5.2.1. HINT: See Examples 5.2.1 and 5.2.2:

(a) f .X/ D 3x C 4y C ´� 2, X0 D .1; 2; 1/

(b) f .X/ D x3 � y3

x � y
, X0 D .1; 1/

(c) f .X/ D
sin.x C 4y C 2´/
x C 4y C 2´ , X0 D .�2; 1;�1/
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(d) f .X/ D .x2 C y2/ log.x2 C y2/1=2, X0 D .0; 0/

(e) f .X/ D
sin.x � y/
p
x � y , X0 D .2; 2/

(f) f .X/ D 1

jXje
�1=jXj, X0 D 0

2. Prove Theorem 5.2.2.

3. If limx!x0
y.x/ D y0 and limx!x0

f .x; y.x// D L, we say that f .x; y/ ap-

proaches L as .x; y/ approaches .x0; y0/ along the curve y D y.x/.
(a) Prove: If lim.x;y/!.x0 ;y0/ f .x; y/ D L, then f .x; y/ approaches L as .x; y/

approaches .x0; y0/ along any curve y D y.x/ through .x0; y0/.

(b) We saw in Example 5.2.3 that if

f .x; y/ D xy

x2 C y2
;

then lim.x;y/!.0;0/ f .x; y/ does not exist. Show, however, that f .x; y/ ap-

proaches a value La as .x; y/ approaches .0; 0/ along any curve y D y.x/

that passes through .0; 0/ with slope a. Find La.

(c) Show that the function

g.x; y/ D x3y4

.x2 C y6/3

approaches 0 as .x; y/ approaches .0; 0/ along a curve as described in (b),

but that lim.x;y/!.0;0/ f .x; y/ does not exist.

4. Determine whether limX!X0
f .X/ D ˙1.

(a) f .X/ D j sin.x C 2y C 4´/j
.x C 2y C 4´/2

, X0 D .2;�1; 0/

(b) f .X/ D 1
p
x � y

, X0 D .0; 0/

(c) f .X/ D sin 1=x
p
x � y

, X0 D .0; 0/

(d) f .X/ D 4y2 � x2

.x � 2y/3
, X0 D .2; 1/

(e) f .X/ D sin.x C 2y C 4´/
.x C 2y C 4´/2 , X0 D .2;�1; 0/

5. Find limjXj!1 f .X/, if it exists.

(a) f .X/ D log.x2 C 2y2 C 4´2/

x2 C y2 C ´2
(b) f .X/ D sin.x2 C y2/p

x2 C y2

(c) f .X/ D e�.xCy/2

(d) f .X/ D e�x2�y2
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(e) f .X/ D

8
<
:

sin.x2 � y2/

x2 � y2
; x ¤ ˙y;

1; x D ˙y
6. Define (a) limjXj!1 f .X/ D1 and (b) limjXj!1 f .X/ D �1.

7. Let

f .X/ D jx1ja1jx2ja2 � � � jxnjan

Xjb
:

For what nonnegative values of a1, a2, . . . , an, b does limX!0 f .X/ exist in the

extended reals?

8. Let

g.X/ D .x2 C y4/3

1C x6y4
:

Show that limjxj!1 g.x; ax/ D 1 for any real number a. Does

lim
jXj!1

g.X/ D 1‹

9. For each f in Exercise 5.2.1, find the largest set S on which f is continuous or can

be defined so as to be continuous.

10. Repeat Exercise 5.2.9 for the functions in Exercise 5.2.5.

11. Give an example of a function f on R
2 such that f is not continuous at .0; 0/,

but f .0; y/ is a continuous function of y on .�1;1/ and f .x; 0/ is a continuous

function of x on .�1;1/.
12. Prove Theorem 5.2.11. HINT: See the proof of Theorem 2.2.8:

13. Prove Theorem 5.2.12. HINT: See the proof of Theorem 2.2.9:

14. Prove Theorem 5.2.14. HINT: See the proof of Theorem 2.2.12:

15. Suppose that X 2 Df � R
n and X is a limit point ofDf . Show that f is continuous

at X if and only if limk!1 f .Xk/ D f .X/ whenever fXkg is a sequence of points

in Df such that limk!1 Xk D X. HINT: See the proof of Theorem 4.2.6:

5.3 PARTIAL DERIVATIVES AND THE DIFFERENTIAL

To say that a function of one variable has a derivative at x0 is the same as to say that it

is differentiable at x0. The situation is not so simple for a function f of more than one

variable. First, there is no specific number that can be called the derivative of f at a point

X0 in R
n. In fact, there are infinitely many numbers, called the directional derivatives of

f at X0 (defined below), that are analogous to the derivative of a function of one variable.

Second, we will see that the existence of directional derivatives at X0 does not imply that f

is differentiable at X0, if differentiability at X0 is to imply (as it does for functions of one

variable) that f .X/�f .X0/ can be approximated well near X0 by a simple linear function,

or even that f is continuous at X0.
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We will now define directional derivatives and partial derivatives of functions of several

variables. However, we will still have occasion to refer to derivatives of functions of one

variable. We will call them ordinary derivatives when we wish to distinguish between them

and the partial derivatives that we are about to define.

Definition 5.3.1 Let ˆ be a unit vector and X a point in R
n. The directional derivative

of f at X in the direction of ˆ is defined by

@f .X/

@ˆ
D lim

t!0

f .XC tˆ/ � f .X/
t

if the limit exists. That is, @f .X/=@ˆ is the ordinary derivative of the function

h.t/ D f .XC tˆ/

at t D 0, if h0.0/ exists.

Example 5.3.1 Let ˆ D .�1; �2; �3/ and

f .x; y; ´/ D 3xy´C 2x2 C ´2:

Then

h.t/ D f .x C t�1; y C t�2; ´C t�3/;

D 3.x C t�1/.y C t�2/.´ C t�3/C 2.x C t�1/
2 C .´C t�3/

2

and

h0.t/ D 3�1.y C t�2/.´C t�3/C 3�2.x C t�1/.´C t�3/

C 3�3.x C t�1/.y C t�2/C 4�1.x C t�1/C 2�3.´C t�3/:

Therefore,

@f .X/

@ˆ
D h0.0/ D .3y´C 4x/�1 C 3x´�2 C .3xy C 2´/�3: (5.3.1)

The directional derivatives that we are most interested in are those in the directions of

the unit vectors

E1 D .1; 0; : : : ; 0/; E2 D .0; 1; 0; : : : ; 0/; : : : ; En D .0; : : : ; 0; 1/:

(All components of Ei are zero except for the i th, which is 1.) Since X and XC tEi differ

only in the i th coordinate, @f .X/=@Ei is called the partial derivative of f with respect to

xi at X. It is also denoted by @f .X/=@xi or fxi
.X/; thus,

@f .X/

@x1

D fx1
.X/ D lim

t!0

f .x1 C t; x2; : : : ; xn/� f .x1; x2; : : : ; xn/

t
;
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@f .X/

@xi

D fxi
.X/ D lim

t!0

f .x1; : : : ; xi�1; xi C t; xiC1; : : : ; xn/ � f .x1; x2; : : : ; xn/

t

if 2 � i � n, and

@f .X/

@xn

D fxn.X/ D lim
t!0

f .x1; : : : ; xn�1; xn C t/ � f .x1; : : : ; xn�1; xn/

t
;

if the limits exist.

If we write X D .x; y/, then we denote the partial derivatives accordingly; thus,

@f .x; y/

@x
D fx.x; y/ D lim

h!0

f .x C h; y/ � f .x; y/
h

and
@f .x; y/

@y
D fy.x; y/ D lim

h!0

f .x; y C h/ � f .x; y/
h

:

It can be seen from these definitions that to compute fxi
.X/ we simply differentiate f

with respect to xi according to the rules for ordinary differentiation, while treating the other

variables as constants.

Example 5.3.2 Let

f .x; y; ´/ D 3xy´C 2x2C ´2 (5.3.2)

as in Example 5.3.1. Taking ˆ D E1 (that is, setting �1 D 1 and �2 D �3 D 0) in (5.3.1),

we find that
@f .X/

@x
D @f .X/

@E1

D 3y´C 4x;

which is the result obtained by regarding y and ´ as constants in (5.3.2) and taking the

ordinary derivative with respect to x. Similarly,

@f .X/

@y
D @f .X/

@E2

D 3x´

and
@f .X/

@´
D @f .X/

@E3

D 3xy C 2´:

The next theorem follows from the rule just given for calculating partial derivatives.

Theorem 5.3.2 If fxi
.X/ and gxi

.X/ exist; then

@.f C g/.X/
@xi

D fxi
.X/C gxi

.X/;

@.fg/.X/

@xi

D fxi
.X/g.X/ C f .X/gxi

.X/;
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and; if g.X/ ¤ 0;
@.f=g/.X/

@xi

D
g.X/fxi

.X/ � f .X/gxi
.X/

Œg.X/�2
:

If fxi
.X/ exists at every point of a set D, then it defines a function fxi

on D. If this

function has a partial derivative with respect to xj on a subset of D, we denote the partial

derivative by

@

@xj

�
@f

@xi

�
D @2f

@xj @xi

D fxi xj
:

Similarly,

@

@xk

�
@2f

@xj@xi

�
D @3f

@xk@xj@xi

D fxi xj xk
:

The function obtained by differentiating f successively with respect to xi1; xi2; : : : ; xir is

denoted by
@rf

@xir@xir�1
� � � @xi1

D fxi1
� � �xir�1

xir I

it is an r th-order partial derivative of f .

Example 5.3.3 The function

f .x; y/ D 3x2y3 C xy

has partial derivatives everywhere. Its first-order partial derivatives are

fx.x; y/ D 6xy3 C y; fy.x; y/ D 9x2y2 C x:

Its second-order partial derivatives are

fxx.x; y/ D 6y3; fyy.x; y/ D 18x2y;

fxy .x; y/ D 18xy2 C 1; fyx.x; y/ D 18xy2 C 1:
There are eight third-order partial derivatives. Some examples are

fxxy .x; y/ D 18y2; fxyx.x; y/ D 18y2; fyxx.x; y/ D 18y2:

Example 5.3.4 Compute fxx.0; 0/, fyy.0; 0/, fxy.0; 0/, and fyx.0; 0/ if

f .x; y/ D

8
<
:
.x2y C xy2/ sin.x � y/

x2 C y2
; .x; y/ ¤ .0; 0/;

0; .x; y/ D .0; 0/:

Solution If .x; y/ ¤ .0; 0/, the ordinary rules for differentiation, applied separately to

x and y, yield

fx.x; y/ D
.2xy C y2/ sin.x � y/C .x2y C xy2/ cos.x � y/

x2 C y2

�2x.x
2y C xy2/ sin.x � y/
.x2 C y2/2

; .x; y/ ¤ .0; 0/;
(5.3.3)
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and

fy.x; y/ D
.x2 C 2xy/ sin.x � y/ � .x2y C xy2/ cos.x � y/

x2 C y2

�2y.x
2y C xy2/ sin.x � y/
.x2 C y2/2

; .x; y/ ¤ .0; 0/:
(5.3.4)

These formulas do not apply if .x; y/ D .0; 0/, so we find fx.0; 0/ and fy.0; 0/ from their

definitions as difference quotients:

fx.0; 0/ D lim
x!0

f .x; 0/� f .0; 0/
x

D lim
x!0

0 � 0
x
D 0;

fy.0; 0/ D lim
y!0

f .0; y/ � f .0; 0/
y

D lim
y!0

0 � 0
y
D 0:

Setting y D 0 in (5.3.3) and (5.3.4) yields

fx.x; 0/ D 0; fy.x; 0/ D sinx; x ¤ 0;

so

fxx.0; 0/ D lim
x!0

fx.x; 0/ � fx.0; 0/

x
D lim

x!0

0 � 0
x
D 0;

fyx.0; 0/ D lim
x!0

fy.x; 0/� fy .0; 0/

x
D lim

x!0

sinx � 0
x

D 1:

Setting x D 0 in (5.3.3) and (5.3.4) yields

fx.0; y/ D � siny; fy.0; y/ D 0; y ¤ 0;

so

fxy.0; 0/ D lim
y!0

fx.0; y/ � fx.0; 0/

y
D lim

y!0

� sin y � 0
y

D �1;

fyy.0; 0/ D lim
y!0

fy.0; y/ � fy .0; 0/

y
D lim

y!0

0 � 0
y
D 0:

This example shows that fxy.X0/ and fyx.X0/ may differ. However, the next theorem

shows that they are equal if f satisfies a fairly mild condition.

Theorem 5.3.3 Suppose thatf; fx; fy ; and fxy exist on a neighborhoodN of .x0; y0/;

and fxy is continuous at .x0; y0/: Then fyx.x0; y0/ exists, and

fyx.x0; y0/ D fxy.x0; y0/: (5.3.5)

Proof Suppose that � > 0. Choose ı > 0 so that the open square
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Sı D
˚
.x; y/

ˇ̌
jx � x0j < ı; jy � y0j < ı

	

is in N and

jfxy.bx;by/� fxy.x0; y0/j < � if .bx;by/ 2 Sı : (5.3.6)

This is possible because of the continuity of fxy at .x0; y0/. The function

A.h; k/ D f .x0 C h; y0 C k/ � f .x0 C h; y0/ � f .x0; y0 C k/C f .x0; y0/ (5.3.7)

is defined if �ı < h, k < ı; moreover,

A.h; k/ D �.x0 C h/� �.x0/; (5.3.8)

where

�.x/ D f .x; y0 C k/� f .x; y0/:

Since

�0.x/ D fx.x; y0 C k/ � fx.x; y0/; jx � x0j < ı;
(5.3.8) and the mean value theorem imply that

A.h; k/ D Œfx.bx; y0 C k/ � fx.bx; y0/� h; (5.3.9)

wherebx is between x0 and x0C h. The mean value theorem, applied to fx.bx; y/ (wherebx
is regarded as constant), also implies that

fx.bx; y0 C k/ � fx.bx; y0/ D fxy.bx;by/k;

whereby is between y0 and y0 C k. From this and (5.3.9),

A.h; k/ D fxy.bx;by/hk:

Now (5.3.6) implies that
ˇ̌
ˇ̌A.h; k/
hk

� fxy.x0; y0/

ˇ̌
ˇ̌ D

ˇ̌
fxy .bx;by/ � fxy .x0; y0/

ˇ̌
< � if 0 < jhj; jkj < ı:

(5.3.10)

Since (5.3.7) implies that

lim
k!0

A.h; k/

hk
D lim

k!0

f .x0 C h; y0 C k/ � f .x0 C h; y0/

hk

� lim
k!0

f .x0; y0 C k/ � f .x0; y0/

hk

D fy.x0 C h; y0/ � fy.x0; y0/

h
;

it follows from (5.3.10) that
ˇ̌
ˇ̌fy .x0 C h; y0/ � fy.x0; y0/

h
� fxy.x0; y0/

ˇ̌
ˇ̌ � � if 0 < jhj < ı:
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Taking the limit as h! 0 yields

jfyx.x0; y0/ � fxy .x0; y0/j � �:

Since � is an arbitrary positive number, this proves (5.3.5).

Theorem 5.3.3 implies the following theorem. We leave the proof to you (Exercises 5.3.10

and 5.3.11).

Theorem 5.3.4 Suppose that f and all its partial derivatives of order � r are contin-

uous on an open subset S of R
n: Then

fxi1
xi2

;:::;xir
.X/ D fxj1

xj2
;:::;xjr

.X/; X 2 S; (5.3.11)

if each of the variables x1; x2; . . . ; xn appears the same number of times in

fxi1; xi2 ; : : : ; xirg and fxj1
; xj2

; : : : ; xjr g:

If this number is rk; we denote the common value of the two sides of (5.3.11) by

@rf .X/

@x
r1

1 @x
r2

2 � � � @x
rn
n

; (5.3.12)

it being understood that

0 � rk � r; 1 � k � n; (5.3.13)

r1 C r2 C � � � C rn D r; (5.3.14)

and; if rk D 0; we omit the symbol @x0
k

from the “denominator” of (5.3.12):

For example, if f satisfies the hypotheses of Theorem 5.3.4 with k D 4 at a point X0 in

R
n (n � 2), then

fxxyy.X0/ D fxyxy .X0/ D fxyyx.X0/ D fyyxx.X0/ D fyxyx.X0/ D fyxxy .X0/;

and their common value is denoted by

@4f .X0/

@x2@y2
:

It can be shown (Exercise 5.3.12) that if f is a function of .x1; x2; : : : ; xn/ and .r1; r2; : : : ; rn/

is a fixed ordered n-tuple that satisfies (5.3.13) and (5.3.14), then the number of partial

derivatives fxi1
xi2

���xir
that involve differentiation ri times with respect to xi , 1 � i � n,

equals the multinomial coefficient

rŠ

r1Šr2Š � � � rnŠ
:
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Differentiable Functions of Several Variables

A function of several variables may have first-order partial derivatives at a point X0 but fail

to be continuous at X0. For example, if

f .x; y/ D
( xy

x2 C y2
; .x; y/ ¤ .0; 0/;

0; .x; y/ D .0; 0/;
(5.3.15)

then

fx.0; 0/ D lim
h!0

f .h; 0/ � f .0; 0/
h

D lim
h!0

0 � 0
h
D 0

and

fy.0; 0/ D lim
k!0

f .0; k/ � f .0; 0/
k

D lim
k!0

0 � 0
k
D 0;

but f is not continous at .0; 0/. (See Examples 5.2.3 and 5.2.11.) Therefore, if differentia-

bility of a function of several variables is to be a stronger property than continuity, as it is

for functions of one variable, the definition of differentiability must require more than the

existence of first partial derivatives. Exercise 2.3.1 characterizes differentiability of a func-

tion f of one variable in a way that suggests the proper generalization: f is differentiable

at x0 if and only if

lim
x!x0

f .x/ � f .x0/ �m.x � x0/

x � x0

D 0

for some constant m, in which case m D f 0.x0/.

The generalization to functions of n variables is as follows.

Definition 5.3.5 A function f is differentiable at

X0 D .x10; x20; : : : ; xn0//

if X0 2 D0
f

and there are constantsm1, m2, . . . ; mn such that

lim
X!X0

f .X/ � f .X0/ �
nX

iD1

mi .xi � xi0/

jX �X0j
D 0: (5.3.16)

Example 5.3.5 Let

f .x; y/ D x2 C 2xy:
We will show that f is differentiable at any point .x0; y0/, as follows:
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f .x; y/ � f .x0; y0/ D x2 C 2xy � x2
0 � 2x0y0

D x2 � x2
0 C 2.xy � x0y0/

D .x � x0/.x C x0/C 2.xy � x0y/C 2.x0y � x0y0/

D .x C x0 C 2y/.x � x0/C 2x0.y � y0/

D 2.x0 C y0/.x � x0/C 2x0.y � y0/

C .x � x0/.x � x0 C 2y � 2y0/

D m1.x � x0/Cm2.y � y0/C .x � x0/.x � x0 C 2y � 2y0/;

where

m1 D 2.x0 C y0/ D fx.x0; y0/ and m2 D 2x0 D fy.x0; y0/: (5.3.17)

Therefore,

jf .x; y/ � f .x0; y0/�m1.x � x0/�m2.y � y0/j
jX � X0j

D jx � x0jj.x � x0/C 2.y � y0/j
jX � X0j

�
p
5jX � X0j;

by Schwarz’s inequality. This implies that

lim
X!X0

f .x; y/ � f .x0; y0/ �m1.x � x0/ �m2.y � y0/

jX �X0j
D 0;

so f is differentiable at .x0; y0/.

From (5.3.17), m1 D fx.x0; y0/ and m2 D fy.x0; y0/ in Example 5.3.5. The next

theorem shows that this is not a coincidence.

Theorem 5.3.6 If f is differentiable at X0 D .x10; x20; : : : ; xn0/; then fx1
.X0/;

fx2
.X0/; . . . ; fxn.X0/ exist and the constantsm1; m2; . . . ; mn in (5.3.16) are given by

mi D fxi
.X0/; 1 � i � nI (5.3.18)

that is;

lim
X!X0

f .X/ � f .X0/ �
nX

iD1

fxi
.X0/.xi � xi0/

jX �X0j
D 0:

Proof Let i be a given integer in f1; 2; : : : ; ng. Let X D X0C tEi , so that xi D xi0C t ,
xj D xj 0 if j ¤ i , and jX � X0j D jt j. Then (5.3.16) and the differentiability of f at X0

imply that

lim
t!0

f .X0 C tEi / � f .X0/ �mi t

t
D 0:
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Hence,

lim
t!0

f .X0 C tEi /� f .X0/

t
D mi :

This proves (5.3.18), since the limit on the left is fxi
.X0/, by definition.

A linear function is a function of the form

L.X/ D m1x1 Cm2x2 C � � � Cmnxn; (5.3.19)

where m1, m2, . . . ; mn are constants. From Definition 5.3.5, f is differentiable at X0 if

and only if there is a linear function L such that f .X/ � f .X0/ can be approximated so

well near X0 by

L.X/ �L.X0/ D L.X � X0/

that

f .X/ � f .X0/ D L.X � X0/C E.X/.jX �X0j/; (5.3.20)

where

lim
X!X0

E.X/ D 0: (5.3.21)

Theorem 5.3.7 If f is differentiable at X0; then f is continuous at X0.

Proof From (5.3.19) and Schwarz’s inequality,

jL.X � X0/j �M jX �X0j;

where

M D .m2
1 Cm2

2 C � � � Cm2
n/

1=2:

This and (5.3.20) imply that

jf .X/� f .X0/j � .M C jE.X/j/jX �X0j;

which, with (5.3.21), implies that f is continuous at X0.

Theorem 5.3.7 implies that the function f defined by (5.3.15) is not differentiable at

.0; 0/, since it is not continuous at .0; 0/. However, fx.0; 0/ and fy.0; 0/ exist, so the

converse of Theorem 5.3.7 is false; that is, a function may have partial derivatives at a

point without being differentiable at the point.

The Differential

Theorem 5.3.7 implies that if f is differentiable at X0, then there is exactly one linear

function L that satisfies (5.3.20) and (5.3.21):

L.X/ D fx1
.X0/x1 C fx2

.X0/x2 C � � � C fxn.X0/xn:
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This function is called the differential of f at X0. We will denote it by dX0
f and its

value by .dX0
f /.X/; thus,

.dX0
f /.X/ D fx1

.X0/x1 C fx2
.X0/x2 C � � � C fxn.X0/xn: (5.3.22)

In terms of the differential, (5.3.16) can be rewritten as

lim
X!X0

f .X/ � f .X0/� .dX0
f /.X � X0/

jX �X0j
D 0:

For convenience in writing dX0
f , and to conform with standard notation, we introduce

the function dxi , defined by

dxi.X/ D xi I
that is, dxi is the function whose value at a point in R

n is the i th coordinate of the point. It

is the differential of the function gi .X/ D xi . From (5.3.22),

dX0
f D fx1

.X0/ dx1 C fx2
.X0 dx2 C � � � C fxn .X0/ dxn: (5.3.23)

If we write X D .x; y; : : : ; /, then we write

dX0
f D fx.X0/ dx C fy.X0/ dy C � � � ;

where dx, dy, . . . are the functions defined by

dx.X/ D x; dy.X/ D y; : : :

When it is not necessary to emphasize the specific point X0, (5.3.23) can be written more

simply as

df D fx1
dx1 C fx2

dx2 C � � � C fxn dxn:

When dealing with a specific function at an arbitrary point of its domain, we may use the

hybrid notation

df D fx1
.X/ dx1 C fx2

.X/ dx2 C � � � C fxn.X/ dxn:

Example 5.3.6 We saw in Example 5.3.5 that the function

f .x; y/ D x2 C 2xy

is differentiable at every X in R
n, with differential

df D .2x C 2y/ dx C 2x dy:

To find dX0
f with X0 D .1; 2/, we set x0 D 1 and y0 D 2; thus,

dX0
f D 6 dxC 2 dy

and

.dX0
f /.X � X0/ D 6.x � 1/C 2.y � 2/:
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Since f .1; 2/ D 5, the differentiability of f at .1; 2/ implies that

lim
.x;y/!.1;2/

f .x; y/ � 5 � 6.x � 1/� 2.y � 2/p
.x � 1/2 C .y � 2/2

D 0:

Example 5.3.7 The differential of a function f D f .x/ of one variable is given by

dx0
f D f 0.x0/ dx;

where dx is the identity function; that is,

dx.t/ D t:

For example, if

f .x/ D 3x2C 5x3;

then

df D .6x C 15x2/ dx:

If x0 D �1, then

dx0
f D 9 dx; .dx0

f /.x � x0/ D 9.x C 1/;

and, since f .�1/ D �2,

lim
x!�1

f .x/C 2� 9.x C 1/
x C 1 D 0:

Unfortunately, the notation for the differential is so complicated that it obscures the

simplicity of the concept. The peculiar symbols df , dx, dy, etc., were introduced in

the early stages of the development of calculus to represent very small (“infinitesimal”)

increments in the variables. However, in modern usage they are not quantities at all, but

linear functions. This meaning of the symbol dx differs from its meaning in
R b

a
f .x/ dx,

where it serves merely to identify the variable of integration; indeed, some authors omit it

in the latter context and write simply
R b

a f .

Theorem 5.3.7 implies the following lemma, which is analogous to Lemma 2.3.2. We

leave the proof to you (Exercise 5.3.13).

Lemma 5.3.8 If f is differentiable at X0; then

f .X/ � f .X0/ D .dX0
f /.X � X0/C E.X/jX � X0j;

where E is defined in a neighborhood of X0 and

lim
X!X0

E.X/ D E.X0/ D 0:

Theorems 5.3.2 and 5.3.7 and the definition of the differential imply the following

theorem.
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Theorem 5.3.9 If f and g are differentiable at X0; then so are f C g and fg. The

same is true of f=g if g.X0/ ¤ 0. The differentials are given by

dX0
.f C g/ D dX0

f C dX0
g;

dX0
.fg/ D f .X0/dX0

g C g.X0/dX0
f;

and

dX0

�
f

g

�
D g.X0/dX0

f � f .X0/dX0
g

Œg.X0/�2
:

The next theorem provides a widely applicable sufficient condition for differentiability.

Theorem 5.3.10 If fx1
; fx2

; . . . ; fxn exist on a neighborhood of X0 and are contin-

uous at X0; then f is differentiable at X0:

Proof Let X0 D .x10; x20; : : : ; xn0/ and suppose that � > 0. Our assumptions imply

that there is a ı > 0 such that fx1
; fx2

; : : : ; fxn are defined in the n-ball

Sı.X0/ D
˚
X
ˇ̌
jX �X0j < ı

	

and

jfxj
.X/ � fxj

.X0/j < � if jX �X0j < ı; 1 � j � n: (5.3.24)

Let X D .x1; x; : : : ; xn/ be in Sı.X0/. Define

Xj D .x1; : : : ; xj ; xj C1;0; : : : ; xn0/; 1 � j � n � 1;

and Xn D X. Thus, for 1 � j � n, Xj differs from Xj �1 in the j th component only, and

the line segment from Xj �1 to Xj is in Sı .X0/. Now write

f .X/ � f .X0/ D f .Xn/ � f .X0/ D
nX

j D1

Œf .Xj / � f .Xj �1/�; (5.3.25)

and consider the auxiliary functions

g1.t/ D f .t; x20; : : : ; xn0/;

gj .t/ D f .x1; : : : ; xj �1; t; xj C1;0; : : : ; xn0/; 2 � j � n � 1;
gn.t/ D f .x1; : : : ; xn�1; t/;

(5.3.26)

where, in each case, all variables except t are temporarily regarded as constants. Since

f .Xj /� f .Xj �1/ D gj .xj / � gj .xj 0/;

the mean value theorem implies that

f .Xj / � f .Xj �1/ D g0
j .�j /.xj � xj 0/;
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where �j is between xj and xj 0. From (5.3.26),

g0
j .�j / D fxj

.bXj /;

where bXj is on the line segment from Xj �1 to Xj . Therefore,

f .Xj /� f .Xj �1/ D fxj
.bXj /.xj � xj 0/;

and (5.3.25) implies that

f .X/ � f .X0/D
nX

j D1

fxj
.bXj /.xj � xj 0/

D
nX

j D1

fxj
.X0/.xj � xj 0/C

nX

j D1

Œfxj
.bXj / � fxj

.X0/�.xj � xj 0/:

From this and (5.3.24),
ˇ̌
ˇ̌
ˇ̌f .X/ � f .X0/�

nX

j D1

fxj
.X0/.xj � xj 0/

ˇ̌
ˇ̌
ˇ̌ � �

nX

j D1

jxj � xj 0j � n�jX �X0j;

which implies that f is differentiable at X0.

We say that f is continuously differentiable on a subset S of R
n if S is contained in an

open set on which fx1
, fx2

, . . . ; fxn are continuous. Theorem 5.3.10 implies that such a

function is differentiable at each X0 in S .

Example 5.3.8 If

f .x; y/ D x2 C y2

x � y ;

then

fx.x; y/ D
2x

x � y �
x2 C y2

.x � y/2 and fy.x; y/ D
2y

x � y C
x2 C y2

.x � y/2 :

Since fx and fy are continuous on

S D
˚
.x; y/

ˇ̌
x ¤ y

	
;

f is continuously differentiable on S .

Example 5.3.9 The conditions of Theorem 5.3.10 are not necessary for differentiabil-

ity; that is, a function may be differentiable at a point X0 even if its first partial derivatives

are not continuous at X0. For example, let

f .x; y/ D

8
<
:
.x � y/2 sin

1

x � y
; x ¤ y;

0; x D y:
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Then

fx.x; y/ D 2.x � y/ sin
1

x � y
� cos

1

x � y
; x ¤ y;

and

fx.x; x/ D lim
h!0

f .x C h; x/� f .x; x/
h

D lim
h!0

h2 sin.1=h/ � 0
h

D 0;

so fx exists for all .x; y/, but is not continuous on the line y D x. The same is true of fy ,

since

fy.x; y/ D �2.x � y/ sin
1

x � y C cos
1

x � y ; x ¤ y;

and

fy.x; x/ D lim
k!0

f .x; x C k/ � f .x; x/
k

D lim
k!0

k2 sin.�1=k/ � 0
k

D 0:

Now,

f .x; y/� f .0; 0/� fx.0; 0/x � fy.0; 0/yp
x2 C y2

D

8
<
:

.x � y/2p
x2 C y2

sin
1

x � y ; x ¤ y;

0; x D y;

and Schwarz’s inequality implies that

ˇ̌
ˇ̌
ˇ
.x � y/2p
x2 C y2

sin
1

x � y

ˇ̌
ˇ̌
ˇ �

2.x2 C y2/p
x2 C y2

D 2
p
x2 C y2; x ¤ y:

Therefore,

lim
.x;y/!.0;0/

f .x; y/ � f .0; 0/� fx.0; 0/x � fy.0; 0/yp
x2 C y2

D 0;

so f is differentiable at .0; 0/, but fx and fy are not continuous at .0; 0/.

Geometric Interpretation of Differentiability

In Section 2.3 we saw that if a function f of one variable is differentiable at x0, then the

curve y D f .x/ has a tangent line

y D T .x/ D f .x0/C f 0.x0/.x � x0/

that approximates it so well near x0 that

lim
x!x0

f .x/ � T .x/
x � x0

D 0:

Moreover, the tangent line is the “limit” of the secant line through the points .x1; f .x0//

and .x0; f .x0// as x1 approaches x0.
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D
y

z

x

z = f (x, y)

Figure 5.3.1

Differentiability of a function of n variables has an analogous geometric interpretation.

We will illustrate it for n D 2. If f is defined in a region D in R
2, then the set of points

.x; y; ´/ such that

´ D f .x; y/; .x; y/ 2 D; (5.3.27)

is a surface in R
3 (Figure 5.3.1).

y

z

x

z = f (x,y )

(x
0
,
 
y

0
)  

Tangent plane

Figure 5.3.2

If f is differentiable at X0 D .x0; y0/, then the plane

´ D T .x; y/ D f .X0/C fx.X0/.x � x0/C fy.X0/.y � y0/ (5.3.28)

intersects the surface (5.3.27) at .x0; y0; f .x0; y0// and approximates the surface so well

near .x0; y0/ that
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lim
.x;y/!.x0 ;y0/

f .x; y/ � T .x; y/p
.x � x0/2 C .y � y0/2

D 0

(Figure 5.3.2). Moreover, (5.3.28) is the only plane in R
3 with these properties (Exer-

cise 5.3.25). We say that this plane is tangent to the surface ´ D f .x; y/ at the point

.x0; y0; f .x0; y0//. We will now show that it is the “limit” of “secant planes” associated

with the surface ´ D f .x; y/, just as a tangent line to a curve y D f .x/ in R
3 is the limit

of secant lines to the curve (Section 2.3).

Let Xi D .xi ; yi / .i D 1; 2; 3/. The equation of the “secant plane” through the points

.xi ; yi ; f .xi ; yi// .i D 1; 2; 3/ on the surface ´ D f .x; y/ (Figure 5.3.3) is of the form

´ D f .X0/C A.x � x0/C B.y � y0/; (5.3.29)

where A and B satisfy the system

f .X1/ D f .X0/C A.x1 � x0/C B.y1 � y0/;

f .X2/ D f .X0/C A.x2 � x0/C B.y2 � y0/:

Solving for A and B yields

AD .f .X1/ � f .X0//.y2 � y0/ � .f .X2/ � f .X0//.y1 � y0/

.x1 � x0/.y2 � y0/ � .x2 � x0/.y1 � y0/
(5.3.30)

and

B D .f .X2/ � f .X0//.x1 � x0/� .f .X1/ � f .X0//.x2 � x0/

.x1 � x0/.y2 � y0/� .x2 � x0/.y1 � y0/
(5.3.31)

if

.x1 � x0/.y2 � y0/ � .x2 � x0/.y1 � y0/ ¤ 0; (5.3.32)

which is equivalent to the requirement that X0, X1, and X2 do not lie on a line (Exer-

cise 5.3.23). If we write

X1 D X0 C tU and X2 D X0 C tV;

where U D .u1; u2/ and V D .v1; v2/ are fixed nonzero vectors (Figure 5.3.3), then

(5.3.30), (5.3.31), and (5.3.32) take the more convenient forms

A D

f .X0 C tU/ � f .X0/

t
v2 �

f .X0 C tV/ � f .X0/

t
u2

u1v2 � u2v1

; (5.3.33)

B D

f .X0 C tV/ � f .X0/

t
u1 �

f .X0 C tU/ � f .X0/

t
v1

u1v2 � u2v1

; (5.3.34)

and

u1v2 � u2v1 ¤ 0:
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If f is differentiable at X0, then

f .X/ � f .X0/ D fx.X0/.x � x0/C fy.X0/.y � y0/C �.X/jX � X0j; (5.3.35)

where

lim
X!X0

�.X/ D 0: (5.3.36)

Substituting first X D X0C tU and then X D X0C tV in (5.3.35) and dividing by t yields

f .X0 C tU/ � f .X0/

t
D fx.X0/u1 C fy.X0/u2 C E1.t/jUj (5.3.37)

and
f .X0 C tV/ � f .X0/

t
D fx.X0/v1 C fy.X0/v2 C E2.t/jVj; (5.3.38)

where

E1.t/ D �.X0 C tU/jt j=t and E2.t/ D �.X0 C tV/jt j=t;

so

lim
t!0

Ei.t/ D 0; i D 1; 2; (5.3.39)

because of (5.3.36). Substituting (5.3.37) and (5.3.38) into (5.3.33) and (5.3.34) yields

A D fx.X0/C�1.t/; B D fy.X0/C�2.t/; (5.3.40)

where
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�1.t/ D
v2jUjE1.t/ � u2jVjE2.t/

u1v2 � u2v1

and

�2.t/ D
u1jVjE2.t/ � v1jUjE1.t/

u1v2 � u2v1

;

so

lim
t!0

�i .t/ D 0; i D 1; 2; (5.3.41)

because of (5.3.39).

From (5.3.29) and (5.3.40), the equation of the secant plane is

´ D f .X0/C Œfx.X0/C�1.t/�.x � x0/C Œfy.X0/C�2.t/�.y � y0/:

Therefore, because of (5.3.41), the secant plane “approaches” the tangent plane (5.3.28) as

t approaches zero.

Maxima and Minima

We say that X0 is a local extreme point of f if there is a ı > 0 such that

f .X/� f .X0/

does not change sign in Sı .X0/ \Df . More specifically, X0 is a local maximum point if

f .X/ � f .X0/

or a local minimum point if

f .X/ � f .X0/

for all X in Sı.X0/\Df .

The next theorem is analogous to Theorem 2.3.7.

Theorem 5.3.11 Suppose that f is defined in a neighborhood of X0 in R
n and fx1

.X0/;

fx2
.X0/; . . . ; fxn.X0/ exist: Let X0 be a local extreme point of f: Then

fxi
.X0/ D 0; 1 � i � n: (5.3.42)

Proof Let

E1 D .1; 0; : : : ; 0/; E2 D .0; 1; 0; : : : ; 0/; : : : ; En D .0; 0; : : : ; 1/;

and

gi .t/ D f .X0 C tEi /; 1 � i � n:
Then gi is differentiable at t D 0, with

g0
i .0/ D fxi

.X0/
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(Definition 5.3.1). Since X0 is a local extreme point of f , t0 D 0 is a local extreme point

of gi . Now Theorem 2.3.7 implies that g0
i .0/ D 0, and this implies (5.3.42).

The converse of Theorem 5.3.11 is false, since (5.3.42) may hold at a point X0 that is

not a local extreme point of f . For example, let X0 D .0; 0/ and

f .x; y/ D x3 C y3:

We say that a point X0 where (5.3.42) holds is a critical point of f . Thus, if f is defined

in a neighborhood of a local extreme point X0, then X0 is a critical point of f ; however, a

critical point need not be a local extreme point of f .

The use of Theorem 5.3.11 for finding local extreme points is covered in calculus, so we

will not pursue it here.

5.3 Exercises

1. Calculate @f .X/=@ˆ.

(a) f .x; y/ D x2 C 2xy cos x, ˆ D
 
1p
3
;�
r
2

3

!

(b) f .x; y; ´/ D e�xCy2C2´ , ˆ D
�
1p
3
;� 1p

3
;
1p
3

�

(c) f .X/ D jXj2, ˆ D
�
1p
n
;

1p
n
; � � � ; 1p

n

�

(d) f .x; y; ´/ D log.1C x C y C ´/, ˆ D .0; 1; 0/
2. Let

f .x; y/ D

8
<
:

xy sinx

x2 C y2
; .x; y/ ¤ .0; 0/;

0; .x; y/ D .0; 0/;
and let ˆ D .�1; �2/ be a unit vector. Find @f .0; 0/=@ˆ.

3. Find @f .X0/=@ˆ, where ˆ is the unit vector in the direction of X1 � X/.

(a) f .x; y; ´/ D sin�xy´; X0 D .1; 1;�2/, X1 D .3; 2;�1/
(b) f .x; y; ´/ D e�.x2Cy2C2´/; X0 D .1; 0;�1/, X1 D .2; 0;�1/
(c) f .x; y; ´/ D log.1C x C y C ´/; X0 D .1; 0; 1/, X1 D .3; 0;�1/
(d) f .X/ D jXj4; X0 D 0, X1 D .1; 1; : : : ; 1/

4. Give a geometrical interpretation of the directional derivative @f .x0; y0/=@ˆ of a

function of two variables.

5. Find all first-order partial derivatives.

(a) f .x; y; ´/ D log.x C y C 2´/ (b) f .x; y; ´/ D x2 C 3xy´C 2xy

(c) f .x; y; ´/ D xey´ (d) f .x; y; ´/ D ´C sinx2y

6. Find all second-order partial derivatives of the functions in Exercise 5.3.5.
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7. Find all second-order partial derivatives of the following functions at .0; 0/.

(a) f .x; y/ D

8
<
:
xy.x2 � y2

x2 C y2
; .x; y/ ¤ .0; 0/;

0; .x; y/ D .0; 0/

(b) f .x; y/ D
(
x2 tan�1 y

x
� y2 tan�1 x

y
; x ¤ 0; y ¤ 0;

0; x D 0 or y D 0
(Here j tan�1 uj < �=2.)

8. Find a function f D f .x; y/ such that fxy exists for all .x; y/, but fy exists

nowhere.

9. Let u and v be functions of two variables with continuous second-order partial

derivatives in a region S . Suppose that ux D vy and uy D �vx in S . Show

that

uxx C uyy D vxx C vyy D 0
in S .

10. Let f be a function of .x1; x2; : : : ; xn/ .n � 2/ such that fxi
, fxj

, and fxi xj
.i ¤

j / exist on a neighborhood of X0 and fxi xj
is continuous at X0. Use Theorem 5.3.3

to prove that fxj xi
.X0/ exists and equals fxi xj

.X0/.

11. Use Exercise 5.3.10 and induction on r to prove Theorem 5.3.4.

12. Let r1; r2; : : : ; rn be nonnegative integers such that

r1 C r2 C � � � C rn D r � 0:

(a) Show that

.´1 C ´2 C � � � C ´n/
r D

X

r

rŠ

r1Šr2Š � � � rnŠ
´

r1

1 ´
r2

2 � � � ´rn
n ;

where
P

r denotes summation over all n-tuples .r1; r2; : : : ; rn/ that satisfy

the stated conditions. HINT: This is obvious if n D 1; and it follows from

Exercise 1.2.19 if n D 2: Use induction on n:

(b) Show that there are
rŠ

r1Šr2Š � � � rnŠ
ordered n-tuples of integers .i1; i2; : : : ; in/ that contain r1 ones, r2 twos, . . . ,

and rn n’s.

(c) Let f be a function of .x1; x2; : : : ; xn/. Show that there are

rŠ

r1Šr2Š � � � rnŠ
partial derivatives fxi1

xi2
���xir

that involve differentiation ri times with respect

to xi , for i D 1; 2; : : : ; n.

13. Prove Lemma 5.3.8.



Section 5.3 Partial Derivatives and the Differential 337

14. Show that the function

f .x; y/ D

8
<
:

x2y

x6 C 2y2
; .x; y/ ¤ .0; 0/;

0; .x; y/ D .0; 0/;

has a directional derivative in the direction of an arbitrary unit vectorˆ at .0; 0/, but

f is not continuous at .0; 0/.

15. Prove: If fx and fy are bounded in a neighborhood of .x0; y0/, then f is continuous

at .x0; y0/.

16. Show directly from Definition 5.3.5 that f is differentiable at X0.

(a) f .x; y/ D 2x2 C 3xy C y2, X0 D .1; 2/
(b) f .x; y; ´/ D 2x2 C 3x C 4y´, X0 D .1; 1; 1/
(c) f .X/ D jXj2, X0 arbitrary

17. Suppose that fx exists on a neighborhood of .x0; y0/ and is continuous at .x0; y0/,

while fy merely exists at .x0; y0/. Show that f is differentiable at .x0; y0/.

18. Find df and dX0
f , and write .dX0

f /.X �X0/.

(a) f .x; y/ D x3 C 4xy2 C 2xy sin x, X0 D .0;�2/
(b) f .x; y; ´/ D e�.xCyC´/, X0 D .0; 0; 0/
(c) f .X/ D log.1C x1 C 2x2 C 3x3 C � � � C nxn/, X0 D 0

(d) f .X/ D jXj2r , X0 D .1; 1; 1; : : : ; 1/
19. (a) Suppose that f is differentiable at X0 and ˆ D .�1; �2; : : : ; �n/ is a unit

vector. Show that

@f .X0/

@ˆ
D fx1

.X0/�1 C fx2
.X0/�2 C � � � C fxn.X0/�n:

(b) For what unit vector ˆ does @f .X0/=@ˆ attain its maximum value?

20. Let f be defined on R
n by

f .X/ D g.x1/C g.x2/C � � � C g.xn/;

where

g.u/ D
(
u2 sin

1

u
; u ¤ 0;

0; u D 0:
Show that f is differentiable at .0; 0; : : : ; 0/, but fx1

, fx2
, . . . , fxn are all discon-

tinuous at .0; 0; : : : ; 0/.

21. The purpose of this exercise is to show that if f , fx and fy exist on a neighborhood

N of .x0; y0/ and fx and fy are differentiable at .x0; y0/, then fxy .x0; y0/ D
fyx.x0; y0/. Suppose that the open square

˚
.x; y/

ˇ̌
jx � x0j < jhj; jy � y0j < jhj
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is in N . Consider

B.h/ D f .x0 C h; y0 C h/ � f .x0 C h; y0/ � f .x0; y0 C h/C f .x0; y0/:

(a) Use the mean value theorem as we did in the proof of Theorem 5.3.3 to write

B.h/ D Œfx.bx; y0 C k/ � fx.bx; y0/� h;

where bx is between x0 and x0 C h. Then use the differentiability of fx at

.x0; y0/ to infer that

B.h/ D h2fxy.x0; y0/C hE1.h/; where lim
h!0

E1.h/

h
D 0:

(b) Use the mean value theorem to write

B.h/ D
�
fy.x0 C h;by/� fy.x0;by/

�
h;

where by is between y0 and y0 C h. Then use the differentiability of fy at

.x0; y0/ to infer that

B.h/ D h2fyx.x0; y0/C hE2.h/; where lim
h!0

E2.h/

h
D 0:

(c) Infer from (a) and (b) that fxy.x0; y0/ D fyx.x0; y0/.

22. (a) Let fxi
and fxj

be differentiable at a point X0 in R
n. Show from Exer-

cise 5.3.21 that

fxi xj
.X0/ D fxj xi

.X0/:

(b) Use (a) and induction on r to show that all .r �1/-st order partial derivatives

of f are differentiable on an open subset S of R
n, then fxi1

xi2
���xir

.X/ (X 2 S )

depends only on the number of differentiations with respect to each variable,

and not on the order in which they are performed.

23. Prove that .x0; y0/, .x1; y1/, and .x2; y2/ lie on a line if and only if

.x1 � x0/.y2 � y0/ � .x2 � x0/.y1 � y0/ D 0:

24. Find the equation of the tangent plane to the surface

´ D f .x; y/ at .x0; y0; ´0/ D .x0; y0; f .x0; y0//:

(a) f .x; y/ D x2 C y2 � 1; .x0; y0/ D .1; 2/
(b) f .x; y/ D 2x C 3y C 1; .x0; y0/ D .1;�1/
(c) f .x; y/ D xy sinxy; .x0; y0/ D .1; �=2/
(d) f .x; y/ D x2 � 2y2 C 3xy; .x0; y0/ D .2;�1/
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25. Prove: If f is differentiable at .x0; y0/ and

lim
.x;y/!.x0 ;y0/

f .x; y/ � a � b.x � x0/� c.y � y0/p
.x � x0/2 C .y � y0/2

D 0;

then a D f .x0; y0/, b D fx.x0; y0/, and c D fy.x0; y0/.

5.4 THE CHAIN RULE AND TAYLOR’S THEOREM

We now consider the problem of differentiating a composite function

h.U/ D f .G.U//;

where G D .g1; g2; : : : ; gn/ is a vector-valued function, as defined in Section 5.2. We

begin with the following definition.

Definition 5.4.1 A vector-valued function G D .g1; g2; : : : ; gn/ is differentiable at

U0 D .u10; u20; : : : ; um0/

if its component functions g1, g2, . . . , gn are differentiable at U0.

We need the following lemma to prove the main result of the section.

Lemma 5.4.2 Suppose that G D .g1; g2; : : : ; gn/ is differentiable at

U0 D .u10; u20; : : : ; um0/;

and define

M D

0
@

nX

iD1

mX

j D1

�
@gi.U0

@uj

�2
1
A

1=2

:

Then; if � > 0; there is a ı > 0 such that

jG.U/ �G.U0/j
jU �U0j

< M C � if 0 < jU �U0j < ı:

Proof Since g1, g2, . . . , gn are differentiable at U0, applying Lemma 5.3.8 to gi shows

that

gi .U/ � gi .U0/ D .dU0
gi /.U � U0/C Ei .U/j.U � U0j

D
mX

j D1

@gi.U0/

@uj

.uj � uj 0/C Ei.U/j.U �U0j;
(5.4.1)
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where

lim
U!U0

Ei.U/ D 0; 1 � i � n: (5.4.2)

From Schwarz’s inequality,

jgi .U/ � gi .U0/j � .Mi C jEi.U/j/jU �U0j;

where

Mi D

0
@

mX

j D1

�
@gi.U0/

@uj

�2

1
A

1=2

:

Therefore,

jG.U/ � G.U0/j
jU � U0j

�
 

nX

iD1

.Mi C jEi .U/j/2
!1=2

:

From (5.4.2),

lim
U!U0

 
nX

iD1

.Mi C jEi.U/j/2
!1=2

D
 

nX

iD1

M 2
i

!1=2

D M;

which implies the conclusion.

The following theorem is analogous to Theorem 2.3.5.

Theorem 5.4.3 (The Chain Rule) Suppose that the real-valued function f is

differentiable at X0 in R
n; the vector-valued function G D .g1; g2; : : : ; gn/ is differentiable

at U0 in R
m; and X0 D G.U0/: Then the real-valued composite function h D f ıG defined

by

h.U/ D f .G.U// (5.4.3)

is differentiable at U0; and

dU0
h D fx1

.X0/dU0
g1 C fx2

.X0/dU0
g2 C � � � C fxn.X0/dU0

gn: (5.4.4)

Proof We leave it to you to show that U0 is an interior point of the domain of h (Exer-

cise 5.4.1), so it is legitimate to ask if h is differentiable at U0.

Let X0 D .x10; x20; : : : ; xn0/. Note that

xi0 D gi .U0/; 1 � i � n;

by assumption. Since f is differentiable at X0, Lemma 5.3.8 implies that

f .X/� f .X0/ D
nX

iD1

fxi
.X0/.xi � xi0/C E.X/jX �X0j; (5.4.5)

where

lim
X!X0

E.X/ D 0:
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Substituting X D G.U/ and X0 D G.U0/ in (5.4.5) and recalling (5.4.3) yields

h.U/ � h.U0/ D
nX

iD1

fxi
.X0/.gi .U/ � gi .U0//C E.G.U//jG.U/ �G.U0/j: (5.4.6)

Substituting (5.4.1) into (5.4.6) yields

h.U/ � h.U0/ D
nX

iD1

fxi
.X0/.dU0

gi /.U �U0/C
 

nX

iD1

fxi
.X0/Ei .U/

!
jU �U0j

CE.G.U//jG.U/ �G.U0j:

Since

lim
U!U0

E.G.U// D lim
X!X0

E.X/ D 0;

(5.4.2) and Lemma 5.4.2 imply that

h.U/ � h.U0/ �
nX

iD1

fxi
.X0dU0

gi .U �U0/

jU �U0j
D 0:

Therefore, h is differentiable at U0, and dU0
h is given by (5.4.4).

Example 5.4.1 Let

f .x; y; ´/ D 2x2 C 4xy C 3y´;

g1.u; v/ D u2 C v2; g2.u; v/ D u2 � 2v2; g3.u; v/ D uv;
and

h.u; v/ D f .g1.u; v/; g2.u; v/; g3.u; v//:

Let U0 D .1;�1/ and

X0 D .g1.U0/; g2.U0/; g3.U0// D .2;�1;�1/:

Then

fx.X0/ D 4; fy.X0/ D 5; f´.X0/ D �3;

@g1.U0/

@u
D 2;

@g1.U0/

@v
D �2;

@g2.U0/

@u
D 2;

@g2.U0/

@v
D 4;

@g3.U0/

@u
D �1; @g3.U0/

@v
D 1:

Therefore,

dU0
g1 D 2 du� 2 dv; dU0

g2 D 2 duC 4 dv; dU0
g3 D �duC dv;
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and, from (5.4.4),

dU0
h D fx.X0/ dU0

g1 C fy.X0/ dU0
g2 C f´.X0/ dU0

g3

D 4.2 du� 2 dv/C 5.2 duC 4 dv/� 3.�duC dv/

D 21 duC 9 dv:

Since

dU0
h D hu.U0/ duC hv.U0/ dv

we conclude that

hu.U0/ D 21 and hv.U0/ D 9: (5.4.7)

This can also be obtained by writing h explicitly in terms of .u; v/ and differentiating; thus,

h.u; v/ D 2Œg1.u; v/�
2 C 4g1.u; v/g2.u; v/C 3g2.u; v/g3.u; v/

D 2.u2 C v2/2 C 4.u2 C v2/.u2 � 2v2/C 3.u2 � 2v2/uv

D 6u4 C 3u3v � 6uv3 � 6v4:

Hence,

hu.u; v/ D 24u3 C 9u2v � 6v3 and hv.u; v/ D 3u3 � 18uv2 � 24v3;

so hu.1;�1/ D 21 and hv.1;�1/ D 9, consistent with (5.4.7).

Corollary 5.4.4 Under the assumptions of Theorem 5.4.3;

@h.U0/

@ui

D
nX

j D1

@f .X0/

@xj

@gj .U0/

@ui

; 1 � i � m: (5.4.8)

Proof Substituting

dU0
gi D

@gi.U0/

@u1

du1 C
@gi .U0/

@u2

du2 C � � � C
@gi.U0/

@um

dum; 1 � i � n;

into (5.4.4) and collecting multipliers of du1, du2, . . . , dum yields

dU0
h D

mX

iD1

0
@

nX

j D1

@f .X0/

@xj

@gj .U0/

@ui

1
A dui :

However, from Theorem 5.3.6,

dU0
h D

mX

iD1

@h.U0/

@ui

dui :

Comparing the last two equations yields (5.4.8).
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When it is not important to emphasize the particular point X0, we write (5.4.8) less

formally as

@h

@ui

D
nX

j D1

@f

@xj

@gj

@ui

; 1 � i � m; (5.4.9)

with the understanding that in calculating @h.U0/=@ui , @gj=@ui is evaluated at U0 and

@f=@xj at X0 D G.U0/.

The formulas (5.4.8) and (5.4.9) can also be simplified by replacing the symbol G with

X D X.U/; then we write

h.U/ D f .X.U//

and
@h.U0/

@ui

D
nX

j D1

@f .X0/

@xj

@xj .U0/

@ui

;

or simply

@h

@ui

D
nX

j D1

@f

@xj

@xj

@ui

: (5.4.10)

Example 5.4.2 Let .r; �/ be polar coordinates in the xy-plane; that is,

x D r cos �; y D r sin �:

Suppose that f D f .x; y/ is differentiable on a set S , and let

h.r; �/ D f .r cos �; r sin �/:

If .r cos �; r sin �/ 2 S , (5.4.10) implies that

@h

@r
D @f

@x

@x

@r
C @f

@y

@y

@r
D cos �

@f

@x
C sin �

@f

@y
(5.4.11)

and
@h

@�
D
@f

@x

@x

@�
C
@f

@y

@y

@�
D �r sin �

@f

@x
C r cos �

@f

@y
;

where fx and fy are evaluated at .x; y/ D .r cos �; r sin �/.

The proof of Corollary 5.4.4 suggests a straightforward way to calculate the partial

derivatives of a composite function without using (5.4.10) explicitly. If h.U/ D f .X.U//,
then Theorem 5.4.3 , in the more casual notation introduced before Example 5.4.2, implies

that

dh D fx1
dx1 C fx2

dx2 C � � � C fxndxn; (5.4.12)

where dx1, dx2, . . . , dxn must be written in terms of the differentials du1, du2, . . . , dum

of the independent variables; thus,
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dxi D
@xi

@u1

du1 C
@xi

@u2

du2 C � � � C
@xi

@um

dum:

Substituting this into (5.4.12) and collecting the multipliers of du1, du2, . . . , dum yields (5.4.10).

Example 5.4.3 If

h.r; �; ´/ D f .x.r; �/; y.r; �/; ´/;
then

dh D fx dx C fy dy C f´ d´:

But

dx D @x

@r
dr C @x

@�
d� and dy D @y

@r
dr C @y

@�
d� I

hence,

dh D fx

�
@x

@r
dr C @x

@�
d�

�
C fy

�
@y

@r
dr C @y

@�
d�

�
C f´ d´

D
�
fx

@x

@r
C fy

@y

@r

�
dr C

�
fx

@x

@�
C fy

@y

@�

�
d� C f´ d´;

so

hr D fx

@x

@r
C fy

@y

@r
; h� D fx

@x

@�
C fy

@y

@�
; h´ D f´:

Example 5.4.4 Let

h.x/ D f .x; y .x; ´.x// ; ´.x//:

Then

dhD fx dx C fy dy C f´ d´; (5.4.13)

dy D yx dx C y´ d´; (5.4.14)

and

d´ D ´0 dx; (5.4.15)

where the prime indicates differentiation with respect to x. Substituting (5.4.15) into

(5.4.14) yields

dy D .yx C y´´
0/ dx

and substituting this and (5.4.15) into (5.4.13) yields

dh D Œfx C fy.yx C y´´
0/C f´´

0� dxI

hence,

h0 D fx C fy .yx C y´´
0/C f´´

0:

Here fx , fy , and f´ are evaluated at .x; y.x; ´.x//; ´.x//, yx and y´ are evaluated at

.x; ´.x//, and ´0 is evaluated at x.
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Higher Derivatives of Composite Functions

Higher derivatives of composite functions can be computed by repeatedly applying the

chain rule. For example, differentiating (5.4.10) with respect to uk yields

@2h

@uk@ui

D
nX

j D1

@

@uk

�
@f

@xj

@xj

@ui

�

D
nX

j D1

@f

@xj

@2xj

@uk @ui

C
nX

j D1

@xj

@ui

@

@uk

�
@f

@xj

�
:

(5.4.16)

We must be careful finding
@

@uk

�
@f

@xj

�
;

which really stands here for
@

@uk

�
@f .X.U//

@xj

�
: (5.4.17)

The safest procedure is to write temporarily

g.X/ D @f .X/

@xj

I

then (5.4.17) becomes

@g.X.U//

@uk

D
nX

sD1

@g.X.U//

@xs

@xs.U/

@uk

:

Since
@g

@xs

D
@2f

@xs @xj

;

this yields

@

@uk

�
@f

@xk

�
D

nX

sD1

@2f

@xs @xj

@xs

@uk

:

Substituting this into (5.4.16) yields

@2h

@uk @ui

D
nX

j D1

@f

@xj

@2xj

@uk @ui

C
nX

j D1

@xj

@ui

nX

sD1

@2f

@xs @xj

@xs
@uk: (5.4.18)

To compute hui uk
.U0/ from this formula, we evaluate the partial derivatives of x1, x2,

. . . , xn at U0 and those of f at X0 D X.U0/. The formula is valid if x1, x2, . . . , xn and

their first partial derivatives are differentiable at U0 and f , fxi
, fx2

, . . . , fxn and their first

partial derivatives are differentiable at X0.

Instead of memorizing (5.4.18), you should understand how it is derived and use the

method, rather than the formula, when calculating second partial derivatives of composite

functions. The same method applies to the calculation of higher derivatives.
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Example 5.4.5 Suppose that fx and fy in Example 5.4.2 are differentiable on an open

set S in R
2. Differentiating (5.4.11) with respect to r yields

@2h

@r2
D cos �

@

@r

�
@f

@x

�
C sin �

@

@r

�
@f

@y

�

D cos �

�
@2f

@x2

@x

@r
C @2f

@y @x

@y

@r

�
C sin �

�
@2f

@x @y

@x

@r
C @2f

@y2

@y

@r

� (5.4.19)

if .x; y/ 2 S . Since

@x

@r
D cos �;

@y

@r
D sin �; and

@2f

@x @y
D @2f

@y @x

if .x; y/ 2 S (Exercise 5.3.21), (5.4.19) yields

@2h

@r2
D cos2 �

@2f

@x2
C 2 sin � cos �

@2f

@x @y
C sin2 �

@2f

@y2
:

Differentiating (5.4.11) with respect to � yields

@2h

@� @r
D � sin �

@f

@x
C cos �

@f

@y
C cos �

@

@�

�
@f

@x

�
C sin �

@

@�

�
@f

@y

�

D � sin �
@f

@x
C cos �

@f

@y
C cos �

�
@2f

@x2

@x

@�
C @2f

@y @x

@y

@�

�

C sin �

�
@2f

@x @y

@x

@�
C @2f

@y2

@y

@�

�
:

Since
@x

@�
D �r sin � and

@y

@�
D r cos �;

it follows that

@2h

@� @r
D � sin �

@f

@x
C cos �

@f

@y
� r sin � cos �

�
@2f

@x2
� @

2f

@y2

�

Cr.cos2 � � sin2 �/
@2f

@x@y
:

The Mean Value Theorem

For a composite function of the form

h.t/ D f .x1.t/; x2.t/; : : : ; xn.t//

where t is a real variable, x1, x2, . . . , xn are differentiable at t0, and f is differentiable at

X0 D X.t0/, (5.4.8) takes the form

h0.t0/ D
nX

j D1

fxj
.X.t0//x

0
j .t0/: (5.4.20)

This will be useful in the proof of the following theorem.
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Theorem 5.4.5 (Mean Value Theorem for Functions of n Variables)
Let f be continuous at X1 D .x11; x21; : : : ; xn1/ and X2 D .x12; x22; : : : ; xn2/ and dif-

ferentiable on the line segment L from X1 to X2: Then

f .X2/ � f .X1/ D
nX

iD1

fxi
.X0/.xi2 � xi1/ D .dX0

f /.X2 �X1/ (5.4.21)

for some X0 on L distinct from X1 and X2.

Proof An equation of L is

X D X.t/ D tX2 C .1 � t/X1; 0 � t � 1:

Our hypotheses imply that the function

h.t/ D f .X.t//

is continuous on Œ0; 1� and differentiable on .0; 1/. Since

xi .t/ D txi2 C .1 � t/xi1;

(5.4.20) implies that

h0.t/ D
nX

iD1

fxi
.X.t//.xi2 � xi1/; 0 < t < 1:

From the mean value theorem for functions of one variable (Theorem 2.3.11),

h.1/ � h.0/ D h0.t0/

for some t0 2 .0; 1/. Since h.1/ D f .X2/ and h.0/ D f .X1/, this implies (5.4.21) with

X0 D X.t0/.

Corollary 5.4.6 If fx1
; fx2

; . . . ; fxn are identically zero in an open region S of R
n;

then f is constant in S:

Proof We will show that if X0 and X are in S , then f .X/ D f .X0/. Since S is an open

region, S is polygonally connected (Theorem 5.1.20). Therefore, there are points

X0;X1; : : : ;Xn D X

such that the line segment Li from Xi�1 to Xi is in S , 1 � i � n. From Theorem 5.4.5,

f .Xi /� f .Xi�1/ D
nX

iD1

.deXi
f /.Xi �Xi�1/;

where eX is on Li and therefore in S . Therefore,

fxi
.eXi / D fx2

.eXi/ D � � � D fxn.eXi / D 0;
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which means that deXi
f � 0. Hence,

f .X0/ D f .X1/ D � � � D f .Xn/I

that is, f .X/ D f .X0/ for every X in S .

Higher Differentials and Taylor’s Theorem

Suppose that f is defined in an n-ball B�.X0/, with � > 0. If X 2 B�.X0/, then

X.t/ D X0 C t.X � X0/ 2 B�.X/; 0 � t � 1;

so the function

h.t/ D f .X.t//
is defined for 0 � t � 1. From Theorem 5.4.3 (see also (5.4.20)),

h0.t/ D
nX

iD1

fxi
.X.t/.xi � xi0/

if f is differentiable in B�.X0/, and

h00.t/ D
nX

j D1

@

@xj

 
nX

iD1

@f .X.t//

@xi

.xi � xi0/

!
.xj � xj 0/

D
nX

i;j D1

@2f .X.t//

@xj @xi

.xi � xi0/.xj � xj 0/

if fx1
, fx2

, . . . , fxn are differentiable in B�.X0/. Continuing in this way, we see that

h.r/.t/ D
nX

i1;i2;:::;ir D1

@rf .X.t//

@xir @xir�1
� � � @xi1

.xi1�xi1;0/.xi2�xi2;0/ � � � .xir �xir ;0/ (5.4.22)

if all partial derivatives of f of order � r � 1 are differentiable in B�.X0/.

This motivates the following definition.

Definition 5.4.7 Suppose that r � 1 and all partial derivatives of f of order � r � 1
are differentiable in a neighborhood of X0. Then the r th differential of f at X0, denoted

by d
.r/
X0
f , is defined by

d
.r/
X0
f D

nX

i1;i2;:::;ir D1

@rf .X0/

@xir@xir�1
� � � @xi1

dxi1dxi2 � � �dxir ; (5.4.23)

where dx1, dx2, . . . , dxn are the differentials introduced in Section 5.3; that is, dxi is the

function whose value at a point in R
n is the i th coordinate of the point. For convenience,

we define

.d
.0/
X0
f / D f .X0/:

Notice that d
.1/
X0
f D dX0

f .
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Under the assumptions of Definition 5.4.7, the value of

@rf .X0/

@xir@xir�1
� � � @xi1

depends only on the number of times f is differentiated with respect to each variable,

and not on the order in which the differentiations are performed (Exercise 5.3.22). Hence,

Exercise 5.3.12 implies that (5.4.23) can be rewritten as

d
.r/
X0
f D

X

r

rŠ

r1Šr2Š � � � rnŠ
@rf .X0/

@x
r1

1 @x
r2

2 � � � @x
rn
n

.dx1/
r1.dx2/

r2 � � � .dxn/
rn ; (5.4.24)

where
P

r indicates summation over all ordered n-tuples .r1; r2; : : : ; rn/ of nonnegative

integers such that

r1 C r2 C � � � C rn D r
and @x

ri

i is omitted from the “denominators” of all terms in (5.4.24) for which ri D 0. In

particular, if n D 2,

d
.r/
X0
f D

rX

j D0

 
r

j

!
@rf .x0; y0/

@xj @yr�j
.dx/j .dy/r�j :

Example 5.4.6 Let

f .x; y/ D 1

1C ax C by ;

where a and b are constants. Then

@rf .x; y/

@xj @yr�j
D .�1/r rŠ aj br�j

.1C ax C by/rC1
;

so

d
.r/
X0
f D .�1/r rŠ

.1C ax0 C by0/rC1

rX

j D0

 
r

j

!
aj br�j .dx/j .dy/r�j

D .�1/r rŠ
.1C ax0 C by0/rC1

.a dx C b dy/r

if 1C ax0 C by0 ¤ 0.

Example 5.4.7 Let

f .X/ D exp

0
@�

nX

j D1

ajxj

1
A ;

where a1, a2, . . . , an are constants. Then

@rf .X/

@x
r1

1 @x
r2

2 � � � @x
rn
n

D .�1/rar1

1 a
r2

2 � � �arn
n exp

0
@�

nX

j D1

ajxj

1
A :
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Therefore,

.d
.r/
X0
f /.ˆ/ D .�1/r

 X

r

rŠ

r1Šr2Š � � � rnŠ
a

r1

1 a
r2

2 � � �arn
n .dx1/

r1.dx2/r2 � � � .dxn/
rn

!

� exp

0
@�

nX

j D1

ajxj 0

1
A

D .�1/r .a1 dx1 C a2 dx2 C � � � C an dxn/
r exp

0
@�

nX

j D1

ajxj 0

1
A

(Exercise 5.3.12).

The next theorem is analogous to Taylor’s theorem for functions of one variable (Theo-

rem 2.5.4).

Theorem 5.4.8 (Taylor’s Theorem for Functions of n Variables) Suppose

that f and its partial derivatives of order � k are differentiable at X0 and X in R
n and on

the line segment L connecting them: Then

f .X/ D
kX

rD0

1

rŠ
.d

.r/
X0
f /.X �X/C 1

.k C 1/Š
.d

.kC1/

eX f /.X �X0/ (5.4.25)

for some eX on L distinct from X0 and X.

Proof Define

h.t/ D f .X0 C t.X �X0//: (5.4.26)

With ˆ D X � X0, our assumptions and the discussion preceding Definition 5.4.7 imply

that h, h0, . . . , h.kC1/ exist on Œ0; 1�. From Taylor’s theorem for functions of one variable,

h.1/ D
kX

rD0

h.r/.0/

rŠ
C h.kC1/.�/

.k C 1/Š
; (5.4.27)

for some � 2 .0; 1/. From (5.4.26),

h.0/ D f .X0/ and h.1/ D f .X/: (5.4.28)

From (5.4.22) and (5.4.23) with ˆ D X �X0,

h.r/.0/ D .d .r/
X0
f /.X � X0/; 1 � r � k; (5.4.29)

and

h.kC1/.�/ D
�
dkC1

eX f
�
.X �X0/ (5.4.30)
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where
eX D X0 C �.X � X0/

is on L and distinct from X0 and X. Substituting (5.4.28), (5.4.29), and (5.4.30) into

(5.4.27) yields (5.4.25).

Example 5.4.8 Theorem 5.4.8 and the results of Example 5.4.6 with X0 D .0; 0/ and

ˆ D .x; y/ imply that if 1C ax C by > 0, then

1

1C ax C by
D

kX

rD0

.�1/r .ax C by/r C .�1/kC1 .ax C by/kC1

.1C a�x C b�y/kC2

for some � 2 .0; 1/. (Note that � depends on k as well as .x; y/.)

Example 5.4.9 Theorem 5.4.8 and the results of Example 5.4.7 with X0 D 0 and

ˆ D X imply that

exp

0
@�

nX

j D1

aj xj

1
A D

kX

rD0

.�1/r
rŠ

.a1x1 C a2x2 C � � � C anxn/
r

C .�1/
kC1

.k C 1/Š
.a1x1 C a2x2 C � � � C anxn/

kC1

� exp

2
4��

0
@

nX

j D1

ajxj

1
A
3
5 ;

for some � 2 .0; 1/.

By analogy with the situation for functions of one variable, we define the kth Taylor

polynomial of f about X0 by

Tk.X/ D
kX

rD0

1

rŠ
.d

.r/
X0
f /.X �X0/

if the differentials exist; then (5.4.25) can be rewritten as

f .X/ D Tk.X/C
1

.k C 1/Š
.d

.kC1/

eX f /.X �X0/:

A Sufficient Condition for Relative Extreme Values

The next theorem leads to a useful sufficient condition for local maxima and minima. It

is related to Theorem 2.5.1. Strictly speaking, however, it is not a generalization of Theo-

rem 2.5.1 (Exercise 5.4.18).



352 Chapter 5 Real-Valued Functions of Several Variables

Theorem 5.4.9 Suppose that f and its partial derivatives of order � k�1 are differ-

entiable in a neighborhoodN of a point X0 in R
n and all kth-order partial derivatives of

f are continuous at X0: Then

lim
X!X0

f .X/ � Tk.X/

jX �X0jk
D 0: (5.4.31)

Proof If � > 0, there is a ı > 0 such that Bı .X0/ � N and all kth-order partial

derivatives of f satisfy the inequality

ˇ̌
ˇ̌
ˇ

@kf .eX/
@xik@xik�1

� � � @xi1

� @kf .X0/

@xik@xik�1
� � � @xi1

ˇ̌
ˇ̌
ˇ < �;

eX 2 Bı.X0/: (5.4.32)

Now suppose that X 2 Bı.X0/. From Theorem 5.4.8 with k replaced by k � 1,

f .X/ D Tk�1.X/C
1

kŠ
.d

.k/

eX f /.X � X0/; (5.4.33)

where eX is some point on the line segment from X0 to X and is therefore in Bı .X0/. We

can rewrite (5.4.33) as

f .X/ D Tk.X/C
1

kŠ

h
.d

.k/

eX f /.X �X0/ � .d .k/
X0
f /.X �X0/

i
: (5.4.34)

But (5.4.23) and (5.4.32) imply that

ˇ̌
ˇ.d .k/

eX f /.X �X0/ � .d .k/
X0
f /.X �X0/

ˇ̌
ˇ < nk�jX �X0jk (5.4.35)

(Exercise 5.4.17), which implies that

jf .X/� Tk.X/j
jX �X0jk

<
nk�

kŠ
; X 2 Bı .X0/;

from (5.4.34). This implies (5.4.31).

Let r be a positive integer and X0 D .x10; x20; : : : ; xn0/. A function of the form

p.X/ D
X

r

ar1r2:::rn.x1 � x10/
r1 .x2 � x20/

r2 � � � .xn � xn0/
rn ; (5.4.36)

where the coefficients far1r2:::rng are constants and the summation is over all n-tuples of

nonnegative integers .r1; r2; : : : ; rn/ such that

r1 C r2 C � � � C rn D r;

is a homogeneous polynomial of degree r in X � X0, provided that at least one of the

coefficients is nonzero. For example, if f satisfies the conditions of Definition 5.4.7, then

the function

p.X/ D .d .r/
X0
f /.X �X0/
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is such a polynomial if at least one of the r th-order mixed partial derivatives of f at X0 is

nonzero.

Clearly, p.X0/ D 0 if p is a homogeneous polynomial of degree r � 1 in X � X0.

If p.X/ � 0 for all X, we say that p is positive semidefinite; if p.X/ > 0 except when

X D X0, p is positive definite.

Similarly, p is negative semidefinite if p.X/ � 0 or negative definite if p.X/ < 0 for all

X ¤ X0. In all these cases, p is semidefinite.

With p as in (5.4.36),

p.�XC 2X0/ D .�1/rp.X/;
so p cannot be semidefinite if r is odd.

Example 5.4.10 The polynomial

p.x; y; ´/ D x2 C y2 C ´2 C xy C x´C y´

is homogeneous of degree 2 in X D .x; y; ´/. We can rewrite p as

p.x; y; ´/ D 1

2

�
.x C y/2 C .y C ´/2 C .´C x/2

�
;

so p is nonnegative, and p.x; y; ´/ D 0 if and only if

x C y D y C ´ D ´C x D 0;

which is equivalent to .x; y; ´/ D .0; 0; 0/. Therefore, p is positive definite and �p is

negative definite.

The polynomial

p1.x; y; ´/ D x2 C y2 C ´2 C 2xy

can be rewritten as

p1.x; y; ´/ D .x C y/2 C ´2;

so p1 is nonnegative. Since p1.1;�1; 0/ D 0, p1 is positive semidefinite and �p1 is

negative semidefinite.

The polynomial

p2.x; y; ´/ D x2 � y2 C ´2

is not semidefinite, since, for example,

p2.1; 0; 0/ D 1 and p2.0; 1; 0/ D 1:

From Theorem 5.3.11, if f is differentiable and attains a local extreme value at X0, then

dX0
f D 0; (5.4.37)

since fx1
.X0/ D fx2

.X0/ D � � � D fxn.X0/ D 0. However, the converse is false. The next

theorem provides a method for deciding whether a point satisfying (5.4.37) is an extreme

point. It is related to Theorem 2.5.3.
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Theorem 5.4.10 Suppose that f satisfies the hypotheses of Theorem 5.4.9 with k �
2; and

d
.r/
X0
f � 0 .1 � r � k � 1/; d

.k/
X0
f 6� 0: (5.4.38)

Then

(a) X0 is not a local extreme point of f unless d
.k/
X0
f is semidefinite as a polynomial in

X �X0: In particular; X0 is not a local extreme point of f if k is odd:

(b) X0 is a local minimum point of f if d
.k/
X0
f is positive definite; or a local maximum

point if d
.k/
X0
f is negative definite:

(c) If d
.k/
X0
f is semidefinite; then X0 may be a local extreme point of f; but it need not

be:

Proof From (5.4.38) and Theorem 5.4.9,

lim
X!X0

f .X/ � f .X0/ �
1

kŠ
.d

.k/
X0
/.X �X0/

jX �X0jk
D 0: (5.4.39)

If X D X0 C tU, where U is a constant vector, then

.d
.k/
X0
f /.X �X0/ D tk.d .k/

X0
f /.U/;

so (5.4.39) implies that

lim
t!0

f .X0 C tU/ � f .X0/ �
tk

kŠ
.d

.k/
X0
f /.U/

tk
D 0;

or, equivalently,

lim
t!0

f .X0 C tU/ � f .X0/

tk
D 1

kŠ
.d

.k/
X0
f /.U/ (5.4.40)

for any constant vector U.

To prove (a), suppose that d
.k/
X0
f is not semidefinite. Then there are vectors U1 and U2

such that

.d
.k/
X0
f /.U1/ > 0 and .d

.k/
X0
f /.U2/ < 0:

This and (5.4.40) imply that

f .X0 C tU1/ > f .X0/ and f .X0 C tU2/ < f .X0/

for t sufficiently small. Hence, X0 is not a local extreme point of f .

To prove (b), first assume that d
.k/
X0
f is positive definite. Then it can be shown that

there is a � > 0 such that

.d
.k/
X0
f /.X � X0/

kŠ
� �jX �X0jk (5.4.41)



Section 5.4 The Chain Rule and Taylor’s Theorem 355

for all X (Exercise 5.4.19). From (5.4.39), there is a ı > 0 such that

f .X/ � f .X0/ �
1

kŠ
.d

.k/
X0
f /.X �X0/

jX �X0jk
> ��

2
if jX �X0j < ı:

Therefore,

f .X/ � f .X0/ >
1

kŠ
.d

.k/
X0
/.X � X0/�

�

2
jX �X0jk if jX �X0j < ı:

This and (5.4.41) imply that

f .X/ � f .X0/ >
�

2
jX �X0jk if jX �X0j < ı;

which implies that X0 is a local minimum point of f . This proves half of (b). We leave

the other half to you (Exercise 5.4.20).

To prove (c) merely requires examples; see Exercise 5.4.21.

Corollary 5.4.11 Suppose that f; fx ; and fy are differentiable in a neigborhood of a

critical point X0 D .x0; y0/ of f and fxx ; fyy ; and fxy are continuous at .x0; y0/: Let

D D fxx.x0; y0/fxy .x0; y0/ � f 2
xy.x0; y0/:

Then

(a) .x0; y0/ is a local extreme point of f if D > 0I .x0; y0/ is a local minimum point if

fxx.x0; y0/ > 0, or a local maximum point if fxx.x0; y0/ < 0:

(b) .x0; y0/ is not a local extreme point of f if D < 0:

Proof Write .x � x0; y � y0/ D .u; v/ and

p.u; v/ D .d .2/
X0
f /.u; v/ D Au2 C 2Buv C Cv2;

where A D fxx.x0; y0/, B D fxy.x0; y0/, and C D fyy.x0; y0/, so

D D AC � B2:

If D > 0, then A ¤ 0, and we can write

p.u; v/ D A
�
u2 C 2B

A
uv C B2

A2
v2

�
C
�
C � B

2

A

�
v2

D A
�
uC B

A
v

�2

C D

A
v2:

This cannot vanish unless u D v D 0. Hence, d
.2/
X0
f is positive definite if A > 0 or

negative definite if A < 0, and Theorem 5.4.10(b) implies (a).

If D < 0, there are three possibilities:
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1. A ¤ 0; then p.1; 0/ D A and p

�
�B
A
; 1

�
D D

A
.

2. C ¤ 0; then p.0; 1/ D C and p

�
1;�B

C

�
D D

C
.

3. A D C D 0; then B ¤ 0 and p.1; 1/ D 2B and p.1;�1/ D �2B .

In each case the two given values of p differ in sign, so X0 is not a local extreme point

of f , from Theorem 5.4.10(a).

Example 5.4.11 If

f .x; y/ D eax2Cby2

;

then

fx.x; y/ D 2axf .x; y/; fy.x; y/ D 2byf .x; y/;

so

fx.0; 0/ D fy.0; 0/ D 0;

and .0; 0/ is a critical point of f . To apply Corollary 5.4.11, we calculate

fxx.x; y/ D .2aC 4a2x2/f .x; y/;

fyy.x; y/ D .2bC 4b2y2/f .x; y/;

fxy.x; y/ D 4abxyf .x; y/:

Therefore,

D D fxx.0; 0/fyy.0; 0/� f 2
xy .0; 0/ D .2a/.2b/ � .0/.0/ D 4ab:

Corollary 5.4.11 implies that .0; 0/ is a local minimum point if a and b are positive, a local

maximum if a and b are negative, and neither if one is positive and the other is negative.

Corollary 5.4.11 does not apply if a or b is zero.

5.4 Exercises

In the exercises on the use of the chain rule, assume that the functions satisfy appropriate

differentiability conditions.

1. Under the assumptions of Theorem 5.4.3, show that U0 is an interior point of the

domain of h.
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2. Let h.U/ D f .G.U// and find dU0
h by Theorem 5.4.3, and then by writing h

explicitly as a function of U.

(a) f .x; y/ D 3x2 C 4xy2 C 3x,

g1.u; v/ D veuCv�1,

g2.u; v/ D e�uCv�1,

.u0; v0/ D .0; 1/

(b) f .x; y; ´/ D e�.xCyC´/,

g1.u; v; w/ D logu� logv C logw,

g2.u; v; w/ D �2 logu � 3 logw,

g3.u; v; w/ D loguC logv C 2 logw,

.u0; v0; w0/ D .1; 1; 1/

(c) f .x; y/ D .x C y/2,

g1.u; v/ D u cos v,

g2.u; v/ D u sinv,

.u0; v0/ D .3; �=2/

(d) f .x; y; ´/ D x2 C y2 C ´2,

g1.u; v; w/ D u cos v sinw,

g2.u; v; w/ D u cos v cosw,

g3.u; v; w/ D u sin v;

.u0; v0; w0/ D .4; �=3; �=6/

3. Let h.r; �; ´/ D f .x; y; ´/, where x D r cos � and y D r sin � . Find hr , h� , and

h´ in terms of fx, fy , and f´.

4. Let h.r; �; �/ D f .x; y; ´/, where x D r sin� cos � , y D r sin � sin � , and ´ D
r cos�. Find hr , h� , and h� in terms of fx , fy , and f´.

5. Prove:

(a) If h.u; v/ D f .u2 C v2/, then vhu � uhv D 0.

(b) If h.u; v/ D f .sinuC cos v/, then hu sinv C hv cosu D 0.

(c) If h.u; v/ D f .u=v/, then uhu C vhv D 0.

(d) If h.u; v/ D f .g.u; v/;�g.u; v//, then dh D .fx � fy/ dg.

6. Find hy and h´ if

h.y; ´/ D g.x.y; ´/; y; ´; w.y; ´//:

7. Suppose that u, v, and f are defined on .�1;1/. Let u and v be differentiable

and f be continuous for all x. Show that

d

dx

Z v.x/

u.x/

f .t/ dt D f .v.x//v0.x/ � f .u.x//u0.x/:

8. We say that f D f .x1; x2; : : : ; xn/ is homogeneous of degree r if Df is open and

there is a constant r such that

f .tx1; tx2; : : : ; txn/ D trf .x1; x2; : : : ; xn/
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whenever t > 0 and .x1; x2; : : : ; xn/ and .tx1; tx2; : : : ; txn/ are in Df . Prove: If

f is differentiable and homogeneous of degree r , then

nX

iD1

xifxi
.x1; x2; : : : ; xn/ D rf .x1; x2; : : : ; xn/:

(This is Euler’s theorem for homogeneous functions.)

9. If h.r; �/ D f .r cos �; r sin �/, show that

fxx C fyy D hrr C
1

r
hr C

1

r2
h�� :

HINT: Rewrite the defining equation as f .x; y/ D h.r.x; y/; �.x; y//; with r.x; y/ Dp
x2 C y2 and �.x; y/ D tan�1.y=x/; and differentiate with respect to x and y:

10. Let h.u; v/ D f .a.u; v/; b.u; v//, where au D bv and av D �bu. Show that

huu C hvv D .fxx C fyy/.a
2
u C a2

v/:

11. Prove: If

u.x; t/ D f .x � ct/C g.x C ct/;
then ut t D c2uxx .

12. Let h.u; v/ D f .uC v; u� v/. Show that

(a) fxx � fyy D huv (b) fxx C fyy D
1

2
.huu C hvv/

13. Returning to Exercise 5.4.4, find hrr and hr� in terms of the partial derivatives of

f .

14. Let huv D 0 for all .u; v/. Show that h is of the form

h.u; v/ D U.u/ C V.v/:

Use this and Exercise 5.4.12(a) to show that if fxx � fyy D 0 for all .x; y/, then

f .x; y/ D U.x C y/ C V.x � y/:

15. Prove or give a counterexample: If f is differentiable and fx D 0 in a region D,

then f .x1; y/ D f .x2; y/ whenever .x1; y/ and .x2; y/ are in D; that is f .x; y/

depends only on y.

16. Find T3.X/.

(a) f .x; y/ D ex cosy, X0 D .0; 0/
(b) f .x; y/ D e�x�y , X0 D .0; 0/
(c) f .x; y; ´/ D .x C y C ´ � 3/5, X0 D .1; 1; 1/
(d) f .x; y; ´/ D sinx siny sin´, X0 D .0; 0; 0/

17. Use Eqns. (5.4.23) and (5.4.32) to prove Eqn. (5.4.35).
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18. Carefully explain why Theorem 5.4.9 is not a generalization of Theorem 2.5.1.

19. Suppose that p is a homogeneous polynomial of degree r in Y and p.Y/ > 0 for all

nonzero Y in R
n. Show that there is a � > 0 such that p.Y/ � �jYjr for all Y in

R
n. HINT: p assumes a minimum on the set

˚
Y
ˇ̌
jYj D 1

	
: Use this to establish the

inequality in Eqn. (5.4.41):

20. Complete the proof of Theorem 5.4.10(b).

21. (a) Show that .0; 0/ is a critical point of each of the following functions, and that

they have positive semidefinite second differentials at .0; 0/.

p.x; y/ D x2 � 2xy C y2 C x4 C y4I
q.x; y/ D x2 � 2xy C y2 � x4 � y4:

(b) Show that D as defined in Corollary 5.4.11 is zero for both p and q.

(c) Show that .0; 0/ is a local minimum point of p but not a local extreme point

of q.

22. Suppose that p D p.x1; x2; : : : ; xn/ is a homogeneous polynomial of degree r

(Exercise 5.4.8). Let i1, i2, . . . , in be nonnegative integers such that

i1 C i2 C � � � C in D k;

and let

q.x1; x2; : : : ; xn/ D
@kp.x1; x2; : : : ; xn/

@x
i1
1 @x

i2
2 � � � @x

in
n

:

Show that q is homogeneous of degree � r � k, subject to the convention that a

homogeneous polynomial of negative degree is identically zero.

23. Suppose that f D f .x1; x2; : : : ; xn/ is a homogeous function of degree r (Exer-

cise 8), with mixed partial derivative of all orders. Show that

nX

i;j D1

xixj

@2f .x1; x2; : : : ; xn/

@xi@xj

D r.r � 1/f .x1; x2; : : : ; xn/

and

nX

i;j;kD1

xixjxk

@3.x1; x2; : : : ; xn/

@xi@xj @xk

D r.r � 1/.r � 2/f .x1; x2; : : : ; xn/:

Can you generalize these results?

24. Obtain the result in Example 5.4.7 by writing

F.X/ D e�a1x1e�a2x2 � � � e�anxn ;

formally multiplying the series

e�aixi D
1X

ri D0

.�1/ri
.aixi/

ri

ri Š
; 1 � i � n

together, and collecting the resulting products appropriately.
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25. Let

f .x; y/ D exCy :

By writing

f .x; y/ D
1X

rD0

.x C y/r
rŠ

;

and expanding .x C y/r by means of the binomial theorem, verify that

d
.r/

(0;0/
f D

rX

j D0

 
r

j

!
@rf .0; 0/

@xj @yr�j
.dx/j .dy/r�j :



CHAPTER 6

Vector-Valued Functions

of Several Variables

IN THIS CHAPTER we study the differential calculus of vector-valued functions of several

variables.

SECTION 6.1 reviews matrices, determinants, and linear transformations, which are inte-

gral parts of the differential calculus as presented here.

SECTION 6.2 defines continuity and differentiability of vector-valued functions of several

variables. The differential of a vector-valued function F is defined as a certain linear trans-

formation. The matrix of this linear transformation is called the differential matrix of F,

denoted by F0. The chain rule is extended to compositions of differentiable vector-valued

functions.

SECTION 6.3 presents a complete proof of the inverse function theorem.

SECTION 6.4. uses the inverse function theorem to prove the implicit function theorem.

6.1 LINEAR TRANSFORMATIONS AND MATRICES

In this and subsequent sections it will often be convenient to write vectors vertically; thus,

instead of X D .x1; x2; : : : ; xn/ we will write

X D

2
6664

x1

x2

:::

xn

3
7775

when dealing with matrix operations. Although we assume that you have completed a

course in linear algebra, we will review the pertinent matrix operations.

We have defined vector-valued functions as ordered n-tuples of real-valued functions, in

connection with composite functions h D f ıG, where f is real-valued and G is vector-

valued. We now consider vector-valued functions as objects of interest on their own.

361
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If f1, f2, . . . , fm are real-valued functions defined on a set D in R
n, then

F D

2
6664

f1

f2

:::

fm

3
7775

assigns to every X in D an m-vector

F.X/ D

2
6664

f1.X/

f2.X/
:::

fm.X/

3
7775 :

Recall that f1, f2, . . . , fm are the component functions, or simply components, of F. We

write

F W Rn ! R
m

to indicate that the domain of F is in R
n and the range of F is in R

m. We also say that F is a

transformation from R
n to R

m. Ifm D 1, we identify F with its single component function

f1 and regard it as a real-valued function.

Example 6.1.1 The transformation F W R2 ! R
3 defined by

F.x; y/ D

2
4
2x C 3y
�x C 4y
x � y

3
5

has component functions

f1.x; y/ D 2xC 3y; f2.x; y/ D �x C 4y; f3.x; y/ D x � y:

Linear Transformations

The simplest interesting transformations from R
n to R

m are the linear transformations,

defined as follows

Definition 6.1.1 A transformation L W Rn ! R
m defined on all of R

n is linear if

L.XC Y/ D L.X/C L.Y/

for all X and Y in R
n and

L.aX/ D aL.X/

for all X in R
n and real numbers a.
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Theorem 6.1.2 A transformation L W Rn ! R
m defined on all of R

n is linear if and

only if

L.X/ D

2
6664

a11x1 C a12x2 C � � � C a1nxn

a21x1 C a22x2 C � � � C a2nxn

:::

am1x1 C am2x2 C � � � C amnxn

3
7775 ; (6.1.1)

where the aij ’s are constants:

Proof If can be seen by induction (Exercise 6.1.1) that if L is linear, then

L.a1X1 C a2X2 C � � � C akXk/ D a1L.X1/C a2L.X2/C � � � C akL.Xk/ (6.1.2)

for any vectors X1, X2, . . . , Xk and real numbers a1, a2, . . . , ak . Any X in R
n can be

written as

XD

2
6664

x1

x2

:::

xn

3
7775 D x1

2
6664

1

0
:::

0

3
7775C x2

2
6664

0

1
:::

0

3
7775C � � � C xn

2
6664

0

0
:::

1

3
7775

D x1E1 C x2E2 C � � � C xnEn:

Applying (6.1.2) with k D n, Xi D Ei , and ai D xi yields

L.X/ D x1L.E1/C x2L.E2/C � � � C xnL.En/: (6.1.3)

Now denote

L.Ej / D

2
6664

a1j

a2j

:::

amj

3
7775 ;

so (6.1.3) becomes

L.X/ D x1

2
6664

a11

a21

:::

am1

3
7775C x2

2
6664

a12

a22

:::

am2

3
7775C � � � C xn

2
6664

a1n

a2n

:::

amn

3
7775 ;

which is equivalent to (6.1.1). This proves that if L is linear, then L has the form (6.1.1).

We leave the proof of the converse to you (Exercise 6.1.2).

We call the rectangular array

A D

2
6664

a11 a12 � � � a1n

a21 a21 � � � a2n

:::
:::

: : :
:::

am1 am2 � � � amn

3
7775 (6.1.4)
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the matrix of the linear transformation (6.1.1). The number aij in the i th row and j th

column of A is called the .i; j /th entry of A. We say that A is an m � n matrix, since A

has m rows and n columns. We will sometimes abbreviate (6.1.4) as

A D Œaij �:

Example 6.1.2 The transformation F of Example 6.1.1 is linear. The matrix of F is
2
4

2 3

�1 4

1 �1

3
5 :

We will now recall the matrix operations that we need to study the differential calculus

of transformations.

Definition 6.1.3

(a) If c is a real number and A D Œaij � is an m � n matrix, then cA is the m � n matrix

defined by

cA D Œcaij �I
that is, cA is obtained by multiplying every entry of A by c.

(b) If A D Œaij � and B D Œbij � are m � n matrices, then the sum A C B is the m � n
matrix

AC B D Œaij C bij �I
that is, the sum of two m � n matrices is obtained by adding corresponding entries.

The sum of two matrices is not defined unless they have the same number of rows and

the same number of columns.

(c) If A D Œaij � is an m � p matrix and B D Œbij � is a p � n matrix, then the product

C D AB is them � n matrix with

cij D ai1b1j C ai2b2j C � � � C aipbpj D
pX

kD1

aikbkj ; 1 � i � m; 1 � j � n:

Thus, the .i; j /th entry of AB is obtained by multiplying each entry in the i th row of

A by the corresponding entry in the j th column of B and adding the products. This

definition requires that A have the same number of columns as B has rows. Otherwise,

AB is undefined.

Example 6.1.3 Let

A D

2
4

2 1 2

�1 0 3

0 1 0

3
5 ; B D

2
4

0 1 1

�1 0 2

3 0 1

3
5 ;

and

C D

2
4
5 0 1 2

3 0 �3 1

1 0 �1 1

3
5 :
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Then

2A D

2
4

2.2/ 2.1/ 2.2/

2.�1/ 2.0/ 2.3/

2.0/ 2.1/ 2.0/

3
5 D

2
4

4 2 4

�2 0 6

0 2 0

3
5

and

AC B D

2
4

2C 0 1C 1 2C 1
�1 � 1 0C 0 3C 2
0C 3 1C 0 0C 1

3
5 D

2
4

2 2 3

�2 0 5

3 1 1

3
5 :

The (2, 3) entry in the product AC is obtained by multiplying the entries of the second

row of A by those of the third column of C and adding the products: thus, the (2, 3) entry

of AC is

.�1/.1/ C .0/.�3/C .3/.�1/ D �4:
The full product AC is

2
4

2 1 2

�1 0 3

0 1 0

3
5
2
4
5 0 1 2

3 0 �3 1

1 0 �1 1

3
5 D

2
4

15 0 �3 7

�2 0 �4 1

3 0 �3 1

3
5 :

Notice that AC C, BC C, CA, and CB are undefined.

We leave the proofs of next three theorems to you (Exercises 6.1.7–6.1.9)

Theorem 6.1.4 If A; B; and C are m � n matrices; then

.AC B/C C D AC .BC C/:

Theorem 6.1.5 If A and B arem�nmatrices and r and s are real numbers; then (a)
r.sA/ D .rs/AI (b) .r C s/A D rAC sAI (c) r.AC B/ D rAC rB:

Theorem 6.1.6 If A; B; and C are m � p; p � q; and q � n matrices; respectively;

then .AB/C D A.BC/:

The next theorem shows why Definition 6.1.3 is appropriate. We leave the proof to you

(Exercise 6.1.11).

Theorem 6.1.7

(a) If we regard the vector

X D

2
6664

x1

x2

:::

xn

3
7775

as an n � 1 matrix; then the linear transformation (6.1.1) can be written as

L.X/ D AX:
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(b) If L1 and L2 are linear transformations from R
n to R

m with matrices A1 and A2

respectively; then c1L1 C c2L2 is the linear transformation from R
n to R

m with

matrix c1A1 C c2A2:

(c) If L1 W Rn ! R
p and L2 W Rp ! R

m are linear transformations with matrices A1

and A2; respectively; then the composite function L3 D L2 ı L1; defined by

L3.X/ D L2.L1.X//;

is the linear transformation from R
n to R

m with matrix A2A1:

Example 6.1.4 If

L1.X/ D

2
4

2x C 3y
3x C 2y
�x C y

3
5 and L2.X/ D

2
4
�x � y
4xC y
x

3
5 ;

then

A1 D

2
4

2 3

3 2

�1 1

3
5 and A2 D

2
4
�1 �1
4 1

1 0

3
5 :

The linear transformation

L D 2L1 C L2

is defined by

L.X/ D 2L1.X/C L2.X/

D 2

2
4
2x C 3y
3x C 2y
�x C y

3
5C

2
4
�x � y
4xC y
x

3
5

D

2
4

3x C 5y
10x C 5y
�x C 2y

3
5 :

The matrix of L is

A D

2
4

3 5

10 5

�1 2

3
5 D 2A1 C A2:

Example 6.1.5 Let

L1.X/ D
�

x C 2y
3x C 4y

�
W R2 ! R

2;

and

L2.U/ D

2
4

uC v

�u � 2v
3uC v

3
5 W R2 ! R

3:
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Then L3 D L2 ı L1 W R2 ! R
3 is given by

L3.X/ D L2..L1.X// D

2
4

.x C 2y/C .3x C 4y/
�.x C 2y/ � 2.3x C 4y/
3.x C 2y/C .3x C 4y/

3
5 D

2
4

4xC 6y

�7x � 10y
6x C 10y

3
5 :

The matrices of L1 and L2 are

A1 D
�
1 2

3 4

�
and A2 D

2
4

1 1

�1 �2
3 1

3
5 ;

respectively. The matrix of L3 is

C D

2
4

4 6

�7 �10
6 10

3
5 D A2A1:

Example 6.1.6 The linear transformations of Example 6.1.5 can be written as

L1.X/ D
�
1 2

3 4

� �
x

y

�
; L2.U/ D

2
4

1 1

�1 �2
3 1

3
5
�
u

v

�
;

and

L3.X/ D

2
4

4 6

�7 �10
6 10

3
5
�
x

y

�
:

A New Notation for the Differential

If a real-valued function f W Rn ! R is differentiable at X0, then

dX0
f D fx1

.X0/ dx1 C fx2
.X0/ dx2 C � � � C fxn.X0/ dxn:

This can be written as a matrix product

dX0
f D Œfx1

.X0/ fx2
.X0/ � � � fxn.X0/�

2
6664

dx1

dx2

:::

dxn

3
7775 : (6.1.5)

We define the differential matrix of f at X0 by

f 0.X0/ D Œfx1
.X0/ fx2

.X0/ � � � fxn.X0/� (6.1.6)

and the differential linear transformation by

dX D

2
6664

dx1

dx2

:::

dxn

3
7775 :
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Then (6.1.5) can be rewritten as

dX0
f D f 0.X0/ dX: (6.1.7)

This is analogous to the corresponding formula for functions of one variable (Exam-

ple 5.3.7), and shows that the differential matrix f 0.X0/ is a natural generalization of the

derivative. With this new notation we can express the defining property of the differential

in a way similar to the form that applies for n D 1:

lim
X!X0

f .X/ � f .X0/ � f 0.X0/.X �X0/

jX �X0j
D 0;

where X0 D .x10; x20; : : : ; xn0/ and f 0.X0/.X �X0/ is the matrix product

Œfx1
.X0/ fx2

.X0/ � � � fxn.X0/�

2
6664

x1 � x10

x2 � x20

:::

xn � xn0

3
7775 :

As before, we omit the X0 in (6.1.6) and (6.1.7) when it is not necessary to emphasize

the specific point; thus, we write

f 0 D
�
fx1

fx2
� � � fxn

�
and df D f 0dX:

Example 6.1.7 If

f .x; y; ´/ D 4x2y´3;

then

f 0.x; y; ´/ D Œ8xy´3 4x2´3 12x2y´2�:

In particular, if X0 D .1;�1; 2/, then

f 0.X0/ D Œ�64 32 � 48�;

so

dX0
f D f 0.X0/ dXD Œ�64 32 � 48�

2
4
dx

dy

d´

3
5

D �64 dx C 32 dy � 48 d´:

The Norm of a Matrix

We will need the following definition in the next section.

Definition 6.1.8 The norm; kAk; of an m� n matrix A D Œaij � is the smallest number

such that

jAXj � kAk jXj
for all X in R

n:
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To justify this definition, we must show that kAk exists. The components of Y D AX

are

yi D ai1x1 C ai2x2 C � � � C ainxn; 1 � i � m:
By Schwarz’s inequality,

y2
i � .a2

i1 C a2
i2 C � � � C a2

in/jXj2:

Summing this over 1 � i � m yields

jYj2 �

0
@

mX

iD1

nX

j D1

a2
ij

1
A jXj2:

Therefore, the set

B D
˚
K
ˇ̌
jAXj � KjXj for all X in R

n
	

is nonempty. Since B is bounded below by zero, B has an infimum ˛. If � > 0, then ˛C �
is in B because if not, then no number less than ˛C � could be in B . Then ˛C � would be

a lower bound for B , contradicting the definition of ˛. Hence,

jAXj � .˛ C �/jXj; X 2 R
n:

Since � is an arbitrary positive number, this implies that

jAXj � ˛jXj; X 2 R
n;

so ˛ 2 B . Since no smaller number is in B , we conclude that kAk D ˛.

In our applications we will not have to actually compute the norm of a matrix A; rather,

it will be sufficient to know that the norm exists (finite).

Square Matrices

Linear transformations from R
n to R

n will be important when we discuss the inverse func-

tion theorem in Section 6.3 and change of variables in multiple integrals in Section 7.3.

The matrix of such a transformation is square; that is, it has the same number of rows and

columns.

We assume that you know the definition of the determinant

det.A/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

of an n � n matrix

A D

2
6664

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

3
7775 :
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The transpose, At , of a matrix A (square or not) is the matrix obtained by interchanging

the rows and columns of A; thus, if

A D

2
4
1 2 3

3 1 4

0 1 �2

3
5 ; then At D

2
4
1 3 0

2 1 1

3 4 �2

3
5 :

A square matrix and its transpose have the same determinant; thus,

det.At / D det.A/:

We take the next theorem from linear algebra as given.

Theorem 6.1.9 If A and B are n � n matrices; then

det.AB/ D det.A/ det.B/:

The entries ai i , 1 � i � n, of an n�nmatrix A are on the main diagonal of A. The n�n
matrix with ones on the main diagonal and zeros elsewhere is called the identity matrix and

is denoted by I; thus, if n D 3,

I D

2
4
1 0 0

0 1 0

0 0 1

3
5 :

We call I the identity matrix because AI D A and IA D A if A is any n � n matrix. We

say that an n� n matrix A is nonsingular if there is an n� n matrix A�1, the inverse of A,

such that AA�1 D A�1A D I. Otherwise, we say that A is singular

Our main objective is to show that an n � n matrix A is nonsingular if and only if

det.A/ ¤ 0. We will also find a formula for the inverse.

Definition 6.1.10 Let A D Œaij � be an n � n matrix; with n � 2: The cofactor of an

entry aij is

cij D .�1/iCj det.Aij /;

where Aij is the .n� 1/� .n� 1/matrix obtained by deleting the i th row and j th column

of A: The adjoint of A; denoted by adj.A/; is the n � n matrix whose .i; j /th entry is cj i :

Example 6.1.8 The cofactors of

A D

2
4
4 2 1

3 �1 2

0 1 2

3
5



Section 6.1 Linear Transformations and Matrices 371

are

c11 D
ˇ̌
ˇ̌ �1 2

1 2

ˇ̌
ˇ̌ D �4; c12 D �

ˇ̌
ˇ̌ 3 2

0 2

ˇ̌
ˇ̌ D �6; c13 D

ˇ̌
ˇ̌ 3 �1
0 1

ˇ̌
ˇ̌ D 3;

c21 D �
ˇ̌
ˇ̌ 2 1

1 2

ˇ̌
ˇ̌D �3; c22 D

ˇ̌
ˇ̌ 4 1

0 2

ˇ̌
ˇ̌ D 8; c23 D �

ˇ̌
ˇ̌ 4 2

0 1

ˇ̌
ˇ̌ D � 4;

c31 D
ˇ̌
ˇ̌ 2 1

�1 2

ˇ̌
ˇ̌ D 5; c32 D �

ˇ̌
ˇ̌ 4 1

3 2

ˇ̌
ˇ̌ D �5; c33 D

ˇ̌
ˇ̌ 4 2

3 �1

ˇ̌
ˇ̌ D �10;

so

adj.A/ D

2
4
�4 �3 5

�6 8 �5
3 �4 �10

3
5 :

Notice that adj.A/ is the transpose of the matrix

2
4
�4 �6 3

�3 8 �4
5 �5 �10

3
5

obtained by replacing each entry of A by its cofactor.

For a proof of the following theorem, see any elementary linear algebra text.

Theorem 6.1.11 Let A be an n � n matrix:

(a) The sum of the products of the entries of a row of A and their cofactors equals det.A/;

while the sum of the products of the entries of a row of A and the cofactors of the

entries of a different row equals zeroI that is;

nX

kD1

aikcjk D
�

det.A/; i D j;
0; i ¤ j: (6.1.8)

(b) The sum of the products of the entries of a column of A and their cofactors equals

det.A/; while the sum of the products of the entries of a column of A and the cofactors

of the entries of a different column equals zeroI that is;

nX

kD1

ckiakj D
�

det.A/; i D j;
0; i ¤ j: (6.1.9)

If we compute det.A/ from the formula

det.A/ D
nX

kD1

aikcik;
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we say that we are expanding the determinant in cofactors of its i th row. Since we can

choose i arbitrarily from f1; : : : ; ng, there are n ways to do this. If we compute det.A/

from the formula

det.A/ D
nX

kD1

akjckj ;

we say that we are expanding the determinant in cofactors of its j th column. There are also

n ways to do this.

In particular, we note that det.I/ D 1 for all n � 1.

Theorem 6.1.12 Let A be an n � n matrix: If det.A/ D 0; then A is singular: If

det.A/ ¤ 0; then A is nonsingular; and A has the unique inverse

A�1 D 1

det.A/
adj.A/: (6.1.10)

Proof If det.A/ D 0, then det.AB/ D 0 for any n � n matrix, by Theorem 6.1.9.

Therefore, since det.I/ D 1, there is no matrix n � n matrix B such that AB D I; that is, A

is singular if det.A/ D 0. Now suppose that det.A/ ¤ 0. Since (6.1.8) implies that

A adj.A/ D det.A/I

and (6.1.9) implies that

adj.A/A D det.A/I;

dividing both sides of these two equations by det.A/ shows that if A�1 is as defined in

(6.1.10), then AA�1 D A�1A D I. Therefore, A�1 is an inverse of A. To see that it is the

only inverse, suppose that B is an n � n matrix such that AB D I. Then A�1.AB/ D A�1,

so .A�1A/B D A�1. Since AA�1 D I and IB D B, it follows that B D A�1.

Example 6.1.9 In Example 6.1.8 we found that the adjoint of

AD

2
4
4 2 1

3 �1 2

0 1 2

3
5

is

adj.A/ D

2
4
�4 �3 5

�6 8 �5
3 �4 �10

3
5 :

We can compute det.A/ by finding any diagonal entry of A adj.A/. (Why?) This yields

det.A/ D �25. (Verify.) Therefore,

A�1 D � 1
25

2
4
�4 �3 5

�6 8 �5
3 �4 �10

3
5 :
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Now consider the equation

AX D Y (6.1.11)

with

A D

2
6664

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

3
7775 ; X D

2
6664

x1

x2

:::

xn

3
7775 ; and Y D

2
6664

y1

y2

:::

yn

3
7775 :

Here A and Y are given, and the problem is to find X.

Theorem 6.1.13 The system (6.1.11) has a solution X for any given Y if and only if

A is nonsingular: In this case; the solution is unique and is given by X D A�1Y.

Proof Suppose that A is nonsingular, and let X D A�1Y. Then

AX D A.A�1Y/ D .AA�1/Y D IY D YI

that is, X is a solution of (6.1.11). To see that X is the only solution of (6.1.11), suppose

that AX1 D Y. Then AX1 D AX, so

A�1.AX/ D A�1.AX1/

and

.A�1A/X D .A�1A/X1;

which is equivalent to IX D IX1, or X D X1.

Conversely, suppose that (6.1.11) has a solution for every Y, and let Xi satisfy AXi D
Ei , 1 � i � n. Let

B D ŒX1 X2 � � � Xn�I
that is, X1, X2, . . . , Xn are the columns of B. Then

AB D ŒAX1 AX2 � � � AXn� D ŒE1 E2 � � � En� D I:

To show that B D A�1, we must still show that BA D I. We first note that, since AB D I

and det.BA/ D det.AB/ D 1 (Theorem 6.1.9), BA is nonsingular (Theorem 6.1.12). Now

note that

.BA/.BA/ D B.AB/A/ D BIAI
that is,

.BA/.BA/ D .BA/:

Multiplying both sides of this equation on the left by BA/�1 yields BA D I.

The following theorem gives a useful formula for the components of the solution of

(6.1.11).
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Theorem 6.1.14 (Cramer’s Rule) If A D Œaij � is nonsingular; then the solu-

tion of the system

a11x1 C a12x2 C � � � C a1nxn D y1

a21x1 C a22x2 C � � � C a2nxn D y2

:::

an1x1 C an2x2 C � � � C annxn D yn

.or; in matrix form; AX D Y/ is given by

xi D
Di

det.A/
; 1 � i � n;

where Di is the determinant of the matrix obtained by replacing the i th column of A with

YI thus;

D1 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

y1 a12 � � � a1n

y2 a22 : : : a2n

:::
:::

: : :
:::

yn an2 � � � ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
; D2 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 y1 a13 � � � a1n

a21 y2 a23 � � � a2n

:::
:::

:::
: : :

:::

an1 yn an3 � � � ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
; � � � ;

Dn D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 � � � a1;n�1 y1

a21 � � � a2;n�1 y2

:::
:::

: : :
:::

an1 � � � an;n�1 yn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
:

Proof From Theorems 6.1.12 and 6.1.13, the solution of AX D Y is

2
6664

x1

x2

:::

xn

3
7775 D A�1Y D

1

det.A/

2
6664

c11 c21 � � � cn1

c12 c22 � � � cn2

� � � � � � : : : � � �
c1n c2n � � � cnn

3
7775

2
6664

y1

y2

:::

yn

3
7775

D

2
6664

c11y1 C c21y2 C � � � C cn1yn

c12y1 C c22y2 C � � � C cn2yn

:::

c1ny1 C c2ny2 C � � � C cnnyn

3
7775 :

But

c11y1 C c21y2 C � � � C cn1yn D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

y1 a12 � � � a1n

y2 a22 : : : a2n

:::
:::

: : :
:::

yn an2 � � � ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Cramer.html
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as can be seen by expanding the determinant on the right in cofactors of its first column.

Similarly,

c12y1 C c22y2 C � � � C cn2yn D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 y1 a13 � � � a1n

a21 y2 a23 � � � a2n

:::
:::

:::
: : :

:::

an1 yn an3 � � � ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
;

as can be seen by expanding the determinant on the right in cofactors of its second column.

Continuing in this way completes the proof.

Example 6.1.10 The matrix of the system

4x C 2y C ´ D 1
3x � y C 2´ D 2

y C 2´ D 0

is

A D

2
4
4 2 1

3 �1 2

0 1 2

3
5 :

Expanding det.A/ in cofactors of its first row yields

det.A/ D 4
ˇ̌
ˇ̌ �1 2

1 2

ˇ̌
ˇ̌� 2

ˇ̌
ˇ̌ 3 2

0 2

ˇ̌
ˇ̌C 1

ˇ̌
ˇ̌ 3 �1
0 1

ˇ̌
ˇ̌

D 4.�4/� 2.6/C 1.3/ D �25:

Using Cramer’s rule to solve the system yields

x D �
1

25

ˇ̌
ˇ̌
ˇ̌
1 2 1

2 �1 2

0 1 2

ˇ̌
ˇ̌
ˇ̌ D

2

5
; y D �

1

25

ˇ̌
ˇ̌
ˇ̌
4 1 1

3 2 2

0 0 2

ˇ̌
ˇ̌
ˇ̌ D �

2

5
;

´ D � 1
25

ˇ̌
ˇ̌
ˇ̌
4 2 1

3 �1 2

0 1 0

ˇ̌
ˇ̌
ˇ̌ D

1

5
:

A system of n equations in n unknowns

a11x1 C a12x2 C � � � C a1nxn D 0
a21x1 C a22x2 C � � � C a2nxn D 0

:::

an1x1 C an2x2 C � � � C annxn D 0

(6.1.12)

(or, in matrix form, AX D 0) is homogeneous. It is obvious that X0 D 0 satisfies this

system. We call this the trivial solution of (6.1.12). Any other solutions of (6.1.12), if they

exist, are nontrivial.
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We will need the following theorems. The proofs may be found in any linear algebra

text.

Theorem 6.1.15 The homogeneous system (6.1.12) of n equations in n unknowns has

a nontrivial solution if and only if det.A/ D 0:

Theorem 6.1.16 IfA1; A2; . . . ; Ak are nonsingularn�nmatrices; then so isA1A2 � � �Ak ;

and

.A1A2 � � �Ak/
�1 D A�1

k A�1
k�1 � � �A

�1
1 :

6.1 Exercises

1. Prove: If L W Rn ! R
m is a linear transformation, then

L.a1X1 C a2X2 C � � � C akXk/ D a1L.X1/C a2L.X2/C � � � C akL.Xk/

if X1;X2; : : : ;Xk are in R
n and a1, a2, . . . , ak are real numbers.

2. Prove that the transformation L defined by Eqn. (6.1.1) is linear.

3. Find the matrix of L.

(a) L.X/ D

2
4
3x C 4y C 6´
2x � 47C 2´
7x C 2y C 3´

3
5 (b) L.X/ D

2
664

2x1 C 4x2

3x1 � 2x2

7x1 � 4x2

6x1 C x2

3
775

4. Find cA.

(a) c D 4; A D

2
4
2 2 4 6

0 0 1 3

3 4 7 11

3
5 (b) c D �2; A D

2
4
1 3 0

0 1 2

1 �1 3

3
5

5. Find AC B.

(a) A D

2
4
�1 2 3

1 1 4

0 �1 4

3
5 ; B D

2
4
�1 0 3

5 6 �7
0 �1 2

3
5

(b) A D

2
4
0 5

3 2

1 7

3
5 ; B D

2
4
�1 2

0 3

4 7

3
5

6. Find AB.

(a) A D

2
4
�1 2 3

0 1 4

0 �1 4

3
5 ; B D

2
4
�1 2

0 3

4 7

3
5

(b) A D
�
5 3 2 1

6 7 4 1

�
; B D

2
664

1

3

4

7

3
775
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7. Prove Theorem 6.1.4.

8. Prove Theorem 6.1.5.

9. Prove Theorem 6.1.6.

10. Suppose that AC B and AB are both defined. What can be said about A and B?

11. Prove Theorem 6.1.7.

12. Find the matrix of aL1 C bL2.

(a) L1.x; y; ´/ D

2
4
3x C 2y C ´

x C 4y C 2´
3x � 4y C ´

3
5,

L2.x; y; ´/ D

2
4
�x C y � ´

�2x C y C 3´
y C ´

3
5; a D 2; b D �1

(b) L1.x; y/ D

2
4
2x C 3y
x � y

4x C y

3
5 ; L2.x; y/ D

2
4
3x � y
x C y
�x � y

3
5 ; a D 4; b D

2

13. Find the matrices of L1ıL2 and L2ıL1, where L1 and L2 are as in Exercise 6.1.12(a).

14. Write the transformations of Exercise 6.1.12 in the form L.X/ D AX.

15. Find f 0 and f 0.X0/.

(a) f .x; y; ´/ D 3x2y´, X0 D .1;�1; 1/
(b) f .x; y/ D sin.x C y/, X0 D .�=4; �=4/
(c) f .x; y; ´/ D xye�x´ , X0 D .1; 2; 0/
(d) f .x; y; ´/ D tan.x C 2y C ´/, X0 D .�=4;��=8; �=4/
(e) f .X/ D jXj W Rn ! R, X0 D .1=

p
n; 1=
p
n; : : : ; 1=

p
n/

16. Let A D Œaij � be an m � n matrix and

� D max
˚
jaij j

ˇ̌
1 � i � m; 1 � i � n

	
:

Show that kAk � �
p
mn.

17. Prove: If A has at least one nonzero entry, then kAk ¤ 0.

18. Prove: kAC Bk � kAk C kBk.
19. Prove: kABk � kAk kBk.
20. Solve by Cramer’s rule.

(a)
x C y C 2´D 1

2x � y C ´D �1
x � 2y � 3´D 2

(b)
x C y � ´ D 5

3x � 2y C 2´ D 0

4xC 2y � 3´ D 14
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(c)
x C 2y C 3´ D �5
x � ´ D �1
x C y C 2´ D �4

(d)

x � y C ´ � 2w D 1

2x C y � 3´C 3w D 4

3x C 2y C w D 13
2x C y � ´ D 4

21. Find A�1 by the method of Theorem 6.1.12.

(a)

�
1 �2
3 4

�
(b)

2
4
1 2 3

1 0 �1
1 1 2

3
5

(c)

2
4
4 2 1

3 �1 2

0 1 2

3
5 (d)

2
4
1 0 1

0 1 1

1 1 0

3
5

(e)

2
664

1 2 0 0

�2 3 0 0

0 0 2 3

0 0 �1 2

3
775 (f)

2
664

1 1 2 �1
2 2 �1 3

�1 4 1 2

3 1 0 1

3
775

22. For 1 � i; j � m, let aij D aij .X/ be a real-valued function continuous on a

compact set K in R
n. Suppose that them �m matrix

A.X/ D Œaij .X/�

is nonsingular for each X in K, and define them �m matrix

B.X;Y/ D Œbij .X;Y/�

by

B.X;Y/ D A�1.X/A.Y/ � I:

Show that for each � > 0 there is a ı > 0 such that

jbij .X;Y/j < �; 1 � i; j � m;

if X;Y 2 K and jX �Yj < ı. HINT: Show that bij is continuous on the set

˚
.X;Y/

ˇ̌
X 2 K; Y 2 K

	
:

Then assume that the conclusion is false and use Exercise 5.1.32 to obtain a contradiction:

6.2 CONTINUITY AND DIFFERENTIABILITY OF TRANS-
FORMATIONS

Throughout the rest of this chapter, transformations F and points X should be considered as

written in vertical form when they occur in connection with matrix operations. However,

we will write X D .x1; x2; : : : ; xn/ when X is the argument of a function.
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Continuous Transformations

In Section 5.2 we defined a vector-valued function (transformation) to be continuous at X0

if each of its component functions is continuous at X0. We leave it to you to show that this

implies the following theorem (Exercise 1).

Theorem 6.2.1 Suppose that X0 is in; and a limit point of; the domain of F W Rn !
R

m: Then F is continuous at X0 if and only if for each � > 0 there is a ı > 0 such that

jF.X/ � F.X0/j < � if jX � X0j < ı and X 2 DF: (6.2.1)

This theorem is the same as Theorem 5.2.7 except that the “absolute value” in (6.2.1)

now stands for distance in R
m rather than R.

If C is a constant vector, then “limX!X0
F.X/ D C” means that

lim
X!X0

jF.X/ �Cj D 0:

Theorem 6.2.1 implies that F is continuous at X0 if and only if

lim
X!X0

F.X/ D F.X0/:

Example 6.2.1 The linear transformation

L.X/ D

2
4

x C y C ´
2x � 3y C ´
2xC y � ´

3
5

is continuous at every X0 in R
3, since

L.X/ � L.X0/ D L.X �X0/ D

2
4

.x � x0/C .y � y0/C .´ � ´0/

2.x � x0/ � 3.y � y0/C .´ � ´0/

2.x � x0/C .y � y0/ � .´ � ´0/

3
5 ;

and applying Schwarz’s inequality to each component yields

jL.X/ � L.X0/j2 � .3C 14C 6/jX �X0j2 D 23jX� X0j2:

Therefore,

jL.X/� L.X0/j < � if jX �X0j <
�p
23
:

Differentiable Transformations

In Section 5.4 we defined a vector-valued function (transformation) to be differentiable at

X0 if each of its components is differentiable at X0 (Definition 5.4.1). The next theorem

characterizes this property in a useful way.
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Theorem 6.2.2 A transformation F D .f1; f2; : : : ; fm/ defined in a neighborhood of

X0 2 R
n is differentiable at X0 if and only if there is a constantm � n matrix A such that

lim
X!X0

F.X/ � F.X0/ �A.X �X0/

jX �X0j
D 0: (6.2.2)

If (6.2.2) holds; then A is given uniquely by

A D
�
@fi.X0/

@xj

�
D

2
6666666664

@f1.X0/

@x1

@f1.X0/

@x2

� � � @f1.X0/

@xn

@f2.X0/

@x1

@f2.X0/

@x2

� � � @f2.X0/

@xn
:::

:::
: : :

:::
@fm.X0/

@x1

@fm.X0/

@x2

� � � @fm.X0/

@xn

3
7777777775

: (6.2.3)

Proof Let X0 D .x10; x20; : : : ; xn0/. If F is differentiable at X0, then so are f1, f2,

. . . , fm (Definition 5.4.1). Hence,

lim
X!X0

fi .X/ � fi .X0/ �
nX

j D1

@fi .X0/

@xj

.xj � xj 0/

jX �X0j
D 0; 1 � i � m;

which implies (6.2.2) with A as in (6.2.3).

Now suppose that (6.2.2) holds with A D Œaij �. Since each component of the vector in

(6.2.2) approaches zero as X approaches X0, it follows that

lim
X!X0

fi .X/ � fi .X0/ �
nX

j D1

aij .xj � xj 0/

jX �X0j
D 0; 1 � i � m;

so each fi is differentiable at X0, and therefore so is F (Definition 5.4.1). By Theo-

rem 5.3.6,

aij D
@fi .X0/

@xj

; 1 � i � m; 1 � j � n;

which implies (6.2.3).

A transformation T W Rn ! R
m of the form

T.X/ D UC A.X � X0/;

where U is a constant vector in R
m, X0 is a constant vector in R

n, and A is a constantm�n
matrix, is said to be affine. Theorem 6.2.2 says that if F is differentiable at X0, then F can

be well approximated by an affine transformation.
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Example 6.2.2 The components of the transformation

F.X/ D

2
4
x2 C 2xy C ´
x C 2x´C y
x2 C y2 C ´2

3
5

are differentiable at X0 D .1; 0; 2/. Evaluating the partial derivatives of the components

there yields

A D

2
4
2 2 1

5 1 2

2 0 4

3
5 :

(Verify). Therefore, Theorem 6.2.2 implies that the affine transformation

T.X/ D F.X0/CA.X �X0/

D

2
4
3

5

5

3
5C

2
4
2 2 1

5 1 2

2 0 4

3
5
2
4
x � 1
y

´ � 2

3
5

satisfies

lim
X!X0

F.X/ � T.X/

jX �X0j
D 0:

Differential of a Transformation

If F D .f1; f2; : : : ; fm/ is differentiable at X0, we define the differential of F at X0 to be

the linear transformation

dX0
F D

2
6664

dX0
f1

dX0
f2

:::

dX0
fm

3
7775 : (6.2.4)

We call the matrix A in (6.2.3) the differential matrix of F at X0 and denote it by F0.X0/;

thus,

F0.X0/ D

2
666666666664

@f1.X0/

@x1

@f1.X0/

@x2

� � � @f1.X0/

@xn

@f2.X0/

@x1

@f2.X0/

@x2

� � � @f2.X0/

@xn

:::
:::

: : :
:::

@fm.X0/

@x1

@fm.X0/

@x2

� � � @fm.X0/

@xn

3
777777777775

: (6.2.5)
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(It is important to bear in mind that while F is a function from R
n to R

m, F0 is not such

a function; F0 is an m � n matrix.) From Theorem 6.2.2, the differential can be written in

terms of the differential matrix as

dX0
F D F0.X0/

2
6664

dx1

dx2

:::

dxn

3
7775 (6.2.6)

or, more succinctly, as

dX0
F D F0.X0/ dX;

where

dX D

2
6664

dx1

dx2

:::

dxn

3
7775 ;

as defined earlier.

When it is not necessary to emphasize the particular point X0, we write (6.2.4) as

dF D

2
6664

df1

df2

:::

dfm

3
7775 ;

(6.2.5) as

F0 D

2
666666666664

@f1

@x1

@f1

@x2

� � � @f1

@xn

@f2

@x1

@f2

@x2

� � � @f2

@xn

:::
:::

: : :
:::

@fm

@x1

@fm

@x2

� � � @fm

@xn

3
777777777775

;

and (6.2.6) as

dF D F0 dX:

With the differential notation we can rewrite (6.2.2) as

lim
X!X0

F.X/ � F.X0/� F0.X0/.X �X0/

jX �X0j
D 0:
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Example 6.2.3 The linear transformation

F.X/ D

2
6664

a11x1 C a12x2 C � � � C a1nxn

a21x1 C a22x2 C � � � C a2nxn

:::

am1x1 C am2x2 C � � � C amnxn

3
7775

can be written as F.X/ D AX, where A D Œaij �. Then

F0 D AI

that is, the differential matrix of a linear transformation is independent of X and is the

matrix of the transformation. For example, the differential matrix of

F.x1; x2; x3/ D
�
1 2 3

2 1 0

�2
4
x1

x2

x3

3
5

is

F0 D
�
1 2 3

2 1 0

�
:

If F.X/ D X (the identity transformation), then F0 D I (the identity matrix).

Example 6.2.4 The transformation

F.x; y/ D

2
66664

x

x2 C y2

y

x2 C y2

2xy

3
77775

is differentiable at every point of R
2 except .0; 0/, and

F0.x; y/ D

2
666664

y2 � x2

.x2 C y2/2
� 2xy

.x2 C y2/2

�
2xy

.x2 C y2/2
x2 � y2

.x2 C y2/2

2y 2x

3
777775
:

In particular,

F0.1; 1/ D

2
6664

0 �1
2

�1
2

0

2 2

3
7775 ;
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so

lim
.x;y/!.1;1/

1p
.x � 1/2 C .y � 1/2

0
BBB@F.x; y/ �

2
6664

1
2

1
2

2

3
7775�

2
6664

0 �1
2

�1
2

0

2 2

3
7775

�
x � 1
y � 1

�
1
CCCA

D

2
4
0

0

0

3
5 :

If m D n, the differential matrix is square and its determinant is called the Jacobian of

F. The standard notation for this determinant is

@.f1; f2; : : : ; fn/

@.x1; x2; : : : ; xn/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

@f1

@x1

@f1

@x2

� � � @f1

@xn

@f2

@x1

@f2

@x2

� � � @f2

@xn

:::
:::

: : :
:::

@fn

@x1

@fn

@x2

� � � @fn

@xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:

We will often write the Jacobian of F more simply as J.F/, and its value at X0 as JF.X0/.

Since an n � n matrix is nonsingular if and only if its determinant is nonzero, it follows

that if F W R
n ! R

n is differentiable at X0, then F0.X0/ is nonsingular if and only if

JF.X0/ ¤ 0. We will soon use this important fact.

Example 6.2.5 If

F.x; y; ´/ D

2
6664

x2 � 2x C ´

x C 2xy C ´2

x C y C ´

3
7775 ;

then

@.f1; f2; f3/

@.x1; x2; x3/
D JF.X/ D

ˇ̌
ˇ̌
ˇ̌
2x � 2 0 1

1C 2y 2x 2´

1 1 1

ˇ̌
ˇ̌
ˇ̌

D .2x � 2/
ˇ̌
ˇ̌ 2x 2´

1 1

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ 1C 2y 2x

1 1

ˇ̌
ˇ̌

D .2x � 2/.2x � 2´/C .1C 2y � 2x/:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Jacobi.html


Section 6.2 Continuity and Differentiability of Transformations 385

In particular, JF.1;�1; 1/ D �3, so the differential matrix

F0.1;�1; 1/ D

2
4

0 0 1

�1 2 2

1 1 1

3
5

is nonsingular.

Properties of Differentiable Transformations

We leave the proof of the following theorem to you (Exercise 6.2.16).

Theorem 6.2.3 If F W Rn ! R
m is differentiable at X0; then F is continuous at X0:

Theorem 5.3.10 and Definition 5.4.1 imply the following theorem.

Theorem 6.2.4 Let F D .f1; f2; : : : ; fm/ W Rn ! R
m; and suppose that the partial

derivatives
@fi

@xj

; 1 � i � m; 1 � j � n; (6.2.7)

exist on a neighborhood of X0 and are continuous at X0: Then F is differentiable at X0:

We say that F is continuously differentiable on a set S if S is contained in an open set

on which the partial derivatives in (6.2.7) are continuous. The next three lemmas give

properties of continuously differentiable transformations that we will need later.

Lemma 6.2.5 Suppose that F W R
n ! R

m is continuously differentiable on a neigh-

borhoodN of X0: Then; for every � > 0; there is a ı > 0 such that

jF.X/ � F.Y/j < .kF0.X0/k C �/jX � Yj if A;Y 2 Bı.X0/: (6.2.8)

Proof Consider the auxiliary function

G.X/ D F.X/ � F0.X0/X: (6.2.9)

The components of G are

gi .X/ D fi .X/ �
nX

j D1

@fi.X0/@xj

x j
;

so
@gi .X/

@xj

D @fi .X/

@xj

� @fi.X0/

@xj

:
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Thus, @gi=@xj is continuous on N and zero at X0. Therefore, there is a ı > 0 such that
ˇ̌
ˇ̌@gi.X/

@xj

ˇ̌
ˇ̌ < �p

mn
for 1 � i � m; 1 � j � n; if jX � X0j < ı: (6.2.10)

Now suppose that X, Y 2 Bı.X0/. By Theorem 5.4.5,

gi .X/ � gi .Y/ D
nX

j D1

@gi .Xi /

@xj

.xj � yj /; (6.2.11)

where Xi is on the line segment from X to Y, so Xi 2 Bı.X0/. From (6.2.10), (6.2.11),

and Schwarz’s inequality,

.gi .X/ � gi .Y//
2 �

0
@

nX

j D1

�
@gi.Xi /

@xj

�2

1
A jX �Yj2 < �2

m
jX �Yj2:

Summing this from i D 1 to i D m and taking square roots yields

jG.X/ �G.Y/j < �jX �Yj if X;Y 2 Bı.X0/: (6.2.12)

To complete the proof, we note that

F.X/ � F.Y/ D G.X/ � G.Y/C F0.X0/.X �Y/; (6.2.13)

so (6.2.12) and the triangle inequality imply (6.2.8).

Lemma 6.2.6 Suppose that F W R
n ! R

n is continuously differentiable on a neigh-

borhood of X0 and F0.X0/ is nonsingular: Let

r D 1

k.F0.X0//�1k
: (6.2.14)

Then; for every � > 0; there is a ı > 0 such that

jF.X/ � F.Y/j � .r � �/jX �Yj if X;Y 2 Bı.X0/: (6.2.15)

Proof Let X and Y be arbitrary points inDF and let G be as in (6.2.9). From (6.2.13),

jF.X/ � F.Y/j �
ˇ̌
jF0.X0/.X �Y/j � jG.X/ �G.Y/j

ˇ̌
; (6.2.16)

Since

X �Y D ŒF0.X0/�
�1F0.X0/.X � Y/;

(6.2.14) implies that

jX �Yj � 1

r
jF0.X0/.X �Yj;

so

jF0.X0/.X �Y/j � r jX� Yj: (6.2.17)

Now choose ı > 0 so that (6.2.12) holds. Then (6.2.16) and (6.2.17) imply (6.2.15).

See Exercise 6.2.19 for a stronger conclusion in the case where F is linear.
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Lemma 6.2.7 If F W Rn ! R
m is continuously differentiable on an open set containing

a compact set D; then there is a constantM such that

jF.Y/ � F.X/j �M jY � Xj if X;Y 2 D: (6.2.18)

Proof On

S D
˚
.X;Y/

ˇ̌
X;Y 2 D

	
� R

2n

define

g.X;Y/ D

8
<
:

jF.Y/ � F.X/ � F0.X/.Y �X/j
jY �Xj ; Y ¤ X;

0; Y D X:

Then g is continuous for all .X;Y/ in S such that X ¤ Y. We now show that if X0 2 D,

then

lim
.X;Y/!.X0;X0/

g.X;Y/ D 0 D g.X0;X0/I (6.2.19)

that is, g is also continuous at points .X0;X0/ in S .

Suppose that � > 0 and X0 2 D. Since the partial derivatives of f1, f2, . . . , fm are

continuous on an open set containingD, there is a ı > 0 such that
ˇ̌
ˇ̌@fi .Y/

@xj

� @fi .X/

@xj

ˇ̌
ˇ̌ < �p

mn
if X;Y 2 Bı.X0/; 1 � i � m; 1 � j � n: (6.2.20)

(Note that @fi=@xj is uniformly continuous on Bı.X0/ for ı sufficiently small, from The-

orem 5.2.14.) Applying Theorem 5.4.5 to f1, f2, . . . , fm, we find that if X, Y 2 Bı .X0/,

then

fi .Y/ � fi .X/ D
nX

j D1

@fi .Xi /

@xj

.yj � xj /;

where Xi is on the line segment from X to Y. From this,

2
4fi .Y/ � fi .X/ �

nX

j D1

@fi.X/

@xj

.yj � xj /

3
5

2

D

2
4

nX

j D1

�
@fi.Xi /

@xj

� @fi.X/

@xj

�
.yj � xj /

3
5

2

� jY �Xj2
nX

j D1

�
@fi.Xi /

@xj

� @fi.X/

@xj

�2

(by Schwarz’s inequality)

<
�2

m
jY �Xj2 (by (6.2.20)) :

Summing from i D 1 to i D m and taking square roots yields

jF.Y/ � F.X/ � F0.X/.Y � X/j < �jY �Xj if X;Y 2 Bı .X0/:

This implies (6.2.19) and completes the proof that g is continuous on S .
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Since D is compact, so is S (Exercise 5.1.27). Therefore, g is bounded on S (Theo-

rem 5.2.12); thus, for some M1,

jF.Y/ � F.X/ � F0.X/.Y �X/j �M1jX � Yj if X;Y 2 D:

But

jF.Y/ � F.X/j � jF.Y/ � F.X/ � F0.X/.Y � X/j C jF0.X/.Y �X/j
� .M1 C kF0.X/k/j.Y �Xj: (6.2.21)

Since

kF0.X/k �

0
@

mX

iD1

nX

j D1

�
@fi.X/

@xj

�2

1
A

1=2

and the partial derivatives f@fi=@xj g are bounded onD, it follows that kF0.X/k is bounded

on D; that is, there is a constant M2 such that

kF0.X/k �M2; X 2 D:

Now (6.2.21) implies (6.2.18) withM DM1 CM2.

The Chain Rule for Transformations

By using differential matrices, we can write the chain rule for transformations in a form

analogous to the form of the chain rule for real-valued functions of one variable (Theo-

rem 2.3.5).

Theorem 6.2.8 Suppose that F W Rn ! R
m is differentiable at X0; G W Rk ! R

n is

differentiable at U0; and X0 D G.U0/: Then the composite function H D F ı G W Rk !
R

m; defined by

H.U/ D F.G.U//;

is differentiable at U0:Moreover;

H0.U0/ D F0.G.U0//G
0.U0/ (6.2.22)

and

dU0
H D dX0

F ı dU0
G; (6.2.23)

where ı denotes composition:

Proof The components of H are h1, h2, . . . , hm, where

hi .U/ D fi.G.U//:

Applying Theorem 5.4.3 to hi yields

dU0
hi D

nX

j D1

@fi .X0/

@xj

dU0
gj ; 1 � i � m: (6.2.24)



Section 6.2 Continuity and Differentiability of Transformations 389

Since

dU0
H D

2
6664

dU0
h1

dU0
h2

:::

dU0
hm

3
7775 and dU0

G D

2
6664

dU0
g1

dU0
g2

:::

dU0
gn

3
7775 ;

them equations in (6.2.24) can be written in matrix form as

dU0
H D F0.X0/dU0

G D F0.G.U0//dU0
G: (6.2.25)

But

dU0
G D G0.U0/ dU;

where

dU D

2
6664

du1

du2

:::

duk

3
7775 ;

so (6.2.25) can be rewritten as

dU0
H D F0.G.U0//G

0.U0/ dU:

On the other hand,

dU0
H D H0.U0/ dU:

Comparing the last two equations yields (6.2.22). Since G0.U0/ is the matrix of dU0
G and

F0.G.U0// D F0.X0/ is the matrix of dX0
F, Theorem 6.1.7(c) and (6.2.22) imply (6.2.23).

Example 6.2.6 Let U0 D .1;�1/,

G.U/ D G.u; v/ D

2
6664

p
u

p
u2 C 3v2

p
v C 2

3
7775 ; F.X/ D F.x; y; ´/ D

"
x2 C y2 C 2´2

x2 � y2

#
;

and

H.U/ D F.G.U//:

Since G is differentiable at U0 D .1;�1/ and F is differentiable at

X0 D G.U0/ D .1; 2; 1/;

Theorem 6.2.8 implies that H is differentiable at .1;�1/. To find H0.1;�1/ from (6.2.22),

we first find that
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G0.U/ D

2
6666664

1

2
p
u

0

up
u2 C 3v2

3vp
u2 C 3v2

0
1

2
p
v C 2

3
7777775

and

F0.X/ D
�
2x 2y 4´

2x �2y 0

�
:

Then, from (6.2.22),

H0.1;�1/D F0.1; 2; 1/G0.1;�1/

D
�
2 4 4

2 �4 0

�
2
6664

1
2

0

1
2
�3

2

0 1
2

3
7775 D

�
3 �4
�1 6

�
:

We can check this by expressing H directly in terms of .u; v/ as

H.u; v/ D

2
64
�p
u
�2 C

�p
u2 C 3v2

�2

C 2
�p
v C 2

�2
�p
u
�2 �

�p
u2 C 3v2

�2

3
75

D
�
uC u2 C 3v2C 2v C 4

u� u2 � 3v2

�

and differentiating to obtain

H0.u; v/ D
�
1C 2u 6v C 2
1 � 2u �6v

�
;

which yields

H0.1;�1/ D
�

3 �4
�1 6

�
;

as we saw before.

6.2 Exercises

1. Show that the following definitions are equivalent.

(a) F D .f1; f2; : : : ; fm/ is continuous at X0 if f1, f2, . . . , fm are continuous

at X0.
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(b) F is continuous at X0 if for every � > 0 there is a ı > 0 such that jF.X/ �
F.X0/j < � if jX �X0j < ı and X 2 DF.

2. Verify that

lim
X!X0

F.X/ � F.X0/ � F0.X0/.X �X0/

jX � X0j
D 0:

(a) F.X/ D

2
4
3xC 4y
2x � y

x C y

3
5 ; X0 D .x0; y0; ´0/

(b) F.X/ D

2
4
2x2C xy C 1

xy

x2 C y2

3
5 ; X0 D .1;�1/

(c) F.X/ D

2
4

sin.x C y/
sin.y C ´/
sin.x C ´/

3
5 ; X0 D .�=4; 0; �=4/

3. Suppose that F W R
n ! R

m and h W R
n ! R have the same domain and are

continuous at X0. Show that the product hF D .hf1; hf2; : : : ; hfm/ is continuous at

X0.

4. Suppose that F and G are transformations from R
n to R

m with common domain D.

Show that if F and G are continuous at X0 2 D, then so are FCG and F �G.

5. Suppose that F W Rn ! R
m is defined in a neighborhood of X0 and continuous at

X0, G W R
k ! R

n is defined in a neighborhood of U0 and continuous at U0, and

X0 D G.U0/. Prove that the composite function H D F ıG is continuous at U0.

6. Prove: If F W Rn ! R
m is continuous on a set S , then jFj is continuous on S .

7. Prove: If F W Rn ! R
m is continuous on a compact set S , then jFj is bounded on

S , and there are points X0 and X1 in S such that

jF.X0/j � jF.X/j � jF.X1/j; X 2 S I

that is, jFj attains its infimum and supremum on S . HINT: Use Exercise 6.2.6:

8. Prove that a linear transformation L W Rn ! R
m is continuous on R

n. Do not use

Theorem 6.2.8.

9. Let A be an m � n matrix.

(a) Use Exercises 6.2.7 and 6.2.8 to show that the quantitites

M.A/ D max

� jAXj
jXj

ˇ̌
X ¤ 0

�
and m.A/ D min

� jAXj
jXj

ˇ̌
X ¤ 0

�

exist. HINT: Consider the function L.Y/ D AY on S D
˚
Y
ˇ̌
jYj D 1

	
:
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(b) Show that M.A/ D kAk.
(c) Prove: If n > m or n D m and A is singular, then m.A/ D 0. (This requires a

result from linear algebra on the existence of nontrivial solutions of AX D 0.)

(d) Prove: If n D m and A is nonsingular, then

m.A/M.A�1 / D m.A�1/M.A/ D 1:

10. We say that F W Rn ! R
m is uniformly continuous on S if each of its components

is uniformly continuous on S . Prove: If F is uniformly continuous on S , then for

each � > 0 there is a ı > 0 such that

jF.X/ � F.Y/j < � if jX � Yj < ı and X;Y 2 S:

11. Show that if F is continuous on R
n and F .XCY/ D F.X/ C F.Y/ for all X and Y

in R
n, then A is linear. HINT: The rational numbers are dense in the reals:

12. Find F0 and JF. Then find an affine transformation G such that

lim
X!X0

F.X/ � G.Y/

X � X0

D 0:

(a) F.x; y; ´/ D

2
4

x2 C y C 2´
cos.x C y C ´/

exy´

3
5 ; X0 D .1;�1; 0/

(b) F.x; y/ D
�
ex cosy

ex sin y

�
; X0 D .0; �=2/

(c) F.x; y; ´/ D

2
4
x2 � y2

y2 � ´2

´2 � x2

3
5 ; X0 D .1; 1; 1/

13. Find F0.

(a) F.x; y; ´/ D
�
.x C y C ´/ex

.x2 C y2/e�x

�
(b) F.x/ D

2
6664

g1.x/

g2.x/
:::

gn.x/

3
7775

(c) F.x; y; ´/ D

2
4
ex siny´

ey sin x´

e´ sinxy

3
5

14. Find F0 and JF.

(a) F.r; �/ D
�
r cos �

r sin �

�
(b) F.r; �; �/ D

2
4
r cos � cos �

r sin � cos�

r sin �

3
5

(c) F.r; �; ´/ D

2
4
r cos �

r sin �

´

3
5
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15. Prove: If G1 and G2 are affine transformations and

lim
X!X0

G1.X/ �G2.Y/

jX �X0j
D 0;

then G1 D G2.

16. Prove Theorem 6.2.3.

17. Show that if F W Rn ! R
m is differentiable at X0 and � > 0, there is a ı > 0 such

that

jF.X/ � F.X0/j � .kF0.X0/k C �/jX �X0j if jX �X0j < ı:

Compare this with Lemma 6.2.5.

18. Suppose that F W Rn ! R
n is differentiable at X0 and F0.X0/ is nonsingular. Let

r D 1

kŒF0.X0/��1k

and suppose that � > 0. Show that there is a ı > 0 such that

jF.X/ � F.X0/j � .r � �/jX �X0j if jX �X0j < ı:

Compare this with Lemma 6.2.6.

19. Prove: If L W Rn ! R
m is defined by L.X/ D A.X/, where A is nonsingular, then

jL.X/ � L.Y/j � 1

kA�1k jX �Yj

for all X and Y in R
n.

20. Use Theorem 6.2.8 to find H0.U0/, where H.U/ D F.G.U/. Check your results by

expressing H directly in terms of U and differentiating.

(a) F.x; y; ´/ D

2
4
x2 C y2

´

x2 C y2

3
5 ; G.u; v; w/ D

2
664

w cos u sinv

w sinu sin v

w cos v

3
775, U0 D

.�=2; �=2; 2/

(b) F.x; y/ D

2
4
x2 � y2

y

x

3
5 ; G.u; v/ D

"
v cos u

v sinu

#
; U0 D .�=4; 3/

(c) F.x; y; ´/ D

2
4
3x C 4y C 2´C 6
4x � 2y C ´ � 1
�x C y C ´ � 2

3
5 ; G.u; v/ D

2
4
u� v

uC v

u� 2v

3
5,

U0 arbitrary
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(d) F.x; y/ D
�
x C y
x � y

�
; G.u; v; w/ D

�
2u� v C w
eu2�v2

�
; U0 D .1; 1;�2/

(e) F.x; y/ D
�
x2 C y2

x2 � y2

�
; G.u; v/ D

�
eu cos v

eu sinv

�
; U0 D .0; 0/

(f) F.x; y/ D

2
4
x C 2y
x � y2

x2 C y

3
5 ; G.u; v/ D

�
uC 2v
2u� v2

�
; U0 D .1;�2/

21. Suppose that F and G are continuously differentiable on R
n, with values in R

n, and

let H D F ıG. Show that

@.h1; h2; : : : ; hn/

@.u1; u2; : : : ; un/
D
@.f1; f2; : : : ; fn/

@.x1; x2; : : : ; xn/

@.g1; g2; : : : ; gn/

@.u1; u2; : : : ; un/
:

Where should these Jacobians be evaluated?

22. Suppose that F W R
n ! R

m and X is a limit point of DF contained in DF. Show

that F is continuous at X if and only if limk!1 F.Xk/ D F.X/ whenever fXkg is a

sequence of points inDF such that limk!1 Xk D X. HINT: See Exercise 5.2.15:

23. Suppose that F W Rn ! R
m is continuous on a compact subset S of R

n. Show that

F.S/ is a compact subset of R
m.

6.3 THE INVERSE FUNCTION THEOREM

So far our discussion of transformations has dealt mainly with properties that could just as

well be defined and studied by considering the component functions individually. Now we

turn to questions involving a transformation as a whole, that cannot be studied by regarding

it as a collection of independent component functions.

In this section we restrict our attention to transformations from R
n to itself. It is useful

to interpret such transformations geometrically. If F D .f1; f2; : : : ; fn/, we can think of

the components of

F.X/ D .f1.X/; f2.X/; : : : ; fn.X//

as the coordinates of a point U D F.X/ in another “copy” of R
n. Thus, U D .u1; u2; : : : ; un/,

with

u1 D f1.X/; u2 D f2.X/; : : : ; un D fn.X/:

We say that F maps X to U, and that U is the image of X under F. Occasionally we will

also write @ui=@xj to mean @fi=@xj . If S � DF, then the set

F.S/ D
˚
U
ˇ̌
U D F.X/; X 2 S

	

is the image of S under F.

We will often denote the components of X by x, y, . . . , and the components of U by u,

v, . . . .
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Example 6.3.1 If

�
u

v

�
D F.x; y/ D

�
x2 C y2

x2 � y2

�
;

then

u D f1.x; y/ D x2 C y2; v D f2.x; y/ D x2 � y2;

and

ux.x; y/ D
@f1.x; y/

@x
D 2x; uy .x; y/ D

@f1.x; y/

@y
D 2y;

vx.x; y/ D
@f2.x; y/

@x
D 2x; vy.x; y/ D

@f2.x; y/

@y
D �2y:

To find F.R2/, we observe that

uC v D 2x2; u � v D 2y2;

so

F.R2/ � T D
˚
.u; v/

ˇ̌
uC v � 0; u� v � 0

	
;

which is the part of the uv-plane shaded in Figure 6.3.1. If .u; v/ 2 T , then

F

�p
uC v
2

;

p
u � v
2

�
D
�
u

v

�
;

so F.R2/ D T .

v

u

u + v = 0

u − v = 0

Figure 6.3.1
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Invertible Transformations

A transformation F is one-to-one, or invertible, if F.X1/ and F.X2/ are distinct whenever

X1 and X2 are distinct points of DF. In this case, we can define a function G on the range

R.F/ D
˚
U
ˇ̌
U D F.X/ for some X 2 DF

	

of F by defining G.U/ to be the unique point in DF such that F.U/ D U. Then

DG D R.F/ and R.G/ D DF:

Moreover, G is one-to-one,

G.F.X// D X; X 2 DF;

and

F.G.U// D U; U 2 DG:

We say that G is the inverse of F, and write G D F�1. The relation between F and G is

symmetric; that is, F is also the inverse of G, and we write F D G�1.

Example 6.3.2 The linear transformation

�
u

v

�
D L.x; y/ D

�
x � y
x C y

�
(6.3.1)

maps .x; y/ to .u; v/, where

u D x � y;
v D x C y: (6.3.2)

L is one-to-one and R.L/ D R
2, since for each .u; v/ in R

2 there is exactly one .x; y/

such that L.x; y/ D .u; v/. This is so because the system (6.3.2) can be solved uniquely

for .x; y/ in terms of .u; v/:

x D 1
2
.uC v/;

y D 1
2
.�uC v/:

(6.3.3)

Thus,

L�1.u; v/ D 1

2

�
uC v
�uC v

�
:

Example 6.3.3 The linear transformation

�
u

v

�
D L1.x; y/ D

�
x C y

2x C 2y

�

maps .x; y/ onto .u; v/, where

u D x C y;

v D 2x C 2y: (6.3.4)



Section 6.3 The Inverse Function Theorem 397

L1 is not one-to-one, since every point on the line

x C y D c (constant)

is mapped onto the single point .c; 2c/. Hence, L1 does not have an inverse.

The crucial difference between the transformations of Examples 6.3.2 and 6.3.3 is that

the matrix of L is nonsingular while the matrix of L1 is singular. Thus, L (see (6.3.1)) can

be written as �
u

v

�
D
�
1 �1
1 1

� �
x

y

�
; (6.3.5)

where the matrix has the inverse 2
4

1
2

1
2

�1
2

1
2

3
5 :

(Verify.) Multiplying both sides of (6.3.5) by this matrix yields

2
4

1
2

1
2

�1
2

1
2

3
5
�
u

v

�
D
�
x

y

�
;

which is equivalent to (6.3.3).

Since the matrix �
1 1

2 2

�

of L1 is singular, (6.3.4) cannot be solved uniquely for .x; y/ in terms of .u; v/. In fact, it

cannot be solved at all unless v D 2u.

The following theorem settles the question of invertibility of linear transformations from

R
n to R

n. We leave the proof to you (Exercise 6.3.2).

Theorem 6.3.1 The linear transformation

U D L.X/ D AX .Rn ! R
n/

is invertible if and only if A is nonsingular; in which case R.L/ D R
n and

L�1.U/ D A�1U:

Polar Coordinates

We will now briefly review polar coordinates, which we will use in some of the following

examples.

The coordinates of any point .x; y/ can be written in infinitely many ways as

x D r cos �; y D r sin �; (6.3.6)
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where

r2 D x2 C y2

and, if r > 0, � is the angle from the x-axis to the line segment from .0; 0/ to .x; y/,

measured counterclockwise (Figure 6.3.2).

y

x

x
2 + y

2

(x,
 
y) 

θ

Figure 6.3.2

For each .x; y/ ¤ .0; 0/ there are infinitely many values of � , differing by integral

multiples of 2� , that satisfy (6.3.6). If � is any of these values, we say that � is an argument

of .x; y/, and write

� D arg.x; y/:

By itself, this does not define a function. However, if � is an arbitrary fixed number, then

� D arg.x; y/; � � � < � C 2�;

does define a function, since every half-open interval Œ�; � C 2�/ contains exactly one

argument of .x; y/.

We do not define arg.0; 0/, since (6.3.6) places no restriction on � if .x; y/ D .0; 0/ and

therefore r D 0.

The transformation

�
r

�

�
D G.x; y/ D

2
4
p
x2 C y2

arg.x; y/

3
5 ; � � arg.x; y/ < � C 2�;

is defined and one-to-one on

DG D
˚
.x; y/

ˇ̌
.x; y/ ¤ .0; 0/

	
;

and its range is

R.G/ D
˚
.r; �/

ˇ̌
r > 0; � � � < � C 2�

	
:
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For example, if � D 0, then

G.1; 1/ D

2
64

p
2

�

4

3
75 ;

since �=4 is the unique argument of .1; 1/ in Œ0; 2�/. If � D � , then

G.1; 1/ D

2
64

p
2

9�

4

3
75 ;

since 9�=4 is the unique argument of .1; 1/ in Œ�; 3�/.

If arg.x0; y0/ D �, then .x0; y0/ is on the half-line shown in Figure 6.3.3 and G is

not continuous at .x0; y0/, since every neighborhood of .x0; y0/ contains points .x; y/ for

which the second component of G.x; y/ is arbitrarily close to � C 2� , while the second

component of G.x0; y0/ is �. We will show later, however, that G is continuous, in fact,

continuously differentiable, on the plane with this half-line deleted.

y

x

(x
0
,

 
y

0
)  

φ

Figure 6.3.3

Local Invertibility

A transformation F may fail to be one-to-one, but be one-to-one on a subset S of DF. By

this we mean that F.X1/ and F.X2/ are distinct whenever X1 and X2 are distinct points of

S . In this case, F is not invertible, but if FS is defined on S by

FS .X/ D F.X/; X 2 S;

and left undefined for X 62 S , then FS is invertible. We say that FS is the restriction of F

to S , and that F�1
S

is the inverse of F restricted to S . The domain of F�1
S

is F.S/.
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If F is one-to-one on a neighborhood of X0, we say that F is locally invertible at X0. If

this is true for every X0 in a set S , then F is locally invertible on S .

Example 6.3.4 The transformation

�
u

v

�
D F.x; y/ D

�
x2 � y2

2xy

�
(6.3.7)

is not one-to-one, since

F.�x;�y/ D F.x; y/: (6.3.8)

It is one-to-one on S if and only if S does not contain any pair of distinct points of the form

.x0; y0/ and .�x0;�y0/; (6.3.8) implies the necessity of this condition, and its sufficiency

follows from the fact that if

F.x1; y1/ D F.x0; y0/; (6.3.9)

then

.x1; y1/ D .x0; y0/ or .x1; y1/ D .�x0;�y0/: (6.3.10)

To see this, suppose that (6.3.9) holds; then

x2
1 � y2

1 D x2
0 � y2

0 (6.3.11)

and

x1y1 D x0y0: (6.3.12)

Squaring both sides of (6.3.11) yields

x4
1 � 2x2

1y
2
1 C y4

1 D x4
0 � 2x2

0y
2
0 C y4

0 :

This and (6.3.12) imply that

x4
1 � x4

0 D y4
0 � y4

1 : (6.3.13)

From (6.3.11),

x2
1 � x2

0 D y2
1 � y2

0 : (6.3.14)

Factoring (6.3.13) yields

.x2
1 � x2

0/.x
2
1 C x2

0/ D .y2
0 � y2

1 /.y
2
0 C y2

1 /:

If either side of (6.3.14) is nonzero, we can cancel to obtain

x2
1 C x2

0 D �y2
0 � y2

1 ;

which implies that x0 D x1 D y0 D y1 D 0, so (6.3.10) holds in this case. On the other

hand, if both sides of (6.3.14) are zero, then

x1 D ˙x0; y1 D ˙y0:

From (6.3.12), the same sign must be chosen in these equalities, which proves that (6.3.8)

implies (6.3.10) in this case also.
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We now see, for example, that F is one-to-one on every set S of the form

S D
˚
.x; y/

ˇ̌
ax C by > 0

	
;

where a and b are constants, not both zero. Geometrically, S is an open half-plane; that is,

the set of points on one side of, but not on, the line

ax C by D 0

(Figure 6.3.4). Therefore, F is locally invertible at every X0 ¤ .0; 0/, since every such

point lies in a half-plane of this form. However, F is not locally invertible at .0; 0/. (Why

not?) Thus, F is locally invertible on the entire plane with .0; 0/ removed.

y

x

ax +
 b

y =
 0

(a,
 
b )  



ax + by > 0

Figure 6.3.4

It is instructive to find F�1
S

for a specific choice of S . Suppose that S is the open right

half-plane:

S D
˚
.x; y/

ˇ̌
x > 0

	
: (6.3.15)

Then F.S/ is the entire uv-plane except for the nonpositive u axis. To see this, note that

every point in S can be written in polar coordinates as

x D r cos �; y D r sin �; r > 0; ��
2
< � <

�

2
:

Therefore, from (6.3.7), F.x; y/ has coordinates .u; v/, where

u D x2 � y2 D r2.cos2 � � sin2 �/ D r2 cos 2�;

v D 2xy D 2r2 cos � sin � D r2 sin 2�:
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Every point in the uv-plane can be written in polar coordinates as

u D � cos˛; v D � sin ˛;

where either � D 0 or

� D
p
u2 C v2 > 0; �� � ˛ < �;

and the points for which � D 0 or ˛ D �� are of the form .u; 0/, withu � 0 (Figure 6.3.5).

If .u; v/ D F.x; y/ for some .x; y/ in S , then (6.3.15) implies that � > 0 and �� < ˛ <

� . Conversely, any point in the uv-plane with polar coordinates .�; ˛/ satisfying these

conditions is the image under F of the point

.x; y/ D .�1=2 cos˛=2; �1=2 sin˛=2/ 2 S:

Thus,

F�1
S .u; v/ D

2
4
.u2 C v2/1=4 cos.arg.u; v/=2/

.u2 C v2/1=4 sin.arg.u; v/=2

3
5 ; �� < arg.u; v/ < �:

v

u

(u,v )

α

α = −π

u
2 + v

2

Figure 6.3.5

Because of (6.3.8), F also maps the open left half-plane

S1 D
˚
.x; y/

ˇ̌
x < 0

	

onto F.S/, and

F�1
S1
.u; v/ D

2
4
.u2 C v2/1=4 cos.arg.u; v/=2/

.u2 C v2/1=4 sin.arg.u; v/=2/

3
5 ; � < arg.u; v/ < 3�;

D �F�1
S .u; v/:
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Example 6.3.5 The transformation

�
u

v

�
D F.x; y/ D

�
ex cosy

ex sin y

�
(6.3.16)

is not one-to-one, since

F.x; y C 2k�/ D F.x; y/ (6.3.17)

if k is any integer. This transformation is one-to-one on a set S if and only if S does not

contain any pair of points .x0; y0/ and .x0; y0 C 2k�/, where k is a nonzero integer. This

condition is necessary because of (6.3.17); we leave it to you to show that it is sufficient

(Exercise 6.3.8). Therefore, for example, F is one-to-one on

S� D
˚
.x; y/

ˇ̌
�1 < x <1; � � y < � C 2�

	
(6.3.18)

where � is arbitrary. Geometrically, S� is the infinite strip bounded by the lines y D � and

y D � C 2� . The lower boundary is in S� , but the upper is not (Figure 6.3.6). Since every

point is in the interior of some such strip, F is locally invertible on the entire plane.

y

x

y = φ

y = φ + 2π

Figure 6.3.6

The range of FS�
is the entire uv-plane except the origin, since if .u; v/ ¤ .0; 0/, then

.u; v/ can be written uniquely as

�
u

v

�
D
�
� cos˛

� sin ˛

�
;

where

� > 0; � � ˛ < � C 2�;
so .u; v/ is the image under F of

.x; y/ D .log�; ˛/ 2 S:

The origin is not in R.F/, since

jF.x; y/j2 D .ex cosy/2 C .ex siny/2 D e2x ¤ 0:
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Finally,

F�1
S�
.u; v/ D

2
4

log.u2 C v2/1=2

arg.u; v/

3
5 ; � � arg.u; v/ < � C 2�:

The domain of F�1
S�

is the entire uv-plane except for .0; 0/.

Regular Transformations

The question of invertibility of an arbitrary transformation F W Rn ! R
n is too general to

have a useful answer. However, there is a useful and easily applicable sufficient condition

which implies that one-to-one restrictions of continuously differentiable transformations

have continuously differentiable inverses.

To motivate our study of this question, let us first consider the linear transformation

F.X/ D AX D

2
6664

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

3
7775

2
6664

x1

x2

:::

xn

3
7775 :

From Theorem 6.3.1, F is invertible if and only if A is nonsingular, in which case R.F/ D
R

n and

F�1.U/ D A�1U:

Since A and A�1 are the differential matrices of F and F�1, respectively, we can say that a

linear transformation is invertible if and only if its differential matrix F0 is nonsingular, in

which case the differential matrix of F�1 is given by

.F�1/0 D .F0/�1:

Because of this, it is tempting to conjecture that if F W Rn ! R
n is continuously differen-

tiable and A0.X/ is nonsingular, or, equivalently, JF.X/ ¤ 0, for X in a set S , then F is

one-to-one on S . However, this is false. For example, if

F.x; y/ D
�
ex cosy

ex sin y

�
;

then

JF.x; y/ D
ˇ̌
ˇ̌ ex cosy �ex siny

ex siny ex cosy

ˇ̌
ˇ̌ D e2x ¤ 0; (6.3.19)

but F is not one-to-one on R
2 (Example 6.3.5). The best that can be said in general is

that if F is continuously differentiable and JF.X/ ¤ 0 in an open set S , then F is locally

invertible on S , and the local inverses are continuously differentiable. This is part of the

inverse function theorem, which we will prove presently. First, we need the following

definition.
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Definition 6.3.2 A transformation F W R
n ! R

n is regular on an open set S if F is

one-to-one and continuously differentiable on S , and JF.X/ ¤ 0 if X 2 S . We will also

say that F is regular on an arbitrary set S if F is regular on an open set containing S .

Example 6.3.6 If

F.x; y/ D
�
x � y
x C y

�

(Example 6.3.2), then

JF.x; y/ D
ˇ̌
ˇ̌ 1 �1
1 1

ˇ̌
ˇ̌ D 2;

so F is one-to-one on R
2. Hence, F is regular on R

2.

If

F.x; y/ D
�

x C y

2x C 2y

�

(Example 6.3.3), then

JF.x; y/ D
ˇ̌
ˇ̌ 1 1

2 2

ˇ̌
ˇ̌ D 0;

so F is not regular on any subset of R
2.

If

F.x; y/ D
�
x2 � y2

2xy

�

(Example 6.3.4), then

JF.x; y/ D
ˇ̌
ˇ̌ 2x �2y
2y 2x

ˇ̌
ˇ̌ D 2.x2 C y2/;

so F is regular on any open set S on which F is one-to-one, provided that .0; 0/ 62 S . For ex-

ample, F is regular on the open half-plane
˚
.x; y/

ˇ̌
x > 0

	
, since we saw in Example 6.3.4

that F is one-to-one on this half-plane.

If

F.x; y/ D
�
ex cosy

ex cosy

�

(Example 6.3.5), then JF.x; y/ D e2x (see (6.3.19)), so F is regular on any open set on

which it is one-to-one. The interior of S� in (6.3.18) is an example of such a set.

Theorem 6.3.3 Suppose that F W R
n ! R

n is regular on an open set S; and let

G D F�1
S : Then F.S/ is open; G is continuously differentiable on F.S/; and

G0.U/ D .F0.X//�1 ; where U D F.X/:

Moreover; since G is one-to-one on F.S/; G is regular on F.S/:
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Proof We first show that if X0 2 S , then a neighborhood of F.X0/ is in F.S/. This

implies that F.S/ is open.

Since S is open, there is a � > 0 such that B�.X0/ � S . Let B be the boundary of

B�.X0/; thus,

B D
˚ ˇ̌
X
	
jX �X0j D �: (6.3.20)

The function

�.X/ D jF.X/ � F.X0/j
is continuous on S and therefore on B , which is compact. Hence, by Theorem 5.2.12, there

is a point X1 in B where �.X/ attains its minimum value, say m, on B . Moreover, m > 0,

since X1 ¤ X0 and F is one-to-one on S . Therefore,

jF.X/ � F.X0/j � m > 0 if jX � X0j D �: (6.3.21)

The set ˚
U
ˇ̌
jU � F.X0/j < m=2

	

is a neighborhood of F.X0/. We will show that it is a subset of F.S/. To see this, let U be

a fixed point in this set; thus,

jU � F.X0/j < m=2: (6.3.22)

Consider the function

�1.X/ D jU � F.X/j2;
which is continuous on S . Note that

�1.X/ �
m2

4
if jX � X0j D �; (6.3.23)

since if jX � X0j D �, then

jU � F.X/j D j.U � F.X0//C .F.X0/ � F.X//j
�
ˇ̌
jF.X0/ � F.X/j � jU � F.X0/j

ˇ̌

� m�
m

2
D
m

2
;

from (6.3.21) and (6.3.22).

Since �1 is continuous on S , �1 attains a minimum value � on the compact set B�.X0/

(Theorem 5.2.12); that is, there is an X in B�.X0/ such that

�1.X/ � �1.X/ D �; X 2 B�.X0/:

Setting X D X0, we conclude from this and (6.3.22) that

�1.X/ D � � �1.X0/ <
m2

4
:

Because of (6.3.20) and (6.3.23), this rules out the possibility that X 2 B , so X 2 B�.X0/.
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Now we want to show that � D 0; that is, U D F.X/. To this end, we note that �1.X/

can be written as

�1.X/ D
nX

j D1

.uj � fj .X//
2 ;

so �1 is differentiable on Bp.X0/. Therefore, the first partial derivatives of �1 are all zero

at the local minimum point X (Theorem 5.3.11), so

nX

j D1

@fj .X/

@xi

.uj � fj .X// D 0; 1 � i � n;

or, in matrix form,

F0.X/.U � F.X// D 0:

Since F0.X/ is nonsingular this implies that U D F.X/ (Theorem 6.1.13). Thus, we have

shown that every U that satisfies (6.3.22) is in F.S/. Therefore, since X0 is an arbitrary

point of S , F.S/ is open.

Next, we show that G is continuous on F.S/. Suppose that U0 2 F.S/ and X0 is the

unique point in S such that F.X0/ D U0. Since F0.X0/ is invertible, Lemma 6.2.6 implies

that there is a � > 0 and an open neighborhoodN of X0 such that N � S and

jF.X/ � F.X0/j � �jX �X0j if X 2 N: (6.3.24)

(Exercise 6.2.18 also implies this.) Since F satisfies the hypotheses of the present theorem

on N , the first part of this proof shows that F.N / is an open set containing U0 D F.X0/.

Therefore, there is a ı > 0 such that X D G.U/ is inN if U 2 Bı.U0/. Setting X D G.U/

and X0 D G.U0/ in (6.3.24) yields

jF.G.U// � F.G.U0//j � �jG.U/ � G.U0/j if U 2 Bı.U0/:

Since F.G.U// D U, this can be rewritten as

jG.U/ �G.U0/j �
1

�
jU �U0j if U 2 Bı.U0/; (6.3.25)

which means that G is continuous at U0. Since U0 is an arbitrary point in F.S/, it follows

that G is continous on F.S/.

We will now show that G is differentiable at U0. Since

G.F.X// D X; X 2 S;

the chain rule (Theorem 6.2.8) implies that if G is differentiable at U0, then

G0.U0/F
0.X0/ D I
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(Example 6.2.3). Therefore, if G is differentiable at U0, the differential matrix of G must

be

G0.U0/ D ŒF0.X0/�
�1;

so to show that G is differentiable at U0, we must show that if

H.U/ D G.U/ � G.U0/ � ŒF0.X0/�
�1.U �U0/

jU �U0j
.U ¤ U0/; (6.3.26)

then

lim
U!U0

H.U/ D 0: (6.3.27)

Since F is one-to-one on S and F.G.U// D U, it follows that if U ¤ U0, then G.U/ ¤
G.U0/. Therefore, we can multiply the numerator and denominator of (6.3.26) by jG.U/�
G.U0/j to obtain

H.U/ D jG.U/ �G.U0j
jU �U0j

 
G.U/ �G.U0/ � ŒF0.X0/�

�1
.U � U0/

jG.U/ �G.U0/j

!

D �jG.U/ �G.U0/j
jU �U0j

�
F0.X0/

��1
�

U � U0 � F0.X0/.G.U/ �G.U0//

jG.U/ �G.U0/j

�

if 0 < jU �U0j < ı. Because of (6.3.25), this implies that

jH.U/j � 1

�
kŒF0.X0/�

�1k
ˇ̌
ˇ̌U �U0 � F0.X0/.G.U/ � G.U0//

jG.U/ � G.U0/j

ˇ̌
ˇ̌

if 0 < jU �U0j < ı. Now let

H1.U/ D
U �U0 � F0.X0/.G.U/ �G.U0//

jG.U/ � G.U0/j

To complete the proof of (6.3.27), we must show that

lim
U!U0

H1.U/ D 0: (6.3.28)

Since F is differentiable at X0, we know that if

H2.X/ D lim
X!X0

F.X/ � F.X0/ � F0.X0/.X �X0/

jX � X0j
;

then

lim
X!X0

H2.X/ D 0: (6.3.29)

Since F.G.U// D U and X0 D G.U0/,

H1.U/ D H2.G.U//:
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Now suppose that � > 0. From (6.3.29), there is a ı1 > 0 such that

jH2.X/j < � if 0 < jX �X0j D jX �G.U0/j < ı1: (6.3.30)

Since G is continuous at U0, there is a ı2 2 .0; ı/ such that

jG.U/ �G.U0/j < ı1 if 0 < jU �U0j < ı2:

This and (6.3.30) imply that

jH1.U/j D jH2.G.U//j < � if 0 < jU �U0j < ı2:

Since this implies (6.3.28), G is differentiable at X0.

Since U0 is an arbitrary member of F.N /, we can now drop the zero subscript and

conclude that G is continuous and differentiable on F.N /, and

G0.U/ D ŒF0.X/��1; U 2 F.N /:

To see that G is continuously differentiable on F.N /, we observe that by Theorem 6.1.14,

each entry of G0.U/ (that is, each partial derivative @gi.U/=@uj , 1 � i; j � n) can be

written as the ratio, with nonzero denominator, of determinants with entries of the form

@fr.G.U//

@xs

: (6.3.31)

Since @fr=@xs is continuous on N and G is continuous on F.N /, Theorem 5.2.10 implies

that (6.3.31) is continuous on F.N /. Since a determinant is a continuous function of its

entries, it now follows that the entries of G0.U/ are continuous on F.N /.

Branches of the Inverse

If F is regular on an open set S , we say that F�1
S is a branch of F�1. (This is a convenient

terminology but is not meant to imply that F actually has an inverse.) From this definition,

it is possible to define a branch of F�1 on a set T � R.F/ if and only if T D F.S/, where

F is regular on S . There may be open subsets of R.F/ that do not have this property, and

therefore no branch of F�1 can be defined on them. It is also possible that T D F.S1/ D
F.S2/, where S1 and S2 are distinct subsets of DF. In this case, more than one branch of

F�1 is defined on T . Thus, we saw in Example 6.3.4 that two branches of F�1 may be

defined on a set T . In Example 6.3.5 infinitely many branches of F�1 are defined on the

same set.

It is useful to define branches of the argument To do this, we think of the relationship

between polar and rectangular coordinates in terms of the transformation

�
x

y

�
D F.r; �/ D

�
r cos �

r sin �

�
; (6.3.32)

where for the moment we regard r and � as rectangular coordinates of a point in an r�-

plane. Let S be an open subset of the right half of this plane (that is, S �
˚
.r; �/

ˇ̌
r > 0

	
)
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that does not contain any pair of points .r; �/ and .r; �C2k�/, where k is a nonzero integer.

Then F is one-to-one and continuously differentiable on S , with

F0.r; �/ D
�

cos � �r sin �

sin � r cos �

�
(6.3.33)

and

JF.r; �/ D r > 0; .r; �/ 2 S: (6.3.34)

Hence, F is regular on S . Now let T D F.S/, the set of points in the xy-plane with

polar coordinates in S . Theorem 6.3.3 states that T is open and FS has a continuously

differentiable inverse (which we denote by G, rather than F�1
S

, for typographical reasons)

�
r

�

�
D G.x; y/ D

2
4
p
x2 C y2

argS .x; y/

3
5 ; .x; y/ 2 T;

where argS .x; y/ is the unique value of arg.x; y/ such that

.r; �/ D
�p

x2 C y2; argS .x; y/
�
2 S:

We say that argS.x; y/ is a branch of the argument defined on T . Theorem 6.3.3 also

implies that

G0.x; y/ D
�
F0.r; �/

��1 D
"

cos � sin �

� sin �

r

cos �

r

#
(see (6.3.33))

D

2
64

xp
x2 C y2

yp
x2 C y2

� y

x2 C y2

x

x2 C y2

3
75 (see (6.3.32)):

Therefore,

@ argS .x; y/

@x
D � y

x2 C y2
;

@ argS .x; y/

@y
D x

x2 C y2
: (6.3.35)

A branch of arg.x; y/ can be defined on an open set T of the xy-plane if and only if

the polar coordinates of the points in T form an open subset of the r�-plane that does not

intersect the �-axis or contain any two points of the form .r; �/ and .r; � C 2k�/, where

k is a nonzero integer. No subset containing the origin .x; y/ D .0; 0/ has this property,

nor does any deleted neighborhood of the origin (Exercise 6.3.14), so there are open sets

on which no branch of the argument can be defined. However, if one branch can be defined

on T , then so can infinitely many others. (Why?) All branches of arg.x; y/ have the same

partial derivatives, given in (6.3.35).
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Example 6.3.7 The set

T D
˚
.x; y/

ˇ̌
.x; y/ ¤ .x; 0/ with x � 0

	
;

which is the entire xy-plane with the nonnegative x-axis deleted, can be written as T D
F.Sk/, where F is as in (6.3.32), k is an integer, and

Sk D
˚
.r; �/

ˇ̌
r > 0; 2k� < � < 2.k C 1/�

	
:

For each integer k, we can define a branch argSk
.x; y/ of the argument in Sk by taking

argSk
.x; y/ to be the value of arg.x; y/ that satisfies

2k� < argSk
.x; y/ < 2.k C 1/�:

Each of these branches is continuously differentiable in T , with derivatives as given in

(6.3.35), and

argSk
.x; y/ � argSj

.x; y/ D 2.k � j /�; .x; y/ 2 T:

Example 6.3.8 Returning to the transformation
�
u

v

�
D F.x; y/ D

�
x2 � y2

2xy

�
;

we now see from Example 6.3.4 that a branch G of F�1 can be defined on any subset T of

the uv-plane on which a branch of arg.u; v/ can be defined, and G has the form

�
x

y

�
D G.u; v/ D

2
4
.u2 C v2/1=4 cos.arg.u; v/=2/

.u2 C v2/1=4 sin.arg.u; v/=2/

3
5 ; .u; v/ 2 T; (6.3.36)

where arg.u; v/ is a branch of the argument defined on T . If G1 and G2 are different

branches of F�1 defined on the same set T , then G1 D ˙G2. (Why?)

From Theorem 6.3.3,

G0.u; v/ D
�
F0.x; y/

��1 D
�
2x �2y
2y 2x

��1

D 1

2.x2 C y2/

�
x y

�y x

�
:

Substituting for x and y in terms of u and v from (6.3.36), we find that

@x

@u
D @y

@v
D x

2.x2 C y2/
D 1

2.u2 C v2/1=4
cos.arg.u; v/=2/ (6.3.37)

and
@x

@v
D �@y

@u
D y

2.x2 C y2/
D 1

2.u2 C v2/1=4
sin.arg.u; v/=2/: (6.3.38)

It is essential that the same branch of the argument be used here and in (6.3.36).
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We leave it to you (Exercise 6.3.16) to verify that (6.3.37) and (6.3.38) can also be

obtained by differentiating (6.3.36) directly.

Example 6.3.9 If �
u

v

�
D F.x; y/ D

�
ex cos y

ex siny

�

(Example 6.3.5), we can also define a branch G of F�1 on any subset T of the uv-plane on

which a branch of arg.u; v/ can be defined, and G has the form

�
x

y

�
D G.u; v/ D

�
log.u2 C v2/1=2

arg.u; v/

�
: (6.3.39)

Since the branches of the argument differ by integral multiples of 2� , (6.3.39) implies that

if G1 and G2 are branches of F�1, both defined on T , then

G1.u; v/� G2.u; v/ D
�

0

2k�

�
(k D integer):

From Theorem 6.3.3,

G0.u; v/ D
�
F0.x; y/

��1 D
�
ex cos y �ex siny

ex sin y ex cosy

��1

D
�

e�x cosy e�x siny

�e�x siny e�x cosy

�
:

Substituting for x and y in terms of u and v from (6.3.39), we find that

@x

@u
D @y

@v
D e�x cosy D e�2xu D u

u2 C v2

and
@x

@v
D �@y

@u
D e�x siny D e�2xv D v

u2 C v2
:

The Inverse Function Theorem

Examples 6.3.4 and 6.3.5 show that a continuously differentiable function F may fail to

have an inverse on a set S even if JF.X/ ¤ 0 on S . However, the next theorem shows that

in this case F is locally invertible on S .

Theorem 6.3.4 (The Inverse Function Theorem) Let F W R
n ! R

n be

continuously differentiable on an open set S; and suppose that JF.X/ ¤ 0 on S: Then; if

X0 2 S; there is an open neighborhoodN of X0 on which F is regular: Moreover; F.N /

is open and G D F�1
N

is continuously differentiable on F.N /; with

G0.U/ D
�
F0.X/

��1
.where U D F.X//; U 2 F.N /:
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Proof Lemma 6.2.6 implies that there is an open neighborhoodN of X0 on which F is

one-to-one. The rest of the conclusions then follow from applying Theorem 6.3.3 to F on

N .

Corollary 6.3.5 If F is continuously differentiable on a neighborhood of X0 and JF.X0/ ¤
0; then there is an open neighborhoodN of X0 on which the conclusions of Theorem 6.3.4

hold:

Proof By continuity, since JF0.X0/ ¤ 0, JF0.X/ is nonzero for all X in some open

neighborhood S of X0. Now apply Theorem 6.3.4.

Example 6.3.10 Let X0 D .1; 2; 1/ and

2
4
u

v

w

3
5 D F.x; y; ´/ D

2
4
x C y C .´ � 1/2 C 1
y C ´C .x � 1/2 � 1
´C x C .y � 2/2 C 3

3
5 :

Then

F0.x; y; ´/ D

2
4

1 1 2´ � 2
2x � 2 1 1

1 2y � 4 1

3
5 ;

so

JF.X0/ D

ˇ̌
ˇ̌
ˇ̌
1 1 0

0 1 1

1 0 1

ˇ̌
ˇ̌
ˇ̌ D 2:

In this case, it is difficult to describe N or find G D F�1
N explicitly; however, we know that

F.N / is a neighborhood of U0 D F.X0/ D .4; 2; 5/, that G.U0/ D X0 D .1; 2; 1/, and

that

G0.U0/ D
�
F0.X0/

��1 D

2
4
1 1 0

0 1 1

1 0 1

3
5

�1

D 1

2

2
4

1 �1 1

1 1 �1
�1 1 1

3
5 :

Therefore,

G.U/ D

2
4
1

2

1

3
5C 1

2

2
4

1 �1 1

1 1 �1
�1 1 1

3
5
2
4
u � 4
v � 2
w � 5

3
5C E.U/;

where

lim
U!.4;2;5/

E.U/p
.u � 4/2 C .v � 2/2 C .w � 5/2

D 0I

thus we have approximated G near U0 D .4; 2; 5/ by an affine transformation.

Theorem 6.3.4 and (6.3.34) imply that the transformation (6.3.32) is locally invertible

on S D
˚
.r; �/

ˇ̌
r > 0

	
, which means that it is possible to define a branch of arg.x; y/ in a

neighborhood of any point .x0; y0/ ¤ .0; 0/. It also implies, as we have already seen, that



414 Chapter 6 Vector-Valued Functions of Several Variables

the transformation (6.3.7) of Example 6.3.4 is locally invertible everywhere except at .0; 0/,

where its Jacobian equals zero, and the transformation (6.3.16) of Example 6.3.5 is locally

invertible everywhere.

6.3 Exercises

1. Prove: If F is invertible, then F�1 is unique.

2. Prove Theorem 6.3.1.

3. Prove: The linear transformation L.X/ D AX cannot be one-to-one on any open set

if A is singular. HINT: Use Theorem 6.1.15:

4. Let

G.x; y/ D
" p

x2 C y2

arg.x; y/

#
; �=2 � arg.x; y/ < 5�=2:

Find

(a) G.0; 1/ (b) G.1; 0/ (c) G.�1; 0/

(d) G.2; 2/ (e) G.�1; 1/
5. Same as Exercise 6.3.4, except that �2� � arg.x; y/ < 0.

6. (a) Prove: If f W R ! R is continuous and locally invertible on .a; b/, then f is

invertible on .a; b/.

(b) Give an example showing that the continuity assumption is needed in (a).

7. Let

F.x; y/ D
�
x2 � y2

2xy

�

(Example 6.3.4) and

S D
˚
.x; y/

ˇ̌
ax C by > 0

	
.a2 C b2 ¤ 0/:

Find F.S/ and F�1
S

. If

S1 D
˚
.x; y/

ˇ̌
ax C by < 0

	
;

show that F.S1/ D F.S/ and F�1
S1
D �F�1

S .

8. Show that the transformation

�
u

v

�
D F.x; y/ D

�
ex cosy

ex siny

�

(Example 6.3.5) is one-to-one on any set S that does not contain any pair of points

.x0; y0/ and .x0; y0 C 2k�/, where k is a nonzero integer.
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9. Suppose that F W Rn ! R
n is continuous and invertible on a compact set S . Show

that F�1
S

is continuous. HINT: If F�1
S

is not continuous at U in F.S/; then there is

an �0 > 0 and a sequence fUkg in F.S/ such that limk!1 Uk D U while

jF�1
S .Uk/ � F�1

S .U/j � �0; k � 1:

Use Exercise 5.1.32 to obtain a contradiction:

10. Find F�1 and .F�1/0:

(a)

�
u

v

�
D F.x; y/ D

�
4x C 2y
�3x C y

�

(b)

2
4
u

v

w

3
5 D F.x; y; ´/ D

2
4
�x C y C 2´
3xC y � 4´
�x � y C 2´

3
5

11. In addition to the assumptions of Theorem 6.3.3, suppose that all qth-order .q > 1/

partial derivatives of the components of F are continuous on S . Show that all qth-

order partial derivatives of F�1
S

are continuous on F.S/.

12. If �
u

v

�
D F.x; y/ D

�
x2 C y2

x2 � y2

�

(Example 6.3.1), find four branches G1, G2, G3, and G4 of F�1 defined on

T1 D
˚
.u; v/

ˇ̌
uC v > 0; u� v > 0

	
;

and verify that G0
i .u; v/ D .F0.x.u; v/; y.u; v///�1 , 1 � i � 4.

13. Suppose that A is a nonsingular n � n matrix and

U D F.X/ D A

2
6664

x2
1

x2
2
:::

x2
n

3
7775 :

(a) Show that F is regular on the set

S D
˚
X
ˇ̌
eixi > 0; 1 � i � n

	
;

where ei D ˙1, 1 � i � n.

(b) Find F�1
S
.U/. (c) Find .F�1

S
/0.U/.

14. Let �.x; y/ be a branch of arg.x; y/ defined on an open set S .

(a) Show that �.x; y/ cannot assume a local extreme value at any point of S .

(b) Prove: If a ¤ 0 and the line segment from .x0; y0/ to .ax0; ay0/ is in S , then

�.ax0; ay0/ D �.x0; y0/.

(c) Show that S cannot contain a subset of the form

A D
n
.x; y/

ˇ̌
0 < r1 �

p
x2 C y2 � r2

o
:
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(d) Show that no branch of arg.x; y/ can be defined on a deleted neighborhood

of the origin.

15. Obtain Eqn. (6.3.35) formally by differentiating:

(a) arg.x; y/ D cos�1 xp
x2 C y2

(b) arg.x; y/ D sin�1 yp
x2 C y2

(c) arg.x; y/ D tan�1 y

x

Where do these formulas come from? What is the disadvantage of using any one of

them to define arg.x; y/?

16. For the transformation

�
u

v

�
D F.x; y/ D

�
x2 � y2

2xy

�

(Example 6.3.4), find a branch G of F�1 defined on T D
˚
.u; v/

ˇ̌
auC bv > 0

	
.

Find G0 by means of the formula G0.U/ D ŒF0.X/��1 of Theorem 6.3.3, and also by

direct differentiation with respect to u and v.

17. A transformation

F.x; y/ D
�
u.x; y/

v.x; y/

�

is analytic on a set S if it is continuously differentiable and

ux D vy ; uy D �vx

on S . Prove: If F is analytic and regular on S , then F�1
S

is analytic on F.S/; that is,

xu D uv and xv D �uu.

18. Prove: If U D F.X/ and X D G.U/ are inverse functions, then

@.u1; u2; : : : ; un/

@.x1; x2; : : : ; xn

@.x1; x2; : : : ; xn/

@.u1; u2; : : : ; un/
D 1:

Where should the Jacobians be evaluated?

19. Give an example of a transformation F W Rn ! R
n that is invertible but not regular

on R
n.

20. Find an affine transformation A that so well approximates the branch G of F�1

defined near U0 D F.X0/ that

lim
U!U0

G.U/ �A.U/

jU � U0j
D 0:

(a)

�
u

v

�
D F.x; y/ D

�
x4y5 � 4x
x3y2 � 3y

�
; X0 D .1;�1/
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(b)

�
u

v

�
D F.x; y/ D

�
x2y C xy
2xy C xy2

�
; X0 D .1; 1/

(c)

2
4
u

v

w

3
5 D F.x; y; ´/ D

2
4
2x2y C x3 C ´

x3 C y´
x C y C ´

3
5 ; X D .0; 1; 1/

(d)

2
4
u

v

w

3
5 D F.x; y; ´/ D

2
4
x cos y cos ´

x siny cos ´

x sin´

3
5 ; X0 D .1; �=2; �/

21. If F is defined by
2
4
x

y

´

3
5 D F.r; �; �/ D

2
4
r cos � cos�

r sin � cos �

r sin�

3
5

and G is a branch of F�1, find G0 in terms of r , � , and �. HINT: See Exer-

cise 6.2.14.b/:

22. If F is defined by 2
4
x

y

´

3
5 D F.r; �; ´/ D

2
4
r cos �

r sin �

´

3
5

and G is a branch of F�1, find G0 in terms of r , � , and ´. HINT: See Exer-

cise 6.2.14.c/:

23. Suppose that F W R
n ! R

n is regular on a compact set T . Show that F.@T / D
@F.T /; that is, boundary points map to boundary points. HINT: Use Exercise 6.2.23

and Theorem 6.3.3 to show that @F.T / � F.@T /: Then apply this result with F and

T replaced by F�1 and F.T / to show that F.@T / � @F.T /:

6.4 THE IMPLICIT FUNCTION THEOREM

In this section we consider transformations from R
nCm to R

m. It will be convenient to

denote points in R
nCm by

.X;U/ D .x1; x2; : : : ; xn; u1; u2; : : : ; um/:

We will often denote the components of X by x, y, . . . , and the components of U by u, v,

. . . .

To motivate the problem we are interested in, we first ask whether the linear system of

m equations in mC n variables

a11x1 C a12x2 C � � � C a1nxn C b11u1 C b12u2 C � � � C b1mum D 0
a21x1 C a22x2 C � � � C a2nxn C b21u1 C b22ux C � � � C b2mum D 0

:::

am1x1 C am2x2 C � � � C amnxn C bm1u1 C bm2u2 C � � � C bmmum D 0

(6.4.1)
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determines u1, u2, . . . , um uniquely in terms of x1, x2, . . . , xn. By rewriting the system in

matrix form as

AXC BU D 0;

where

A D

2
6664

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

am1 am2 � � � amn

3
7775 ; B D

2
6664

b11 b12 � � � b1m

b21 b22 � � � b2m

:::
:::

: : :
:::

bm1 bm2 � � � bmm

3
7775 ;

X D

2
6664

x1

x2

:::

xn

3
7775 ; and U D

2
6664

u1

u2

:::

um

3
7775 ;

we see that (6.4.1) can be solved uniquely for U in terms of X if the square matrix B is

nonsingular. In this case the solution is

U D �B�1AX:

For our purposes it is convenient to restate this: If

F.X;U/ D AXC BU; (6.4.2)

where B is nonsingular, then the system

F.X;U/ D 0

determines U as a function of X, for all X in R
n.

Notice that F in (6.4.2) is a linear transformation. If F is a more general transformation

from R
nCm to R

m, we can still ask whether the system

F.X;U/ D 0;

or, in terms of components,

f1.x1; x2; : : : ; xn; u1; u2; : : : ; um/ D 0
f2.x1; x2; : : : ; xn; u1; u2; : : : ; um/ D 0

:::

fm.x1; x2; : : : ; xn; u1; u2; : : : ; um/ D 0;

can be solved for U in terms of X. However, the situation is now more complicated, even

if m D 1. For example, suppose that m D 1 and

f .x; y; u/ D 1 � x2 � y2 � u2:
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If x2 C y2 > 1, then no value of u satisfies

f .x; y; u/ D 0: (6.4.3)

However, infinitely many functions u D u.x; y/ satisfy (6.4.3) on the set

S D
˚
.x; y/

ˇ̌
x2 C y2 � 1

	
:

They are of the form

u.x; y/ D �.x; y/
p
1 � x2 � y2;

where �.x; y/ can be chosen arbitrarily, for each .x; y/ in S , to be 1 or �1. We can narrow

the choice of functions to two by requiring that u be continuous on S ; then

u.x; y/ D
p
1 � x2 � y2 (6.4.4)

or

u.x; y/ D �
p
1 � x2 � y2:

We can define a unique continuous solution u of (6.4.3) by specifying its value at a single

interior point of S . For example, if we require that

u

�
1p
3
;
1p
3

�
D 1p

3
;

then u must be as defined by (6.4.4).

The question of whether an arbitrary system

F.X;U/ D 0

determines U as a function of X is too general to have a useful answer. However, there

is a theorem, the implicit function theorem, that answers this question affirmatively in

an important special case. To facilitate the statement of this theorem, we partition the

differential matrix of F W RnCm ! R
m:

F0 D

2
6666666664

@f1

@x1

@f1

@x2

� � � @f1

@xn

j @f1

@u1

@f1

@u2

� � � @f1

@um

@f2

@x1

@f2

@x2

� � � @f2

@xn

j @f2

@u1

@f2

@u2

� � � @f2

@um

:::
:::

: : :
::: j

:::
:::

: : :
:::

@fm

@x1

@fm

@x2

� � � @fm

@xn

j @fm

@u1

@fm

@u2

� � � @fm

@um

3
7777777775

(6.4.5)

or

F0 D ŒFX;FU�;

where FX is the submatrix to the left of the dashed line in (6.4.5) and FU is to the right.

For the linear transformation (6.4.2), FX D A and FU D B, and we have seen that the

system F.X;U/ D 0 defines U as a function of X for all X in R
n if FU is nonsingular. The

next theorem shows that a related result holds for more general transformations.
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Theorem 6.4.1 (The Implicit Function Theorem) Suppose that F W RnCm !
R

m is continuously differentiable on an open set S of R
nCm containing .X0;U0/: Let

F.X0;U0/ D 0; and suppose that FU.X0;U0/ is nonsingular:Then there is a neighborhood

M of .X0;U0/; contained in S; on which FU.X;U/ is nonsingular and a neighborhoodN

of X0 in R
n on which a unique continuously differentiable transformation G W Rn ! R

m

is defined; such that G.X0/ D U0 and

.X;G.X// 2 M and F.X;G.X// D 0 if X 2 N: (6.4.6)

Moreover;

G0.X/ D �ŒFU.X;G.X//�
�1FX.X;G.X//; X 2 N: (6.4.7)

Proof Define ˆ W RnCm ! R
nCm by

ˆ.X;U/ D

2
66666666666664

x1

x2

:::

xn

f1.X;U/

f2.X;U/
:::

fm.X;U/

3
77777777777775

(6.4.8)

or, in “horizontal”notation by

ˆ.X;U/ D .X;F.X;U//: (6.4.9)

Then ˆ is continuously differentiable on S and, since F.X0;U0/ D 0,

ˆ.X0;U0/ D .X0; 0/: (6.4.10)

The differential matrix of ˆ is

ˆ
0 D

2
666666666666666666666664

1 0 � � � 0 0 0 � � � 0

0 1 � � � 0 0 0 � � � 0
:::

:::
: : :

:::
:::

:::
: : :

:::

0 0 � � � 1 0 0 � � � 0

@f1

@x1

@f1

@x2

� � � @f1

@xn

@f1

@u1

@f1

@u2

� � � @f1

@um

@f2

@x1

@f2

@x2

� � � @f2

@xn

@f2

@u1

@f2

@u2

� � � @f2

@um

:::
:::

: : :
:::

:::
:::

: : :
:::

@fm

@x1

@fm

@x2

� � � @fm

@xn

@fm

@u1

@fm

@u2

� � � @fm

@um

3
777777777777777777777775

D
�

I 0

FX FU

�
;
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where I is the n � n identity matrix, 0 is the n � m matrix with all zero entries, and FX

and FU are as in (6.4.5). By expanding det.ˆ0/ and the determinants that evolve from it in

terms of the cofactors of their first rows, it can be shown in n steps that

Jˆ D det.ˆ0/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

@f1

@u1

@f1

@u2

� � � @f1

@um

@f2

@u1

@f2

@u2

� � � @f2

@um

:::
:::

: : :
:::

@fm

@u1

@fm

@u2

� � � @fm

@um

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D det.FU/:

In particular,

Jˆ.X0;U0/ D det.FU.X0;U0/ ¤ 0:
Since ˆ is continuously differentiable on S , Corollary 6.3.5 implies that ˆ is regular on

some open neighborhoodM of .X0;U0/ and that cM D ˆ.M/ is open.

Because of the form of ˆ (see (6.4.8) or (6.4.9)), we can write points of cM as .X;V/,

where V 2 R
m. Corollary 6.3.5 also implies that ˆ has a a continuously differentiable

inverse � .X;V/ defined on cM with values in M . Since ˆ leaves the “X part" of .X;U/

fixed, a local inverse of ˆ must also have this property. Therefore, � must have the form

� .X;V/ D

2
66666666666666664

x1

x2

:::

xn

h1.X;V/

h2.X;V/
:::

hm.X;V/

3
77777777777777775

or, in “horizontal” notation,

� .X;V/ D .X;H.X;V//;
where H W RnCm ! R

m is continuously differentiable on cM . We will show that G.X/ D
H.X; 0/ has the stated properties.

From (6.4.10), .X0; 0/ 2 cM and, since cM is open, there is a neighborhoodN of X0 in

R
n such that .X; 0/ 2cM if X 2 N (Exercise 6.4.2). Therefore, .X;G.X// D � .X; 0/ 2 M

if X 2 N . Since � D ˆ
�1, .X; 0/ D ˆ.X;G.X//. Setting X D X0 and recalling (6.4.10)

shows that G.X0/ D U0, since ˆ is one-to-one onM .



422 Chapter 6 Vector-Valued Functions of Several Variables

Henceforth we assume that X 2 N . Now,

.X; 0/ D ˆ.� .X; 0// (since ˆ D �
�1/

D ˆ.X;G.X// (since �.X; 0/ D .X;G.X//)
D .X;F.X;G.X/// (since ˆ.X;U/ D .X;F.X;U//):

Therefore, F.X;G.X// D 0; that is, G satisfies (6.4.6). To see that G is unique, suppose

that G1 W Rn ! R
m also satisfies (6.4.6). Then

ˆ.X;G.X// D .X;F.X;G.X/// D .X; 0/

and

ˆ.X;G1.X// D .X;F.X;G1.X/// D .X; 0/
for all X in N . Since ˆ is one-to-one on M , this implies that G.X/ D G1.X/.

Since the partial derivatives

@hi

@xj

; 1 � i � m; 1 � j � n;

are continuous functions of .X;V/ on cM , they are continuous with respect to X on the

subset
˚
.X; 0/

ˇ̌
X 2 N

	
ofcM . Therefore, G is continuously differentiable onN . To verify

(6.4.7), we write F.X;G.X// D 0 in terms of components; thus,

fi .x1; x2; : : : ; xn; g1.X/; g2.X/; : : : ; gm.X// D 0; 1 � i � m; X 2 N:

Since fi and g1, g2, . . . , gm are continuously differentiable on their respective domains,

the chain rule (Theorem 5.4.3) implies that

@fi .X;G.X//

@xj

C
mX

rD1

@fi .X;G.X//

@ur

@gr.X/

@xj

D 0; 1 � i � m; 1 � j � n; (6.4.11)

or, in matrix form,

FX.X;G.X// C FU.X;G.X//G
0.X/ D 0: (6.4.12)

Since .X;G.X// 2 M for all X in N and FU.X;U/ is nonsingular when .X;U/ 2 M , we

can multiply (6.4.12) on the left by F�1
U
.X;G.X// to obtain (6.4.7). This completes the

proof.

In Theorem 6.4.1 we denoted the implicitly defined transformation by G for reasons

of clarity in the proof. However, in applying the theorem it is convenient to denote the

transformation more informally by U D U.X/; thus, U.X0/ D U0, and we replace (6.4.6)

and (6.4.7) by

.X;U.X// 2M and X.X;U.X// D 0 if X 2 N;

and

U0.X/ D �ŒFU.X;U.X//�
�1FX.X;U.X//; X 2 N;
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while (6.4.11) becomes

@fi

@xj

C
mX

rD1

@fi

@ur

@ur

@xj

D 0; 1 � i � m; 1 � j � n; (6.4.13)

it being understood that the partial derivatives of ur and fi are evaluated at X and .X;U.X//,

respectively.

The following corollary is the implicit function theorem for m D 1.

Corollary 6.4.2 Suppose that f W R
nC1 ! R is continuously differentiable on an

open set containing .X0; u0/; with f .X0; u0/ D 0 and fu.X0; u0/ ¤ 0. Then there is a

neighborhoodM of .X0; u0/; contained in S; and a neighborhoodN of X0 in R
n on which

is defined a unique continuously differentiable function u D u.X/ W Rn ! R such that

.X; u.X// 2M and fu.X; u.X// ¤ 0; X 2 N;

u.X0/ D u0; and f .X; u.X// D 0; X 2 N:
The partial derivatives of u are given by

uxi
.X/ D �fxi

.X; u.X//

fu.X; u.X//
; 1 � i � n:

Example 6.4.1 Let

f .x; y; u/ D 1 � x2 � y2 � u2

and .x0; y0; u0/ D .1
2
;�1

2
; 1p

2
/. Then f .x0; y0; ´0/ D 0 and

fx.x; y; u/ D �2x; fy.x; y; u/ D �2y; fu.x; y; u/ D �2u:

Since f is continuously differentiable everywhere and fu.x0; y0; u0/ D �
p
2 ¤ 0, Corol-

lary 6.4.2 implies that the conditions

1 � x2 � y2 � u2 D 0; u.1=2;�1=2/D 1
p
2
;

determine u D u.x; y/ near .x0; y0/ D .1
2
;�1

2
/ so that

ux.x; y/ D �
fx.x; y; u.x; y//

fu.x; y; u.x; y//
D �x
u.x; y/

; (6.4.14)

and

uy.x; y/ D �
fy .x; y; u.x; y//

fu.x; y; u.x; y//
D �y
u.x; y/

: (6.4.15)

It is not necessary to memorize formulas like (6.4.14) and (6.4.15). Since we know that

f and u are differentiable, we can obtain (6.4.14) and (6.4.15) by applying the chain rule

to the identity

f .x; y; u.x; y// D 0:
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Example 6.4.2 Let

f .x; y; u/ D x3y2u2 C 3xy4u4 � 3x6y6u7 C 12x � 13 (6.4.16)

and .x0; y0; u0/ D .1;�1; 1/, so f .x0; y0; u0/ D 0. Then

fx.x; y; u/ D 3x2y2u2 C 3y4u4 � 18x5y6u7 C 12;
fy.x; y; u/ D 2x3yu2 C 12xy3u4 � 18x6y5u7;

fu.x; y; u/ D 2x3y2uC 12xy4u3 � 21x6y6u6:

Since fu.1;�1; 1/ D �7 ¤ 0, Corollary 6.4.2 implies that the conditions

f .x; y; u/ D 0; u.1;�1/ D 1 (6.4.17)

determine u as a continuously differentiable function of .x; y/ near .1;�1/.

If we try to solve (6.4.16) for u, we see very clearly that Theorem 6.4.1 and Corol-

lary 6.4.2 are existence theorems; that is, they tell us that there is a function u D u.x; y/

that satisfies (6.4.17), but not how to find it. In this case there is no convenient formula for

the function, although its partial derivatives can be expressed conveniently in terms of x,

y, and u.x; y/:

ux.x; y/ D �
fx.x; y; u.x; y//

fu.x; y; u.x; y//
; uy.x; y/ D �

fy.x; y; u.x; y//

fu.x; y; u.x; y//
:

In particular, since u.1;�1/ D 1,

ux.1;�1/ D �
0

�7
D 0; uy.1;�1/ D �

4

�7
D 4

7
:

Example 6.4.3 Let

X D

2
4
x

y

´

3
5 and U D

�
u

v

�
;

and

F.X;U/ D
�
2x2 C y2 C ´2 C u2 � v2

x2 C ´2 C 2u� v

�
:

If X0 D .1;�1; 1/ and U0 D .0; 2/, then F.X0;U0/ D 0. Moreover,

FU.X;U/ D
�
2u �2v
2 �1

�
and FX D

�
4x 2y 2´

2x 0 2´

�
;

so

det.FU.X0;U0// D
ˇ̌
ˇ̌ 0 �4
2 �1

ˇ̌
ˇ̌ D 8 ¤ 0:
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Hence, the conditions

F.X;U/ D 0; U.1;�1; 1/ D .0; 2/

determine U D U.X/ near X0. Although it is difficult to find U.X/ explicitly, we can

approximate U.X/ near X0 by an affine transformation. Thus, from (6.4.7),

U0.X0/ D �ŒFU.X0;U.X0//�
�1FX.X0;U.X0// (6.4.18)

D �
�
0 �4
2 �1

��1 �
4 �2 2

2 0 2

�

D �1
8

�
�1 4

�2 0

� �
4 �2 2

2 0 2

�

D �1
8

�
4 2 6

�8 4 �4

�
:

Therefore,

lim
X!.1;�1;1/

�
u.x; y/

v.x; y/

�
�
�
0

2

�
C 1

8

�
4 2 6

�8 4 �4

�2
4
x � 1
y C 1
´ � 1

3
5

Œ.x � 1/2 C .y C 1/2 C .´ � 1/2�1=2
D
�
0

0

�
:

Again, it is not necessary to memorize (6.4.18), since the partial derivatives of an implic-

itly defined function can be obtained from the chain rule and Cramer’s rule, as in the next

example.

Example 6.4.4 Let u D u.x; y/ and v D v.x; y/ be differentiable and satisfy

x2 C 2y2 C 3´2 C u2 C v D 6

2x3 C 4y2 C 2´2 C uC v2 D 9
(6.4.19)

and

u.1;�1; 0/ D �1; v.1;�1; 0/ D 2: (6.4.20)

To find ux and vx, we differentiate (6.4.19) with respect to x to obtain

2x C 2uux C vx D 0
6x2 C ux C 2vvx D 0:

Therefore, �
2u 1

1 2v

� �
ux

vx

�
D �

�
2x

6x2

�
;
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and Cramer’s rule yields

ux D �

ˇ̌
ˇ̌ 2x 1

6x2 2v

ˇ̌
ˇ̌

ˇ̌
ˇ̌ 2u 1

1 2v

ˇ̌
ˇ̌
D 6x2 � 4xv

4uv � 1

and

vx D �

ˇ̌
ˇ̌ 2u 2x

1 6x2

ˇ̌
ˇ̌

ˇ̌
ˇ̌ 2u 1

1 2v

ˇ̌
ˇ̌
D 2x � 12x2u

4uv � 1

if 4uv ¤ 1. In particular, from (6.4.20),

ux.1;�1; 0/ D
�2
�9
D 2

9
; vx.1;�1; 0/ D

14

�9
D �14

9
:

Jacobians

It is convenient to extend the notation introduced in Section 6.2 for the Jacobian of a trans-

formation F W R
m ! R

m. If f1, f2, . . . , fm are real-valued functions of k variables,

k � m, and �1, �2, . . . , �m are any m of the variables, then we call the determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

@f1

@�1

@f1

@�2

� � � @f1

@�m

@f2

@�1

@f2

@�2

� � � @f2

@�m

:::
:::

: : :
:::

@fm

@�1

@fm

@�2

� � � @fm

@�m

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

;

the Jacobian of f1, f2, . . . , fm with respect to �1, �2, . . . , �m. We denote this Jacobian by

@.f1; f2; : : : ; fm/

@.�1; �2; : : : ; �m/
;

and we denote the value of the Jacobian at a point P by

@.f1; f2; : : : ; fm/

@.�1; �2; : : : ; �m/

ˇ̌
ˇ̌
ˇ
P

:

Example 6.4.5 If

F.x; y; ´/ D
�
3x2 C 2xy C ´2

4x2 C 2xy2 C ´3

�
;
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then
@.f1; f2/

@.x; y/
D
ˇ̌
ˇ̌ 6xC 2y 2x

8x C 2y2 4xy

ˇ̌
ˇ̌ ; @.f1; f2/

@.y; ´/
D
ˇ̌
ˇ̌ 2x 2´

4xy 3´2

ˇ̌
ˇ̌ ;

and
@.f1; f2/

@.´; x/
D
ˇ̌
ˇ̌ 2´ 6x C 2y
3´2 8x C 2y2

ˇ̌
ˇ̌ :

The values of these Jacobians at X0 D .�1; 1; 0/ are

@.f1; f2/

@.x; y/

ˇ̌
ˇ̌
ˇ
X0

D
ˇ̌
ˇ̌ �4 �2
�6 �4

ˇ̌
ˇ̌ D 4; @.f1; f2/

@.y; ´/

ˇ̌
ˇ̌
ˇ
X0

D
ˇ̌
ˇ̌ �2 0

�4 0

ˇ̌
ˇ̌ D 0;

and

@.f1; f2/

@.´; x/

ˇ̌
ˇ̌
ˇ
X0

D
ˇ̌
ˇ̌ 0 �4
0 �6

ˇ̌
ˇ̌ D 0:

The requirement in Theorem 6.4.1 that FU.X0;U0/ be nonsingular is equivalent to

@.f1; f2; : : : ; fm/

@.u1; u2; : : : ; um/

ˇ̌
ˇ̌
ˇ
.X0;U0/

¤ 0:

If this is so then, for a fixed j , Cramer’s rule allows us to write the solution of (6.4.13) as

@ui

@xj

D �

@.f1; f2; : : : ; fi ; : : : ; fm/

@.u1; u2; : : : ; xj ; : : : ; um/

@.f1; f2; : : : ; fi ; : : : ; fm/

@.u1; u2; : : : ; ui ; : : : ; um/

; 1 � i � m;

Notice that the determinant in the numerator on the right is obtained by replacing the i th

column of the determinant in the denominator, which is
2
6666666664

@f1

@ui

@f2

@ui
:::
@fm

@ui

3
7777777775

; by

2
6666666664

@f1

@xj

@f2

@xj
:::
@fm

@xj

3
7777777775

:

So far we have considered only the problem of solving a continuously differentiable

system

F.X;U/ D 0 .F W RnCm ! R
m/ (6.4.21)

for the last m variables, u1, u2, . . . , um, in terms of the first n, x1, x2, . . . , xn. This was

merely for convenience; (6.4.21) can be solved near .X0;U0/ for any m of the variables in

terms of the other n, provided only that the Jacobian of f1, f2, . . . , fm with respect to the

chosen m variables is nonzero at .X0;U0/. This can be seen by renaming the variables and

applying Theorem 6.4.1.
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Example 6.4.6 Let

F.x; y; ´/ D
�
f .x; y; ´/

g.x; y; ´/

�

be continuously differentiable in a neighborhood of .x0; y0; ´0/. Suppose that

F.x0; y0; ´0/ D 0

and

@.f; g/

@.x; ´/

ˇ̌
ˇ̌
ˇ
.x0;y0;´0/

¤ 0: (6.4.22)

Then Theorem 6.4.1 with X D .y/ and U D .x; ´/ implies that the conditions

f .x; y; ´/ D 0; g.x; y; ´/ D 0; x.y0/ D x0; ´.y0/ D ´0; (6.4.23)

determine x and ´ as continuously differentiable functions of y near y0. Differentiating

(6.4.23) with respect to y and regarding x and ´ as functions of y yields

fxx
0 C fy C f´´

0 D 0
gxx

0 C gy C g´´
0 D 0:

Rewriting this as

fxx
0 C f´´

0 D �fy

gxx
0C g´´

0 D �gy ;

and solving for x0 and ´0 by Cramer’s rule yields

x0 D

ˇ̌
ˇ̌ �fy f´

�gy g´

ˇ̌
ˇ̌

ˇ̌
ˇ̌ fx f´

gx g´

ˇ̌
ˇ̌
D �

@.f; g/

@.y; ´/

@.f; g/

@.x; ´/

(6.4.24)

and

´0 D

ˇ̌
ˇ̌ fx �fy

gx �gy

ˇ̌
ˇ̌

ˇ̌
ˇ̌ fx f´

gx g´

ˇ̌
ˇ̌
D �

@.f; g/

@.x; y/

@.f; g/

@.x; ´/

: (6.4.25)

Equation (6.4.22) implies that @.f; g/=@.x; ´/ is nonzero if y is sufficiently close to y0.

Example 6.4.7 Let X0 D .1; 1; 2/ and

F.x; y; ´/ D
�
f .x; y; ´/

g.x; y; ´/

�
D
�
6x C 6y C 4´3 � 44
�x2 � y2 C 8´ � 14

�
:
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Then F.X0/ D 0,
@.f; g/

@.x; ´/
D
ˇ̌
ˇ̌ 6 12´2

�2x 8

ˇ̌
ˇ̌ ;

and

@.f; g/

@.x; ´/

ˇ̌
ˇ̌
ˇ
.1;1;2/

D
ˇ̌
ˇ̌ 6 48

�2 8

ˇ̌
ˇ̌ D 144 ¤ 0:

Therefore, Theorem 6.4.1 with X D .y/ and U D .x; ´/ implies that the conditions

f .x; y; ´/ D 0; g.x; y; ´/ D 0;

and

x.1/ D 1; ´.1/ D 2; (6.4.26)

determine x and ´ as continuously differentiable functions of y near y0 D 1. From (6.4.24)

and (6.4.25),

x0 D �

@.f; g/

@.y; ´/

@.f; g/

@.x; ´/

D �

ˇ̌
ˇ̌ 6 12´2

�2y 8

ˇ̌
ˇ̌

ˇ̌
ˇ̌ 6 12´2

�2x 8

ˇ̌
ˇ̌
D �2C y´

2

2C x´2

and

´0 D �

@.f; g/

@.x; y/

@.f; g/

@.x; ´/

D �

ˇ̌
ˇ̌ 6 6

�2x �2y

ˇ̌
ˇ̌

ˇ̌
ˇ̌ 6 12´2

�2x 8

ˇ̌
ˇ̌
D y � x
4C 2x´2

:

These equations hold near y D 1. Together with (6.4.26) they imply that

x0.1/ D �1; ´0.1/ D 0:

Example 6.4.8 Continuing with Example 6.4.7, Theorem 6.4.1 implies that the con-

ditions

f .x; y; ´/ D 0; g.x; y; ´/ D 0; y.1/ D 1; ´.1/ D 2
determine y and ´ as functions of x near x0 D 1, since

@.f; g/

@.y; ´/
D
ˇ̌
ˇ̌ 6 12´2

�2y 8

ˇ̌
ˇ̌

and

@.f; g/

@.y; ´/

ˇ̌
ˇ̌
ˇ
.1;1;2/

D
ˇ̌
ˇ̌ 6 48

�2 8

ˇ̌
ˇ̌ D 144 ¤ 0:

However, Theorem 6.4.1 does not imply that the conditions

f .x; y; ´/ D 0; g.x; y; ´/ D 0; x.2/ D 1; y.2/ D 1
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define x and y as functions of ´ near ´0 D 2, since

@.f; g/

@.x; y/
D
ˇ̌
ˇ̌ 6 6

�2x �2y

ˇ̌
ˇ̌

and

@.f; g/

@.x; y/

ˇ̌
ˇ̌
ˇ
.1;1;2/

D
ˇ̌
ˇ̌ 6 6

�2 �2

ˇ̌
ˇ̌ D 0:

We close this section by observing that the functions u1, u2, . . . , um defined in Theo-

rem 6.4.1 have higher derivatives if f1; f2; : : : ; fm do, and they may be obtained by differ-

entiating (6.4.13), using the chain rule. (Exercise 6.4.17).

Example 6.4.9 Suppose that u and v are functions of .x; y/ that satisfy

f .x; y; u; v/D x � u2 � v2 C 9D 0

g.x; y; u; v/ D y � u2 C v2 � 10D 0:

Then
@.f; g/

@.u; v/
D
ˇ̌
ˇ̌ �2u �2v
�2u 2v

ˇ̌
ˇ̌ D �8uv:

From Theorem 6.4.1, if uv ¤ 0, then

ux D
1

8uv

@.f; g/

@.x; v/
D 1

8uv

ˇ̌
ˇ̌ 1 �2v
0 2v

ˇ̌
ˇ̌ D 1

4u
;

uy D
1

8uv

@.f; g/

@.y; v/
D 1

8uv

ˇ̌
ˇ̌ 0 �2v
1 2v

ˇ̌
ˇ̌ D 1

4u
;

vx D
1

8uv

@.f; g/

@.u; x/
D 1

8uv

ˇ̌
ˇ̌ �2u 1

�2u 0

ˇ̌
ˇ̌ D 1

4v
;

vy D
1

8uv

@.f; g/

@.u; y/
D 1

8uv

ˇ̌
ˇ̌ �2u 0

�2u 1

ˇ̌
ˇ̌ D � 1

4v
:

These can be differentiated as many times as we wish. For example,

uxx D �
ux

4u2
D � 1

16u3
;

uxy D �
uy

4u2
D � 1

16u3
;

and

vyx D
vx

4v2
D 1

16v2
:
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6.4 Exercises

1. Solve for U D .u; : : : / as a function of X D .x; : : : /.

(a)

�
1 1

1 �1

� �
u

v

�
C
�
1 �1
2 �3

��
x

y

�
D
�
0

0

�

(b)
u� v C w C 3x C 2y D 0
�uC v C w � x C y D 0
uC v �w C y D 0

(c)
3uC v C y D sinx

uC 2vC x D siny

(d)
2uC 2v C w C 2x C 2y C ´ D 0
u� vC 2w C x � y C 2´ D 0
3uC 2v � w C 3x C 2y � ´ D 0

2. Suppose that X0 2 R
n and U0 2 R

m. Prove: If N1 is a neighborhood of .X0;U0/

in R
nCm, there is a neighborhoodN of X0 in R

n such that .X;U0/ 2 N1 if X 2 N .

3. Let .X0;U0/ be an arbitrary point in R
nCm. Give an example of a function F W

R
nCm ! R

m such that F is continuously differentiable on R
nCm, F.X0;U0/ D 0,

FU.X0;U0/ is singular, and the conditions F.X;U/ D 0 and U.X0/ D Y0

(a) determine U as a continuously differentiable function of X for all X;

(b) determine U as a continuous function of X for all X, but U is not differentiable

at X0;

(c) do not determine U as a function of X.

4. Let u D u.x; y/ be determined near .1; 1/ by

x2yuC 2xy2u3 � 3x3y3u5 D 0; u.1; 1/ D 1:

Find ux.1; 1/ and uy .1; 1/.

5. Let u D u.x; y; ´/ be determined near .1; 1; 1/ by

x2y5´2u5 C 2xy2u3 � 3x3´2u D 0; u.1; 1; 1/ D 1:

Find ux.1; 1; 1/, uy.1; 1; 1/, and u´.1; 1; 1/.

6. Find u.x0; y0/, ux.x0; y0/, and uy.x0; y0/.

(a) 2x2 C y2 C ueu D 6; .x0; y0/ D .1; 2/
(b) u.x C 1/C x.y C 2/C y.u � 2/ D 0; .x0; y0/ D .�1;�2/
(c) 1 � eu sin.x C y/ D 0; .x0; y0/ D .�=4; �=4/
(d) x loguC y logx C u logy D 0; .x0; y0/ D .1; 1/
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7. Find u.x0; y0/, ux.x0; y0/, and uy.x0; y0/ for all continuously differentiable func-

tions u that satisfy the given equation near .x0; y0/.

(a) 2x2y4 � 3uxy3 C u2x4y3 D 0; .x0; y0/ D .1; 1/
(b) cos u cos x C sinu sin y D 0; .x0; y0/ D .0; �/

8. Suppose that U D .u; v/ is continuously differentiable with respect to .x; y; ´/ and

satisfies
x2 C 4y2 C ´2 � 2u2 C v2 D �4

.x C ´/2 C u � v D �3
and

u.1; 1
2
;�1/ D �2; v.1; 1

2
;�1/ D 1:

Find U0.1; 1
2
;�1/.

9. Let u and v be continuously differentiable with respect to x and satisfy

uC 2u2 C v2 C x2 C 2v � x D 0

xuv C eu sin.v C x/D 0

and u.0/ D v.0/ D 0. Find u0.0/ and v0.0/.

10. Let U D .u; v; w/ be continuously differentiable with respect to .x; y/ and satisfy

x2y C xy2 C u2 � .v C w/2 D �3
exCy � u� v � w D �2

.x C y/2 C uC v C w2 D 3

and U.1;�1/ D .1; 2; 0/. Find U0.1;�1/.
11. Two continuously differentiable transformations U D .u; v/ of .x; y/ satisfy the

system

xyu � 4yuC 9xv D 0

2xy � 3y2 C v2 D 0

near .x0; y0/ D .1; 1/. Find the value of each transformation and its differential

matrix at .1; 1/.

12. Suppose that u, v, and w are continuously differentiable functions of .x; y; ´/ that

satisfy the system

ex cosy C e´ cosuC ev cosw C x D 3

ex sin y C e´ sinuC ev cosw D 1

ex tany C e´ tanuC ev tanw C ´ D 0

near .x0; y0; ´0/ D .0; 0; 0/, and u.0; 0; 0/ D v.0; 0; 0/ D w.0; 0; 0/ D 0. Find

ux.0; 0; 0/, vx.0; 0; 0/, and wx.0; 0; 0/.
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13. Let F D .f; g; h/ be continuously differentiable in a neighborhood of P0 D .x0; y0; ´0; u0; v0/,

F.P0/ D 0, and
@.f; g; h/

@.y; ´; u/

ˇ̌
ˇ̌
P0

¤ 0:

Then Theorem 6.4.1 implies that the conditions

F.x; y; ´; u; v/ D 0; y.x0; v0/ D u0; ´.x0; v0/ D ´0; u.x0; v0/ D u0

determine y, ´, and u as continuously differentiable functions of .x; v/ near .x0; v0/.

Use Cramer’s rule to express their first partial derivatives as ratios of Jacobians.

14. Decide which pairs of the variables x, y, ´, u, and v are determined as functions of

the others by the system

x C 2y C 3´C uC 6v D 0
2x C 4y C ´C 2uC 2v D 0;

and solve for them.

15. Let y and v be continuously differentiable functions of .x; ´; u/ that satisfy

x2 C 4y2 C ´2 � 2u2 C v2 D �4

.x C ´/2 C u � v D �3

near .x0; ´0; u0/ D .1;�1;�2/, and suppose that

y.1;�1;�2/ D 1

2
; v.1;�1;�2/ D 1:

Find yx.1;�1;�2/ and vu.1;�1;�2/.
16. Let u, v, and x be continuously differentiable functions of .w; y/ that satisfy

x2y C xy2 C u2 � .v C w/2 D �3
exCy � u� v � w D �2

.x C y/2 C uC v C w2 D 3

near .w0; y0/ D .0;�1/, and suppose that

u.0;�1/ D 1; v.0;�1/ D 2; x.0;�1/ D 1:

Find the first partial derivatives of u, v, and x with respect to y and w at .0;�1/.
17. In addition to the assumptions of Theorem 6.4.1, suppose that F has all partial

derivatives of order � q in S . Show that U D U.X/ has all partial derivatives

of order � q in N .
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18. Calculate all first and second partial derivatives at .x0; y0/ D .1; 1/ of the functions

u and v that satisfy

x2 C y2 C u2 C v2 D 3
x C y C u C v D 3; u.1; 1/ D 0; v.1; 1/ D 1:

19. Calculate all first and second partial derivatives at .x0; y0/ D .1;�1/ of the func-

tions u and v that satisfy

u2 � v2 D x � y � 2
2uv D x C y � 2; u.1;�1/ D �1; v.1;�1/ D 1:

20. Suppose that f1, f2, . . . , fn are continuously differentiable functions of X in a

region S in R
n, � is continuously differentiable function of U in a region T of R

n,

.f1.X/; f2.X/; : : : ; fn.X// 2 T; X 2 S;

�.f1.X/; f2.X/; : : : ; fn.X// D 0; X 2 S;

and
nX

j D1

�2
uj
.U/ > 0; U 2 T:

Show that
@.f1; f2; : : : ; fn/

@.x1; x2; : : : ; xn/
D 0; X 2 S:



CHAPTER 7

Integrals of Functions

of Several Variables

IN THIS CHAPTER we study the integral calculus of real-valued functions of several

variables.

SECTION 7.1 defines multiple integrals, first over rectangular parallelepipeds in R
n and

then over more general sets. The discussion deals with the multiple integral of a function

whose discontinuities form a set of Jordan content zero, over a set whose boundary has

Jordan content zero.

SECTION 7.2 deals with evaluation of multiple integrals by means of iterated integrals.

SECTION 7.3 begins with the definition of Jordan measurability, followed by a derivation

of the rule for change of content under a linear transformation, an intuitive formulation of

the rule for change of variables in multiple integrals, and finally a careful statement and

proof of the rule. This is a complicated proof.

7.1 DEFINITION AND EXISTENCE OF THE MULTIPLE IN-
TEGRAL

We now consider the Riemann integral of a real-valued function f defined on a subset of

R
n, where n � 2. Much of this development will be analogous to the development in

Sections 3.1–3 for n D 1, but there is an important difference: for n D 1, we considered

integrals over closed intervals only, but for n > 1 we must consider more complicated

regions of integration. To defer complications due to geometry, we first consider integrals

over rectangles in R
n, which we now define.

Integrals over Rectangles

The

S1 � S2 � � � � � Sn

of subsets S1, S2, . . . , Sn of R is the set of points .x1; x2; : : : ; xn/ in R
n such that x1 2

S1; x2 2 S2; : : : ; xn 2 Sn. For example, the Cartesian product of the two closed intervals

435
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Œa1; b1� � Œa2; b2� D
˚
.x; y/

ˇ̌
a1 � x � b1; a2 � y � b2

	

is a rectangle in R
2 with sides parallel to the x- and y-axes (Figure 7.1.1).

y

x
a

1 b
1

a
2

b
2

Figure 7.1.1

The Cartesian product of three closed intervals

Œa1; b1� � Œa2; b2� � Œa3; b3� D
˚
.x; y; ´/

ˇ̌
a1 � x � b1; a2 � y � b2; a3 � ´ � b3

	

is a rectangular parallelepiped in R
3 with faces parallel to the coordinate axes (Figure 7.1.2).

z

y

x

Figure 7.1.2
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Definition 7.1.1 A coordinate rectangle R in R
n is the Cartesian product of n closed

intervals; that is,

R D Œa1; b1� � Œa2; b2� � � � � � Œan; bn�:

The content of R is

V.R/ D .b1 � a1/.b2 � a2/ � � � .bn � an/:

The numbers b1 � a1, b2 � a2, . . . , bn � an are the edge lengths of R. If they are equal,

then R is a coordinate cube. If ar D br for some r , then V.R/ D 0 and we say that R is

degenerate; otherwise, R is nondegenerate.

If n D 1, 2, or 3, then V.R/ is, respectively, the length of an interval, the area of a

rectangle, or the volume of a rectangular parallelepiped. Henceforth, “rectangle” or “cube”

will always mean “coordinate rectangle” or “coordinate cube” unless it is stated otherwise.

If

R D Œa1; b1� � Œa2; b2� � � � � � Œan; bn�

and

Pr W ar D ar0 < ar1 < � � � < armr D br

is a partition of Œar ; br �, 1 � r � n, then the set of all rectangles in R
n that can be written

as

Œa1;j1�1; a1j1
� � Œa2;j2�1; a2j2

� � � � � � Œan;jn�1; anjn�; 1 � jr � mr ; 1 � r � n;

is a partition of R. We denote this partition by

P D P1 � P2 � � � � �Pn (7.1.1)

and define its norm to be the maximum of the norms of P1, P2, . . . , Pn, as defined in

Section 3.1; thus,

kP k D maxfkP1k; kP2k; : : : ; kPnkg:
Put another way, kP k is the largest of the edge lengths of all the subrectangles in P .

Geometrically, a rectangle in R
2 is partitioned by drawing horizontal and vertical lines

through it (Figure 7.1.3); in R
3, by drawing planes through it parallel to the coordinate axes.

Partitioning divides a rectangle R into finitely many subrectangles that we can number in

arbitrary order as R1, R2, . . . , Rk . Sometimes it is convenient to write

P D fR1; R2; : : : ; Rkg

rather than (7.1.1).
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y
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b

1
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2
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Figure 7.1.3

If P D P1 � P2 � � � � � Pn and P 0 D P 0
1 � P 0

2 � � � � � P 0
n are partitions of the same

rectangle, then P 0 is a refinement of P if P 0
i is a refinement of Pi , 1 � i � n, as defined in

Section 3.1.

Suppose that f is a real-valued function defined on a rectangleR in R
n, P D fR1; R2; : : : ; Rkg

is a partition of R, and Xj is an arbitrary point in Rj , 1 � j � k. Then

� D
kX

j D1

f .Xj /V .Rj /

is a Riemann sum of f over P . Since Xj can be chosen arbitrarily inRj , there are infinitely

many Riemann sums for a given function f over any partitionP ofR.

The following definition is similar to Definition 3.1.1.

Definition 7.1.2 Let f be a real-valued function defined on a rectangle R in R
n. We

say that f is Riemann integrable on R if there is a number L with the following property:

For every � > 0, there is a ı > 0 such that

j� �Lj < �

if � is any Riemann sum of f over a partition P of R such that kP k < ı. In this case, we

say that L is the Riemann integral of f over R, and write

Z

R

f .X/ dX D L:

IfR is degenerate, then Definition 7.1.2 implies that
R

R
f .X/ dX D 0 for any function f

defined onR (Exercise 7.1.1). Therefore, it should be understood henceforth that whenever

we speak of a rectangle in R
n we mean a nondegenerate rectangle, unless it is stated to the

contrary.
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The integral
R

R
f .X/dX is also written as

Z

R

f .x; y/ d.x; y/ .n D 2/;
Z

R

f .x; y; ´/ d.x; y; ´/ .n D 3/;

or Z

R

f .x1; x2; : : : ; xn/ d.x1; x2; : : : ; xn/ (n arbitrary):

Here dX does not stand for the differential of X, as defined in Section 6.2. It merely

identifies x1, x2, . . . , xn, the components of X, as the variables of integration. To avoid this

minor inconsistency, some authors write simply
R

R
f rather than

R
R
f .X/ dX.

As in the case where n D 1, we will say simply “integrable” or “integral” when we

mean “Riemann integrable” or “Riemann integral.” If n � 2, we call the integral of Defi-

nition 7.1.2 a multiple integral; for n D 2 and n D 3 we also call them double and triple

integrals, respectively. When we wish to distinguish between multiple integrals and the

integral we studied in Chapter .n D 1/, we will call the latter an ordinary integral.

Example 7.1.1 Find
R

R
f .x; y/ d.x; y/, where

R D Œa; b�� Œc; d �

and

f .x; y/ D x C y:

Solution Let P1 and P2 be partitions of Œa; b� and Œc; d �; thus,

P1 W a D x0 < x1 < � � � < xr D b and P2 W c D y0 < y1 < � � � < ys D d:

A typical Riemann sum of f over P D P1 � P2 is given by

� D
rX

iD1

sX

j D1

.�ij C �ij /.xi � xi�1/.yj � yj �1/; (7.1.2)

where

xi�1 � �ij � xi and yj �1 � �ij � yj : (7.1.3)

The midpoints of Œxi�1; xi � and Œyj �1; yj � are

xi D
xi C xi�1

2
and yj D

yj C yj �1

2
; (7.1.4)

and (7.1.3) implies that

j�ij � xi j �
xi � xi�1

2
� kP1k

2
� kP k

2
(7.1.5)

and

j�ij � yj j �
yj � yj �1

2
� kP2k

2
� kP k

2
: (7.1.6)
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Now we rewrite (7.1.2) as

� D
rX

iD1

sX

j D1

.xi C yj /.xi � xi�1/.yj � yj �1/

C
rX

iD1

sX

j D1

�
.�ij � xi/C .�ij � yj /

�
.xi � xi�1/.yj � yj �1/:

(7.1.7)

To find
R

R
f .x; y/ d.x; y/ from (7.1.7), we recall that

rX

iD1

.xi � xi�1/ D b � a;
sX

j D1

.yj � yj �1/ D d � c (7.1.8)

(Example 3.1.1), and

rX

iD1

.x2
i � x2

i�1/ D b2 � a2;

sX

j D1

.y2
j � y2

j �1/ D d 2 � c2 (7.1.9)

(Example 3.1.2).

Because of (7.1.5) and (7.1.6) the absolute value of the second sum in (7.1.7) does not

exceed

kP k
rX

j D1

sX

j D1

.xi � xi�1/.yj � yj �1/ D kP k
"

rX

iD1

.xi � xi�1/

#2
4

sX

j D1

.yj � yj �1/

3
5

D kP k.b � a/.d � c/
(see (7.1.8)), so (7.1.7) implies that

ˇ̌
ˇ̌
ˇ̌� �

rX

iD1

sX

j D1

.xi C yj /.xi � xi�1/.yj � yj �1/

ˇ̌
ˇ̌
ˇ̌ � kP k.b � a/.d � c/: (7.1.10)

It now follows that

rX

iD1

sX

j D1

xi .xi � xi�1/.yj � yj �1/ D
"

rX

iD1

xi .xi � xi�1/

#2
4

sX

j D1

.yj � yj �1/

3
5

D .d � c/
rX

iD1

xi .xi � xi�1/ (from (7.1.8))

D d � c
2

rX

iD1

.x2
i � x2

i�1/ (from (7.1.4))

D d � c
2

.b2 � a2/ (from (7.1.9)):

Similarly,
rX

iD1

sX

j D1

yj .xi � xi�1/.yj � yj �1/ D
b � a
2

.d 2 � c2/:
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Therefore, (7.1.10) can be written as
ˇ̌
ˇ̌� � d � c

2
.b2 � a2/ � b � a

2
.d 2 � c2/

ˇ̌
ˇ̌ � kP k.b � a/.d � c/:

Since the right side can be made as small as we wish by choosing kP k sufficiently small,

Z

R

.x C y/ d.x; y/ D 1

2

�
.d � c/.b2 � a2/C .b � a/.d 2 � c2/

�
:

Upper and Lower Integrals

The following theorem is analogous to Theorem 3.1.2.

Theorem 7.1.3 If f is unbounded on the nondegenerate rectangle R in R
n; then f is

not integrable on R:

Proof We will show that if f is unbounded on R, P D fR1; R2; : : : ; Rkg is any parti-

tion of R, and M > 0, then there are Riemann sums � and � 0 of f over P such that

j� � � 0j �M: (7.1.11)

This implies that f cannot satisfy Definition 7.1.2. (Why?)

Let

� D
kX

j D1

f .Xj /V .Rj /

be a Riemann sum of f over P . There must be an integer i in f1; 2; : : : ; kg such that

jf .X/ � f .Xi /j �
M

V.Ri /
(7.1.12)

for some X in Ri , because if this were not so, we would have

jf .X/� f .Xj /j <
M

V.Rj /
; X 2 Rj ; 1 � j � k:

If this is so, then

jf .X/j D jf .Xj /C f .X/ � f .Xj /j � jf .Xj /j C jf .X/ � f .Xj /j

� jf .Xj /j C
M

V.Rj /
; X 2 Rj ; 1 � j � k:

However, this implies that

jf .X/j � max

�
jf .Xj /j C

M

V.Rj /

ˇ̌
1 � j � k

�
; X 2 R;

which contradicts the assumption that f is unbounded on R.
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Now suppose that X satisfies (7.1.12), and consider the Riemann sum

� 0 D
nX

j D1

f .X0
j /V .Rj /

over the same partitionP , where

X0
j D

�
Xj ; j ¤ i;
X; j D i:

Since

j� � � 0j D jf .X/ � f .Xi /jV.Ri /;

(7.1.12) implies (7.1.11).

Because of Theorem 7.1.3, we need consider only bounded functions in connection with

Definition 7.1.2. As in the case where n D 1, it is now convenient to define the upper

and lower integrals of a bounded function over a rectangle. The following definition is

analogous to Definition 3.1.3.

Definition 7.1.4 If f is bounded on a rectangle R in R
n and P D fR1; R2; : : : ; Rkg

is a partition of R, let

Mj D sup
X2Rj

f .X/; mj D inf
X2Rj

f .X/:

The upper sum of f over P is

S.P / D
kX

j D1

MjV.Rj /;

and the upper integral of f over R, denoted by

Z

R

f .X/ dX;

is the infimum of all upper sums. The lower sum of f over P is

s.P / D
kX

j D1

mj V.Rj /;

and the lower integral of f over R, denoted by
Z

R

f .X/ dX;

is the supremum of all lower sums.

The following theorem is analogous to Theorem 3.1.4.
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Theorem 7.1.5 Let f be bounded on a rectangle R and let P be a partition of R:

Then

(a) The upper sum S.P/ of f over P is the supremum of the set of all Riemann sums of

f over P:

(b) The lower sum s.P/ of f over P is the infimum of the set of all Riemann sums of f

over P:

Proof Exercise 7.1.5.

If

m � f .X/ �M for X in R;

then

mV.R/ � s.P / � S.P / �MV.R/I
therefore,

R
R
f .X/ dX and

R
R
f .X/ dX exist, are unique, and satisfy the inequalities

mV.R/ �
Z

R

f .X/ dX �MV.R/

and

mV.R/ �
Z

R

f .X/ dX �MV.R/:

The upper and lower integrals are also written as

Z

R

f .x; y/ d.x; y/ and

Z

R

f .x; y/ d.x; y/ .n D 2/;

Z

R

f .x; y; ´/ d.x; y; ´/ and

Z

R

f .x; y; ´/ d.x; y; ´/ .n D 3/;

or Z

R

f .x1; x2; : : : ; xn/ d.x1; x2; : : : ; xn/

and Z

R

f .x1; x2; : : : ; xn/ d.x1; x2; : : : ; xn/ (n arbitrary):

Example 7.1.2 Find
R

R
f .x; y/ d.x; y/ and

R
R
f .x; y/ d.x; y/, with R D Œa; b� �

Œc; d � and

f .x; y/ D x C y;
as in Example 7.1.1.

Solution Let P1 and P2 be partitions of Œa; b� and Œc; d �; thus,

P1 W a D x0 < x1 < � � � < xr D b and P2 W c D y0 < y1 < � � � < ys D d:
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The maximum and minimum values of f on the rectangle Œxi�1; xi ��Œyj �1; yj � are xiCyj

and xi�1 C yj �1, respectively. Therefore,

S.P / D
rX

iD1

sX

j D1

.xi C yj /.xi � xi�1/.yj � yj �1/ (7.1.13)

and

s.P / D
rX

iD1

sX

j D1

.xi�1 C yj �1/.xi � xi�1/.yj � yj �1/: (7.1.14)

By substituting

xi C yj D
1

2
Œ.xi C xi�1/C .yj C yj �1/C .xi � xi�1/C .yj � yj �1/�

into (7.1.13), we find that

S.P / D 1

2
.†1 C†2 C†3 C†4/; (7.1.15)

where

†1 D
rX

iD1

.x2
i � x2

i�1/

sX

j D1

.yj � yj �1/ D .b2 � a2/.d � c/;

†2 D
rX

iD1

.xi � xi�1/

sX

j D1

.y2
j � y2

j �1/ D .b � a/.d 2 � c2/;

†3 D
rX

iD1

.xi � xi�1/
2

sX

j D1

.yj � yj �1/ � kPk.b � a/.d � c/;

†4 D
rX

iD1

.xi � xi�1/

sX

j D1

.yj � yj �1/
2 � kPk.b � a/.d � c/:

Substituting these four results into (7.1.15) shows that

I < S.P / < I C kP k.b � a/.d � c/;

where

I D .d � c/.b2 � a2/C .b � a/.d 2 � c2/

2
:

From this, we see that Z

R

.x C y/ d.x; y/ D I:

After substituting

xi�1 C yj �1 D
1

2
Œ.xi C xi�1/C .yj C yj �1/ � .xi � xi�1/ � .yj � yj �1/�

into (7.1.14), a similar argument shows that

I � kP k.b � a/.d � c/ < s.P / < I;
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so Z

R

.x C y/ d.x; y/ D I:

We now prove an analog of Lemma 3.2.1.

Lemma 7.1.6 Suppose that jf .X/j �M if X is in the rectangle

R D Œa1; b1� � Œa2; b2� � � � � � Œan; bn�:

Let P D P1 � P2 � � � � � Pn and P 0 D P 0
1 � P 0

2 � � � � � P 0
n be partitions of R; where P 0

j

is obtained by adding rj partition points to Pj ; 1 � j � n: Then

S.P / � S.P 0/ � S.P / � 2MV.R/

0
@

nX

j D1

rj

bj � aj

1
A kP k (7.1.16)

and

s.P / � s.P 0/ � s.P /C 2MV.R/

0
@

nX

j D1

rj

bj � aj

1
A kP k: (7.1.17)

Proof We will prove (7.1.16) and leave the proof of (7.1.17) to you (Exercise 7.1.7).

First suppose that P 0
1 is obtained by adding one point to P1, and P 0

j D Pj for 2 � j � n.

If Pr is defined by

Pr W ar D ar0 < ar1 < � � � < armr D br ; 1 � r � n;

then a typical subrectangle of P is of the form

Rj1j2���jn D Œa1;j1�1; a1j1
� � Œa2;j2�1; a2j2

� � � � � � Œan;jn�1; anjn�:

Let c be the additional point introduced into P1 to obtain P 0
1, and suppose that

a1;k�1 < c < a1k:

If j1 ¤ k, then Rj1j2���jn is common to P and P 0, so the terms associated with it in S.P 0/
and S.P / cancel in the difference S.P / � S.P 0/. To analyze the terms that do not cancel,

define

R
.1/

kj2���jn
D Œa1;k�1; c�� Œa2;j2�1; a2j2

� � � � � � Œan;jn�1; anjn�;

R
.2/

kj2���jn
D Œc; a1k� � Œa2;j2�1; a2j2

� � � � � � Œan;jn�1; anjn �;

Mkj2���jn
D sup

˚
f .X/

ˇ̌
X 2 Rkj2���jn

	
(7.1.18)

and

M
.i/

kj2���jn
D sup

n
f .X/

ˇ̌
X 2 R.i/

kj2���jn

o
; i D 1; 2: (7.1.19)
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Then S.P / � S.P 0/ is the sum of terms of the form
h
Mkj2���jn

.a1k � a1;k�1/ �M .1/

kj2���jn
.c � a1;k�1/�M .2/

kj2���jn
.a1k � c/

i

�.a2j2
� a2;j2�1/ � � � .anjn � an;jn�1/:

(7.1.20)

The terms within the brackets can be rewritten as

.Mkj2���jn
�M .1/

kj2���jn
/.c � a1;k�1/C .Mkj2���jn

�M .2/

kj2���jn
/.a1k � c/; (7.1.21)

which is nonnegative, because of (7.1.18) and (7.1.19). Therefore,

S.P 0/ � S.P /: (7.1.22)

Moreover, the quantity in (7.1.21) is not greater than 2M.a1k�a1;k�1/, so (7.1.20) implies

that the general surviving term in S.P / � S.P 0/ is not greater than

2MkP k.a2j2
� a2;j2�1/ � � � .anjn � an;jn�1/:

The sum of these terms as j2, . . . , jn assume all possible values 1 � ji � mi , 2 � i � n,

is

2MkP k.b2 � a2/ � � � .bn � an/ D
2MkP kV.R/
b1 � a1

:

This implies that

S.P / � S.P 0/C 2MkP kV.R/
b1 � a1

:

This and (7.1.22) imply (7.1.16) for r1 D 1 and r2 D � � � D rn D 0.

Similarly, if ri D 1 for some i in f1; : : : ; ng and rj D 0 if j ¤ i , then

S.P / � S.P 0/C
2MkP kV.R/
bi � ai

:

To obtain (7.1.16) in the general case, repeat this argument r1 C r2 C � � � C rn times, as in

the proof of Lemma 3.2.1.

Lemma 7.1.6 implies the following theorems and lemma, with proofs analogous to the

proofs of their counterparts in Section 3.2.

Theorem 7.1.7 If f is bounded on a rectangle R; then

Z

R

f .X/ dX �
Z

R

f .X/ dX:

Proof Exercise 7.1.8.

The next theorem is analogous to Theorem 3.2.3.

Theorem 7.1.8 If f is integrable on a rectangle R; then

Z

R

f .X/ dX D
Z

R

f .X/ dX D
Z

R

f .X/ dX:

Proof Exercise 7.1.9.
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Lemma 7.1.9 If f is bounded on a rectangle R and � > 0; there is a ı > 0 such that

Z

R

f .X/ dX � S.P / <
Z

R

f .X/ dXC �

and
Z

R

f .X/ dX � s.P / >
Z

R

f .X/ dX � �

if kP k < ı:

Proof Exercise 7.1.10.

The next theorem is analogous to Theorem 3.2.5.

Theorem 7.1.10 If f is bounded on a rectangle R and

Z

R

f .X/ dX D
Z

R

f .X/ dX D L;

then f is integrable on R; and

Z

R

f .X/ dX D L:

Proof Exercise 7.1.11.

Theorems 7.1.8 and 7.1.10 imply the following theorem, which is analogous to Theo-

rem 3.2.6.

Theorem 7.1.11 A bounded function f is integrable on a rectangle R if and only if

Z

R

f .X/ dX D
Z

R

f .X/ dX:

The next theorem translates this into a test that can be conveniently applied. It is analo-

gous to Theorem 3.2.7.

Theorem 7.1.12 If f is bounded on a rectangle R; then f is integrable on R if and

only if for every � > 0 there is a partitionP of R such that

S.P / � s.P / < �:

Proof Exercise 7.1.12.

Theorem 7.1.12 provides a useful criterion for integrability. The next theorem is an

important application. It is analogous to Theorem 3.2.8.

Theorem 7.1.13 If f is continuous on a rectangleR in R
n; then f is integrable onR:
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Proof Let � > 0. Since f is uniformly continuous on R (Theorem 5.2.14), there is a

ı > 0 such that

jf .X/ � f .X0/j < �

V.R/
(7.1.23)

if X and X0 are inR and jX�X0j < ı. Let P D fR1; R2; : : : ; Rkg be a partition ofR with

kP k < ı=
p
n. Since f is continuous on R, there are points Xj and X0

j in Rj such that

f .Xj / DMj D sup
X2Rj

f .X/ and f .X0
j / D mj D inf

X2Rj

f .X/

(Theorem 5.2.12). Therefore,

S.P/ � s.P/ D
nX

j D1

.f .Xj /� f .X0
j //V .Rj /:

Since kP k < ı=
p
n, jXj �X0

j j < ı, and, from (7.1.23) with X D Xj and X0 D X0
j ,

S.P/ � s.P/ < �

V.R/

kX

j D1

V.Rj / D �:

Hence, f is integrable on R, by Theorem 7.1.12.

Sets with Zero Content

The next definition will enable us to establish the existence of
R

R
f .X/ dX in cases where

f is bounded on the rectangle R, but is not necessarily continuous for all X in R.

Definition 7.1.14 A subset E of R
n has zero content if for each � > 0 there is a finite

set of rectangles T1, T2, . . . , Tm such that

E �
m[

j D1

Tj (7.1.24)

and
mX

j D1

V.Tj / < �: (7.1.25)

Example 7.1.3 Since the empty set is contained in every rectangle, the empty set has

zero content. IfE consists of finitely many points X1, X2, . . . , Xm, then Xj can be enclosed

in a rectangle Tj such that

V.Tj / <
�

m
; 1 � j � m:

Then (7.1.24) and (7.1.25) hold, so E has zero content.
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Example 7.1.4 Any bounded set E with only finitely many limit points has zero con-

tent. To see this, we first observe that ifE has no limit points, then it must be finite, by the

Bolzano–Weierstrass theorem (Theorem 1.3.8), and therefore must have zero content, by

Example 7.1.3. Now suppose that the limit points of E are X1, X2, . . . , Xm. Let R1, R2,

. . . , Rm be rectangles such that Xi 2 R0
i and

V.Ri / <
�

2m
; 1 � i � m: (7.1.26)

The set of points of E that are not in [m
j D1Rj has no limit points (why?) and, being

bounded, must be finite (again by the Bolzano–Weierstrass theorem). If this set contains p

points, then it can be covered by rectangles R0
1, R0

2, . . . , R0
p with

V.R0
j / <

�

2p
; 1 � j � p: (7.1.27)

Now,

E �
 

m[

iD1

Ri

!
[

0
@

p[

j D1

R0
j

1
A

and, from (7.1.26) and (7.1.27),

mX

iD1

V.Ri /C
pX

j D1

V.R0
j / < �:

Example 7.1.5 If f is continuous on Œa; b�, then the curve

y D f .x/; a � x � b (7.1.28)

(that is, the set
˚
.x; y/

ˇ̌
y D f .x/; a � x � b

	
/, has zero content in R

2. To see this,

suppose that � > 0, and choose ı > 0 such that

jf .x/� f .x0/j < � if x; x0 2 Œa; b� and jx � x0j < ı: (7.1.29)

This is possible because f is uniformly continuous on Œa; b� (Theorem 2.2.12). Let

P W a D x0 < x1 < � � � < xn D b

be a partition of Œa; b� with kP k < ı, and choose �1, �2, . . . , �n so that

xi�1 � �i � xi ; 1 � i � n:

Then, from (7.1.29),

jf .x/ � f .�i /j < � if xi�1 � x � xi :

This means that every point on the curve (7.1.28) above the interval Œxi�1; xi � is in a rect-

angle with area 2�.xi � xi�1/ (Figure 7.1.4). Since the total area of these rectangles is

2�.b � a/, the curve has zero content.
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y

x

y = f (ξ
i
) +

y = f (ξ
i
)

y = f (ξ
i
) −

a bx
i−1

x
iξ

i

Figure 7.1.4

The next lemma follows immediately from Definition 7.1.14.

Lemma 7.1.15 The union of finitely many sets with zero content has zero content:

The following theorem will enable us to define multiple integrals over more general

subsets of R
n.

Theorem 7.1.16 Suppose that f is bounded on a rectangle

R D Œa1; b1� � Œa2; b2� � � � � � Œan; bn� (7.1.30)

and continuous except on a subset E of R with zero content: Then f is integrable on R:

Proof Suppose that � > 0. Since E has zero content, there are rectangles T1, T2, . . . ,

Tm such that

E �
m[

j D1

Tj (7.1.31)

and
mX

j D1

V.Tj / < �: (7.1.32)

We may assume that T1, T2, . . . , Tm are contained in R, since, if not, their intersections

withRwould be contained inR, and still satisfy (7.1.31) and (7.1.32). We may also assume

that if T is any rectangle such that

T
\

0
@

m[

j D1

T 0
j

1
A D ;; then T \E D ; (7.1.33)
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since if this were not so, we could make it so by enlarging T1, T2, . . . , Tm slightly while

maintaining (7.1.32). Now suppose that

Tj D Œa1j ; b1j � � Œa2j ; b2j � � � � � � Œanj ; bnj �; 1 � j � m;

let Pi0 be the partition of Œai ; bi � (see (7.1.30)) with partition points

ai ; bi ; ai1; bi1; ai2; bi2; : : : ; aim; bim

(these are not in increasing order), 1 � i � n, and let

P0 D P10 � P20 � � � � � Pn0:

Then P0 consists of rectangles whose union equals [m
j D1Tj and other rectangles T 0

1, T 0
2,

. . . , T 0
k

that do not intersect E . (We need (7.1.33) to be sure that T 0
i \E D ;; 1 � i � k:/

If we let

B D
m[

j D1

Tj and C D
k[

iD1

T 0
i ;

then R D B [ C and f is continuous on the compact set C . If P D fR1; R2; : : : ; Rkg is

a refinement of P0, then every subrectangle Rj of P is contained entirely in B or entirely

in C . Therefore, we can write

S.P / � s.P / D †1.Mj �mj /V .Rj /C†2.Mj �mj /V .Rj /; (7.1.34)

where †1 and †2 are summations over values of j for which Rj � B and Rj � C ,

respectively. Now suppose that

jf .X/j �M for X in R:

Then

†1.Mj �mj /V .Rj / � 2M †1V.Rj / D 2M
mX

j D1

V.Tj / < 2M�; (7.1.35)

from (7.1.32). Since f is uniformly continuous on the compact set C (Theorem 5.2.14),

there is a ı > 0 such thatMj �mj < � if kP k < ı and Rj � C ; hence,

†2.Mj �mj /V .Rj / < �†2 V.Rj / � �V .R/:

This, (7.1.34), and (7.1.35) imply that

S.P / � s.P / < Œ2M C V.R/��

if kP k < ı and P is a refinement of P0. Therefore, Theorem 7.1.12 implies that f is

integrable on R.
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Example 7.1.6 The function

f .x; y/ D
(
x C y; 0 � x < y � 1;
5; 0 � y � x � 1;

is continuous on R D Œ0; 1�� Œ0; 1� except on the line segment

y D x; 0 � x � 1

(Figure 7.1.5). Since the line segment has zero content (Example 7.1.5), f is integrable on

R.

y

x

f (x, y) = x + y

f (x, y) = 5

y = x

1

1

Figure 7.1.5

Integrals over More General Subsets of R
n

We can now define the integral of a bounded function over more general subsets of R
n.

Definition 7.1.17 Suppose that f is bounded on a bounded subset of S of R
n, and let

fS .X/ D
(
f .X/; X 2 S;

0; X 62 S:
(7.1.36)

Let R be a rectangle containing S . Then the integral of f over S is defined to be
Z

S

f .X/ dX D
Z

R

fS .X/ dX

if
R

R
fS.X/ dX exists.
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To see that this definition makes sense, we must show that if R1 and R2 are two rect-

angles containing S and
R

R1
fS .X/ dX exists, then so does

R
R2
fS .X/ dX , and the two

integrals are equal. The proof of this is sketched in Exercise 7.1.27.

Definition 7.1.18 If S is a bounded subset of R
n and the integral

R
S
dX (with inte-

grand f � 1) exists, we call
R

S
dX the content (also, area if n D 2 or volume if n D 3)

of S , and denote it by V.S/; thus,

V.S/ D
Z

S

dX:

Theorem 7.1.19 Suppose that f is bounded on a bounded set S and continuous ex-

cept on a subset E of S with zero content. Suppose also that @S has zero content: Then f

is integrable on S:

Proof Let fS be as in (7.1.36). Since a discontinuity of fS is either a discontinuity of f

or a point of @S , the set of discontinuities of fS is the union of two sets of zero content and

therefore is of zero content (Lemma 7.1.15). Therefore, fS is integrable on any rectangle

containing S (from Theorem 7.1.16), and consequently on S (Definition 7.1.17).

Differentiable Surfaces

Differentiable surfaces, defined as follows, form an important class of sets of zero content

in R
n.

Definition 7.1.20 A differentiable surface S in R
n .n > 1/ is the image of a compact

subset D of R
m, where m < n, under a continuously differentiable transformation G W

R
m ! R

n. If m D 1, S is also called a differentiable curve.

Example 7.1.7 The circle

˚
.x; y/

ˇ̌
x2 C y2 D 9

	

is a differentiable curve in R
2, since it is the image of D D Œ0; 2�� under the continuously

differentiable transformationG W R! R
2 defined by

X D G.�/ D
�
3 cos �

3 sin �

�
:

Example 7.1.8 The sphere

˚
.x; y; ´/

ˇ̌
x2 C y2 C ´2 D 4

	

is a differentiable surface in R
3, since it is the image of

D D
˚
.�; �/

ˇ̌
0 � � � 2�;��=2 � � � �=2

	

under the continuously differentiable transformation G W R2 ! R
3 defined by

X D G.�; �/ D

2
4
2 cos � cos�

2 sin � cos�

2 sin�

3
5 :
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Example 7.1.9 The set
˚
.x1; x2; x3; x4/

ˇ̌
xi � 0 .i D 1; 2; 3; 4/; x1 C x2 D 1; x3 C x4 D 1

	

is a differentiable surface in R
4, since it is the image of D D Œ0; 1� � Œ0; 1� under the

continuously differentiable transformation G W R2 ! R
4 defined by

X D G.u; v/ D

2
664

u

1 � u
v

1 � v

3
775 :

Theorem 7.1.21 A differentiable surface in R
n has zero content:

Proof Let S , D, and G be as in Definition 7.1.20. From Lemma 6.2.7, there is a

constant M such that

jG.X/ � G.Y/j �M jX �Yj if X;Y 2 D: (7.1.37)

Since D is bounded,D is contained in a cube

C D Œa1; b1�� Œa2; b2� � � � � � Œam; bm�;

where

bi � ai D L; 1 � i � m:
Suppose that we partition C into Nm smaller cubes by partitioning each of the intervals

Œai ; bi � intoN equal subintervals. Let R1,R2, . . . , Rk be the smaller cubes so produced that

contain points of D, and select points X1, X2, . . . , Xk such that Xi 2 D \Ri , 1 � i � k.

If Y 2 D \ Ri , then (7.1.37) implies that

jG.Xi / �G.Y/j �M jXi �Yj: (7.1.38)

Since Xi and Y are both in the cube Ri with edge length L=N ,

jXi � Yj � L
p
m

N
:

This and (7.1.38) imply that

jG.Xi /� G.Y/j � ML
p
m

N
;

which in turn implies that G.Y/ lies in a cube eRi in R
n centered at G.Xi /, with sides of

length 2ML
p
m=N . Now

kX

iD1

V.eRi / D k
�
2ML

p
m

N

�n

� Nm

�
2ML

p
m

N

�n

D .2ML
p
m/nNm�n:

Since n > m, we can make the sum on the left arbitrarily small by taking N sufficiently

large. Therefore, S has zero content.

Theorems 7.1.19 and 7.1.21 imply the following theorem.
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Theorem 7.1.22 Suppose that S is a bounded set in R
n; with boundary consisting of

a finite number of differentiable surfaces: Let f be bounded on S and continuous except

on a set of zero content. Then f is integrable on S:

Example 7.1.10 Let

S D
˚
.x; y/

ˇ̌
x2 C y2 D 1; x � 0

	
I

thus, S is bounded by a semicircle and a line segment (Figure 7.1.6), both differentiable

curves in R
2. Let

f .x; y/ D
(
.1 � x2 � y2/1=2; .x; y/ 2 S; y � 0;

�.1 � x2 � y2/1=2; .x; y/ 2 S; y < 0:

Then f is continous on S except on the line segment

y D 0; 0 � x < 1;

which has zero content, from Example 7.1.5. Hence, Theorem 7.1.22 implies that f is

integrable on S .

y

x

x2 + y2 = 1,  x ≥ 0

Figure 7.1.6

Properties of Multiple Integrals

We now list some theorems on properties of multiple integrals. The proofs are similar to

those of the analogous theorems in Section 3.3.

Note: Because of Definition 7.1.17, if we say that a function f is integrable on a set S ,

then S is necessarily bounded.
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Theorem 7.1.23 If f and g are integrable on S; then so is f C g; and

Z

S

.f C g/.X/ dX D
Z

S

f .X/ dXC
Z

S

g.X/ dX:

Proof Exercise 7.1.20.

Theorem 7.1.24 If f is integrable on S and c is a constant; then cf is integrable on

S; and Z

S

.cf /.X/ dX D c
Z

S

f .X/ dX:

Proof Exercise 7.1.21.

Theorem 7.1.25 If f and g are integrable on S and f .X/ � g.X/ for X in S; then

Z

S

f .X/ dX �
Z

S

g.X/ dX:

Proof Exercise 7.1.22.

Theorem 7.1.26 If f is integrable on S; then so is jf j; and

ˇ̌
ˇ̌
Z

S

f .X/ dX

ˇ̌
ˇ̌ �

Z

S

jf .X/j dX:

Proof Exercise 7.1.23.

Theorem 7.1.27 If f and g are integrable on S; then so is the product fg:

Proof Exercise 7.1.24.

Theorem 7.1.28 Suppose that u is continuous and v is integrable and nonnegative on

a rectangle R: Then Z

R

u.X/v.X/ dX D u.X0/

Z

R

v.X/ dX

for some X0 in R:

Proof Exercise 7.1.25.

Lemma 7.1.29 Suppose that S is contained in a bounded set T and f is integrable

on S: Then fS .see (7.1.36)/ is integrable on T; and

Z

T

fS .X/ dX D
Z

S

f .X/ dX:

Proof From Definition 7.1.17 with f and S replaced by fS and T ,
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.fS /T .X/ D
�
fS .X/; X 2 T;
0; X 62 T:

Since S � T , .fS /T D fS . (Verify.) Now suppose that R is a rectangle containing T .

Then R also contains S (Figure 7.1.7),

R
T

Figure 7.1.7

so
Z

S

f .X/ dX D
Z

R

fS .X/ dX (Definition 7.1.17, applied to f and S/

D
Z

R

.fS /T .X/ dX (since .fS /T D fS )

D
Z

T

fS .X/ dX (Definition 7.1.17, applied to fS and T /;

which completes the proof.

Theorem 7.1.30 If f is integrable on disjoint sets S1 and S2; then f is integrable on

S1 [ S2; and Z

S1[S2

f .X/ dX D
Z

S1

f .X/ dXC
Z

S2

f .X/ dX: (7.1.39)

Proof For i D 1, 2, let

fSi
.X/ D

(
f .X/; X 2 Si ;

0; X 62 Si :

From Lemma 7.1.29 with S D Si and T D S1 [ S2, fSi
is integrable on S1 [ S2, and

Z

S1[S2

fSi
.X/ dX D

Z

Si

f .X/ dX; i D 1; 2:

Theorem 7.1.23 now implies that fS1
C fS2

is integrable on S1 [ S2 and
Z

S1[S2

.fS1
C fS2

/.X/ dX D
Z

S1

f .X/ dXC
Z

S2

f .X/ dX: (7.1.40)
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Since S1 \ S2 D ;,

�
fS1
C fS2

�
.X/ D fS1

.X/C fS2
.X/ D f .X/; X 2 S1 [ S2:

Therefore, (7.1.40) implies (7.1.39).

We leave it to you to prove the following extension of Theorem 7.1.30. (Exercise 7.1.31(b)).

Corollary 7.1.31 Suppose that f is integrable on sets S1 and S2 such that S1 \ S2

has zero content: Then f is integrable on S1 [ S2; and

Z

S1[S2

f .X/ dX D
Z

S1

f .X/ dXC
Z

S2

f .X/ dX:

Example 7.1.11 Let

S1 D
˚
.x; y/

ˇ̌
0 � x � 1; 0 � y � 1C x

	

and

S2 D
˚
.x; y/

ˇ̌
� 1 � x � 0; 0 � y � 1 � x

	

(Figure 7.1.8).

S

y

x

y = 1 − x y = 1 + x

1−1

Figure 7.1.8

Then

S1 \ S2 D
˚
.0; y/

ˇ̌
0 � y � 1

	

has zero content. Hence, Corollary 7.1.31 implies that if f is integrable on S1 and S2, then

f is also integrable over

S D S1 [ S2 D
˚
.x; y/

ˇ̌
� 1 � x � 1; 0 � y � 1C jxj

	

(Figure 7.1.9), and

Z

S1[S2

f .X/ dX D
Z

S1

f .X/ dXC
Z

S2

f .X/ dX:
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y y

x x

y = 1 − xy = 1 + x

S
1

S
2

Figure 7.1.9

We will discuss this example further in the next section.

7.1 Exercises

1. Prove: If R is degenerate, then Definition 7.1.2 implies that
R

R
f .X/ dX D 0 if f

is bounded on R.

2. Evaluate directly from Definition 7.1.2.

(a)
R

R
.3x C 2y/ d.x; y/; R D Œ0; 2�� Œ1; 3�

(b)
R

R
xy d.x; y/; R D Œ0; 1�� Œ0; 1�

3. Suppose that
R b

a
f .x/ dx and

R d

c
g.y/ dy exist, and let R D Œa; b�� Œc; d �. Criticize

the following “proof” that
R

R
f .x/g.y/ d.x; y/ exists and equals

 Z b

a

f .x/ dx

! Z d

c

g.y/ dy

!
:

(See Exercise 7.1.30 for a correct proof of this assertion.)

“Proof.” Let

P1 W a D x0 < x1 < � � � < xr D b and P2 W c D y0 < y1 < � � � < ys D d

be partitions of Œa; b� and Œc; d �, and P D P1 �P2. Then a typical Riemann sum of

fg over P is of the form

� D
rX

iD1

sX

j D1

f .�i/g.�j /.xi � xi�1/.yj � yj �1/ D �1�2;

where

�1 D
rX

iD1

f .�i/.xi � xi�1/ and �2 D
sX

j D1

g.�j /.yj � yj �1/
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are typical Riemann sums of f over Œa; b� and g over Œc; d �. Since f and g are

integrable on these intervals,

ˇ̌
ˇ̌
ˇ�1 �

Z b

a

f .x/ dx

ˇ̌
ˇ̌
ˇ and

ˇ̌
ˇ̌
ˇ�2 �

Z d

c

g.y/ dy

ˇ̌
ˇ̌
ˇ

can be made arbitrarily small by taking kP1k and kP2k sufficiently small. From

this, it is straightforward to show that

ˇ̌
ˇ̌
ˇ� �

 Z b

a

f .x/ dx

! Z d

c

g.y/ dy

!ˇ̌
ˇ̌
ˇ

can be made arbitrarily small by taking kP k sufficiently small. This implies the

stated result.

4. Suppose that f .x; y/ � 0 on R D Œa; b� � Œc; d �. Justify the interpretation ofR
R
f .x; y/ d.x; y/, if it exists, as the volume of the region in R

3 bounded by the

surfaces ´ D f .x; y/ and the planes ´ D 0, x D a, x D b, y D c, and y D d .

5. Prove Theorem 7.1.5. HINT: See the proof of Theorem 3.1.4:

6. Suppose that

f .x; y/ D

8
ˆ̂<
ˆ̂:

0 if x and y are rational,

1 if x is rational and y is irrational,

2 if x is irrational and y is rational,

3 if x and y are irrational.

Find

Z

R

f .x; y/ d.x; y/ and

Z

R

f .x; y/ d.x; y/ if R D Œa; b�� Œc; d �:

7. Prove Eqn. (7.1.17) of Lemma 7.1.6.

8. Prove Theorem 7.1.7 HINT: See the proof of Theorem 3.2.2:

9. Prove Theorem 7.1.8 HINT: See the proof of Theorem 3.2.3:

10. Prove Lemma 7.1.9 HINT: See the proof of Lemma 3.2.4:

11. Prove Theorem 7.1.10 HINT: See the proof of Theorem 3.2.5:

12. Prove Theorem 7.1.12 HINT: See the proof of Theorem 3.2.7:

13. Give an example of a denumerable set in R
2 that does not have zero content.

14. Prove:

(a) If S1 and S2 have zero content, then S1 [ S2 has zero content.

(b) If S1 has zero content and S2 � S1, then S2 has zero content.

(c) If S has zero content, then S has zero content.

15. Show that a degenerate rectangle has zero content.
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16. Suppose that f is continuous on a compact set S in R
n. Show that the surface

´ D f .X/, X 2 S , has zero content in R
nC1. HINT: See Example 7.1.5:

17. Let S be a bounded set such that S \ @S does not have zero content.

(a) Suppose that f is defined on S and f .X/ � � > 0 on a subset T of S \ @S
that does not have zero content. Show that f is not integrable on S .

(b) Conclude that V.S/ is undefined.

18. (a) Suppose that h is bounded and h.X/ D 0 except on a set of zero content.

Show that
R

S
h.X/ dX D 0 for any bounded set S .

(b) Suppose that
R

S f .X/ dX exists, g is bounded onS , and f .X/ D g.X/ except

for X in a set of zero content. Show that g is integrable on S and

Z

S

g.X/ dX D
Z

S

f .X/ dX:

19. Suppose that f is integrable on a set S and S0 is a subset of S such that @S0 has

zero content. Show that f is integrable on S0.

20. Prove Theorem 7.1.23 HINT: See the proof of Theorem 3.3.1:

21. Prove Theorem 7.1.24.

22. Prove Theorem 7.1.25 HINT: See the proof of Theorem 3.3.4:

23. Prove Theorem 7.1.26 HINT: See the proof of Theorem 3.3.5:

24. Prove Theorem 7.1.27 HINT: See the proof of Theorem 3.3.6:

25. Prove Theorem 7.1.28 HINT: See the proof of Theorem 3.3.7:

26. Prove: If f is integrable on a rectangle R, then f is integrable on any subrectangle

of R. HINT: Use Theorem 7.1.12I see the proof of Theorem 3.3.8:

27. Suppose that R and eR are rectangles, R � eR, g is bounded on eR, and g.X/ D 0 if

X 62 R.

(a) Show that
R
eR g.X/ dX exists if and only if

R
R
g.X/ dX exists and, in this

case, Z

eR
g.X/ dX D

Z

R

g.X/ dX:

HINT: Use Exercise 7.1.26:

(b) Use (a) to show that Definition 7.1.17 is legitimate; that is, the existence and

value of
R

S
f .X/ dX does not depend on the particular rectangle chosen to

contain S .

28. (a) Suppose that f is integrable on a rectangle R and P D fR1; R2; : : : ; Rkg is

a partition of R. Show that

Z

R

f .X/ dX D
kX

j D1

Z

Rj

f .X/ dX:

HINT: Use Exercise 7.1.26:
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(b) Use (a) to show that if f is continuous on R and P is a partition of R, then

there is a Riemann sum of f over P that equals
R

R
f .X/ dX.

29. Suppose that f is continuously differentiable on a rectangle R. Show that there is a

constant M such that ˇ̌
ˇ̌� �

Z

R

f .X/ dX

ˇ̌
ˇ̌ �MkP k

if � is any Riemann sum of f over a partitionP ofR. HINT: Use Exercise 7.1.28.b/

and Theorem 5.4.5:

30. Suppose that
R b

a
f .x/ dx and

R d

c
g.y/ dy exist, and let R D Œa; b�� Œc; d �.

(a) Use Theorems 3.2.7 and 7.1.12 to show that

Z

R

f .x/ d.x; y/ and

Z

R

g.y/ d.x; y/

both exist.

(b) Use Theorem 7.1.27 to prove that
R

R
f .x/g.y/ d.x; y/ exists.

(c) Justify using the argument given in Exercise 7.1.3 to show that

Z

R

f .x/g.y/ d.x; y/ D
 Z b

a

f .x/ dx

! Z d

c

g.y/ dy

!
:

31. (a) Suppose that f is integrable on S and S0 is obtained by removing a set of

zero content from S . Show that f is integrable on S0 and
R

S0
f .X/ dX DR

S
f .X/ dX.

(b) Prove Corollary 7.1.31.

7.2 ITERATED INTEGRALS AND MULTIPLE INTEGRALS

Except for very simple examples, it is impractical to evaluate multiple integrals directly

from Definitions 7.1.2 and 7.1.17. Fortunately, this can usually be accomplished by evalu-

ating n successive ordinary integrals. To motivate the method, let us first assume that f is

continuous on R D Œa; b� � Œc; d �. Then, for each y in Œc; d �, f .x; y/ is continuous with

respect to x on Œa; b�, so the integral

F.y/ D
Z b

a

f .x; y/ dx

exists. Moreover, the uniform continuity of f on R implies that F is continuous (Exer-

cise 7.2.3) and therefore integrable on Œc; d �. We say that

I1 D
Z d

c

F.y/ dy D
Z d

c

 Z b

a

f .x; y/ dx

!
dy
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is an iterated integral of f over R. We will usually write it as

I1 D
Z d

c

dy

Z b

a

f .x; y/ dx:

Another iterated integral can be defined by writing

G.x/ D
Z d

c

f .x; y/ dy; a � x � b;

and defining

I2 D
Z b

a

G.x/ dx D
Z b

a

 Z d

c

f .x; y/ dy

!
dx;

which we usually write as

I2 D
Z b

a

dx

Z d

c

f .x; y/ dy:

Example 7.2.1 Let

f .x; y/ D x C y

and R D Œ0; 1�� Œ1; 2�. Then

F.y/ D
Z 1

0

f .x; y/ dx D
Z 1

0

.x C y/ dx D
�
x2

2
C xy

� ˇ̌
ˇ̌
1

xD0

D 1

2
C y

and

I1 D
Z 2

1

F.y/ dy D
Z 2

1

�
1

2
C y

�
dy D

�
y

2
C y2

2

� ˇ̌
ˇ̌
2

1

D 2:

Also,

G.x/D
Z 2

1

.x C y/ dy D
�
xy C y2

2

� ˇ̌
ˇ̌
2

yD1

D .2x C 2/ �
�
x C 1

2

�
D x C 3

2
;

and

I2 D
Z 1

0

G.x/ dx D
Z 1

0

�
x C 3

2

�
dx D

�
x2

2
C 3x

2

� ˇ̌
ˇ̌
1

0

D 2:

In this example, I1 D I2; moreover, on setting a D 0, b D 1, c D 1, and d D 2 in

Example 7.1.1, we see that Z

R

.x C y/ d.x; y/ D 2;

so the common value of the iterated integrals equals the multiple integral. The following

theorem shows that this is not an accident.
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Theorem 7.2.1 Suppose that f is integrable onR D Œa; b�� Œc; d � and

F.y/ D
Z b

a

f .x; y/ dx

exists for each y in Œc; d �: Then F is integrable on Œc; d �; and

Z d

c

F.y/ dy D
Z

R

f .x; y/ d.x; y/I (7.2.1)

that is; Z d

c

dy

Z b

a

f .x; y/ dx D
Z

R

f .x; y/ d.x; y/: (7.2.2)

Proof Let

P1 W a D x0 < x1 < � � � < xr D b and P2 W c D y0 < y1 < � � � < ys D d

be partitions of Œa; b� and Œc; d �, and P D P1 � P2. Suppose that

yj �1 � �j � yj ; 1 � j � s; (7.2.3)

so

� D
sX

j D1

F.�j /.yj � yj �1/ (7.2.4)

is a typical Riemann sum of F over P2. Since

F.�j / D
Z b

a

f .x; �j / dx D
rX

iD1

Z x

xi�1

f .x; �j / dx;

(7.2.3) implies that if

mij D inf
˚
f .x; y/

ˇ̌
xi�1 � x � xi ; yj �1 � y � yj

	

and

Mij D sup
˚
f .x; y/

ˇ̌
xi�1 � x � xi ; yj �1 � y � yj

	
;

then
rX

iD1

mij .xi � xi�1/ � F.�j / �
rX

iD1

Mij .xi � xi�1/:

Multiplying this by yj � yj �1 and summing from j D 1 to j D s yields

sX

j D1

rX

iD1

mij .xi � xi�1/.yj � yj �1/ �
sX

j D1

F.�j /.yj � yj �1/

�
sX

j D1

rX

iD1

Mij .xi � xi�1/.yj � yj �1/;
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which, from (7.2.4), can be rewritten as

sf .P/ � � � Sf .P/; (7.2.5)

where sf .P/ and Sf .P/ are the lower and upper sums of f over P. Now let sF .P2/ and

SF .P2/ be the lower and upper sums of F over P2; since they are respectively the infimum

and supremum of the Riemann sums of F over P2 (Theorem 3.1.4), (7.2.5) implies that

sf .P/ � sF .P2/ � SF .P2/ � Sf .P/: (7.2.6)

Since f is integrable on R, there is for each � > 0 a partition P of R such that Sf .P/ �
sf .P/ < �, from Theorem 7.1.12. Consequently, from (7.2.6), there is a partition P2 of

Œc; d � such that SF .P2/� sF .P2/ < �, so F is integrable on Œc; d �, from Theorem 3.2.7.

It remains to verify (7.2.1). From (7.2.4) and the definition of
R d

c
F.y/ dy, there is for

each � > 0 a ı > 0 such that
ˇ̌
ˇ̌
ˇ

Z d

c

F.y/ dy � �
ˇ̌
ˇ̌
ˇ < � if kP2k < ıI

that is,

� � � <
Z d

c

F.y/ dy < � C � if kP2k < ı:

This and (7.2.5) imply that

sf .P/ � � <
Z d

c

F.y/ dy < Sf .P/C � if kPk < ı;

and this implies that

Z

R

f .x; y/ d.x; y/ � � �
Z d

c

F.y/ dy �
Z

R

f .x; y/ d.x; y/ C � (7.2.7)

(Definition 7.1.4). Since

Z

R

f .x; y/ d.x; y/ D
Z

R

f .x; y/ d.x; y/

(Theorem 7.1.8) and � can be made arbitrarily small, (7.2.7) implies (7.2.1).

If f is continuous onR, then f satisfies the hypotheses of Theorem 7.2.1 (Exercise 7.2.3),

so (7.2.2) is valid in this case.

If
R

R
f .x; y/ d.x; y/ and

Z d

c

f .x; y/ dy; a � x � b;
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exist, then by interchanging x and y in Theorem 7.2.1, we see that

Z b

a

dx

Z d

c

f .x; y/ dy D
Z

R

f .x; y/ d.x; y/:

This and (7.2.2) yield the following corollary of Theorem 7.2.1.

Corollary 7.2.2 If f is integrable on Œa; b�� Œc; d �; then

Z b

a

dx

Z d

c

f .x; y/ dy D
Z d

c

dy

Z b

a

f .x; y/ dx;

provided that
R d

c
f .x; y/ dy exists for a � x � b and

R b

a
f .x; y/ dx exists for c � y � d:

In particular; these hypotheses hold if f is continuous on Œa; b�� Œc; d �:

Example 7.2.2 The function

f .x; y/ D x C y

is continuous everywhere, so (7.2.2) holds for every rectangle R. For example, let R D
Œ0; 1�� Œ1; 2�. Then (7.2.2) yields

Z

R

.x C y/ d.x; y/ D
Z 2

1

dy

Z 1

0

.x C y/ dx D
Z 2

1

"�
x2

2
C xy

� ˇ̌
ˇ̌
1

xD0

#
dy

D
Z 2

1

�
1

2
C y

�
dy D

�
y

2
C y2

2

� ˇ̌
ˇ̌
2

1

D 2:

Since f also satisfies the hypotheses of Theorem 7.2.1 with x and y interchanged, we

can calculate the double integral from the iterated integral in which the integrations are

performed in the opposite order; thus,

Z

R

.x C y/ d.x; y/ D
Z 1

0

dx

Z 2

1

.x C y/ dy D
Z 1

0

"�
xy C y2

2

� ˇ̌
ˇ̌
2

yD1

#
dx

D
Z 1

0

�
x C 3

2

�
dx D

�
x2

2
C 3x

2

� ˇ̌
ˇ̌
1

0

D 2:

A plausible partial converse of Theorem 7.2.1 would be that if
R d

c
dy
R b

a
f .x; y/ dx

exists then so does
R

R
f .x; y/ d.x; y/; however, the next example shows that this need not

be so.

Example 7.2.3 If f is defined on R D Œ0; 1�� Œ0; 1� by

f .x; y/ D
�
2xy if y is rational;

y if y is irrational;
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then Z 1

0

f .x; y/ dx D y; 0 � y � 1;

and Z 1

0

dy

Z 1

0

f .x; y/ dx D
Z 1

0

y dy D
1

2
:

However, f is not integrable on R (Exercise 7.2.7).

The next theorem generalizes Theorem 7.2.1 to R
n.

Theorem 7.2.3 Let I1; I2; . . . ; In be closed intervals and suppose that f is integrable

onR D I1 � I2 � � � � � In: Suppose that there is an integer p in f1; 2; : : : ; n� 1g such that

Fp.xpC1 ; xpC2; : : : ; xn/ D
Z

I1�I2�����Ip

f .x1; x2; : : : ; xn/ d.x1; x2; : : : ; xp/

exists for each .xpC1; xpC2; : : : ; xn/ in IpC1 � IpC2 � � � � � In: Then
Z

IpC1�IpC2�����In

Fp.xpC1; xpC2; : : : ; xn/ d.xpC1 ; xpC2; : : : ; xn/

exists and equals
R

R f .X/ dX.

Proof For convenience, denote .xpC1 ; xpC2; : : : ; xn/ by Y. DenotebR D I1�I2�� � ��
Ip and T D IpC1 � IpC2 � � � �� In. LetbP D fbR1;bR2; : : : ;bRkg and Q D fT1; T2; : : : ; Tsg
be partitions ofbR and T , respectively. Then the collection of rectangles of the formbRi�Tj

(1 � i � k, 1 � j � s) is a partition P of R; moreover, every partition P of R is of this

form.

Suppose that

Yj 2 Tj ; 1 � j � s; (7.2.8)

so

� D
sX

j D1

Fp.Yj /V .Tj / (7.2.9)

is a typical Riemann sum of Fp over Q. Since

Fp.Yj/ D
Z

bR
f .x1; x2; : : : ; xp;Yj / d.x1; x2; : : : ; xp/

D
kX

j D1

Z

bRj

f .x1; x2; : : : ; xp;Yj / d.x1; x2; : : : ; xp/;

(7.2.8) implies that if

mij D inf
n
f .x1; x2; : : : ; xp;Y/

ˇ̌
.x1; x2; : : : ; xp/ 2 bRi ; Y 2 Tj

o

and

Mij D sup
n
f .x1; x2; : : : ; xp;Y/

ˇ̌
.x1; x2; : : : ; xp/ 2 bRi ; Y 2 Tj

o
;
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then
kX

iD1

mijV.bRi / � Fp.Yj/ �
kX

iD1

MijV.bRi /:

Multiplying this by V.Tj / and summing from j D 1 to j D s yields

sX

j D1

kX

iD1

mijV.bRi/V .Tj / �
sX

j D1

Fp.Yj /V .Tj / �
sX

j D1

kX

iD1

MijV.bRi /V .Tj /;

which, from (7.2.9), can be rewritten as

sf .P/ � � � Sf .P/; (7.2.10)

where sf .P/ and Sf .P/ are the lower and upper sums of f over P. Now let sFp .Q/ and

SFp.Q/ be the lower and upper sums of Fp over Q; since they are respectively the infimum

and supremum of the Riemann sums of Fp over Q (Theorem 7.1.5), (7.2.10) implies that

sf .P/ � sFp .Q/ � SFp .Q/ � Sf .P/: (7.2.11)

Since f is integrable on R, there is for each � > 0 a partition P of R such that Sf .P/ �
sf .P/ < �, from Theorem 7.1.12. Consequently, from (7.2.11), there is a partition Q of T

such that SFp .Q/ � sFp .Q/ < �, so Fp is integrable on T , from Theorem 7.1.12.

It remains to verify that
Z

R

f .X/ dX D
Z

T

Fp.Y/ dY: (7.2.12)

From (7.2.9) and the definition of
R

T
Fp.Y/ dY, there is for each � > 0 a ı > 0 such that

ˇ̌
ˇ̌
Z

T

Fp.Y/ dY � �
ˇ̌
ˇ̌ < � if kQk < ıI

that is,

� � � <
Z

T

Fp.Y/ dY < � C � if kQk < ı:

This and (7.2.10) imply that

sf .P/ � � <
Z

T

Fp.Y/ dY < Sf .P/ C � if kPk < ı;

and this implies that

Z

R

f .X/ dX � � �
Z

T

Fp.Y/ dY �
Z

R

f .X/ dXC �: (7.2.13)

Since

Z

R

f .X/ dX D
Z

R

f .X/ dX (Theorem 7.1.8) and � can be made arbitrarily small,

(7.2.13) implies (7.2.12).
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Theorem 7.2.4 Let Ij D Œaj ; bj �; 1 � j � n, and suppose that f is integrable on

R D I1 � I2 � � � � � In: Suppose also that the integrals

Fp.xpC1 ; : : : ; xn/ D
Z

I1�I2����Ip

f .X/ d.x1; x2; : : : ; xp/; 1 � p � n � 1;

exist for all

.xpC1; : : : ; xn/ in IpC1 � � � � � In:

Then the iterated integral

Z bn

an

dxn

Z bn�1

an�1

dxn�1 � � �
Z b2

a2

dx2

Z b1

a1

f .X/ dx1

exists and equals
R

R
f .X/ dX:

Proof The proof is by induction. From Theorem 7.2.1, the proposition is true for n D 2.

Now assume n > 2 and the proposition is true with n replaced by n � 1. Holding xn fixed

and applying this assumption yields

Fn.xn/ D
Z bn�1

an�1

dxn�1

Z bn�2

an�2

dxn�2 � � �
Z b2

a2

dx2

Z b1

a1

f .X/ dx1:

Now Theorem 7.2.3 with p D n � 1 completes the induction.

Example 7.2.4 Let R D Œ0; 1�� Œ1; 2�� Œ0; 1� and

f .x; y; ´/ D x C y C ´:

Then

F1.y; ´/ D
Z 1

0

.x C y C ´/ dx D
�
x2

2
C xy C x´

� ˇ̌
ˇ̌
1

xD0

D 1

2
C y C ´;

F2.´/ D
Z 2

1

F1.y; ´/ dy D
Z 2

1

�
1

2
C y C ´

�
dy

D
�
y

2
C y2

2
C y´

� ˇ̌
ˇ̌
2

yD1

D 2C ´;

and

Z

R

f .x; y; ´/ d.x; y; ´/ D
Z 1

0

F2.´/ d´ D
Z 1

0

.2C ´/ d´ D
�
2´C ´2

2

� ˇ̌
ˇ̌
1

0

D 5

2
:

The hypotheses of Theorems 7.2.3 and 7.2.4 are stated so as to justify successive in-

tegrations with respect to x1, then x2, then x3, and so forth. It is legitimate to use other

orders of integration if the hypotheses are adjusted accordingly. For example, suppose that
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fi1; i2; : : : ; ing is a permutation of f1; 2; : : : ; ng and
R

R
f .X/ dX exists, along with

Z

Ii1
�Ii2

�����Iij

f .X/ d.xi1 ; xi2; : : : ; xij /; 1 � j � n� 1; (7.2.14)

for each

.xij C1
; xij C2

; : : : ; xin/ in Iij C1
� Iij C2

� � � � � Iin : (7.2.15)

Then, by renaming the variables, we infer from Theorem 7.2.4 that

Z

R

f .X/ dX D
Z bin

ain

dxin

Z bin�1

ain�1

dxin�1
� � �
Z bi2

ai2

dxi2

Z bi1

ai1

f .X/ dxi1 : (7.2.16)

Since there are nŠ permutations of f1; 2; : : : ; ng, there are nŠ ways of evaluating a mul-

tiple integral over a rectangle in R
n, provided that the integrand satisfies appropriate hy-

potheses. In particular, if f is continuous on R and fi1; i2; : : : ; ing is any permutation of

f1; 2; : : : ; ng, then f is continuous with respect to .xi1 ; xi2; : : : ; xij / on Ii1 �Ii2 �� � ��Iij

for each fixed .xij C1
; xij C2

; : : : ; xin/ satisfying (7.2.15). Therefore, the integrals (7.2.14)

exist for every permutation of f1; 2; : : : ; ng (Theorem 7.1.13). We summarize this in the

next theorem, which now follows from Theorem 7.2.4.

Theorem 7.2.5 If f is continuous on

R D Œa1; b1� � Œa2; b2� � � � � � Œan; bn�;

then
R

R
f .X/ dX can be evaluated by iterated integrals in any of the nŠ ways indicated in

(7.2.16):

Example 7.2.5 If f is continuous onR D Œa1; b1� � Œa2; b2� � Œa3; b3�, then

Z

R

f .x; y; ´/ d.x; y; ´/ D
Z b3

a3

d´

Z b2

a2

dy

Z b1

a1

f .x; y; ´/ dx

D
Z b2

a2

dy

Z b3

a3

d´

Z b1

a1

f .x; y; ´/ dx

D
Z b3

a3

d´

Z b1

a1

dx

Z b2

a2

f .x; y; ´/ dy

D
Z b1

a1

dx

Z b3

a3

d´

Z b2

a2

f .x; y; ´/ dy

D
Z b2

a2

dy

Z b1

a1

dx

Z b3

a3

f .x; y; ´/ d´

D
Z b1

a1

dx

Z b2

a2

dy

Z b3

a3

f .x; y; ´/ d´:
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Integrals over More General Sets

We now consider the problem of evaluating multiple integrals over more general sets. First,

suppose that f is integrable on a set of the form

S D
˚
.x; y/

ˇ̌
u.y/ � x � v.y/; c � y � d

	
(7.2.17)

(Figure 7.2.1).

If u.y/ � a and v.y/ � b for c � y � d , and

fS .x; y/ D
(
f .x; y/; .x; y/ 2 S;

0; .x; y/ 62 S;
(7.2.18)

then Z

S

f .x; y/ d.x; y/ D
Z

R

fS.x; y/ d.x; y/;

where R D Œa; b�� Œc; d �.. From Theorem 7.2.1,

Z

R

fS .x; y/ d.x; y/ D
Z d

c

dy

Z b

a

fS .x; y/ dx

provided that
R b

a
fS.x; y/ dx exists for each y in Œc; d �. From (7.2.17) and (7.2.18), this

integral can be written as Z v.y/

u.y/

f .x; y/ dx: (7.2.19)

Thus, we have proved the following theorem.

y

x
ba

x = v (y )

y = c

y = d

x = u (y)

Figure 7.2.1

Theorem 7.2.6 If f is integrable on the set S in (7.2.17) and the integral (7.2.19)

exists for c � y � d; then

Z

S

f .x; y/ d.x; y/ D
Z d

c

dy

Z v.y/

u.y/

f .x; y/ dx: (7.2.20)
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From Theorem 7.1.22, the assumptions of Theorem 7.2.6 are satisfied if f is continuous

on S and u and v are continuously differentiable on Œc; d �.

Interchanging x and y in Theorem 7.2.6 shows that if f is integrable on

S D
˚
.x; y/

ˇ̌
u.x/ � y � v.x/; a � x � b

	
(7.2.21)

(Figure 7.2.2) and Z v.x/

u.x/

f .x; y/ dy

exists for a � x � b, then

Z

S

f .x; y/ d.x; y/ D
Z b

a

dx

Z v.x/

u.x/

f .x; y/ dy: (7.2.22)

y

x
a b

y = v (x )

y = u (x)

S

Figure 7.2.2

Example 7.2.6 Suppose that

f .x; y/ D xy

and S is the region bounded by the curves x D y2 and x D y (Figure 7.2.3). Since S can

be represented in the form (7.2.17) as

S D
˚
.x; y/

ˇ̌
y2 � x � y; 0 � y � 1

	
;

(7.2.20) yields Z

S

xy d.x; y/ D
Z 1

0

dy

Z y

y2

xy dx;

which, incidentally, can be written as

Z

S

xy d.x; y/ D
Z 1

0

y dy

Z y

y2

x dx;
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since y is independent of x. Evaluating the iterated integral yields

Z

S

xy d.x; y/ D
Z 1

0

 
x2

2

ˇ̌
ˇ̌
y

y2

!
y dy D 1

2

Z 1

0

.y3 � y5/ dy

D 1

2

�
y4

4
� y

6

6

� ˇ̌
ˇ̌
1

0

D 1

24
:

y

x

x = y2

x = y

(1, 1)

S

Figure 7.2.3

In this case we can also represent S in the form (7.2.21) as

S D
˚
.x; y/

ˇ̌
x � y �

p
x; 0 � x � 1

	
I

hence, from (7.2.22),

Z

S

xy d.x; y/ D
Z 1

0

x dx

Z p
x

x

y dy D
Z 1

0

 
y2

2

ˇ̌
ˇ̌
p

x

yDx

!
x dx

D 1

2

Z 1

0

.x2 � x3/ dx D 1

2

�
x3

3
� x

4

4

� ˇ̌
ˇ̌
1

0

D 1

24
:

Example 7.2.7 To evaluate

Z

S

.x C y/ d.x; y/;

where

S D
˚
.x; y/

ˇ̌
� 1 � x � 1; 0 � y � 1C jxj
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(see Example 7.1.11 and Figure 7.2.4),

S

y

x

y = 1 − x y = 1 + x

1−1

Figure 7.2.4

we invoke Corollary 7.1.31 and write

Z

S

.x C y/ d.x; y/ D
Z

S1

.x C y/ d.x; y/ C
Z

S2

.x C y/ d.x; y/;

where

S1 D
˚
.x; y/

ˇ̌
0 � x � 1; 0 � y � 1C x

	

and

S2 D
˚
.x; y/

ˇ̌
� 1 � x � 0; 0 � y � 1 � x

	

(Figure 7.2.5).

From Theorem 7.2.6,

Z

S1

.x C y/ d.x; y/ D
Z 1

0

dx

Z 1Cx

0

.x C y/ dy D
Z 1

0

"
.x C y/2

2

ˇ̌
ˇ̌
1Cx

yD0

#
dx

D 1

2

Z 1

0

�
.2x C 1/2 � x2

�
dx

D 1

2

�
.2x C 1/3

6
� x

3

3

� ˇ̌
ˇ̌
1

0

D 2

and
Z

S2

.x C y/ d.x; y/ D
Z 0

�1

dx

Z 1�x

0

.x C y/ dy D
Z 0

�1

"
.x C y/2

2

ˇ̌
ˇ̌
1�x

yD0

#
dx

D 1

2

Z 0

�1

.1 � x2/ dx D 1

2

�
x � x

3

3

� ˇ̌
ˇ̌
0

�1

D 1

3
:

Therefore, Z

S

.x C y/ d.x; y/ D 2C 1

3
D 7

3
:
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y y

x x

y = 1 − xy = 1 + x

S
1

S
2

Figure 7.2.5

Example 7.2.8 To find the area A of the region bounded by the curves

y D x2 C 1 and y D 9 � x2

(Figure 7.2.6), we evaluate

A D
Z

S

d.x; y/;

where

S D
˚
.x; y/

ˇ̌
x2 C 1 � y � 9 � x2;�2 � x � 2

	
:

According to Theorem 7.2.6,

A D
Z 2

�2

dx

Z 9�x2

x2C1

dy D
Z 2

�2

�
.9 � x2/ � .x2 C 1/

�
dx

D
Z 2

�2

.8 � 2x2/ dx D
�
8x � 2x

3

3

� ˇ̌
ˇ̌
2

�2

D 64

3
:

y

x

y = x2 + 1

y = 9 − x2

(2, 5)(−2, 5) S

Figure 7.2.6
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Theorem 7.2.6 has an analog for n > 2. Suppose that f is integrable on a set S of points

X D .x1; x2; : : : ; xn/ satisfying the inequalities

uj .xj C1; : : : ; xn/ � xj � vj .xj C1; : : : ; xn/; 1 � j � n� 1;

and

an � xn � bn:

Then, under appropriate additional assumptions, it can be shown by an argument analogous

to the one that led to Theorem 7.2.6 that

Z

S

f .X/ dX D
Z bn

an

dxn

Z vn.xn/

un.xn/

dxn�1 � � �
Z v2.x3;:::;xn/

u2.x3;:::;xn/

dx2

Z v1.x2;:::;xn/

u1.x2;:::;xn/

f .X/ dx1:

These additional assumptions are tedious to state for general n. The following theorem

contains a complete statement for n D 3.

Theorem 7.2.7 Suppose that f is integrable on

S D
˚
.x; y; ´/

ˇ̌
u1.y; ´/ � x � v1.y; ´/; u2.´/ � y � v2.´/; c � ´ � d

	
;

and let

S.´/ D
˚
.x; y/

ˇ̌
u1.y; ´/ � x � v1.y; ´/; u2.´/ � y � v2.´/

	

for each ´ in Œc; d �: Then

Z

S

f .x; y; ´/ d.x; y; ´/ D
Z d

c

d´

Z v2.´/

u2.´/

dy

Z v1.y;´/

u1.y;´/

f .x; y; ´/ dx;

provided that Z v1.y;´/

u1.y;´/

f .x; y; ´/ dx

exists for all .y; ´/ such that

c � ´ � d and u2.´/ � y � v2.´/;

and Z

S.´/

f .x; y; ´/ d.x; y/

exists for all ´ in Œc; d �:

Example 7.2.9 Suppose that f is continuous on the region S in R
3 bounded by the

coordinate planes and the plane

x C y C 2´ D 2

(Figure 7.2.7); thus,
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y

x

z

x + y + 2z = 1

Figure 7.2.7

S D
˚
.x; y; ´/

ˇ̌
0 � x � 2 � y � 2´; 0 � y � 2 � 2´; 0 � ´ � 1

	
:

From Theorem 7.2.7,

Z

S

f .x; y; ´/ d.x; y; ´/ D
Z 1

0

d´

Z 2�2´

0

dy

Z 2�y�2´

0

f .x; y; ´/ dx:

There are five other iterated integrals that equal the multiple integral. We leave it to you

to verify that

Z

S

f .x; y; ´/ d.x; y; ´/D
Z 2

0

dy

Z 1�y=2

0

d´

Z 2�y�2´

0

f .x; y; ´/ dx

D
Z 1

0

d´

Z 2�2´

0

dx

Z 2�x�2´

0

f .x; y; ´/ dy

D
Z 2

0

dx

Z 1�x=2

0

d´

Z 2�x�2´

0

f .x; y; ´/ dy

D
Z 2

0

dx

Z 2�x

0

dy

Z 1�x=2�y=2

0

f .x; y; ´/ d´

D
Z 2

0

dy

Z 2�y

0

dx

Z 1�x=2�y=2

0

f .x; y; ´/ d´

(Exercise 7.2.15).

Thus far we have viewed the iterated integral as a tool for evaluating multiple integrals.

In some problems the iterated integral is itself the object of interest. In this case a result
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like Theorem 7.2.6 can be used to evaluate the iterated integral. The procedure is as follows.

(a) Express the given iterated integral as a multiple integral, and check to see that the

multiple integral exists.

(b) Look for another iterated integral that equals the multiple integral and is easier to

evaluate than the given one. The two iterated integrals must be equal, by Theo-

rem 7.2.6.

This procedure is called changing the order of integration of an iterated integral.

Example 7.2.10 The iterated integral

I D
Z 1

0

dy

Z y

0

e�.x�1/2

dx

is hard to evaluate because e�.x�1/2

has no elementary antiderivative. The set of points

.x; y/ that enter into the integration, which we call the region of integration, is

S D
˚
.x; y/

ˇ̌
0 � x � y; 0 � y � 1

	

(Figure 7.2.8).

y

x

y = x

1

1

Figure 7.2.8

Therefore,

I D
Z

S

e�.x�1/2

d.x; y/; (7.2.23)

and this multiple integral exists because its integrand is continuous. Since S can also be

written as

S D
˚
.x; y/

ˇ̌
x � y � 1; 0 � x � 1

	
;
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Theorem 7.2.6 implies that

Z

S

e�.x�1/2

d.x; y/ D
Z 1

0

e�.x�1/2

dx

Z 1

x

dy D �
Z 1

0

.x � 1/e�.x�1/2

dx

D 1

2
e�.x�1/2

ˇ̌
ˇ̌
1

0

D 1

2
.1 � e�1/:

This and (7.2.23) imply that

I D 1

2
.1 � e�1/:

Example 7.2.11 Suppose that f is continuous on Œa;1/ and y satisfies the differen-

tial equation

y00.x/ D f .x/; x > a; (7.2.24)

with initial conditions

y.a/ D y0.a/ D 0:
Integrating (7.2.24) yields

y0.x/ D
Z x

a

f .t/ dt;

since y0.a/ D 0. Integrating this yields

y.x/ D
Z x

a

ds

Z s

a

f .t/ dt;

since y.a/ D 0. This can be reduced to a single integral as follows. Since the function

g.s; t/ D f .t/

is continuous for all .s; t/ such that t � a, g is integrable on

S D
˚
.s; t/

ˇ̌
a � t � s; a � s � x

	

(Figure 7.2.9), and Theorem 7.2.6 implies that
Z

S

f .t/ d.s; t/ D
Z x

a

ds

Z s

a

f .t/ dt D y.x/: (7.2.25)

However, S can also be described as

S D
˚
.s; t/

ˇ̌
t � s � x; a � t � x

	

so Theorem 7.2.6 implies that
Z

S

f .t/ d.s; t/ D
Z x

a

f .t/ dt

Z x

t

ds D
Z x

a

.x � t/f .t/ dt:

Comparing this with (7.2.25) yields

y.x/ D
Z x

a

.x � t/f .t/ dt:
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t

x
s

a

a

s = t

S

Figure 7.2.9

7.2 Exercises

1. Evaluate

(a)
Z 2

0

dy

Z 1

�1

.x C 3y/ dx (b)
Z 2

1

dx

Z 1

0

.x3 C y4/ dy

(c)
Z 2�

�=2

x dx

Z 2

1

sinxy dy (d)
Z log 2

0

y dy

Z 1

0

xex2ydx

2. Let Ij D Œaj ; bj �, 1 � j � 3, and suppose that f is integrable onR D I1�I2�I3.

Prove:

(a) If the integral

G.y; ´/ D
Z b1

a1

f .x; y; ´/ dx

exists for .y; ´/ 2 I2 � I3, thenG is integrable on I2 � I3 and

Z

R

f .x; y; ´/ d.x; y; ´/ D
Z

I2�I3

G.y; ´/ d.y; ´/:

(b) If the integral

H.´/ D
Z

I1�I2

f .x; y; ´/ d.x; y/
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exists for ´ 2 I3, thenH is integrable on I3 and

Z

R

f .x; y; ´/ d.x; y; ´/ D
Z b3

a3

H.´/ d´:

HINT: For both parts; see the proof of Theorem 7.2.1:

3. Prove: If f is continuous on Œa; b�� Œc; d �, then the function

F.y/ D
Z b

a

f .x; y/ dx

is continuous on Œc; d �. HINT: Use Theorem 5.2.14:

4. Suppose that

f .x0; y0/ � f .x; y/ if a � x � x0 � b; c � y � y0 � d:

Show that f satisfies the hypotheses of Theorem 7.2.1 onR D Œa; b��Œc; d �. HINT:

See the proof of Theorem 3.2.9:

5. Evaluate by means of iterated integrals:

(a)
Z

R

.xy C 1/ d.x; y/; R D Œ0; 1�� Œ1; 2�

(b)
Z

R

.2x C 3y/ d.x; y/; R D Œ1; 3�� Œ1; 2�

(c)
Z

R

xyp
x2 C y2

d.x; y/; R D Œ0; 1�� Œ0; 1�

(d)
R

R x cos xy cos 2�x d.x; y/; R D Œ0; 1
4
� � Œ0; 2��

6. Let A be the set of points of the form .2�mp; 2�mq/, where p and q are odd integers

and m is a nonnegative integer. Let

f .x; y/ D
(
1; .x; y/ 62 A;
0; .x; y/ 2 A:

Show that f is not integrable on any rectangle R D Œa; b�� Œc; d �, but

Z b

a

dx

Z d

c

f .x; y/ dy D
Z d

c

dy

Z b

a

f .x; y/ dx D .b � a/.d � c/: .A/

HINT: For (A); use Theorem 3.5.6 and Exercise 3.5.6:

7. Let

f .x; y/ D
�
2xy if y is rational;

y if y is irrational;

and R D Œ0; 1�� Œ0; 1� (Example 7.2.3).
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(a) Calculate
R

R
f .x; y/ d.x; y/ and

R
R
f .x; y/ d.x; y/, and show that f is not

integrable on R.

(b) Calculate
R 1

0

�R 1

0
f .x; y/ dy

�
dx and

R 1

0

�R 1

0
f .x; y/ dy

�
dx.

8. Let R D Œ0; 1�� Œ0; 1�� Œ0; 1�, eR D Œ0; 1�� Œ0; 1�, and

f .x; y; ´/ D

8
ˆ̂<
ˆ̂:

2xy C 2x´ if y and ´ are rational;

y C 2x´ if y is irrational and ´ is rational;

2xy C ´ if y is rational and ´ is irrational;

y C ´ if y and ´ are irrational:

Calculate

(a)
Z

R

f .x; y; ´/ d.x; y; ´/ and

Z

R

f .x; y; ´/ d.x; y; ´/

(b)
Z

eR
f .x; y; ´/ d.x; y/ and

Z

eR
f .x; y; ´/ d.x; y/

(c)
Z 1

0

dy

Z 1

0

f .x; y; ´/ dx and

Z 1

0

d´

Z 1

0

dy

Z 1

0

f .x; y; ´/ dx.

9. Suppose that f is bounded on R D Œa; b�� Œc; d �. Prove:

(a)
Z

R

f .x; y/ d.x; y/ �
Z b

a

 Z d

c

f .x; y/ dy

!
dx. HINT: Use Exercise 3.2.6(a):

(b)
Z

R

f .x; y/ d.x; y/ �
Z b

a

 Z d

c

f .x; y/ dy

!
dx. HINT: Use Exercise 3.2.6(b):

10. Use Exercise 7.2.9 to prove the following generalization of Theorem 7.2.1: If f is

integrable on R D Œa; b� � Œc; d �, then

Z b

a

f .x; y/ dy and

Z d

c

f .x; y/ dy

are integrable on Œa; b�, and

Z b

a

 Z d

c

f .x; y/ dy

!
dx D

Z b

a

 Z d

c

f .x; y/ dy

!
dx D

Z

R

f .x; y/ d.x; y/:

11. Evaluate

(a)
Z

R

.x � 2y C 3´/ d.x; y; ´/; R D Œ�2; 0�� Œ2; 5�� Œ�3; 2�

(b)
Z

R

e�x2�y2

sin x sin´d.x; y; ´/; R D Œ�1; 1�� Œ0; 2�� Œ0; �=2�

(c)
Z

R

.xy C 2x´C y´/ d.x; y; ´/; R D Œ�1; 1�� Œ0; 1�� Œ�1; 1�
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(d)
Z

R

x2y3´exy2´2

d.x; y; ´/; R D Œ0; 1�� Œ0; 1�� Œ0; 1�

12. Evaluate

(a)
Z

S

.2x C y2/ d.x; y/; S D
˚
.x; y/

ˇ̌
0 � x � 9 � y2;�3 � y � 3

	

(b)
Z

S

2xy d.x; y/; S is bounded by y D x2 and x D y2

(c)
Z

S

ex siny

y
d.x; y/; S D

˚
.x; y/

ˇ̌
logy � x � log 2y; �=2 � y � �

	

13. Evaluate
R

S
.x C y/ d.x; y/, where S is bounded by y D x2 and y D 2x, using

iterated integrals of both possible types.

14. Find the area of the set bounded by the given curves.

(a) y D x2 C 9, y D x2 � 9, x D �1, x D 1
(b) y D x C 2, y D 4 � x, x D 0
(c) x D y2 � 4, x D 4 � y2

(d) y D e2x, y D �2x, x D 3
15. In Example 7.2.9, verify the last five representations of

R
S
f .x; y; ´/ d.x; y; ´/ as

iterated integrals.

16. Let S be the region in R
3 bounded by the coordinate planes and the plane x C

2y C 3´ D 1. Let f be continuous on S . Set up six iterated integrals that equalR
S
f .x; y; ´/ d.x; y; ´/.

17. Evaluate

(a)
Z

S

x d.x; y; ´/; S is bounded by the coordinate planes and the plane

3xC y C ´ D 2.

(b)
Z

S

ye´ d.x; y; ´/; S D
˚
.x; y; ´/

ˇ̌
0 � x � 1; 0 � y �

p
x; 0 � ´ � y2

	

(c)
Z

S

xy´d.x; y; ´/;

S D
n
.x; y; ´/

ˇ̌
0 � y � 1; 0 � x �

p
1 � y2; 0 � ´ �

p
x2 C y2

o

(d)
Z

S

y´d.x; y; ´/; S D
˚
.x; y; ´/

ˇ̌
´2 � x � p´; 0 � y � ´; 0 � ´ � 1

	

18. Find the volume of S .

(a) S is bounded by the surfaces ´ D x2 C y2 and ´ D 8 � x2 � y2.

(b) S D f.x; y; ´/ j 0 � ´ � x2 C y2; .x; y; 0/ is in the triangle with vertices

.0; 1; 0/, .0; 0; 0/, and .1; 0; 0/}

(c) S D
˚
.x; y; ´/

ˇ̌
0 � y � x2; 0 � x � 2; 0 � ´ � y2

	

(d) S D
˚
.x; y; ´/

ˇ̌
x � 0; y � 0; 0 � ´ � 4 � 4x2 � 4y2
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19. Let R D Œa1; b2� � Œa2; b2� � � � � � Œan; bn�. Evaluate

(a)
R

R
.x1 C x2 C � � � C xn/ dX (b)

R
R
.x2

1 C x2
2 C � � � C x2

n/ dX

(c)
R

R
x1x2; � � �xn dX

20. Assuming that f is continuous, express

Z 1

1=2

dy

Z p1�y2

�
p

1�y2

f .x; y/ dx

as an iterated integral with the order of integration reversed.

21. Evaluate
R

S
.xCy/ d.x; y/ of Example 7.2.7 by means of iterated integrals in which

the first integration is with respect to x.

22. Evaluate

Z 1

0

x dx

Z p
1�x2

0

dyp
x2 C y2

:

23. Suppose that f is continuous on Œa;1/,

y.n/.x/ D f .x/; t � a;

and y.a/ D y0.a/ D � � � D y.n�1/.a/ D 0.

(a) Integrate repeatedly to show that

y.x/ D
Z x

a

dtn

Z tn

a

dtn�1 � � �
Z t3

a

dt2

Z t2

a

f .t1/ dt1: .A/

(b) By successive reversals of orders of integration as in Example 7.2.11, deduce

from (A) that

y.x/ D 1

.n � 1/Š

Z x

a

.x � t/n�1f .t/ dt:

24. Let T� D Œ0; ��� Œ0; ��; � > 0. By calculating

I.a/ D lim
�!1

Z

T�

e�xy sinax d.x; y/

in two different ways, show that

Z 1

0

sin ax

x
dx D �

2
if a > 0:

7.3 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

In Section 3.3 we saw that a change of variables may simplify the evaluation of an ordinary

integral. We now consider change of variables in multiple integrals.
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Prior to formulating the rule for change of variables, we must deal with some rather

involved preliminary considerations.

Jordan Measurable Sets

In Section we defined the content of a set S to be

V.S/ D
Z

S

dX (7.3.1)

if the integral exists. If R is a rectangle containing S , then (7.3.1) can be rewritten as

V.S/ D
Z

R

 S .X/ dX;

where  S is the characteristic function of S , defined by

 S .X/ D
�
1; X 2 S;
0; X 62 S:

From Exercise 7.1.27, the existence and value of V.S/ do not depend on the particular

choice of the enclosing rectangle R. We say that S is Jordan measurable if V.S/ exists.

Then V.S/ is the Jordan content of S .

We leave it to you (Exercise 7.3.2) to show that S has zero content according to Defini-

tion 7.1.14 if and only if S has Jordan content zero.

Theorem 7.3.1 A bounded set S is Jordan measurable if and only if the boundary of

S has zero content:

Proof Let R be a rectangle containing S . Suppose that V.@S/ D 0. Since  S is

bounded onR and discontinuous only on @S (Exercise 2.2.9), Theorem 7.1.19 implies thatR
R
 S .X/ dX exists. For the converse, suppose that @S does not have zero content and

let P D fR1; R2; : : : ; Rkg be a partition of R. For each j in f1; 2; : : : ; kg there are three

possibilities:

1. Rj � S ; then

min
˚
 S .X/

ˇ̌
X 2 Rj

	
D max

˚
 S .X/

ˇ̌
X 2 Rj

	
D 1:

2. Rj \ S ¤ ; and Rj \ Sc ¤ ;; then

min
˚
 S .X/

ˇ̌
X 2 Rj

	
D 0 and max

˚
 S .X/

ˇ̌
X 2 Rj

	
D 1:

3. Rj � Sc ; then

min
˚
 S .X/

ˇ̌
X 2 Rj

	
D max

˚
 S .X/

ˇ̌
X 2 Rj

	
D 0:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Jordan.html
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Let

U1 D
˚
j
ˇ̌
Rj � S

	
and U2 D

˚
j
ˇ̌
Rj \ S ¤ ; and Rj \ Sc ¤ ;

	
: (7.3.2)

Then the upper and lower sums of  S over P are

S.P / D
X

j 2U1

V.Rj /C
X

j 2U2

V.Rj /

D total content of the subrectangles in P that intersect S

(7.3.3)

and

s.P / D
X

j 2U1

V.Rj /

D total content of the subrectangles in P contained in S:

(7.3.4)

Therefore,

S.P / � s.P / D
X

j 2U2

V.Rj /;

which is the total content of the subrectangles in P that intersect both S and Sc . Since

these subrectangles contain @S , which does not have zero content, there is an �0 > 0 such

that

S.P / � s.P / � �0

for every partitionP of R. By Theorem 7.1.12, this implies that  S is not integrable onR,

so S is not Jordan measurable.

Theorems 7.1.19 and 7.3.1 imply the following corollary.

Corollary 7.3.2 If f is bounded and continuous on a bounded Jordan measurable set

S; then f is integrable on S:

Lemma 7.3.3 Suppose that K is a bounded set with zero content and �; � > 0: Then

there are cubes C1; C2; . . . ; Cr with edge lengths< � such that Cj \K ¤ ;; 1 � j � r;

K �
r[

j D1

Cj ; (7.3.5)

and
rX

j D1

V.Cj / < �:

Proof Since V.K/ D 0, Z

C

 K.X/ dX D 0

if C is any cube containingK. From this and the definition of the integral, there is a ı > 0

such that if P is any partition of C with kP k � ı and � is any Riemann sum of  K over

P , then

0 � � � �: (7.3.6)
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Now suppose that P D fC1; C2; : : : ; Ckg is a partition of C into cubes with

kP k < min.�; ı/; (7.3.7)

and let C1, C2, . . . , Ck be numbered so that Cj \K ¤ ; if 1 � j � r and Cj \K D ;
if r C 1 � j � k. Then (7.3.5) holds, and a typical Riemann sum of  K over P is of the

form

� D
rX

j D1

 K.Xj /V .Cj /

with Xj 2 Cj , 1 � j � r . In particular, we can choose Xj fromK, so that  K .Xj / D 1,

and

� D
rX

j D1

V.Cj /:

Now (7.3.6) and (7.3.7) imply that C1, C2, . . . , Cr have the required properties.

Transformations of Jordan-Measurable Sets

To formulate the theorem on change of variables in multiple integrals, we must first con-

sider the question of preservation of Jordan measurability under a regular transformation.

Lemma 7.3.4 Suppose that G W Rn ! R
n is continuously differentiable on a bounded

open set S; and let K be a closed subset of S with zero content: Then G.K/ has zero

content.

Proof Since K is a compact subset of the open set S , there is a �1 > 0 such that the

compact set

K�1
D
˚
X
ˇ̌

dist.X; K/ � �1

	

is contained in S (Exercise 5.1.26). From Lemma 6.2.7, there is a constantM such that

jG.Y/ �G.X/j �M jY �Xj if X;Y 2 K�1
: (7.3.8)

Now suppose that � > 0. Since V.K/ D 0, there are cubes C1, C2, . . . , Cr with edge

lengths s1, s2, . . . , sr < �1=
p
n such that Cj \K ¤ ;, 1 � j � r ,

K �
r[

j D1

Cj ;

and
rX

j D1

V.Cj / < � (7.3.9)

(Lemma 7.3.3). For 1 � j � r , let Xj 2 Cj \K. If X 2 Cj , then

jX �Xj j � sj
p
n < �1;
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so X 2 K and jG.X/�G.Xj /j �M jX�Xj j �M
p
n sj , from (7.3.8). Therefore, G.Cj /

is contained in a cube eC j with edge length 2M
p
n sj , centered at G.Xj /. Since

V.eC j / D .2M
p
n/nsn

j D .2M
p
n/nV.Cj /;

we now see that

G.K/ �
r[

j D1

eC j

and
rX

j D1

V.eC j / � .2M
p
n/n

rX

j D1

V.Cj / < .2M
p
n/n�;

where the last inequality follows from (7.3.9). Since .2M
p
n/n does not depend on �, it

follows that V.G.K// D 0.

Theorem 7.3.5 Suppose that G W Rn ! R
n is regular on a compact Jordan measur-

able set S: Then G.S/ is compact and Jordan measurable:

Proof We leave it to you to prove that G.S/ is compact (Exercise 6.2.23). Since S

is Jordan measurable, V.@S/ D 0, by Theorem 7.3.1. Therefore, V.G.@S// D 0, by

Lemma 7.3.4. But G.@S/ D @.G.S// (Exercise 6.3.23), so V.@.G.S/// D 0, which

implies that G.S/ is Jordan measurable, again by Theorem 7.3.1.

Change of Content Under a Linear Transformation

To motivate and prove the rule for change of variables in multiple integrals, we must know

how V.L.S// is related to V.S/ if S is a compact Jordan measurable set and L is a nonsin-

gular linear transformation. (From Theorem 7.3.5, L.S/ is compact and Jordan measurable

in this case.) The next lemma from linear algebra will help to establish this relationship.

We omit the proof.

Lemma 7.3.6 A nonsingular n � n matrix A can be written as

A D EkEk�1 � � �E1; (7.3.10)

where each Ei is a matrix that can be obtained from the n � n identity matrix I by one of

the following operationsW
(a) interchanging two rows of II
(b) multiplying a row of I by a nonzero constantI
(c) adding a multiple of one row of I to another:

Matrices of the kind described in this lemma are called elementary matrices. The key to

the proof of the lemma is that if E is an elementary n� n matrix and A is any n� nmatrix,

then EA is the matrix obtained by applying to A the same operation that must be applied

to I to produce E (Exercise 7.3.6). Also, the inverse of an elementary matrix of type (a),

(b), or (c) is an elementary matrix of the same type (Exercise 7.3.7).

The next example illustrates the procedure for finding the factorization (7.3.10).
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Example 7.3.1 The matrix

A D

2
4
0 1 1

1 0 1

2 2 0

3
5

is nonsingular, since det.A/ D 4. Interchanging the first two rows of A yields

A1 D

2
4
1 0 1

0 1 1

2 2 0

3
5 D bE1A;

where

bE1 D

2
4
0 1 0

1 0 0

0 0 1

3
5 :

Subtracting twice the first row of A1 from the third yields

A2 D

2
4
1 0 1

0 1 1

0 2 �2

3
5 D bE2

bE1A;

where

bE2 D

2
4

1 0 0

0 1 0

�2 0 1

3
5 :

Subtracting twice the second row of A2 from the third yields

A3 D

2
4
1 0 1

0 1 1

0 0 �4

3
5 D bE3

bE2
bE1A;

where

bE3 D

2
4
1 0 0

0 1 0

0 �2 1

3
5 :

Multiplying the third row of A3 by �1
4

yields

A4 D

2
4
1 0 1

0 1 1

0 0 1

3
5 D bE4

bA3
bE2
bE1A;

where

bE4 D

2
4
1 0 0

0 1 0

0 0 �1
4

3
5 :
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Subtracting the third row of A4 from the first yields

A5 D

2
4
1 0 0

0 1 1

0 0 1

3
5 D bE5

bA4
bE3
bE2
bE1A;

where

bE5 D

2
4
1 0 �1
0 1 0

0 0 1

3
5 :

Finally, subtracting the third row of A5 from the second yields

I D bE6
bE5
bE4
bE3
bE2
bE1A; (7.3.11)

where

bE6 D

2
4
1 0 0

0 1 �1
0 0 1

3
5 :

From (7.3.11) and Theorem 6.1.16,

A D .bE6
bE5
bE4
bE3
bE2
bE1/

�1 D bE�1
1
bE�1

2
bE�1

3
bE�1

4
bE�1

5
bE�1

6 :

Therefore,

A D E6E5E4E3E2E1;

where

E1 D bE�1
6 D

2
4
1 0 0

0 1 1

0 0 1

3
5, E2 D bE�1

5 D

2
4
1 0 1

0 1 0

0 0 1

3
5,

E3 D bA�1
4 D

2
4
1 0 0

0 1 0

0 0 �4

3
5, E4 D bE�1

3 D

2
4
1 0 0

0 1 0

0 2 1

3
5,

E5 D bE�1
2 D

2
4
1 0 0

0 1 0

2 0 1

3
5, E6 D bE�1

1 D

2
4
0 1 0

1 0 0

0 0 1

3
5

(Exercise 7.3.7(c)).

Lemma 7.3.6 and Theorem 6.1.7(c) imply that an arbitrary invertible linear transforma-

tion L W Rn ! R
n, defined by

X D L.Y/ D AY; (7.3.12)

can be written as a composition

L D Lk ı Lk�1 ı � � � ı L1; (7.3.13)

where

Li.Y/ D EiY; 1 � i � k:
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Theorem 7.3.7 If S is a compact Jordan measurable subset of R
n and L W Rn ! R

n

is the invertible linear transformation X D L.Y/ D AY; then

V.L.S// D j det.A/jV.S/: (7.3.14)

Proof Theorem 7.3.5 implies that L.S/ is Jordan measurable. If

V.L.R// D j det.A/jV.R/ (7.3.15)

whenever R is a rectangle, then (7.3.14) holds if S is any compact Jordan measurable

set. To see this, suppose that � > 0, let R be a rectangle containing S , and let P D
fR1; R2; : : : ; Rkg be a partition of R such that the upper and lower sums of  S over P

satisfy the inequality

S.P / � s.P / < �: (7.3.16)

Let U1 and U2 be as in (7.3.2). From (7.3.3) and (7.3.4),

s.P / D
X

j 2U1

V.Rj / � V.S/ �
X

j 2U1

V.Rj /C
X

j 2U2

V.Rj / D S.P /: (7.3.17)

Theorem 7.3.7 implies that L.R1/, L.R2/, . . . , L.Rk/ and L.S/ are all Jordan measurable.

Since [

j 2U1

Rj � S �
[

j 2S1[S2

Rj ;

it follows that

L

0
@ [

j 2U1

Rj

1
A � L.S/ � L

0
@ [

j 2S1[S2

Rj

1
A :

Since L is one-to-one on R
n, this implies that

X

j 2U1

V.L.Rj // � V.L.S// �
X

j 2U1

V.L.Rj //C
X

j 2U2

V.L.Rj //: (7.3.18)

If we assume that (7.3.15) holds whenever R is a rectangle, then

V.L.Rj // D j det.A/jV.Rj /; 1 � j � k;

so (7.3.18) implies that

s.P / �
V.L.S//

j det.A/j � S.P /:

This, (7.3.16) and (7.3.17) imply that

ˇ̌
ˇ̌V.S/ � V.L.S//j det.A/j

ˇ̌
ˇ̌ < �I

hence, since � can be made arbitrarily small, (7.3.14) follows for any Jordan measurable

set.
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To complete the proof, we must verify (7.3.15) for every rectangle

R D Œa1; b1� � Œa2; b2� � � � � � Œan; bn� D I1 � I2 � � � � � In:

Suppose that A in (7.3.12) is an elementary matrix; that is, let

X D L.Y/ D EY:

CASE 1. If E is obtained by interchanging the i th and j th rows of I, then

xr D

8
<
:
yr if r ¤ i and r ¤ j I
yj if r D i I
yi if r D j :

Then L.R/ is the Cartesian product of I1, I2, . . . , In with Ii and Ij interchanged, so

V.L.R// D V.R/ D j det.E/jV.R/

since det.E/ D �1 in this case (Exercise 7.3.7(a)).

CASE 2. If E is obtained by multiplying the r th row of I by a, then

xr D
�
yr if r ¤ i ;
ayi if r D i :

Then

L.R/ D I1 � � � � � Ii�1 � I 0
i � IiC1 � � � � � In;

where I 0
i is an interval with length equal to jaj times the length of Ii , so

V.L.R// D jajV.R/ D j det.E/jV.R/

since det.E/ D a in this case (Exercise 7.3.7(a)).

CASE 3. If E is obtained by adding a times the j th row of I to its i th row (j ¤ i ), then

xr D
�
yr if r ¤ i I
yi C ayj if r D i :

Then

L.R/ D
˚
.x1; x2; : : : ; xn/

ˇ̌
ai C axj � xi � bi C axj and ar � xr � br if r ¤ i

	
;

which is a parallelogram if n D 2 and a parallelepiped if n D 3 (Figure 7.3.1). Now

V.L.R// D
Z

L.R/

dX;

which we can evaluate as an iterated integral in which the first integration is with respect

to xi . For example, if i D 1, then

V.L.R// D
Z bn

an

dxn

Z bn�1

an�1

dxn�1 � � �
Z b2

a2

dx2

Z b1Caxj

a1Caxj

dx1: (7.3.19)
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Since Z b1Caxj

a1Caxj

dy1 D
Z b1

a1

dy1;

(7.3.19) can be rewritten as

V.L.R// D
Z bn

an

dxn

Z bn�1

an�1

dxn�1 � � �
Z b2

a2

dx2

Z b1

a1

dx1

D .bn � an/.bn�1 � an�1/ � � � .b1 � a1/ D V.R/:

Hence, V.L.R// D j det.E/jV.R/, since det.E/ D 1 in this case (Exercise 7.3.7(a)).

a
1

b
1

y
1

y
1

y
2

y
3

b
2

a
2

y
2

i = 1, j = 2, a > 0

i = 2, j = 3, a > 0

Figure 7.3.1

From what we have shown so far, (7.3.14) holds if A is an elementary matrix and S is

any compact Jordan measurable set. If A is an arbitrary nonsingular matrix,
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then we can write A as a product of elementary matrices (7.3.10) and apply our known

result successively to L1, L2, . . . , Lk (see (7.3.13)). This yields

V.L.S// D j det.Ek/j j det.Ek�1/j � � � j det E1jV.S/ D j det.A/jV.S/;

by Theorem 6.1.9 and induction.

Formulation of the Rule for Change of Variables

We now formulate the rule for change of variables in a multiple integral. Since we are for

the present interested only in “discovering” the rule, we will make any assumptions that

ease this task, deferring questions of rigor until the proof.

Throughout the rest of this section it will be convenient to think of the range and domain

of a transformation G W Rn ! R
n as subsets of distinct copies of R

n. We will denote the

copy containing DG as E
n, and write G W En ! R

n and X D G.Y/, reversing the usual

roles of X and Y.

If G is regular on a subset S of E
n, then each X in G.S/ can be identified by specifying

the unique point Y in S such that X D G.Y/.

Suppose that we wish to evaluate
R

T f .X/ dX, where T is the image of a compact Jordan

measurable set S under the regular transformation X D G.Y/. For simplicity, we take S to

be a rectangle and assume that f is continuous on T D G.S/.

Now suppose that P D fR1; R2; : : : ; Rkg is a partition of S and Tj D G.Rj / (Fig-

ure 7.3.2).

T
j

T

R
j

S

y

xu

v

X = G(U)

Figure 7.3.2

Then Z

T

f .X/ dX D
kX

j D1

Z

Tj

f .X/ dX (7.3.20)

(Corollary 7.1.31 and induction). Since f is continuous, there is a point Xj in Tj such that

Z

Tj

f .X/ dX D f .Xj /

Z

Tj

dX D f .Xj /V .Tj /
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(Theorem 7.1.28), so (7.3.20) can be rewritten as

Z

T

f .X/ dX D
kX

j D1

f .Xj /V .Tj /: (7.3.21)

Now we approximate V.Tj /. If

Xj D G.Yj /; (7.3.22)

then Yj 2 Rj and, since G is differentiable at Yj ,

G.Y/ � G.Yj /CG0.Yj /.Y �Yj /: (7.3.23)

Here G and Y � Yj are written as column matrices, G0 is a differential matrix, and “�”

means “approximately equal” in a sense that we could make precise if we wished (Theo-

rem 6.2.2).

It is reasonable to expect that the Jordan content of G.Rj / is approximately equal to the

Jordan content of A.Rj /, where A is the affine transformation

A.Y/ D G.Yj /CG0.Yj /.Y �Yj /

on the right side of (7.3.23); that is,

V.G.Rj // � V.A.Rj //: (7.3.24)

We can think of the affine transformation A as a composition A D A3 ı A2 ı A1, where

A1.Y/ D Y �Yj ;

A2.Y/ D G0.Yj /Y;

and

A3.Y/ D G.Yj /C Y:

Let R0
j D A1.Rj /. Since A1 merely shiftsRj to a different location,R0

j is also a rectangle,

and

V.R0
j / D V.Rj /: (7.3.25)

Now let R00
j D A2.R

0
j /. (In general, R00

j is not a rectangle.) Since A2 is the linear transfor-

mation with nonsingular matrix G0.Yj /, Theorem 7.3.7 implies that

V.R00
j // D j det G0.Yj /jV.R0

j / D jJG.Yj /jV.Rj /; (7.3.26)

where JG is the Jacobian of G. Now let R000
j D A3.R

00
j /. Since A3 merely shifts all points

in the same way,

V.R000
j / D V.R00

j /: (7.3.27)

Now (7.3.24)–(7.3.27) suggest that

V.Tj / � jJG.Yj /jV.Rj /:
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(Recall that Tj D G.Rj /.) Substituting this and (7.3.22) into (7.3.21) yields

Z

T

f .X/ dX �
kX

j D1

f .G.Yj //jJG.Yj /jV.Rj /:

But the sum on the right is a Riemann sum for the integral

Z

S

f .G.Y//jJG.Y/j dY;

which suggests that

Z

T

f .X/ dX D
Z

S

f .G.Y//jJG.Y/j dY:

We will prove this by an argument that was published in the American Mathematical

Monthly [Vol. 61 (1954), pp. 81-85] by J. Schwartz.

The Main Theorem

We now prove the following form of the rule for change of variable in a multiple integral.

Theorem 7.3.8 Suppose that G W En ! R
n is regular on a compact Jordan measur-

able set S and f is continuous on G.S/: Then

Z

G.S/

f .X/ dX D
Z

S

f .G.Y//jJG.Y/j dY: (7.3.28)

Since the proof is complicated, we break it down to a series of lemmas. We first observe

that both integrals in (7.3.28) exist, by Corollary 7.3.2, since their integrands are continu-

ous. (Note that S is compact and Jordan measurable by assumption, and G.S/ is compact

and Jordan measurable by Theorem 7.3.5.) Also, the result is trivial if V.S/ D 0, since then

V.G.S// D 0 by Lemma 7.3.4, and both integrals in (7.3.28) vanish. Hence, we assume

that V.S/ > 0. We need the following definition.

Definition 7.3.9 If A D Œaij � is an n � n matrix; then

max

8
<
:

nX

j D1

jaij j
ˇ̌
1 � i � n

9
=
;

is the infinity norm of A; denoted by kAk1.

Lemma 7.3.10 Suppose that G W En ! R
n is regular on a cube C in E

n; and let A be

a nonsingular n � n matrix: Then

V.G.C // � j det.A/j
�
max

˚
kA�1G0.Y/k1

ˇ̌
Y 2 C

	�n
V.C/: (7.3.29)



Section 7.3 Change of Variables in Multiple Integrals 497

Proof Let s be the edge length of C . Let Y0 D .c1; c2; : : : ; cn/ be the center of C , and

suppose that H D .y1; y2; : : : ; yn/ 2 C . If H D .h1; h2; : : : ; hn/ is continuously differen-

tiable on C , then applying the mean value theorem (Theorem 5.4.5) to the components of

H yields

hi .Y/ � hi .Y0/ D
nX

j D1

@hi .Yi /

@yj

.yj � cj /; 1 � i � n;

where Yi 2 C . Hence, recalling that

H0.Y/ D
�
@hi

@yj

�n

i;j D1

;

applying Definition 7.3.9, and noting that jyj � cj j � s=2, 1 � j � n, we infer that

jhi.Y/ � hi.Y0/j �
s

2
max

˚
kH0.Y/k1

ˇ̌
Y 2 C

	
; 1 � i � n:

This means that H.C / is contained in a cube with center X0 D H.Y0/ and edge length

smax
˚
kH0.Y/k1

ˇ̌
Y 2 C

	
:

Therefore,
V.H.C // �

�
max fkH0.Y/k1�

n
ˇ̌
Y 2 C

	
sn

D
�
max fkH0.Y/k1�

n
ˇ̌
Y 2 C

	
V.C/:

(7.3.30)

Now let

L.X/ D A�1X

and set H D L ıG; then

H.C / D L.G.C // and H0 D A�1G0;

so (7.3.30) implies that

V.L.G.C /// �
�
max

˚
kA�1G0.Y/k1

ˇ̌
Y 2 C

	�n
V.C/: (7.3.31)

Since L is linear, Theorem 7.3.7 with A replaced by A�1 implies that

V.L.G.C /// D j det.A/�1jV.G.C //:

This and (7.3.31) imply that

j det.A�1/jV.G.C // �
�
max

˚
kA�1G0.Y/k1

ˇ̌
Y 2 C

	�n
V.C/:

Since det.A�1/ D 1= det.A/, this implies (7.3.29).

Lemma 7.3.11 If G W En ! R
n is regular on a cube C in R

n; then

V.G.C // �
Z

C

jJG.Y/j dY: (7.3.32)
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Proof Let P be a partition of C into subcubes C1, C2, . . . , Ck with centers Y1, Y2, . . . ,

Yk . Then

V.G.C // D
kX

j D1

V.G.Cj //: (7.3.33)

Applying Lemma 7.3.10 to Cj with A D G0.Aj / yields

V.G.Cj // � jJG.Yj /j
�
max

˚
k.G0.Yj //

�1G0.Y/k1
ˇ̌

Y 2 Cj

	�n
V.Cj /: (7.3.34)

Exercise 6.1.22 implies that if � > 0, there is a ı > 0 such that

max
˚
k.G0.Yj //

�1G0.Y/k1
ˇ̌
Y 2 Cj

	
< 1C �; 1 � j � k; if kP k < ı:

Therefore, from (7.3.34),

V.G.Cj // � .1C �/njJG.Yj /jV.Cj /;

so (7.3.33) implies that

V.G.C // � .1C �/n
kX

j D1

jJG.Yj /jV.Cj / if kP k < ı:

Since the sum on the right is a Riemann sum for
R

C
jJG.Y/j dY and � can be taken arbi-

trarily small, this implies (7.3.32).

Lemma 7.3.12 Suppose that S is Jordan measurable and �; � > 0: Then there are

cubes C1; C2; . . . ; Cr in S with edge lengths < �; such that Cj � S; 1 � j � r;

C 0
i \ C 0

j D ; if i ¤ j; and

V.S/ �
rX

j D1

V.Cj /C �: (7.3.35)

Proof Since S is Jordan measurable,
Z

C

 S .X/ dX D V.S/

if C is any cube containing S . From this and the definition of the integral, there is a ı > 0

such that if P is any partition of C with kP k < ı and � is any Riemann sum of  S over

P , then � > V.S/ � �=2. Therefore, if s.P / is the lower sum of  S over P, then

s.P/ > V.S/ � � if kPk < ı: (7.3.36)

Now suppose that P D fC1; C2; : : : ; Ckg is a partition of C into cubes with kP k <
min.�; ı/, and let C1, C2, . . . , Ck be numbered so that Cj � S if 1 � j � r and

Cj \ Sc ¤ ; if j > r . From (7.3.4), s.P/ D
Pr

j D1 V.Ck/. This and (7.3.36) imply

(7.3.35). Clearly, C 0
i \ C 0

j D ; if i ¤ j .
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Lemma 7.3.13 Suppose that G W En ! R
n is regular on a compact Jordan measur-

able set S and f is continuous and nonnegative on G.S/: Let

Q.S/ D
Z

G.S/

f .X/ dX �
Z

S

f .G.Y//jJG.Y/j dY: (7.3.37)

Then Q.S/ � 0:

Proof From the continuity of JG and f on the compact sets S and G.S/, there are

constantsM1 and M2 such that

jJG.Y/j �M1 if Y 2 S (7.3.38)

and

jf .X/j �M2 if X 2 G.S/ (7.3.39)

(Theorem 5.2.11). Now suppose that � > 0. Since f ı G is uniformly continuous on S

(Theorem 5.2.14), there is a ı > 0 such that

jf .G.Y// � f .G.Y0//j < � if jY � Y0j < ı and Y;Y0 2 S: (7.3.40)

Now let C1, C2, . . . , Cr be chosen as described in Lemma 7.3.12, with � D ı=
p
n. Let

S1 D

8
<
:Y 2 S

ˇ̌
Y …

r[

j D1

Cj

9
=
; :

Then V.S1/ < � and

S D

0
@

r[

j D1

Cj

1
A [ S1: (7.3.41)

Suppose that Y1, Y2, . . . , Yr are points in C1, C2, . . . , Cr and Xj D G.Yj /, 1 � j � r .

From (7.3.41) and Theorem 7.1.30,

Q.S/ D
Z

G.S1/

f .X/ dX �
Z

S1

f .G.Y//jJG.Y/j dY

C
rX

j D1

Z

G.Cj /

f .X/ dX �
rX

j D1

Z

Cj

f .G.Y//jJG.Y/j dY

D
Z

G.S1/

f .X/ dX �
Z

S1

f .G.Y//jJG.Y/j dY

C
rX

j D1

Z

G.Cj /

.f .X/ � f .Aj // dX

C
rX

j D1

Z

Cj

..f .G.Yj // � f .G.Y///jJ.G.Y/j dY

C
rX

j D1

f .Xj /

 
V.G.Cj // �

Z

Cj

jJG.Y/j dY

!
:
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Since f .X/ � 0, Z

S1

f .G.Y//jJG.Y/j dY � 0;

and Lemma 7.3.11 implies that the last sum is nonpositive. Therefore,

Q.S/ � I1 C I2 C I3; (7.3.42)

where

I1 D
Z

G.S1/

f .X/ dX; I2 D
rX

j D1

Z

G.Cj /

jf .X/ � f .Xj /j dX;

and

I3 D
rX

j D1

Z

Cj

jf .G/.Yj // � f .G.Y//jjJG.Y/j dY:

We will now estimate these three terms. Suppose that � > 0.

To estimate I1, we first remind you that since G is regular on the compact set S , G is

also regular on some open set O containing S (Definition 6.3.2). Therefore, since S1 � S
and V.S1/ < �, S1 can be covered by cubes T1, T2, . . . , Tm such that

rX

j D1

V.Tj / < � (7.3.43)

and G is regular on
Sm

j D1 Tj . Now,

I1 �M2V.G.S1// (from (7.3.39))

�M2

mX

j D1

V.G.Tj // .since S1 � [m
j D1Tj /

�M2

mX

j D1

Z

Tj

jJG.Y/j dY (from Lemma 7.3.11)

�M2M1� (from (7.3.38) and (7.3.43)):

To estimate I2, we note that if X and Xj are in G.Cj / then X D G.Y/ and Xj D G.Yj /

for some Y and Yj in Cj . Since the edge length of Cj is less than ı=
p
n, it follows that

jY �Yj j < ı, so jf .X/ � f .Xj /j < �, by (7.3.40). Therefore,

I2 < �

rX

j D1

V.G.Cj //

� �
rX

j D1

Z

Cj

jJG.Y/jdY (from Lemma 7.3.11)

� �M1

rX

j D1

V.Cj / (from (7.3.38)/

� �M1V.S/ .since [r
j D1 Cj � S/:
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To estimate I3, we note again from (7.3.40) that jf .G.Yj // � f .G.Y//j < � if Y and

Yj are in Cj . Hence,

I3 < �

rX

j D1

Z

Cj

jJG.Y/jdY

�M1�

rX

j D1

V.Cj / (from (7.3.38)

�M1V.S/�

because
Sr

j D1 Cj � S and C 0
i \ C 0

j D ; if i ¤ j .

From these inequalities on I1, I2, and I3, (7.3.42) now implies that

Q.S/ < M1.M2 C 2V.S//�:

Since � is an arbitrary positive number, it now follows that Q.S/ � 0.

Lemma 7.3.14 Under the assumptions of Lemma 7.3.13; Q.S/ � 0:

Proof Let

G1 D G�1; S1 D G.S/; f1 D .jJGj/f ıG; (7.3.44)

and

Q1.S1/ D
Z

G1.S1/

f1.Y/ dY �
Z

S1

f1.G1.X//jJG1 .X/j dX: (7.3.45)

Since G1 is regular on S1 (Theorem 6.3.3) and f1 is continuous and nonnegative on

G1.S1/ D S , Lemma 7.3.13 implies thatQ1.S1/ � 0. However, substituting from (7.3.44)

into (7.3.45) and again noting that G1.S1/ D S yields

Q1.S1/D
Z

S

f .G.Y//jJG.Y/j dY

�
Z

G.S/

f .G.G�1.X///jJG.G�1 .X//jjJG�1.X/j dX:
(7.3.46)

Since G.G�1.X// D X, f .G.G�1.X/// D f .X/. However, it is important to interpret the

symbol JG.G�1.X// properly. We are not substituting G�1.X/ into G here; rather, we are

evaluating the determinant of the differential matrix of G at the point Y D G�1.X/. From

Theorems 6.1.9 and 6.3.3,

jJG.G�1.X//jjJG�1 .X/j D 1;

so (7.3.46) can be rewritten as

Q1.S1/ D
Z

S

f .G.Y//jJG.Y/j dY �
Z

G.S/

f .X/ dX D �Q.S/:

Since Q1.S1/ � 0, it now follows that Q.S/ � 0.
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We can now complete the proof of Theorem 7.3.8. Lemmas 7.3.13 and 7.3.14 imply

(7.3.28) if f is nonnegative on S . Now suppose that

m D min
˚
f .X/

ˇ̌
X 2 G.S/

	
< 0:

Then f �m is nonnegative on G.S/, so (7.3.28) with f replaced by f �m implies that

Z

G.S/

.f .X/ �m/dX D
Z

S

.f .G.Y/ �m/jJG.Y/j dY: (7.3.47)

However, setting f D 1 in (7.3.28) yields

Z

G.S/

dX D
Z

S

jJG.Y/j dY;

so (7.3.47) implies (7.3.28).

The assumptions of Theorem 7.3.8 are too stringent for many applications. For example,

to find the area of the disc ˚
.x; y/

ˇ̌
x2 C y2 � 1

	
;

it is convenient to use polar coordinates and regard the circle as G.S/, where

G.r; �/ D
�
r cos �

r sin �

�
(7.3.48)

and S is the compact set

S D
˚
.r; �/

ˇ̌
0 � r � 1; 0 � � � 2�

	
(7.3.49)

(Figure 7.3.3).

S
X = G(r, θ)

2π

1

θ

y

r

x

x2 + y2 = 1

G(S)

Figure 7.3.3
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Since

G0.r; �/ D
�

cos � �r sin �

sin � r cos �

�
;

it follows that JG.r; �/ D r . Therefore, formally applying Theorem 7.3.8 with f � 1

yields

A D
Z

G.S/

dX D
Z

S

r d.r; �/ D
Z 1

0

r dr

Z 2�

0

d� D �:

Although this is a familiar result, Theorem 7.3.8 does not really apply here, since G.r; 0/ D
G.r; 2�/, 0 � r � 1, so G is not one-to-one on S , and therefore not regular on S .

The next theorem shows that the assumptions of Theorem 7.3.8 can be relaxed so as to

include this example.

Theorem 7.3.15 Suppose that G W E
n ! R

n is continuously differentiable on a

bounded open set N containing the compact Jordan measurable set S; and regular on

S0: Suppose also that G.S/ is Jordan measurable; f is continuous on G.S/; andG.C/ is

Jordan measurable for every cube C � N . Then

Z

G.S/

f .X/ dX D
Z

S

f .G.Y//jJG.Y/j dY: (7.3.50)

Proof Since f is continuous on G.S/ and .jJGj/f ıG is continuous on S , the integrals

in (7.3.50) both exist, by Corollary 7.3.2. Now let

� D dist .@S; N c/

(Exercise 5.1.25), and

P D
˚
Y
ˇ̌

dist.Y; @S/
	
� �
2
:

Then P is a compact subset of N (Exercise 5.1.26) and @S � P 0 (Figure 7.3.4).

Since S is Jordan measurable, V.@S/ D 0, by Theorem 7.3.1. Therefore, if � > 0, we

can choose cubes C1, C2, . . . , Ck in P 0 such that

@S �
k[

j D1

C 0
j (7.3.51)

and
kX

j D1

V.Cj / < � (7.3.52)

Now let S1 be the closure of the set of points in S that are not in any of the cubes C1,

C2, . . . , Ck; thus,

S1 D S \
�
[k

j D1Cj

�c

:
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Because of (7.3.51), S1 \ @S D ;, so S1 is a compact Jordan measurable subset of S0.

Therefore, G is regular on S1, and f is continuous on G.S1/. Consequently, if Q is as

defined in (7.3.37), then Q.S1/ D 0 by Theorem 7.3.8.

N = open set bounded by outer curve

S = closed set bounded by inner curve

∂S

D

ρ

Figure 7.3.4

Now

Q.S/ D Q.S1/CQ.S \ Sc
1 / D Q.S \ Sc

1 / (7.3.53)

(Exercise 7.3.11) and

jQ.S \ Sc
1 /j �

ˇ̌
ˇ̌
ˇ

Z

G.S\Sc
1

/

f .X/ dX

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ

Z

S\Sc
1

f .G.Y//jJG.Y/j dY

ˇ̌
ˇ̌
ˇ :

But ˇ̌
ˇ̌
ˇ

Z

S\Sc
1

f .G.Y//jJG.Y/j dY

ˇ̌
ˇ̌
ˇ �M1M2V.S \ Sc

1 /; (7.3.54)

where M1 and M2 are as defined in (7.3.38) and (7.3.39). Since S \ Sc
1 � [k

j D1Cj ,

(7.3.52) implies that V.S \ Sk
1 / < �; therefore,

ˇ̌
ˇ̌
ˇ

Z

S\Sc
1

f .G.Y//jJG.Y/j dY

ˇ̌
ˇ̌
ˇ �M1M2�; (7.3.55)

from (7.3.54). Also
ˇ̌
ˇ̌
ˇ

Z

G.S\Sc
1

/

f .X/ dX

ˇ̌
ˇ̌
ˇ �M2V.G.S \ Sc

1 // �M2

kX

j D1

V.G.Cj //: (7.3.56)
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By the argument that led to (7.3.30) withH D G and C D Cj ,

V.G.Cj // �
�
max

˚
kG0.Y/k1

ˇ̌
Y 2 Cj

	�n
V.Cj /;

so (7.3.56) can be rewritten as

ˇ̌
ˇ̌
ˇ

Z

G.S\Sc
1

/

f .X/ dX

ˇ̌
ˇ̌
ˇ �M2

�
max

˚
kG0.Y/k1

ˇ̌
Y 2 P

	�n
�;

because of (7.3.52). Since � can be made arbitrarily small, this and (7.3.55) imply that

Q.S \ Sc
1 / D 0. Now Q.S/ D 0, from (7.3.53).

The transformation to polar coordinates to compute the area of the disc is now justi-

fied, since G and S as defined by (7.3.48) and (7.3.49) satisfy the assumptions of Theo-

rem 7.3.15.

Polar Coordinates

If G is the transformation from polar to rectangle coordinates

�
x

y

�
D G.r; �/ D

�
r cos �

r sin �

�
; (7.3.57)

then JG.r; �/ D r and (7.3.50) becomes

Z

G.S/

f .x; y/ d.x; y/ D
Z

S

f .r cos �; r sin �/r d.r; �/

if we assume, as is conventional, that S is in the closed right half of the r�-plane. This

transformation is especially useful when the boundaries of S can be expressed conveniently

in terms of polar coordinates, as in the example preceding Theorem 7.3.15. Two more

examples follow.

Example 7.3.2 Evaluate

I D
Z

T

.x2 C y/ d.x; y/;

where T is the annulus

T D
˚
.x; y/

ˇ̌
1 � x2 C y2 � 4

	

(Figure 7.3.5(b)).

Solution We write T D G.S/, with G as in (7.3.57) and

S D
˚
.r; �/

ˇ̌
1 � r � 2; 0 � � � 2�
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(Figure 7.3.5(a)). Theorem 7.3.15 implies that

I D
Z

S

.r2 cos2 � C r sin �/r d.r; �/;

which we evaluate as an iterated integral:

I D
Z 2

1

r2 dr

Z 2�

0

.r cos2 � C sin �/ d�

D
Z 2

1

r2 dr

Z 2�

0

� r
2
C
r

2
cos 2� C sin �

�
d�

�
since cos2 � D

1

2
.1C cos 2�/

�

D
Z 2

1

r2

�
r�

2
C r

4
sin 2� � cos �

� ˇ̌
ˇ̌
2�

�D0

dr D �
Z 2

1

r3 dr D �r4

4

ˇ̌
ˇ̌
2

1

D 15�

4
:

T

S

y

r

x

2π

(a) (b)

θ

21

Figure 7.3.5

Example 7.3.3 Evaluate

I D
Z

T

y d.x; y/;

where T is the region in the xy-plane bounded by the curve whose points have polar coor-

dinates satisfying

r D 1 � cos �; 0 � � � �

(Figure 7.3.6(b)).

Solution We write T D G.S/, with G as in (7.3.57) and S the shaded region in

Figure 7.3.6(a). From (7.3.50),

I D
Z

S

.r sin �/r d.r; �/;
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which we evaluate as an iterated integral:

I D
Z �

0

sin � d�

Z 1�cos �

0

r2 dr D 1

3

Z �

0

.1 � cos �/3 sin � d�

D 1

12
.1 � cos �/4

ˇ̌
ˇ̌
�

0

D 4

3
:

T
S

r y

xθ
π

(b)(a)

Figure 7.3.6

Spherical Coordinates

If G is the transformation from spherical to rectangular coordinates,

2
4
x

y

´

3
5 D G.r; �; �/ D

2
4
r cos � cos �

r sin � cos�

r sin �

3
5 ; (7.3.58)

then

G0.r; �; �/ D

2
4

cos � cos� �r sin � cos� �r cos � sin�

sin � cos� r cos � cos� �r sin � sin�

sin� 0 r cos�

3
5

and JG.r; �; �/ D r2 cos �, so (7.3.50) becomes

Z

G.S/

f .x; y; ´/ d.x; y; ´/

D
Z

S

f .r cos � cos �; r sin � cos �; r sin�/r2 cos� d.r; �; �/

(7.3.59)

if we make the conventional assumption that j�j � �=2 and r � 0.
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Example 7.3.4 Let a > 0. Find the volume of

T D
˚
.x; y; ´/

ˇ̌
x2 C y2 C ´2 � a2; x � 0; y � 0; ´ � 0

	
;

which is one eighth of a sphere (Figure 7.3.7(b)).

(a)

(b)

y

z

φ

θ

r

x

2

π

2

π

a

a

a

a

Figure 7.3.7

Solution We write T D G.S/ with G as in (7.3.58) and

S D
˚
.r; �; �/

ˇ̌
0 � r � a; 0 � � � �=2; 0 � � � �=2
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(Figure 7.3.7(a)), and let f � 1 in (7.3.59). Theorem 7.3.15 implies that

V.T /D
Z

G.S/

dX D
Z

S

r2 cos� d.r; �; �/

D
Z a

0

r2 dr

Z �=2

0

d�

Z �=2

0

cos� d� D
�
a3

3

���
2

�
(7.3.1) D �a3

6
:

Example 7.3.5 Evaluate the iterated integral

I D
Z a

0

x dx

Z p
a2�x2

0

dy

Z pa2�x2�y2

0

´d´ .a > 0/:

Solution We first rewrite I as a multiple integral

I D
Z

G.S/

x´ d.x; y; ´/

where G and S are as in Example 7.3.4. From Theorem 7.3.15,

I D
Z

S

.r cos � cos �/.r sin�/.r2 cos�/ d.r; �; �/

D
Z a

0

r4 dr

Z �=2

0

cos � d�

Z �=2

0

cos2 � sin � d� D
�
a5

5

�
(7.3.1)

�
1

3

�
D a5

15
:

Other Examples

We now consider other applications of Theorem 7.3.15.

Example 7.3.6 Evaluate

I D
Z

T

.x C 4y/ d.x; y/;

where T is the parallelogram bounded by the lines

x C y D 1; x C y D 2; x � 2y D 0; and x � 2y D 3

(Figure 7.3.8(b)).

Solution We define new variables u and v by

�
u

v

�
D F.x; y/ D

�
x C y
x � 2y

�
:
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S

v

u
2

3

1

(a)

x

y
= F−1(u,v)

T

y

x

(b)

x − 2y = 0

x − 2y = 3

x + y = 2

x + y = 1

Figure 7.3.8

Then
�
x

y

�
D F�1.u; v/ D

2
64
2uC v
3

u� v
3

3
75 ;

JF�1.u; v/ D
ˇ̌
ˇ̌
ˇ

2
3

1
3

1
3
�1

3

ˇ̌
ˇ̌
ˇ D �

1

3
;

and T D F�1.S/, where

S D
˚
.u; v/

ˇ̌
1 � u � 2; 0 � v � 3
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(Figure 7.3.8(a)). Applying Theorem 7.3.15 with G D F�1 yields

I D
Z

S

�
2uC v
3
C 4u� 4v

3

��
1

3

�
d.u; v/ D 1

3

Z

S

.2u � v/ d.u; v/

D 1

3

Z 3

0

dv

Z 2

1

.2u � v/ du D 1

3

Z 3

0

.u2 � uv/
ˇ̌
ˇ̌
2

uD1

dv

D 1

3

Z 3

0

.3 � v/dv D 1

3

�
3v � v

2

2

� ˇ̌
ˇ̌
3

0

D 3

2
:

Example 7.3.7 Evaluate

I D
Z

T

e.x2�y2/2

e4x2y2

.x2 C y2/ d.x; y/;

where T is the annulus T D
˚
.x; y/

ˇ̌
a2 � x2 C y2 � b2

	
with a > 0 and b > 0 (Fig-

ure 7.3.9(a)).

y

x

y

x
a b

T

a b

T
1

T
2

T
3

T
4

(a) (b)

Figure 7.3.9

Solution The forms of the arguments of the exponential functions suggest that we

introduce new variables u and v defined by

�
u

v

�
D F.x; y/ D

�
x2 � y2

2xy

�

and apply Theorem 7.3.15 to G D F�1. However, F is not one-to-one on T 0 and therefore

has no inverse on T 0 (Example 6.3.4). To remove this difficulty, we regard T as the union

of the quarter-annuli T1, T2, T3, and T4 in the four quadrants (Figure 7.3.9)(b)), and let

Ij D
Z

Tj

e.x2�y2/2

e4x2y2

.x2 C y2/ d.x; y/:



512 Chapter 7 Integrals of Functions of Several Variables

Since the pairwise intersections of T1, T2, T3, and T4 all have zero content, I D I1 C
I2 C I3 C I4 (Corollary 7.1.31). Theorem 7.3.8 implies that I1 D I2 D I3 D I4 (Exer-

cise 7.3.12), so I D 4I1. Since I1 does not contain any pairs of distinct points of the form

.x0; y0/ and .�x0;�y0/, F is one-to-one on T1 (Example 6.3.4),

F.T1/ D S1 D
˚
.u; v/

ˇ̌
a4 � u2 C v2 � b4; v � 0

	

(Figure 7.3.10(b)),

S
1

s
1

v

uρ

α

π

a2 b2 a2 b2

(a) (b)

Figure 7.3.10

and a branch G of F�1 can be defined on S1 (Example 6.3.8). Now Theorem 7.3.15 implies

that

I1 D
Z

S1

e.x2�y2/2

e4x2y2

.x2 C y2/jJG.u; v/j d.u; v/;

where x and y must still be written in terms of u and v. Since it is easy to verify that

JF.x; y/ D 4.x2 C y2/

and therefore

JG.u; v/ D 1

4.x2 C y2/
;

doing this yields

I1 D
1

4

Z

S1

eu2Cv2

d.u; v/: (7.3.60)

To evaluate this integral, we let � and ˛ be polar coordinates in the uv-plane (Figure 7.3.11)

and define H by �
u

v

�
D H.�; ˛/ D

�
� cos˛

� sin ˛

�
I

then S1 D H.eS1/, where

eS1 D
˚
.�; ˛/

ˇ̌
a2 � � � b2; 0 � ˛ � �
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(Figure 7.3.10(a)); hence, applying Theorem 7.3.15 to (7.3.60) yields

I1 D
1

4

Z

eS1

e�2jJH.�; ˛/j d.�; ˛/ D 1

4

Z

eS1

�e�2

d.�; ˛/

D 1

4

Z �

0

d˛

Z b2

a2

�e�2

d� D �.eb4 � ea4
/

8
I

hence,

I D 4I1 D
�

2
.eb4 � ea4

/:

v

u

ρ

α

(u,
 
v) 

Figure 7.3.11

Example 7.3.8 Evaluate

I D
Z

T

ex1Cx2C���Cxnd.x1; x2; : : : ; xn/;

where T is the region defined by

ai � x1 C x2 C � � � C xi � bi ; 1 � i � n:

Solution We define the new variables y1, y2, . . . , yn by Y D F.X/, where

fi .X/ D x1 C x2 C � � � C xi ; 1 � i � n:

If G D F�1 then T D G.S/, where

S D Œa1; b1�� Œa2; b2� � � � � � Œan; bn�;

and JG.Y/ D 1, since JF.X/ D 1 (verify); hence, Theorem 7.3.8 implies that
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I D
Z

S

eynd.y1; y2; : : : ; yn/

D
Z b1

a1

dy1

Z b2

a2

dy2 � � �
Z bn�1

an�1

dyn�1

Z bn

an

eyndyn

D .b1 � a1/.b2 � a2/ � � � .bn�1 � an�1/.e
bn � ean/:

7.3 Exercises

1. Give a counterexample to the following statement: If S1 and S2 are disjoint subsets

of a rectangle R, then either

Z

R

 S1
.X/ dXC

Z

R

 S2
.X/ dX D

Z

R

 S1[S2
.X/ dX

or Z

R

 S1
.X/ dXC

Z

R

 S2
.X/ dX D

Z

R

 S1[S2
.X/ dX:

2. Show that a set E has content zero according to Definition 7.1.14 if and only if E

has Jordan content zero.

3. Show that if S1 and S2 are Jordan measurable, then so are S1 [ S2 and S1 \ S2.

4. Prove:

(a) If S is Jordan measurable then so is S , and V.S/ D V.S/. Must S be Jordan

measurable if S is?

(b) If T is a Jordan measurable subset of a Jordan measurable set S , then S � T
is Jordan measurable.

5. Suppose thatH is a subset of a compact Jordan measurable set S such that the inter-

section ofH with any compact subset of S0 has zero content. Show that V.H/ D 0.

6. Suppose that E is an n � n elementary matrix and A is an arbitrary n � p matrix.

Show that EA is the matrix obtained by applying to A the operation by which E is

obtained from the n � n identity matrix.

7. (a) Calculate the determinants of elementary matrices of types (a), (b), and (c)
of Lemma 7.3.6.

(b) Show that the inverse of an elementary matrix of type (a), (b), or (c) is an

elementary matrix of the same type.

(c) Verify the inverses given forbE1; : : : ;bE6 in Example 7.3.1.
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8. Write as a product of elementary matrices.

(a)

2
4
1 0 1

1 1 0

0 1 1

3
5 (b)

2
4
2 3 �2
0 �1 5

0 �2 4

3
5

9. Suppose that ad�bc ¤ 0, u1 < u2, and v1 < v2. Find the area of the parallelogram

bounded by the lines

ax C by D u1; ax C by D u2;

cxC dy D v1; cx C dy D v2:

10. Find the volume of the parallelepiped defined by

1 � 2x C 3y � 2´ � 2; 5 � �x C 5y � 7; 1 � �2x C 4y � 6:

11. In writing Eqn. (7.3.53) we assumed that

Z

G.S/

f .X/ dX D
Z

G.S1/

f .X/ dXC
Z

G.S\Sc
1

/

f .X/ dX:

Justify this. HINT: Show that G.S1/ \G.S \ Sc
1 / has zero content:

12. Use Theorem 7.3.8 to show that I1 D I2 D I3 D I4 in Example 7.3.7.

13. Let ei D ˙1, 0 � i � n. Let T be a bounded subset of R
n and

bT D
˚
.e1x1; e2x2; : : : ; enxn/

ˇ̌
.x1; x2; : : : ; xn/ 2 T

	
:

Suppose that f is defined on T and define g on bT by

g.e1x1; e2x2; : : : ; enxn/ D e0f .x1; x2; : : : ; xn/:

(a) Prove directly from Definitions 7.1.2 and 7.1.17 that f is integrable on T if

and only if g is integrable on bT , and in this case

Z

bT
g.Y/ dY D e0

Z

T

f .X/ dX:

(b) Suppose that bT D T ,

f .e1x1; e2x2; : : : ; enxn/ D �f .x1; x2; : : : ; xn/;

and f is integrable on T . Show that

Z

T

f .X/ dX D 0:

14. Find the area of

(a)
˚
.x; y/

ˇ̌
y � x � 4y; 1 � x C 2y � 3

	
;
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(b)
˚
.x; y/

ˇ̌
2 � xy � 4; 2x � y � 5x

	
.

15. Evaluate Z

T

.3x2 C 2y C ´/ d.x; y; ´/;

where

T D
˚
.x; y; ´/

ˇ̌
jx � yj � 1; jy � ´j � 1; j´C xj � 1

	
:

16. Evaluate Z

T

.y2 C x2y � 2x4/ d.x; y/;

where T is the region bounded by the curves

xy D 1; xy D 2; y D x2; y D x2 C 1:

17. Evaluate Z

T

.x4 � y4/exy d.x; y/;

where T is the region in the first quadrant bounded by the hyperbolas

xy D 1; xy D 2; x2 � y2 D 2; x2 � y2 D 3:

18. Find the volume of the ellipsoid

x2

a2
C
y2

b2
C
´2

c2
D 1 .a; b; c > 0/:

19. Evaluate Z

T

ex2Cy2C´2

p
x2 C y2 C ´2

d.x; y; ´/;

where

T D
˚
.x; y; ´/

ˇ̌
9 � x2 C y2 C ´2 � 25

	
:

20. Find the volume of the set T bounded by the surfaces ´ D 0, ´ D
p
x2 C y2, and

x2 C y2 D 4.

21. Evaluate Z

T

xy´.x4 � y4/ d.x; y; ´/;

where

T D
˚
.x; y; ´/

ˇ̌
1 � x2 � y2 � 2; 3 � x2 C y2 � 4; 0 � ´ � 1

	
:

22. Evaluate

(a)
Z p

2

0

dy

Z p4�y2

y

dx

1C x2 C y2
(b)

Z 2

0

dx

Z p
4�x2

0

ex2Cy2

dy

(c)
Z 1

�1

dx

Z p
1�x2

�
p

1�x2

dy

Z p1�x2�y2

0

´2 d´
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23. Use the change of variables

2
664

x1

x2

x3

x4

3
775 D G.r; �1; �2; �3/ D

2
664

r cos �1 cos �2 cos �3

r sin �1 cos �2 cos �3

r sin �2 cos �3

r sin �3

3
775

to compute the content of the 4-ball

T D
˚
.x1; x2; x3; x4/

ˇ̌
x2

1 C x2
2 C x2

3 C x2
4 � a2

	
:

24. Suppose that A D Œaij � is a nonsingular n � n matrix and T is the region in R
n

defined by

˛1 � ai1x1 C ai2x2 C � � � C ainxn � ˇi ; 1 � i � n:

(a) Find V.T /.

(b) Show that if c1, c2, . . . , cn are constants, then

Z

T

0
@

nX

j D1

cjxj

1
A dX D V.T /

2

nX

iD1

di.˛i C ˇi/;

where 2
6664

d1

d2

:::

dn

3
7775 D .A

t /�1

2
6664

c1

c2

:::

cn

3
7775 :

25. If Vn is the content of the n-ball T D
˚
X
ˇ̌
jXj � 1

	
, find the content of the n-

dimensional ellipsoid defined by

nX

j D1

x2
j

a2
j

� 1:

Leave the answer in terms of Vn.



CHAPTER 8

Metric Spaces

IN THIS CHAPTER we study metric spaces.

SECTION 8.1 defines the concept and basic properties of a metric space. Several examples

of metric spaces are considered.

SECTION 8.2 defines and discusses compactness in a metric space.

SECTION 8.3 deals with continuous functions on metric spaces.

8.1 INTRODUCTION TO METRIC SPACES

Definition 8.1.1 A metric space is a nonempty set A together with a real-valued func-

tion � defined on A � A such that if u, v, and w are arbitrary members of A, then

(a) �.u; v/ � 0, with equality if and only if u D v;

(b) �.u; v/ D �.v; u/;
(c) �.u; v/ � �.u; w/C �.w; v/.
We say that � is a metric on A.

If n � 2 and u1, u2, . . . , un are arbitrary members of A, then (c) and induction yield

the inequality

�.u1; un/ �
n�1X

iD1

�.ui ; uiC1/:

Example 8.1.1 The set R of real numbers with �.u; v/ D ju � vj is a metric space.

Definition 8.1.1(c) is the familiar triangle inequality:

ju � vj � ju� wj C jw � uj:

Motivated by this example, in an arbitrary metric space we call �.u; v/ the distance from

u to v, and we call Definition 8.1.1(c) the triangle inequality.

518
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Example 8.1.2 If A is an arbitrary nonempty set, then

�.u; v/ D
�
0 if u D v;
1 if u ¤ v

is a metric on A (Exercise 8.1.5). We call it the discrete metric.

Example 8.1.2 shows that it is possible to define a metric on any nonempty set A. In

fact, it is possible to define infinitely many metrics on any set with more than one member

(Exercise 8.1.3). Therefore, to specify a metric space completely, we must specify the

couple .A; �/, where A is the set and � is the metric. (In some cases we will not be so

precise; for example, we will always refer to the real numbers with the metric �.u; v/ D
ju� vj simply as R.)

There is an important kind of metric space that arises when a definition of length is

imposed on a vector space. Although we assume that you are familiar with the definition

of a vector space, we restate it here for convenience. We confine the definition to vector

spaces over the real numbers.

Definition 8.1.2 A vector space A is a nonempty set of elements called vectors on

which two operations, vector addition and scalar multiplication (multiplication by real

numbers) are defined, such that the following assertions are true for all U, V, and W in

A and all real numbers r and s:

1. UC V 2 A;

2. UC V D VC U;

3. UC .VCW/ D .UC V/CW;

4. There is a vector 0 in A such that UC 0 D U;

5. There is a vector �U in A such that UC .�U/ D 0;

6. rU 2 A;

7. r.UC V/ D rUC rV;

8. .r C s/U D rUC sU;

9. r.sU/ D .rs/U;

10. 1U D U.

We say that A is closed under vector addition if (1) is true, and that A is closed under

scalar multiplication if (6) is true. It can be shown that if B is any nonempty subset of A

that is closed under vector addition and scalar multiplication, then B together with these

operations is itself a vector space. (See any linear algebra text for the proof.) We say that

B is a subspace of A.

Definition 8.1.3 A normed vector space is a vector space A together with a real-valued

function N defined on A, such that if u and v are arbitrary vectors in A and a is a real

number, then

(a) N.u/ � 0 with equality if and only if u D 0;

(b) N.au/ D jajN.u/;
(c) N.uC v/ � N.u/ CN.v/.
We say that N is a norm on A, and .A; N / is a normed vector space.
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Theorem 8.1.4 If .A; N / is a normed vector space; then

�.x; y/ D N.x � y/ (8.1.1)

is a metric on A:

Proof From (a) with u D x � y, �.x; y/ D N.x � y/ � 0, with equality if and only

if x D y. From (b) with u D x � y and a D �1,

�.y; x/ D N.y � x/ D N.�.x � y// D N.x � y/ D �.x; y/:

From (c) with u D x � ´ and v D ´ � y,

�.x; y/ D N.x � y/ � N.x � ´/CN.´ � y/ D �.x; ´/C �.´; y/:

We will say that the metric in (8.1.1) is induced by the norm N . Whenever we speak of

a normed vector space .A; N /, it is to be understood that we are regarding it as a metric

space .A; �/, where � is the metric induced by N .

We will often write N.u/ as kuk. In this case we will denote the normed vector space as

.A; k � k/.

Theorem 8.1.5 If x and y are vectors in a normed vector space .A; N /; then

jN.x/� N.y/j � N.x � y/: (8.1.2)

Proof Since

x D y C .x � y/;
Definition 8.1.3(c) with u D y and v D x � y implies that

N.x/ � N.y/ CN.x � y/;

or

N.x/� N.y/ � N.x � y/:
Interchanging x and y yields

N.y/ � N.x/ � N.y � x/:

Since N.x � y/ D N.y � x/ (Definition 8.1.3(b) with u D x � y and a D �1), the last

two inequalities imply (8.1.2).

Metrics for RRR
n

In Section 5.1 we defined the norm of a vector X D .x1; x2; : : : ; xn/ in R
n as

kXk D
 

nX

iD1

x2
i

!1=2

:
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The metric induced by this norm is

�.X;Y/ D
 

nX

iD1

.xi � yi /
2

!1=2

:

Whenever we write R
n without identifying the norm or metric specifically, we are referring

to R
n with this norm and this induced metric.

The following definition provides infinitely many norms and metrics on R
n.

Definition 8.1.6 If p � 1 and X D .x1; x2; : : : ; xn/, let

kXkp D
 

nX

iD1

jxi jp
!1=p

: (8.1.3)

The metric induced on R
n by this norm is

�p.X;Y/ D
 

nX

iD1

jxi � yi jp
!1=p

:

To justify this definition, we must verify that (8.1.3) actually defines a norm. Since it is

clear that kXkp � 0 with equality if and only if X D 0, and kaXkp D jajkXkp if a is any

real number and X 2 R
n, this reduces to showing that

kXC Ykp � kXkp C kYkp (8.1.4)

for every X and Y in R
n. Since

jxi C yi j � jxi j C jyi j;

summing both sides of this equation from i D 1 to n yields (8.1.4) with p D 1. To handle

the case where p > 1, we need the following lemmas. The inequality established in the

first lemma is known as Hölder’s inequality.

Lemma 8.1.7 Suppose that�1; �2; . . . ; �n and �1; �2; . . . ; �n are nonnegative numbers:

Let p > 1 and q D p=.p � 1/I thus;

1

p
C 1

q
D 1: (8.1.5)

Then
nX

iD1

�i�i �
 

nX

iD1

�
p
i

!1=p  nX

iD1

�
q
i

!1=q

: (8.1.6)

Proof Let ˛ and ˇ be any two positive numbers, and consider the function

f .ˇ/ D ˛p

p
C ˇq

q
� ˛ˇ;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Holder.html
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where we regard ˛ as a constant. Since f 0.ˇ/ D ˇq�1�˛ and f 00.ˇ/ D .q� 1/ˇq�2 > 0

for ˇ > 0, f assumes its minimum value on Œ0;1/ at ˇ D ˛1=.q�1/ D ˛p�1. But

f .˛p�1/ D ˛p

p
C ˛.p�1/q

q
� ˛p D ˛p

�
1

p
C 1

q
� 1

�
D 0:

Therefore,

˛ˇ � ˛p

p
C ˇq

q
if ˛; ˇ � 0: (8.1.7)

Now let

˛i D �i

0
@

nX

j D1

�
p
j

1
A

�1=p

and ˇi D �i

0
@

nX

j D1

�
q
j

1
A

�1=q

:

From (8.1.7),

˛iˇi �
�

p
i

p

0
@

nX

j D1

�
p
j

1
A

�1

C
�

q
i

q

0
@

nX

j D1

�
q
j

1
A

�1

:

From (8.1.5), summing this from i D 1 to n yields
Pn

iD1 ˛iˇi � 1, which implies (8.1.6).

Lemma 8.1.8 (Minkowski’s Inequality) Suppose that u1; u2; . . . ; un and v1;

v2; . . . ; vn are nonnegative numbers and p > 1: Then

 
nX

iD1

.ui C vi/
p

!1=p

�
 

nX

iD1

u
p
i

!1=p

C
 

nX

iD1

v
p
i

!1=p

: (8.1.8)

Proof Again, let q D p=.p � 1/. We write

nX

iD1

.ui C vi /
p D

nX

iD1

ui .ui C vi /
p�1 C

nX

iD1

vi .ui C vi /
p�1: (8.1.9)

From Hölder’s inequality with �i D ui and �i D .ui C vi /
p�1,

nX

iD1

ui .ui C vi/
p�1 �

 
nX

iD1

u
p
i

!1=p  nX

iD1

.ui C vi /
p

!1=q

; (8.1.10)

since q.p � 1/ D p. Similarly,

nX

iD1

vi .ui C vi /
p�1 �

 
nX

iD1

v
p
i

!1=p  nX

iD1

.ui C vi /
p

!1=q

:

This, (8.1.9), and (8.1.10) imply that

nX

iD1

.ui C vi/
p �

2
4
 

nX

iD1

u
p
i

!1=p

C
 

nX

iD1

v
p
i

!1=p
3
5
 

nX

iD1

.ui C vi /
p

!1=q

:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Minkowski.html
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Since 1 � 1=q D 1=p, this implies (8.1.8), which is known as Minkowski’s inequality.

We leave it to you to verify that Minkowski’s inequality implies (8.1.4) if p > 1.

We now define the1-norm on R
n by

kXk1 D max
˚
jxi j

ˇ̌
1 � i � n

	
: (8.1.11)

We leave it to you to verify (Exercise 8.1.15) that k � k1 is a norm on R
n. The associated

metric is

�1.X;Y/ D max
˚
jxi � yi j

ˇ̌
1 � i � n

	
:

The following theorem justifies the notation in (8.1.11).

Theorem 8.1.9 If X 2 R
n and p2 > p1 � 1; then

kXkp2
� kXkp1

I (8.1.12)

moreover,

lim
p!1

kXkp D max
˚
jxi j

ˇ̌
1 � i � n

	
: (8.1.13)

Proof Let u1, u2, . . . , un be nonnegative and M D max
˚
ui

ˇ̌
1 � i � n

	
. Define

�.p/ D
 

nX

iD1

u
p
i

!1=p

:

Since ui=�.p/ � 1 and p2 > p1,

�
ui

�.p2/

�p1

�
�

ui

�.p2/

�p2

I

therefore,

�.p1/

�.p2/
D
 

nX

iD1

�
ui

�.p2/

�p1

!1=p1

�
 

nX

iD1

�
ui

�.p2/

�p2

!1=p1

D 1;

so �.p1/ � �.p2/. Since M � �.p/ � Mn1=p , limp!1 �.p/ D M . Letting ui D jxi j
yields (8.1.12) and (8.1.13).

Since Minkowski’s inequality is false if p < 1 (Exercise 8.1.19), (8.1.3) is not a norm in

this case. However, if 0 < p < 1, then

kXkp D
nX

iD1

jxi jp

is a norm on R
n (Exercise 8.1.20).

Vector Spaces of Sequences of Real Numbers

In this section and in the exercises we will consider subsets of the vector space R
1 con-

sisting of sequences X D fxig1iD1, with vector addition and scalar multiplication defined

by

XC Y D fxi C yi g1iD1 and rX D frxig1iD1:
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Example 8.1.3 Suppose that 1 < p <1 and let

`p D
(

X 2 R
1 ˇ̌ 1X

iD1

jxi jp <1
)
:

Let

kXkp D
 1X

iD1

jxi jp
!1=p

:

Show that .`p ; k � kp/ is a normed vector space.

Solution Suppose that X, Y 2 `p . From Minkowski’s inequality,

 
nX

iD1

jxi C yi jp
!1=p

�
 

nX

iD1

jxi jp
!1=p

C
 

nX

iD1

jyi jp
!1=p

for each n. Since the right side remains bounded as n!1, so does the left, and

 1X

iD1

jxi C yi jp
!1=p

�
 1X

iD1

jxi jp
!1=p

C
 1X

iD1

jyi jp
!1=p

; (8.1.14)

so XCY 2 `p . Therefore, `p is closed under vector addition. Since `p is obviously closed

under scalar multiplication, `p is a vector space, and (8.1.14) implies that k � kp is a norm

on `p .

The metric induced by k � kp is

�p.X;Y/ D
 1X

iD1

jxi � yi jp
!1=p

:

Henceforth, we will denote .`p ; k � kp/ simply by `p .

Example 8.1.4 Let

`1 D
˚
X 2 R

1 ˇ̌
fxig1iD1 is bounded

	
:

Let

kXk1 D sup
˚
jxi j

ˇ̌
i � 1

	
:

We leave it to you (Exercise 8.1.26) to show that .`1; k � k1/ is a normed vector space.

The metric induced by k � k1 is

�1.X;Y/ D sup
˚
jxi � yi j

ˇ̌
i � 1

	
:

Henceforth, we will denote .`1; k � k1/ simply by `1.
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Familiar Definitions and Theorems

At this point you may want to review Definition 1.3.1 and Exercises 1.3.6 and 1.3.7, which

apply equally well to subsets of a metric space .A; �/.

We will now state some definitions and theorems for a general metric space .A; �/ that

are analogous to definitions and theorems presented in Section 1.3 for the real numbers. To

avoid repetition, it is to be understood in all these definitions that we are discussing a given

metric space .A; �/.

Definition 8.1.10 If u0 2 A and � > 0, the set

N�.u0/ D
˚
u 2 A

ˇ̌
�.u0; u/ < �

	

is called an �-neighborhood of u0. (Sometimes we call S� the open ball of radius � centered

at u0.) If a subset S of A contains an �-neighborhood of u0, then S is a neighborhood of

u0, and u0 is an interior point of S . The set of interior points of S is the interior of S ,

denoted by S0. If every point of S is an interior point (that is, S0 D S ), then S is open. A

set S is closed if Sc is open.

Example 8.1.5 Show that if r > 0, then the open ball

Sr.u0/ D
˚
u 2 A

ˇ̌
�.u0; u/ < r

	

is an open set.

Solution We must show that if u1 2 Sr.u0/, then there is an � > 0 such that

S�.u1/ � Sr.u0/: (8.1.15)

If u1 2 Sr.u0/, then �.u1; u0/ < r . Since

�.u; u0/ � �.u; u1/C �.u1; u0/

for any u in A, �.u; u0/ < r if �.u; u1/ < r � �.u1; u0/. Therefore, (8.1.15) holds if

� < r � �.u1; u0/.

The entire space A is open and therefore ; .D Ac/ is closed. However, ; is also open,

for to deny this is to say that it contains a point that is not an interior point, which is absurd

because ; contains no points. Since ; is open, A .D ;c/ is closed. If A D R, these are the

only sets that are both open and closed, but this is not so in all metric spaces. For example,

if � is the discrete metric, then every subset of A is both open and closed. (Verify!)

A deleted neighborhood of a point u0 is a set that contains every point of some neigh-

borhood of u0 except u0 itself. (If � is the discrete metric then the empty set is a deleted

neighborhood of every member of A!)

The proof of the following theorem is identical to the proof Theorem 1.3.3.
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Theorem 8.1.11

(a) The union of open sets is open.

(b) The intersection of closed sets is closed.

Definition 8.1.12 Let S be a subset of A. Then

(a) u0 is a limit point of S if every deleted neighborhood of u0 contains a point of S .

(b) u0 is a boundary point of S if every neighborhood of u0 contains at least one point

in S and one not in S . The set of boundary points of S is the boundary of S , denoted

by @S . The closure of S , denoted by S , is defined by S D S [ @S .

(c) u0 is an isolated point of S if u0 2 S and there is a neighborhood of u0 that contains

no other point of S .

(d) u0 is exterior to S if u0 is in the interior of Sc . The collection of such points is the

exterior of S .

Although this definition is identical to Definition 1.3.4, you should not assume that con-

clusions valid for the real numbers are necessarily valid in all metric spaces. For example,

if A D R and �.u; v/ D ju� vj, then

S r.u0/ D
˚
u
ˇ̌
�.u; u0/ � r

	
:

This is not true in every metric space (Exercise 8.1.6).

For the proof of the following theorem, see the proofs of Theorem 1.3.5 and Corol-

lary 1.3.6.

Theorem 8.1.13 A set is closed if and only if it contains all its limit points:

Completeness

Since metric spaces are not ordered, concepts and results concerning the real numbers that

depend on order for their definitions must be redefined and reexamined in the context of

metric spaces. The first example of this kind is completeness. To discuss this concept, we

begin by defining an infinite sequence (more briefly, a sequence) in a metric space .A; �/ as

a function defined on the integers n � k with values in A. As we did for real sequences, we

denote a sequence in A by, for example, fung D fung1nDk
. A subsequence of a sequence

in A is defined in exactly the same way as a subsequence of a sequence of real numbers

(Definition 4.2.1).

Definition 8.1.14 A sequence fung in a metric space .A; �/ converges to u 2 A if

lim
n!1

�.un; u/ D 0: (8.1.16)

In this case we say that limn!1 un D u.

We leave the proof of the following theorem to you. (See the proofs of Theorems 4.1.2

and 4.2.2.)
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Theorem 8.1.15

(a) The limit of a convergent sequence is unique:

(b) If limn!1 un D u; then every subsequence of fung converges to u:

Definition 8.1.16 A sequence fung in a metric space .A; �/ is a Cauchy sequence if

for every � > 0 there is an integer N such that

�.un; um/ < � and m; n > N: (8.1.17)

We note that if � is the metric induced by a norm k � k on A, then (8.1.16) and (8.1.17)

can be replaced by

lim
n!1

kun � uk D 0

and

kun � umk < � and m; n > N;

respectively.

Theorem 8.1.17 If a sequence fung in a metric space .A; �/ is convergent; then it is

a Cauchy sequence.

Proof Suppose that limn!1 un D u. If � > 0, there is an integer N such that

�.un; u/ < �=2 if n > N . Therefore, if m, n > N , then

�.un; um/ � �.un; u/C �.u; um/ < �:

Definition 8.1.18 A metric space .A; �/ is complete if every Cauchy sequence in A

has a limit.

Example 8.1.6 Theorem 4.1.13 implies that the set R of real numbers with �.u; v/

D ju � vj is a complete metric space.

This example raises a question that we should resolve before going further. In Section 1.1

we defined completeness to mean that the real numbers have the following property:

Axiom (I). Every nonempty set of real numbers that is bounded above has a supremum.

Here we are saying that the real numbers are complete because every Cauchy sequence

of real numbers has a limit. We will now show that these two usages of “complete” are

consistent.



528 Chapter 8 Metric Spaces

The proof of Theorem 4.1.13 requires the existence of the (finite) limits inferior and

superior of a bounded sequence of real numbers, a consequence of Axiom (I). However,

the assertion in Axiom (I) can be deduced as a theorem if Axiom (I) is replaced by the

assumption that every Cauchy sequence of real numbers has a limit. To see this, let T be a

nonempty set of real numbers that is bounded above. We first show that there are sequences

fui g1iD1 and fvi g1iD1 with the following properties for all i � 1:
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(a) ui � t for some t 2 T and vi � t for all t 2 T ;

(b) .vi � ui / � 2i�1.v1 � u1/.

(c) ui � uiC1 � viC1 � vi

Since T is nonempty and bounded above, u1 and v1 can be chosen to satisfy (a) with

i D 1. Clearly, (b) holds with i D 1. Let w1 D .u1 C v1/=2, and let

.u2; v2/ D
�
.w1; v1/ if w1 � t for some t 2 T ;
.u1; w1/ if w1 � t for all t 2 T :

In either case, (a) and (b) hold with i D 2 and (c) holds with i D 1. Now suppose that

n > 1 and fu1; : : : ; ung and fv1; : : : ; vng have been chosen so that (a) and (b) hold for

1 � i � n and (c) holds for 1 � i � n � 1. Let wn D .un C vn/=2 and let

.unC1; vnC1/ D
�
.wn; vn/ if wn � t for some t 2 T ;
.un ; wn/ if wn � t for all t 2 T :

Then (a) and (b) hold for 1 � i � nC 1 and (c) holds for 1 � i � n. This completes

the induction.

Now (b) and (c) imply that

0 � uiC1 � ui � 2i�1.v1 � u1/ and 0 � vi � viC1 � 2i�1.v1 � u1/; i � 1:

By an argument similar to the one used in Example 4.1.14, this implies that fuig1iD1 and

fvi g1iD1 are Cauchy sequences. Therefore the sequences both converge (because of our

assumption), and (b) implies that they have the same limit. Let

lim
i!1

ui D lim
i!1

vi D ˇ:

If t 2 T , then vi � t for all i , so ˇ D limi!1 vi � t ; therefore, ˇ is an upper bound of

T . Now suppose that � > 0. Then there is an integer N such that uN > ˇ � �. From the

definition of uN , there is a tN in T such that tN � uN > ˇ� �. Therefore, ˇ D sup T .

Example 8.1.7 (The Metric Space CŒa; b�) Let CŒa; b� denote the set of all

real-valued functionsf continuous on the finite closed interval Œa; b�. From Theorem 2.2.9,

the quantity

kf k D max
˚
jf .x/j

ˇ̌
a � x � b

	

is well defined. We leave it to you to verify that it is a norm on CŒa; b�. The metric induced

by this norm is

�.f; g/ D kf � gk D max
˚
jf .x/� g.x/j

ˇ̌
a � x � b

	
:

Whenever we refer to CŒa; b�, we mean this metric space or, equivalently, this normed

linear space.

From Theorem 4.4.6, a Cauchy sequence ffng in CŒa; b� converges uniformly to a func-

tion f on Œa; b�, and Corollary 4.4.8 implies that f is inCŒa; b�; hence, CŒa; b� is complete.
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The Principle of Nested Sets

We say that a sequence fTng of sets is nested if TnC1 � Tn for all n.

Theorem 8.1.19 (The Principle of Nested Sets) A metric space .A; �/ is

complete if and only if every nested sequence fTng of nonempty closed subsets of A such

that limn!1 d.Tn/ D 0 has a nonempty intersection:

Proof Suppose that .A; �/ is complete and fTng is a nested sequence of nonempty

closed subsets of A such that limn!1 d.Tn/ D 0. For each n, choose tn 2 Tn. If m � n,

then tm, tn 2 Tn, so �.tn; tm/ < d.Tn/. Since limn!1 d.Tn/ D 0, ftng is a Cauchy se-

quence. Therefore, limn!1 tn D t exists. Since t is a limit point of Tn and Tn is closed

for all n, t 2 Tn for all n. Therefore, t 2 \1
nD1Tn; in fact, \1

nD1Tn D ftg. (Why?)

Now suppose that .A; �/ is not complete, and let ftng be a Cauchy sequence in A that

does not have a limit. Choose n1 so that �.tn; tn1
/ < 1=2 if n � n1, and let T1 D˚

t
ˇ̌
�.t; tn1

/ � 1
	
. Now suppose that j > 1 and we have specified n1, n2, . . . , nj �1

and T1, T2, . . . , Tj �1. Choose nj > nj �1 so that �.tn; tnj
/ < 2�j if n � nj , and let

Tj D
˚
t
ˇ̌
�.t; tnj

/ � 2�j C1
	
. Then Tj is closed and nonempty, Tj C1 � Tj for all j ,

and limj !1 d.Tj / D 0. Moreover, tn 2 Tj if n � nj . Therefore, if t 2 \1
j D1Tj ,

then �.tn; t/ < 2�j , n � nj , so limn!1 tn D t , contrary to our assumption. Hence,

\1
j D1Tj D ;.

Equivalent Metrics

When considering more than one metric on a given set A we must be careful, for example,

in saying that a set is open, or that a sequence converges, etc., since the truth or falsity of

the statement will in general depend on the metric as well as the set on which it is imposed.

In this situation we will alway refer to the metric space by its “full name;" that is, .A; �/

rather than just A.

Definition 8.1.20 If � and � are both metrics on a set A, then � and � are equivalent

if there are positive constants ˛ and ˇ such that

˛ � �.x; y/

�.x; y/
� ˇ for all x; y 2 A such that x ¤ y: (8.1.18)

Theorem 8.1.21 If � and � are equivalent metrics on a set A; then .A; �/ and .A; �/

have the same open sets.

Proof Suppose that (8.1.18) holds. Let S be an open set in .A; �/ and let x0 2 S . Then

there is an � > 0 such that x 2 S if �.x; x0/ < �, so the second inequality in (8.1.18)

implies that x0 2 S if �.x; x0/ � �=ˇ. Therefore, S is open in .A; �/.

Conversely, suppose that S is open in .A; �/ and let x0 2 S . Then there is an � > 0

such that x 2 S if �.x; x0/ < �, so the first inequality in (8.1.18) implies that x0 2 S if

�.x; x0/ � �˛. Therefore, S is open in .A; �/.
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Theorem 8.1.22 Any two norms N1 andN2 on R
n induce equivalent metrics on R

n:

Proof It suffices to show that there are positive constants ˛ and ˇ such

˛ �
N1.X/

N2.X/
� ˇ if X ¤ 0: (8.1.19)

We will show that if N is any norm on R
n, there are positive constants aN and bN such

that

aNkXk2 � N.X/ � bN kXk2 if X ¤ 0 (8.1.20)

and leave it to you to verify that this implies (8.1.19) with ˛ D aN1
=bN2

and ˇ D bN1
=aN2

.

We write X �Y D .x1; x2; : : : ; xn/ as

X �Y D
nX

iD1

.xi � yi /Ei ;

where Ei is the vector with i th component equal to 1 and all other components equal to 0.

From Definition 8.1.3(b), (c), and induction,

N.X �Y/ �
nX

iD1

jxi � yi jN.Ei/I

therefore, by Schwarz’s inequality,

N.X �Y/ � KkX �Yk2; (8.1.21)

where

K D
 

nX

iD1

N 2.Ei/

!1=2

:

From (8.1.21) and Theorem 8.1.5,

jN.X/� N.Y/j � KkX �Yk2;

so N is continuous on R
n
2 D R

n. By Theorem 5.2.12, there are vectors U1 and U2 such

that kU1k2 D kU2k2 D 1,

N.U1/ D min
˚
N.U/

ˇ̌
kUk2 D 1

	
; and N.U2/ D max

˚
N.U/

ˇ̌
kUk2 D 1

	
:

If aN D N.U1/ and bN D N.U2/, then aN and bN are positive (Definition 8.1.3(a)), and

aN � N
�

X

kXk2

�
� bN if X ¤ 0:

This and Definition 8.1.3(b) imply (8.1.20).

We leave the proof of the following theorem to you.
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Theorem 8.1.23 Suppose that � and � are equivalent metrics on A: Then

(a) A sequence fung converges to u in .A; �/ if and only if it converges to u in .A; �/:

(b) A sequence fung is a Cauchy sequence in .A; �/ if and only if it is a Cauchy sequence

in .A; �/:

(c) .A; �/ is complete if and only if .A; �/ is complete:

8.1 Exercises

1. Show that (a), (b), and (c) of Definition 8.1.1 are equivalent to

(i) �.u; v/ D 0 if and only if u D v;

(ii) �.u; v/ � �.w; u/C �.w; v/.

2. Prove: If x, y, u, and v are arbitrary members of a metric space .A; �/, then

j�.x; y/ � �.u; v/j � �.x; u/C �.v; y/:

3. (a) Suppose that .A; �/ is a metric space, and define

�1.u; v/ D
�.u; v/

1C �.u; v/
:

Show that .A; �1/ is a metric space.

(b) Show that infinitely many metrics can be defined on any set Awith more than

one member.

4. Let .A; �/ be a metric space, and let

�.u; v/ D �.u; v/

1C �.u; v/
:

Show that a subset of A is open in .A; �/ if and only if it is open in .A; �/.

5. Show that if A is an arbitrary nonempty set, then

�.u; v/ D
�
0 if v D u;
1 if v ¤ u;

is a metric on A.

6. Suppose that .A; �/ is a metric space, u0 2 A, and r > 0.

(a) Show that S r .u0/ �
˚
u
ˇ̌
�.u; u0/ � r

	
if A contains more than one point.

(b) Verify that if � is the discrete metric, then S1.u0/ ¤
˚
u
ˇ̌
�.u; u0/ � 1

	
.
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7. Prove:

(a) The intersection of finitely many open sets is open.

(b) The union of finitely many closed sets is closed.

8. Prove:

(a) If U is a neighborhood of u0 and U � V , then V is a neighborhood of u0.

(b) If U1, U2, . . . , Un are neighborhoods of u0, so is \n
iD1Ui .

9. Prove: A limit point of a set S is either an interior point or a boundary point of S .

10. Prove: An isolated point of S is a boundary point of Sc .

11. Prove:

(a) A boundary point of a set S is either a limit point or an isolated point of S .

(b) A set S is closed if and only if S D S .

12. Let S be an arbitrary set. Prove: (a) @S is closed. (b) S0 is open. (c) The exterior

of S is open. (d) The limit points of S form a closed set. (e)
�
S
�
D S .

13. Prove:

(a) .S1 \ S2/
0 D S0

1 \ S0
2 (b) S0

1 [ S0
2 � .S1 [ S2/

0

14. Prove:

(a) @.S1 [ S2/ � @S1 [ @S2 (b) @.S1 \ S2/ � @S1 [ @S2

(c) @S � @S (d) @S D @Sc

(e) @.S � T / � @S [ @T
15. Show that

kXk D maxfjx1j; jx2j; : : : ; jxnjg

is a norm on R
n.

16. Suppose that .Ai ; �i/, 1 � i � k, are metric spaces. Let

A D A1 � A2 � � � � � Ak D
˚
X D .x1; x2; : : : ; xk/

ˇ̌
xi 2 Ai ; 1 � i � k

	
:

If X and Y are in A, let

�.X;Y/ D
kX

iD1

�.xi ; yi/:

(a) Show that � is a metric on A.
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(b) Let fXrg1rD1 D f.x1r ; x2r; : : : ; xkr/g1rD1 be a sequence in A. Show that

lim
r!1

Xr D bX D .bx1;bx2; : : : ;bxk/

if and only if

lim
r!1

xir D bxi ; 1 � i � k:

(c) Show that fXrg1rD1 is a Cauchy sequence in .A; �/ if and only if fxirg1rD1 is a

Cauchy sequence in .Ai ; �i/, 1 � i � k.

(d) Show that .A; �/ is complete if and only if .Ai ; �i/ is complete, 1 � i � k.

17. For each positive integer i , let .Ai ; �i/ be a metric space. Let A be the set of all

objects of the form X D .x1; x2; : : : ; xn; : : : /, where xi 2 Ai , i � 1. (For example,

if Ai D R, i � 1, then A D R
1.) Let f˛ig1iD1 be any sequence of positive numbers

such that
P1

iD1 ˛i <1.

(a) Show that

�.X;Y/ D
1X

iD1

˛i

�i.xi ; yi /

1C �i.xi ; yi /

is a metric on A.

(b) Let fXrg1rD1 D f.x1r ; x2r; : : : ; xnr ; : : : /g1rD1 be a sequence in A. Show that

lim
r!1

Xr D bX D .bx1;bx2; : : : ;bxn; : : : /

if and only if

lim
r!1

xir D bxi ; i � 1:

(c) Show that fXrg1rD1 is a Cauchy sequence in .A; �/ if and only if fxirg1rD1 is a

Cauchy sequence in .Ai ; �i/ for all i � 1.

(d) Show that .A; �/ is complete if and only if .Ai ; �i/ is complete for all i � 1.

18. Let CŒ0;1/ be the set of all real-valued functions continuous on Œ0;1/. For each

nonnegative integer n, let

kf kn D max
˚
jf .x/j

ˇ̌
0 � x � n

	

and

�n.f; g/ D
kf � gkn

1C kf � gkn

:

Define

�.f; g/ D
1X

nD1

1

2n�1
�n.f; g/:

(a) Show that � is a metric on CŒ0;1/.
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(b) Let ffkg1kD1
be a sequence of functions in CŒ0;1/. Show that

lim
k!1

fk D f

in the sense of Definition 8.1.14 if and only if

lim
k!1

fk.x/ D f .x/

uniformly on every finite subinterval of Œ0;1/.
(c) Show that .C Œ0;1/; �/ is complete.

19. Show that Minkowski’s inequality is false if 0 < p < 1.

20. Suppose that 0 < p < 1. Show that if u and v are nonnegative, then

.uC v/p � up C vp :

Use this to show that if X, Y 2 R
n,

�.X/ D
nX

iD1

jxi jp; and �.Y/ D
nX

iD1

jyi jp;

then

�.XC Y/ � �.X/C �.Y/:
Is � a norm on R

n?

21. Suppose that X D fxi g1iD1 is in `p , where p > 1. Show that

(a) X 2 `r for all r > p;

(b) If r > p, then kXkr � kXkp;

(c) limr!1 kXkr D kXk1.

22. Let .A; �/ be a metric space.

(a) Suppose that fung and fvng are sequences inA, limn!1 un D u, and limn!1 vn D
v. Show that limn!1 �.un; vn/ D �.u; v/.

(b) Conclude from (b) that if limn!1 un D u and v is arbitrary in A, then

limn!1 �.un; v/ D �.u; v/.
23. Prove: If fur g1rD1 is a Cauchy sequence in a normed vector space .A; k � k/, then

fkurkg1rD1 is bounded.

24. Let

A D
(

X 2 R
1 ˇ̌

the partial sums

1X

iD1

xi ; n � 1; are bounded

)
:

(a) Show that

kXk D sup
n�1

ˇ̌
ˇ̌
ˇ

nX

iD1

xi

ˇ̌
ˇ̌
ˇ

is a norm on A.

(b) Let �.X;Y/ D kX �Yk. Show that .A; �/ is complete.
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25. (a) Show that

kf k D
Z b

a

jf .x/j dx

is a norm on CŒa; b�,

(b) Show that the sequence ffng defined by

fn.x/ D
�x � a
b � a

�n

is a Cauchy sequence in .C Œa; b�; k � k/.
(c) Show that .C Œa; b�; k � k/ is not complete.

26. (a) Verify that `1 is a normed vector space.

(b) Show that `1 is complete.

27. Let A be the subset of R
1 consisting of convergent sequences X D fxi g1iD1. Define

kXk D supi�1 jxi j. Show that .A; k � k/ is a complete normed vector space.

28. LetA be the subset of R
1 consisting of sequences X D fxig1iD1 such that limi!1 xi D

0. Define kXk D max
˚
jxi j

ˇ̌
i � 1

	
. Show that .A; k�k/ is a complete normed vector

space.

29. (a) Show that R
n
p is complete if p � 1.

(b) Show that `p is complete if p � 1.

30. Show that if X D fxi g1iD1 2 `p and Y D fyi g1iD1 2 `q , where 1=p C 1=q D 1,

then Z D fxiyi g 2 `1.

8.2 COMPACT SETS IN A METRIC SPACE

Throughout this section it is to be understood that .A; �/ is a metric space and that the sets

under consideration are subsets of A.

We say that a collection H of open subsets of A is an open covering of T if T �
[
˚
H
ˇ̌
H 2 H

	
. We say that T has the Heine–Borel property if every open covering H

of T contains a finite collection bH such that

T � [
n
H
ˇ̌
H 2 bH

o
:

From Theorem 1.3.7, every nonempty closed and bounded subset of the real numbers

has the Heine–Borel property. Moreover, from Exercise 1.3.21, any nonempty set of reals

that has the Heine–Borel property is closed and bounded. Given these results, we defined

a compact set of reals to be a closed and bounded set, and we now draw the following

conclusion:

A nonempty set of real numbers has the Heine–Borel property if and only if it is compact.
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The definition of boundedness of a set of real numbers is based on the ordering of the

real numbers: if a and b are distinct real numbers then either a < b or b < a. Since there

is no such ordering in a general metric space, we introduce the following definition.

Definition 8.2.1 The diameter of a nonempty subset S of A is

d.S/ D sup
˚
�.u; v/

ˇ̌
u; v 2 T

	
:

If d.S/ <1 then S is bounded.

As we will see below, a closed and bounded subset of a general metric space may fail

to have the Heine–Borel property. Since we want “compact" and “has the Heine–Borel

property" to be synonymous in connection with a general metric space, we simply make

the following definition.

Definition 8.2.2 A set T is compact if it has the Heine–Borel property.

Theorem 8.2.3 An infinite subset T of A is compact if and only if every infinite subset

of T has a limit point in T:

Proof Suppose that T has an infinite subset E with no limit point in T . Then, if t 2 T ,

there is an open set Ht such that t 2 Ht and Ht contains at most one member of E . Then

H D [
˚
Ht

ˇ̌
t 2 T

	
is an open covering of T , but no finite collection fHt1 ; Ht2 ; : : : ; Htkg

of sets from H can cover E , since E is infinite. Therefore, no such collection can cover T ;

that is, T is not compact.

Now suppose that every infinite subset of T has a limit point in T , and let H be an open

covering of T . We first show that there is a sequence fHi g1iD1 of sets from H that covers

T .

If � > 0, then T can be covered by �-neighborhoods of finitely many points of T . We

prove this by contradiction. Let t1 2 T . If N�.t1/ does not cover T , there is a t2 2 T such

that �.t1; t2/ � �. Now suppose that n � 2 and we have chosen t1, t2, . . . , tn such that

�.ti ; tj / � �, 1 � i < j � n. If [n
iD1N�.ti / does not cover T , there is a tnC1 2 T such

that �.ti ; tnC1/ � �, 1 � i � n. Therefore, �.ti ; tj / � �, 1 � i < j � n C 1. Hence,

by induction, if no finite collection of �-neighborhoods of points in T covers T , there is an

infinite sequence ftng1nD1 in T such that �.ti ; tj / � �, i ¤ j . Such a sequence could not

have a limit point, contrary to our assumption.

By taking � successively equal to 1, 1=2, . . . , 1=n, . . . , we can now conclude that, for

each n, there are points t1n, t2n, . . . , tkn;n such that

T �
kn[

iD1

N1=n.tin/:

Denote Bin D N1=n.tin/, 1 � i � n, n � 1, and define

fG1; G2; G3; :::g D fB11; : : : ; Bk1;1; B12; : : : ; Bk2;2; B13; : : : ; Bk3;3; : : : g:
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If t 2 T , there is an H in H such that t 2 H . Since H is open, there is an � > 0 such

that N�.t/ � H . Since t 2 Gj for infinitely many values of j and limj !1 d.Gj / D 0,

Gj � N�.t/ � H

for some j . Therefore, if fGji
g1iD1 is the subsequence of fGj g such that Gji

is a subset of

some Hi in H (the fHi g are not necessarily distinct), then

T �
1[

iD1

Hi : (8.2.1)

We will now show that

T �
N[

iD1

Hi : (8.2.2)

for some integer N . If this is not so, there is an infinite sequence ftng1nD1 in T such that

tn …
n[

iD1

Hi ; n � 1: (8.2.3)

From our assumption, ftng1nD1 has a limit t in T . From (8.2.1), t 2 Hk for some k, so

N�.t / � Hk for some � > 0. Since limn!1 tn D t , there is an integer N such that

tn 2 N�.t / � Hk �
n[

iD1

Hi ; n > k;

which contradicts (8.2.3). This verifies (8.2.2), so T is compact.

Any finite subset of a metric space obviously has the Heine–Borel property and is there-

fore compact. Since Theorem 8.2.3 does not deal with finite sets, it is often more convenient

to work with the following criterion for compactness, which is also applicable to finite sets.

Theorem 8.2.4 A subset T of a metric A is compact if and only if every infinite se-

quence ftng of members of T has a subsequence that converges to a member of T:

Proof Suppose that T is compact and ftng � T . If ftng has only finitely many distinct

terms, there is a t in T such that tn D t for infinitely many values of n; if this is so for

n1 < n2 < � � � , then limj !1 tnj
D t . If ftng has infinitely many distinct terms, then ftng

has a limit point t in T , so there are integers n1 < n2 < � � � such that �.tnj
; t/ < 1=j ;

therefore, limj !1 tnj
D t .

Conversely, suppose that every sequence in T has a subsequence that converges to a limit

in T . If S is an infinite subset of T , we can choose a sequence ftng of distinct points in

S . By assumption, ftng has a subsequence that converges to a member t of T . Since t is a

limit point of ftng, and therefore of T , T is compact.

Theorem 8.2.5 If T is compact; then every Cauchy sequence ftng1nD1 in T converges

to a limit in T:
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Proof By Theorem 8.2.4, ftng has a subsequence ftnj
g such that

lim
j !1

tnj
D t 2 T: (8.2.4)

We will show that limn!1 tn D t .
Suppose that � > 0. Since ftng is a Cauchy sequence, there is an integer N such that

�.tn; tm/ < �, n > m � N . From (8.2.4), there is an m D nj � N such that �.tm; t/ < �.

Therefore,

�.tn; t/ � �.tn; tm/C �.tm; t/ < 2�; n � m:

Theorem 8.2.6 If T is compact; then T is closed and bounded.

Proof Suppose that t is a limit point of T . For each n, choose tn ¤ t 2 B1=n.t/ \ T .

Then limn!1 tn D t . Since every subsequence of ftng also converges to t , t 2 T , by

Theorem 8.2.3. Therefore, T is closed.

The family of unit open balls H D
˚
B1.t/

ˇ̌
t 2 T

	
is an open covering of T . Since T is

compact, there are finitely many members t1, t2, . . . , tn of T such that S � [n
j D1B1.tj /.

If u and v are arbitrary members of T , then u 2 B1.tr / and v 2 B1.ts/ for some r and s in

f1; 2; : : : ; ng, so

�.u; v/ � �.u; tr/C �.tr ; ts/C �.ts ; v/
� 2C �.tr ; ts/ � 2Cmax

˚
�.ti ; tj /

ˇ̌
1 � i < j � n

	
:

Therefore, T is bounded.

The converse of Theorem 8.2.6 is false; for example, if A is any infinite set equipped

with the discrete metric (Example 8.1.2.), then every subset of A is bounded and closed.

However, if T is an infinite subset of A, then H D
˚
ftg
ˇ̌
t 2 T

	
is an open covering of T ,

but no finite subfamily of H covers T .

Definition 8.2.7 A set T is totally bounded if for every � > 0 there is a finite set T�

with the following property: if t 2 T , there is an s 2 T� such that �.s; t/ < �. We say that

T� is a finite �-net for T .

We leave it to you (Exercise 8.2.4) to show that every totally bounded set is bounded and

that the converse is false.
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Theorem 8.2.8 If T is compact; then T is totally bounded.

Proof We will prove that if T is not totally bounded, then T is not compact. If T is not

totally bounded, there is an � > 0 such that there is no finite �-net for T . Let t1 2 T . Then

there must be a t2 in T such that �.t1; t2/ > �. (If not, the singleton set ft1g would be a

finite �-net for T .) Now suppose that n � 2 and we have chosen t1, t2, . . . , tn such that

�.ti ; tj / � �, 1 � i < j � n. Then there must be a tnC1 2 T such that �.ti ; tnC1/ � �,
1 � i � n. (If not, ft1; t2; : : : ; tng would be a finite �-net for T .) Therefore, �.ti ; tj / � �,
1 � i < j � nC 1. Hence, by induction, there is an infinite sequence ftng1nD1 in T such

that �.ti ; tj / � �, i ¤ j . Since such a sequence has no limit point, T is not compact, by

Theorem 8.2.4.
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Theorem 8.2.9 If .A; �/ is complete and T is closed and totally bounded; then T is

compact.

Proof Let S be an infinite subset of T , and let fsig1iD1 be a sequence of distinct members

of S . We will show that fsi g1iD1 has a convergent subsequence. Since T is closed, the limit

of this subsequence is in T , which implies that T is compact, by Theorem 8.2.4.

For n � 1, let T1=n be a finite 1=n-net for T . Let fsi0g1iD1 D fsig1iD1. Since T1 is

finite and fsi0g1iD1 is infinite, there must be a member t1 of T1 such that �.si0; t1/ � 1

for infinitely many values of i . Let fsi1g1iD1 be the subsequence of fsi0g1iD1 such that

�.si1; t1/ � 1.

We continue by induction. Suppose that n > 1 and we have chosen an infinite subse-

quence fsi;n�1g1iD1 of fsi;n�2g1iD1. Since T1=n is finite and fsi;n�1g1iD1 is infinite, there

must be member tn of T1=n such that �.si;n�1; tn/ � 1=n for infinitely many values of

i . Let fsing1iD1 be the subsequence of fsi;n�1g1iD1 such that �.sin; tn/ � 1=n. From the

triangle inequality,

�.sin; sj n/ � 2=n; i; j � 1; n � 1: (8.2.5)

Now letbsi D si i , i � 1. Then fbsi g1iD1 is an infinite sequence of members of T . Mo-

roever, if i; j � n, thenbsi andbsj are both included in fsing1iD1, so (8.2.5) implies that

�.bsi ;bsj / � 2=n; that is, fbsi g1iD1 is a Cauchy sequence and therefore has a limit, since

.A; �/ is complete.

Example 8.2.1 Let T be the subset of `1 such that jxi j � �i , i � 1, where limi!1 �i D
0. Show that T is compact.

Solution We will show that T is totally bounded in `1. Since `1 is complete (Exer-

cise 8.1.26), Theorem 8.2.9 will then imply that T is compact.

Let � > 0. Choose N so that �i � � if i > N . Let � D max
˚
�i

ˇ̌
1 � i � n

	
and let p

be an integer such that p� > �. Let Q� D
˚
ri�

ˇ̌
ri D integer inŒ�p; p�

	
. Then the subset

of `1 such that xi 2 Q� , 1 � i � N , and xi D 0, i > N , is a finite �-net for T .

Compact Subsets of CŒa; b�

In Example 8.1.7 we showed that CŒa; b� is a complete metric space under the metric

�.f; g/ D kf � gk D max
˚
jf .x/� g.x/j

ˇ̌
a � x � b

	
:

We will now give necessary and sufficient conditions for a subset of CŒa; b� to be compact.

Definition 8.2.10 A subset T of CŒa; b� is uniformly bounded if there is a constantM

such that

jf .x/j �M if a � x � b and f 2 T: (8.2.6)

A subset T of CŒa; b� is equicontinuous if for each � > 0 there is a ı > 0 such that

jf .x1/ � f .x2/j � � if x1; x2 2 Œa; b�; jx1 � x2j < ı; and f 2 T: (8.2.7)
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Theorem 2.2.8 implies that for each f in CŒa; b� there is a constant Mf which depends

on f , such that

jf .x/j �Mf if a � x � b;

and Theorem 2.2.12 implies that there is a constant ıf which depends on f and � such that

jf .x1/ � f .x2/j � � if x1; x2 2 Œa; b� and jx1 � x2j < ıf :

The difference in Definition 8.2.11 is that the same M and ı apply to all f in T .

Theorem 8.2.11 A nonempty subset T ofCŒa; b� is compact if and only if it is closed;

uniformly bounded; and equicontinuous.

Proof For necessity, suppose that T is compact. Then T is closed (Theorem 8.2.6)

and totally bounded (Theorem 8.2.8). Therefore, if � > 0, there is a finite subset T� D
fg1; g2; : : : ; gkg ofCŒa; b� such that if f 2 T , then kf �gik � � for some i in f1; 2; : : : ; kg.
If we temporarily let � D 1, this implies that

kf k D k.f � gi /C gik � kf � gik C kgik � 1C kgik;

which implies (8.2.6) with

M D 1Cmax
˚
kgik

ˇ̌
1 � i � k

	
:

For (8.2.7), we again let � be arbitary, and write

jf .x1/ � f .x2/j � jf .x1/� gi .x1/j C jgi .x1/� gi .x2/j C jgi .x2/� f .x2/j
� jgi .x1/ � gi .x2/j C 2kf � gik
< jgi .x1/ � gi .x2/j C 2�:

(8.2.8)

Since each of the finitely many functions g1, g2, . . . , gk is uniformly continuous on Œa; b�

(Theorem 2.2.12), there is a ı > 0 such that

jgi .x1/ � gi .x2/j < � if jx1 � x2j < ı; 1 � i � k:

This and (8.2.8) imply (8.2.7) with � replaced by 3�. Since this replacement is of no

consequence, this proves necessity.

For sufficiency, we will show that T is totally bounded. Since T is closed by assumption

and CŒa; b� is complete, Theorem 8.2.9 will then imply that T is compact.

Let m and n be positive integers and let

�r D a C
r

m
.b � a/; 0 � r � m; and �s D

sM

n
; �n � s � nI

that is, a D �0 < �1 < � � � < �m D b is a partition of Œa; b� into subintervals of length

.b � a/=m, and �M D ��n < ��nC1 < � � � < �n�1 < �n D M is a partition of the
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segment of the y-axis between y D �M and y D M into subsegments of length M=n.

Let Smn be the subset of CŒa; b� consisting of functions g such that

fg.�0/; g.�1/; : : : ; g.�m/g � f��n; ��nC1 : : : ; �n�1; �ng

and g is linear on Œ�i�1; �i �, 1 � i � m. Since there are only .mC 1/.2nC 1/ points of the

form .�r ; �s/, Smn is a finite subset of CŒa; b�.

Now suppose that � > 0, and choose ı > 0 to satisfy (8.2.7). Choose m and n so that

.b � a/=m < ı and 2M=n < �. If f is an arbitrary member of T , there is a g in Smn such

that

jg.�i /� f .�i/j < �; 0 � i � m: (8.2.9)

If 0 � i � m � 1,

jg.�i /�g.�iC1/j D jg.�i /�f .�i /jC jf .�i /�f .�iC1/jC jf .�iC1/�g.�iC1/j: (8.2.10)

Since �iC1 � �i < ı, (8.2.7), (8.2.9), and (8.2.10) imply that

jg.�i / � g.�iC1/j < 3�:

Therefore,

jg.�i / � g.x/j < 3�; �i � x � �iC1; (8.2.11)

since g is linear on Œ�i ; �iC1�.

Now let x be an arbitrary point in Œa; b�, and choose i so that x 2 Œ�i ; �iC1�. Then

jf .x/ � g.x/j � jf .x/� f .�i/j C jf .�i/ � g.�i /j C jg.�i / � g.x/j;

so (8.2.7), (8.2.9), and (8.2.11) imply that jf .x/�g.x/j < 5�, a � x � b. Therefore, Smn

is a finite 5�-net for T , so T is totally bounded.

Theorem 8.2.12 (Ascoli–Arzela Theorem) Suppose that F is an infinite uni-

formly bounded and equicontinuous family of functions on Œa; b�: Then there is a sequence

ffng in F that converges uniformly to a continuous function on Œa; b�:

Proof Let T be the closure of F ; that is, f 2 T if and only if either f 2 T or f

is the uniform limit of a sequence of members of F . Then T is also uniformly bounded

and equicontinuous (verify), and T is closed. Hence, T is compact, by Theorem 8.2.12.

Therefore, F has a limit point in T . (In this context, the limit point is a function f in

T .) Since f is a limit point of F , there is for each integer n a function fn in F such that

kfn � f k < 1=n; that is ffng converges uniformly to f on Œa; b�.

8.2 Exercises

1. Suppose that T1, T2, . . . , Tk are compact sets in a metric space .A; �/. Show that

[k
j D1Tj is compact.

http://en.wikipedia.org/wiki/Giulio_Ascoli
http://www-history.mcs.st-and.ac.uk/Mathematicians/Arzela.html
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2. (a) Show that a closed subset of a compact set is compact.

(b) Suppose that T is any collection of closed subsets of a metric space .A; �/,

and some bT in T is compact. Show that \
˚
T
ˇ̌
T 2 T

	
is compact.

(c) Show that if T is a collection of compact subsets of a metric space .A; �/,

then \
˚
T
ˇ̌
T 2 T

	
is compact.

3. If S and T are nonempty subsets of a metric space .A; �/, we define the distance

from S to T by

dist.S; T / D inf
˚
�.s; t/

ˇ̌
s 2 S; t 2 T

	
:

Show that if S and T are compact, then dist.S; T / D �.s; t/ for some s in S and

some t in T .

4. (a) Show that every totally bounded set is bounded.

(b) Let

ıir D
�
1 if i D r;
0 if i ¤ r;

and let T be the subset of `1 consisting of the sequences Xr D fıirg1iD1,

r � 1. Show that T is bounded, but not totally bounded.

5. Let T be a compact subset of a metric space .A; �/. Show that there are members s

and t of T such that d.s; t/ D d.T /.
6. Let T be the subset of `1 such that jxi j � �i , i � 1, where

P1
iD1 �i < 1. Show

that T is compact.

7. Let T be the subset of `2 such that jxi j � �i , i � 1, where
P1

i �2
i < 1. Show

that T is compact.

8. Let S be a nonempty subset of a metric space .A; �/ and let u0 be an arbitrary

member of A. Show that S is bounded if and only if D D
˚
�.u; u0/

ˇ̌
u 2 S

	
is

bounded.

9. Let .A; �/ be a metric space.

(a) Prove: If S is a bounded subset of A, then S (closure of S ) is bounded. Find

d.S/.

(b) Prove: If every bounded closed subset of A is compact, then .A; �/ is com-

plete.

10. Let .A; �/ be the metric space defined in Exercise 8.1.16 Let

T D T1 � T2 � � � � � Tk;

where Ti � Ai and Ti ¤ ;, 1 � i � k. Show that T is compact if and only Ti is

compact for 1 � i � k.

11. Let .A; �/ be the metric space defined in Exercise 8.1.17. Let

T D T1 � T2 � � � � � Tn � � � � ;
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where Ti � Ai and Ti ¤ ;, i � 1. Show that if T is compact, then Ti is compact

for all i � 1.

12. Let fTng1nD1 be a sequence of nonempty closed sets of a metric space such that (a)
T1 is compact; (b) TnC1 � Tn, n � 1; and (c) limn!1 d.Tn/ D 0. Show that

\1
nD1Tn contains exactly one member.

8.3 CONTINUOUS FUNCTIONS ON METRIC SPACES

In Chapter we studied real-valued functions defined on subsets of R
n, and in Chapter 6.4.

we studied functions defined on subsets of R
n with values in R

m. These are examples of

functions defined on one metric space with values in another metric space.(Of course, the

two spaces are the same if n D m.)

In this section we briefly consider functions defined on subsets of a metric space .A; �/

with values in a metric space .B; �/. We indicate that f is such a function by writing

f W .A; �/! .B; �/:

The domain and range of f are the sets

Df D
˚
u 2 A

ˇ̌
f .u/ is defined

	

and

Rf D
˚
v 2 B

ˇ̌
v D f .u/ for some u in Df

	
:

Definition 8.3.1 We say that

lim
u!bu

f .u/ Dbv

ifbu 2 Df and for each � > 0 there is a ı > 0 such that

�.f .u/;bv/ < � if u 2 Df and 0 < �.u;bu/ < ı: (8.3.1)

Definition 8.3.2 We say that f is continuous atbu ifbu 2 Df and for each � > 0 there

is a ı > 0 such that

�.f .u/; f .bu// < � if u 2 Df \Nı .bu/: (8.3.2)

If f is continuous at every point of a set S , then f is continuous on S.

Note that (8.3.2) can be written as

f .Df \Nı.bu// � N�.f .bu//:

Also, f is automatically continuous at every isolated point of Df . (Why?)
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Example 8.3.1 If .A; k � k/ is a normed vector space, then Theorem 8.3.5 implies that

f .u/ D kuk is a continuous function from .A; �/ to R, since

jkuk � kbukj � ku�buk:

Here we are applying Definition 8.3.2 with �.u;bu/ D ku�buk and �.v;bv/ D jv �bvj.

Theorem 8.3.3 Suppose thatbu 2 Df : Then

lim
u!bu

f .u/ Dbv (8.3.3)

if and only if

lim
n!1

f .un/ Dbv (8.3.4)

for every sequence fung inDf such that

lim
n!1

un Dbu: (8.3.5)

Proof Suppose that (8.3.3) is true, and let fung be a sequence in Df that satisfies

(8.3.5). Let � > 0 and choose ı > 0 to satisfy (8.3.1). From (8.3.5), there is an inte-

ger N such that �.un;bu/ < ı if n � N . Therefore, �.f .un/;bv/ < � if n � N , which

implies (8.3.4).

For the converse, suppose that (8.3.3) is false. Then there is an �0 > 0 and a sequence

fung inDf such that �.un;bu/ < 1=n and �.f .un/;bv/ � �0, so (8.3.4) is false.

We leave the proof of the next two theorems to you.

Theorem 8.3.4 A function f is continuous atbu if and only if

lim
u!bu

f .u/ D f .bu/:

Theorem 8.3.5 A function f is continuous atbu if and only if

lim
n!1

f .un/ D f .bu/

whenever fung is a sequence in Df that converges tobu.

Theorem 8.3.6 If f is continuous on a compact set T; then f .T / is compact.

Proof Let fvng be an infinite sequence in f .T /. For each n, vn D f .un/ for some un 2
T . Since T is compact, fung has a subsequence funj

g such that limj !1 unj
D bu 2 T

(Theorem 8.2.4). From Theorem 8.3.5, limj !1 f .unj
/ D f .bu/; that is, limj !1 vnj

D
f .bu/. Therefore, f .T / is compact, again by Theorem 8.2.4.

Definition 8.3.7 A function f is uniformly continuous on a subset S ofDf if for each

� > 0 there is a ı > 0 such that

�.f .u/; f .v// < � whenever �.u; v/ < ı and u; v 2 S:
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Theorem 8.3.8 If f is continuous on a compact set T; then f is uniformly continuous

on T .

Proof If f is not uniformly continuous on T , then for some �0 > 0 there are sequences

fung and fvng in T such that �.un; vn/ < 1=n and

�.f .un/; f .vn// � �0: (8.3.6)

Since T is compact, fung has a subsequence funk
g that converges to a limitbu in T (Theo-

rem 8.2.4). Since �.unk
; vnk

/ < 1=nk , limk!1 vnk
Dbu also. Then

lim
k!1

f .unk
/ D lim

k!1
f .vnk

/ D f .bu/

(Theorem 8.3.5), which contradicts (8.3.6).

Definition 8.3.9 If f W .A; �/! .A; �/ is defined on all of A and there is a constant ˛

in .0; 1/ such that

�.f .u/; f .v// � ˛�.u; v/ for all .u; v/ 2 A � A; (8.3.7)

then f is a contraction of .A; �/.

We note that a contraction of .A; �/ is uniformly continuous on A.

Theorem 8.3.10 (Contraction Mapping Theorem) If f is a contraction

of a complete metric space .A; �/; then the equation

f .u/ D u (8.3.8)

has a unique solution:

Proof To see that (8.3.8) cannot have more than one solution, suppose that u D f .u/

and v D f .v/. Then

�.u; v/ D �.f .u/; f .v//: (8.3.9)

However, (8.3.7) implies that

�.f .u/; f .v// � ˛�.u; v/: (8.3.10)

Since (8.3.9) and (8.3.10) imply that

�.u; v/ � ˛�.u; v/

and ˛ < 1, it follows that �.u; v/ D 0. Hence u D v.

We will now show that (8.3.8) has a solution. With u0 arbitrary, define

un D f .un�1/; n � 1: (8.3.11)

We will show that fung converges. From (8.3.7) and (8.3.11),

�.unC1; un/ D �.f .un/; f .un�1// � ˛�.un; un�1/: (8.3.12)
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The inequality

�.unC1; un/ � ˛n�.u1; u0/; n � 0; (8.3.13)

follows by induction from (8.3.12). If n > m, repeated application of the triangle inequality

yields

�.un; um/ � �.un; un�1/C �.un�1; un�2/C � � � C �.umC1; um/;

and (8.3.13) yields

�.un; um/ � �.u1; u0/˛
m.1C ˛C � � � C ˛n�m�1/ <

˛m

1 � ˛ :

Now it follows that

�.un; um/ <
�.u1; u0/

1 � ˛ ˛N if n;m > N;

and, since limN!1 ˛N D 0, fung is a Cauchy sequence. Since A is complete, fung has a

limitbu. Since f is continuous atbu,

f .bu/ D lim
n!1

f .un�1/ D lim
n!1

un Dbu;

where Theorem 8.3.5 implies the first equality and (8.3.11) implies the second.

Example 8.3.2 Suppose that h D h.x/ is continuous on Œa; b�, K D K.x; y/ is con-

tinuous on Œa; b� � Œa; b�, and jK.x; y/j � M if a � x; y � b. Show that if j�j <
1=M.b � a/ there is a unique u in CŒa; b� such that

u.x/ D h.x/C �
Z b

a

K.x; y/u.y/ dy; a � x � b: (8.3.14)

(This is Fredholm’s integral equation.)

Solution Let A be CŒa; b�, which is complete. If u 2 CŒa; b�, let f .u/ D v, where

v.x/ D h.x/C �
Z b

a

K.x; y/u.y/ dy; a � x � b:

Since v 2 CŒa; b�, f W CŒa; b�! CŒa; b�. If u1, u2 2 CŒa; b�, then

jv1.x/ � v2.x/j � j�j
Z b

a

jK.x; y/jju1.y/ � v1.y/j dy;

so

kv1 � v2k � j�jM.b � a/ku1 � u2k:

Since j�jM.b � a/ < 1, f is a contraction. Hence, there is a unique u in CŒa; b� such that

f .u/ D u. This u satisfies (8.3.14).

http://www-history.mcs.st-and.ac.uk/Mathematicians/Fredholm.html
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8.3 Exercises

1. Suppose that f W .A; �/ ! .B; �/ and Df D A. Show that the following state-

ments are equivalent.

(a) f is continuous on A.

(b) If V is any open set in .B; �/, then f �1.V / is open in .A; �/.

(c) If V is any closed set in .B; �/, then f �1.V / is closed in .A; �/.

2. A metric space .A; �/ is connected if A cannot be written as A D A1 [ A2, where

A1 and A2 are nonempty disjoint open sets. Suppose that .A; �/ is connected and

f W .A; �/! .B; �/, where Df D A, Rf D B , and f is continuous on A. Show

that .B; �/ is connected.

3. Let f be a continuous real-valued function on a compact subset S of a metric space

.A; �/. Let � be the usual metric on R; that is, �.x; y/ D jx � yj.
(a) Show that f is bounded on S .

(b) Let ˛ D infu2S f .u/ and ˇ D supu2S f .u/. Show that there are points u1

and u2 in Œa; b� such that f .u1/ D ˛ and f .u2/ D ˇ.

4. Let f W .A; �/ ! .B; �/ be continuous on a subset U of A. Let u be in U and

define the real-valued function g W .A; �/! R by

g.u/ D �.f .u/; f .u//; u 2 U:

(a) Show that g is continuous on U .

(b) Show that if U is compact, then g is uniformly continuous on U .

(c) Show that if U is compact, then there is a bu 2 U such that g.u/ � g.bu/,
u 2 U .

5. Suppose that .A; �/, .B; �/, and .C; / are metric spaces, and let

f W .A; �/! .B; �/ and g W .B; �/! .C; /;

whereDf D A, Rf D Dg D B , and f and g are continuous. Define h W .A; �/!
.C; / by h.u/ D g.f .u//. Show that h is continuous on A.

6. Let .A; �/ be the set of all bounded real-valued functions on a nonempty set S ,

with �.u; v/ D sups2S ju.s/ � v.s/j. Let s1, s2, . . . , sk be members of S , and

f .u/ D g.u.s1/; u.s2/; : : : ; u.sk//, where g is real-valued and continuous on R
k .

Show that f is a continuous function from .A; �/ to R.

7. Let .A; �/ be the set of all bounded real-valued functions on a nonempty set S ,

with �.u; v/ D sups2S ju.s/ � v.s/j. Show that f .u/ D infs2S u.s/ and g.u/ D
sups2S u.s/ are uniformly continuous functions from .A; �/ to R.

8. Let I Œa; b� be the set of all real-valued functions that are Riemann integrable on

Œa; b�, with �.u; v/ D supa�x�b ju.x/ � v.x/j. Show that f .u/ D
Z b

a

u.x/ dx is a

uniformly continuous function from I Œa; b� to R.



550 Answers to Selected Exercises

Answers to Selected
Exercises

Section 1.1 pp. 9–10

1:1:1 (p. 9) (a) 2max.a; b/ (b) 2min.a; b/ (c) 4max.a; b; c/ (d) 4min.a; b; c/

1:1:5 (p. 9) (a)1 (no); �1 (yes) (b) 3 (no); �3 (no) (c)
p
7 (yes); �

p
7 (yes)

(d) 2 (no); �3 (no) (e) 1 (no); �1 (no) (f)
p
7 (no); �

p
7 (no)

Section 1.2 pp. 15–19

1:2:9 (p. 16) (a) 2n=.2n/Š (b) 2 � 3n=.2nC 1/Š (c) 2�n.2n/Š=.nŠ/2 (d) nn=nŠ

1:2:10 (p. 16) (b) no 1:2:11 (p. 16) (b) no

1:2:20 (p. 18) An D
xn

nŠ

0
@ln x �

nX

j D1

1

j

1
A

1:2:21 (p. 18) fn.x1; x2; : : : ; xn/ D 2n�1 max.x1; x2; : : : ; xn/, gn.x1; x2; : : : ; xn/ D
2n�1 min.x1; x2; : : : ; xn/

Section 1.3 pp. 27–29

1:3:1 (p. 27) (a) Œ 1
2
; 1/; .�1; 1

2
/[Œ1;1/; .�1; 0�[.3

2
;1/; .0; 3

2
�; .�1; 0�[.3

2
;1/;

.�1; 1
2
�[ Œ1;1/ (b) .�3;�2/[ .2; 3/; .�1;�3�[ Œ�2; 2�[ Œ3;1/; ;; .�1;1/; ;;

.�1;�3� [ Œ�2; 2�[ Œ3;1/ (c) ;; .�1;1/; ;; .�1;1/; ;; .�1;1/
(d) ;; .�1;1/; Œ�1; 1�; .�1;�1/ [ .1;1/; Œ�1; 1�; .�1;1/
1:3:2 (p. 27) (a) .0; 3� (b) Œ0; 2� (c) .�1; 1/ [ .2;1/ (d) .�1; 0� [ .3;1/
1:3:4 (p. 27) (a) 1

4
(b) 1

6
(c) 6 (d) 1
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1:3:5 (p. 27) (a) neither; .�1; 2/ [ .3;1/; .�1;�1/ [ .2; 3/; .�1;�1� [ .2; 3/;
.�1;�1� [ Œ2; 3� (b) open; S ; .1; 2/; Œ1; 2� (c) closed; .�3;�2/ [ .7; 8/; .�1;�3/ [
.�2; 7/[.8;1/; .�1�3� [Œ�2; 7�[Œ8;1/ (d) closed; ;;

S˚
.n; nC 1/

ˇ̌
n D integer

	
;

.�1;1/
1:3:20 (p. 28) (a)

˚
x
ˇ̌
x D 1=n; n D 1; 2; : : :

	
; (b) ; (c), (d) S1 D rationals,

S2 D irrationals (e) any set whose supremum is an isolated point of the set (f), (g) the

rationals (h) S1 D rationals, S2 D irrationals

Section 2.1 pp. 48–53

2:1:2 (p. 48) Df D Œ�2; 1/ [ Œ3;1/, Dg D .�1;�3� [ Œ3; 7/ [ .7;1/, Df ˙g D
Dfg D Œ3; 7/[ .7;1/, Df =g D .3; 4/[ .4; 7/[ .7;1/
2:1:3 (p. 48) (a), (b)

˚
x
ˇ̌
x ¤ .2k C 1/�=2 where k D integer

	
(c)

˚
x
ˇ̌
x ¤ 0; 1

	

(d)
˚
x
ˇ̌
x ¤ 0

	
(e) Œ1;1/

2:1:4 (p. 49) (a) 4 (b) 12 (c) �1 (d) 2 (e) �2
2:1:6 (p. 49) (a) 11

17
(b) �2

3
(c) 1

3
(d) 2

2:1:7 (p. 49) (a) 0; 2 (b) 0, none (c) �1
3
; 1

3
(d) none, 0

2:1:15 (p. 50) (a) 0 (b) 0 (c) none (d) 0 (e) none (f) 0

2:1:18 (p. 50) (a) 0 (b) 0 (c) none (d) none (e) none (f) 0

2:1:20 (p. 50) (a)1 (b) �1 (c)1 (d)1 (e)1 (f) �1
2:1:22 (p. 51) (a) none (b)1 (c)1 (d) none

2:1:24 (p. 51) (a)1 (b)1 (c)1 (d) �1 (e) none (f)1
2:1:31 (p. 52) (a) 3

2
(b) 3

2
(c)1 (d) �1 (e)1 (f) 1

2

2:1:32 (p. 52) limx!1 r.x/ D 1 if n > m and an=bm > 0; D �1 if n > m and

an=bm < 0; D an=bm if n D m; D 0 if n < m. limx!�1 r.x/ D .�1/n�m limx!1 r.x/

2:1:33 (p. 52) limx!x0
f .x/ D limx!x0

g.x/

2:1:37 (p. 52) (c) limx!x0�.f �g/.x/ � limx!x0� f .x/�limx!x0� g.x/; limx!x0�.f �
g/.x/ � limx!x0� f .x/� limx!x0� g.x/

Section 2.2 pp. 69–73

2:2:3 (p. 69) (a) from the right (b) continuous (c) none (d) continuous (e)
none (f) continuous (g) from the left

2:2:4 (p. 69) Œ0; 1/, .0; 1/, Œ1; 2/, .1; 2/, .1; 2�, Œ1; 2� 2:2:5 (p. 69) Œ0; 1/, .0; 1/,
.1;1/ 2:2:13 (p. 70) (b) tanh x is continuous for all x, cothx for all x ¤ 0
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2:2:16 (p. 70) No 2:2:21 (p. 71) (a) Œ�1; 1�, Œ0;1/ (b)
S1

nD�1.2n�; .2nC1/�/,
.0;1/ (c)

S1
nD�1.n�; .nC 1/�/, .�1;�1/[ .�1; 1/[ .1;1/ (d)

S1
nD�1Œn�; .nC

1
2
/��, Œ0;1/

2:2:23 (p. 71) (a) .�1; 1/ (b) .�1;1/ (c) x0 ¤ .2kC 3
2
�/; k D integer (d)

x ¤ 1
2

(e) x ¤ 1 (f) x ¤ .k C 1
2
�/; k D integer (g) x ¤ .k C 1

2
�/; k D

integer (h) x ¤ 0 (i) x ¤ 0

Section 2.3 pp. 84–88

2:3:4 (p. 85) (b) p.c/ D q.c/ and p0
�.c/ D q0

C.c/

2:3:5 (p. 85) f .k/.x/ D n.n�1/ � � � .n�k�1/xn�k�1 jxj if 1 � k � n�1; f .n/.x/ D nŠ
if x > 0; f .n/.x/ D �nŠ if x < 0; f .k/.x/ D 0 if k > n and x ¤ 0; f .k/.0/ does not

exist if k � n.

2:3:7 (p. 85) (a) c0 D ac � bs, s0 D bc C as (b) c.x/ D eax cos bx, s.x/ D
eax sin bx

2:3:15 (p. 86) (b) f .x/ D �1 if x � 0, f .x/ D 1 if x > 0; then f 0.0C/ D 0, but

f 0
C.0/ does not exist. (c) continuous from the right

2:3:22 (p. 87) There is no such function (Theorem 2.3.9).

2:3:24 (p. 87) Counterexample: Let x0 D 0, f .x/ D jxj3=2 sin.1=x/ if x ¤ 0, and

f .0/ D 0 .

2:3:27 (p. 88) Counterexample: Let x0 D 0, f .x/ D x=jxj if x ¤ 0, f .0/ D 0.

Section 2.4 pp. 96–98

2:4:2 (p. 96) 1 2:4:3 (p. 96) 1
2

2:4:4 (p. 96)1 2:4:5 (p. 96) .�1/n�1n

2:4:6 (p. 96) 1 2:4:7 (p. 96) 0 2:4:8 (p. 96) 1 2:4:9 (p. 96) 0

2:4:10 (p. 96) 0 2:4:11 (p. 96) 0 2:4:12 (p. 96) �1 2:4:13 (p. 96) 0
2:4:14 (p. 96) �1

2
2:4:15 (p. 96) 0 2:4:16 (p. 96) 0 2:4:17 (p. 96) 1

2:4:18 (p. 96) 1 2:4:19 (p. 96) 1 2:4:20 (p. 96) e 2:4:21 (p. 96) 1
2:4:24 (p. 96) 1=e 2:4:22 (p. 96) 0

2:4:23 (p. 96) �1 if ˛ � 0, 0 if ˛ > 0

2:4:25 (p. 96) e2 2:4:26 (p. 96) 1 2:4:27 (p. 96) 0 2:4:28 (p. 96) 0

2:4:29 (p. 96)1 if ˛ > 0, �1 if ˛ � 0
2:4:30 (p. 96)1 2:4:31 (p. 97) 1 2:4:32 (p. 97) 1=120 2:4:33 (p. 97)1
2:4:34 (p. 97) �1 2:4:35 (p. 97) �1 if ˛ � 0, 0 if ˛ > 0

2:4:36 (p. 97)1 2:4:37 (p. 97) 1 2:4:38 (p. 97) 0 2:4:39 (p. 97) 0

2:4:40 (p. 97) 0 2:4:41 (p. 97) (b) Suppose that g0 is continuous at x0 and f .x/ D
g.x/ if x � x0, f .x/ D 1C g.x/ if x > x0.

2:4:44 (p. 97) (a) 1 (b) e (c) 1 2:4:45 (p. 98) eL
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Section 2.5 pp. 107–112

2:5:2 (p. 107) f .nC1/.x0/=.nC1/Š. 2:5:4 (p. 107) (b) Counterexample: Let x0 D 0
and f .x/ D xjxj.
2:5:5 (p. 108) (b) Let g.x/ D 1C jx � x0j, so f .x/ D .x � x0/.1C jx � x0j/.
2:5:6 (p. 108) (b) Let g.x/ D 1C jx � x0j, so f .x/ D .x � x0/

2.1C jx � x0j/.
2:5:10 (p. 109) (b) (i) 1, 2, 2, 0 (ii) 0, �� , 3�=2, �4� C �3=2

(iii) ��2=4, �2� , �6C �2=4, 4� (iv) �2, 5, �16, 65

2:5:11 (p. 109) (b) 0, �1, 0, 5

2:5:12 (p. 110) (b) (i) 0, 1, 0, 5 (ii) �1, 0, 6, �24 (iii)
p
2, 3
p
2, 11

p
2,

57
p
2 (iv) �1, 3, �14, 88 (a) min (b) neither (c) min (d) max (e)

min (f) neither (g) min (h) min

2:5:14 (p. 110) f .x/ D e�1=x2

if x ¤ 0, f .0/ D 0 (Exercise 2:5:1 (p. 107))

2:5:15 (p. 111) None if b2 � 4c < 0; local min at x1 D .�b C
p
b2 � 4c/=2 and local

max at x1 D .�b �
p
b2 � 4c/=2 if b2 � 4c > 0; if b2 D 4c then x D �b=2 is a critical

point, but not a local extreme point.

2:5:16 (p. 111) (a)
1

6

� �
20

�3

(b)
1

83
(c)

�2

512
p
2

(d)
1

4.63/4

2:5:20 (p. 112) (a)M3h=3, whereM3 D supjx�cj�h jf .3/.c/j
(b)M4h

2=12 whereM4 D supjx�cj�h jf .4/.c/j
2:5:21 (p. 112) k D �h=2

Section 3.1 pp. 125–128

3:1:8 (p. 126) (b) monotonic functions (c) Let Œa; b� D Œ0; 1� and P D f0; 1g. Let

f .0/ D f .1/ D 1
2

and f .x/ D x if 0 < x < 1. Then s.P / D 0 and S.P / D 1, but neither

is a Riemann sum of f over P .

3:1:9 (p. 127) (a) 1
2

, �1
2
(b) 1

2
, 1 3:1:10 (p. 127) eb � ea 3:1:11 (p. 127)

1 � cos b 3:1:12 (p. 127) sin b

3:1:14 (p. 127) f .a/Œg1 � g.a/�C f .d/.g2 � g1/C f .b/Œg.b/ � g2�

3:1:15 (p. 127) f .a/Œg1 � g.a/�C f .b/Œg.b/ � gp �C
Pp�1

mD1 f .am/.gmC1 � gm/

3:1:16 (p. 127) (a) If g � 1 and f is arbitrary, then
R b

a
f .x/ dg.x/ D 0.

Section 3.3 pp. 149–151

3:3:7 (p. 150) (a) u D c D 2
3

(b) u D c D 0 (c) u D .e � 2/=.e � 1/; c D
p
u
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Section 3.4 pp. 165–171

3:4:4 (p. 166)

(a) (i) p � 2 (ii) p > 0 (iii) 0
(b) (i) p � 2 (ii) p > 0 (iii) 0
(c) (i) none (ii) p > 0 (iii) 1=p
(d) (i) p � 0 (ii) 0 < p < 1 (iii) 1=.1 � p/
(e) (i) none (ii) none

3:4:5 (p. 166) (a) nŠ (b) 1
2

(c) divergent (d) 1 (e) �1 (f) 0

3:4:8 (p. 166) (a) divergent (b) convergent (c) divergent (d) convergent (e)
convergent (f) divergent

3:4:9 (p. 166) (a) p < 2 (b) p < 1 (c) p > �1 (d) �1 < p < 2 (e) none

(f) none (g) p < 1

3:4:11 (p. 167) (a) p � q < 1 (b) p; q < 1 (c) �1 < p < 2q � 1 (d) q > �1,

p C q > 1 (e) p C q > 1 (f) q C 1 < p < 3q C 1
3:4:12 (p. 167) deg g � deg f � 2
3:4:18 (p. 168)

(a) (i) p > 1 (ii) 0 < p � 1
(b) (i) p > 1 (ii) p � 1
(c) (i) p > 1 (ii) 0 � p � 1
(d) (i) p > 0 (ii) none

(e) (i) 1 < p < 4 (ii) 0 < p � 1
(f) (i) p > 1

2
(ii) 0 < p � 1

2

3:4:25 (p. 169)

(a) (i) p > �1 (ii) �2 < p � �1
(b) (i) p > �1 (ii) none

(c) (i) p < �1 (ii) none

(d) (i) none (ii) none

(e) (i) p < �1 (ii) p > 1

Section 4.1 pp. 192–195

4:1:3 (p. 192) (a) 2 (b) 1 (c) 0 4:1:4 (p. 192) (a) 1=2 (b) 1=2 (c)
1=2 (d) 1=2

4:1:11 (p. 192) (d)
p
A 4:1:14 (p. 193) (a) 1 (b) 1 (c) 1 (d) �1

(e) 0

4:1:22 (p. 193) If sn D 1 and tn D �1=n, then .limn!1 sn/=.limn!1 tn/ D 1=0 D1,

but limn!1 sn=tn D �1.

4:1:24 (p. 193) (a)1, 0 (b)1, �1 if jr j > 1; 2, �2 if r D �1; 0, 0 if r D 1; 1,

�1 if jr j < 1 (c)1, �1 if r < �1; 0, 0 if jr j < 1; 1
2

, 1
2

if r D 1;1, 1 if r > 1

(d)1,1 (e) jt j, �jt j
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4:1:25 (p. 194) (a) 1, �1 (b) 2, �2 (c) 3, �1 (c)
p
3=2, �

p
3=2

4:1:34 (p. 194) (b) If fsng D f1; 0; 1; 0; : : :g, then limn!1 tn D 1
2

Section 4.2 pp. 199–200

4:2:2 (p. 199) (a) limm!1 s2m D1, limm!1 s2mC1 D �1
(b) limm!1 s4m D 1, limm!1 s4mC2 D �1, limm!1 s2mC1 D 0
(c) limm!1 s2m D 0, limm!1 s4mC1 D 1, limm!1 s4mC3 D �1
(d) limn!1 sn D 0 (e) limm!1 s2m D 1, limm!1 s2mC1 D 0
(f) limm!1 s8m D limm!1 s8mC2 D 1, limm!1 s8mC1 D

p
2,

limm!1 s8mC3 D limm!1 s8mC7 D 0, limm!1 s8mC5 D �
p
2,

limm!1 s8mC4 D limm!1 s8mC6 D �1
4:2:3 (p. 199) f1; 2; 1; 2; 3; 1; 2; 3; 4; 1; 2; 3; 4; 5; : : :g
4:2:8 (p. 200) Let ftng be any convergent sequence and fsng D ft1; 1; t2; 2; : : : ; tn; n; : : : g.

Section 4.3 pp. 228–234

4:3:4 (p. 229) (b) No; consider
P
1=n

4:3:8 (p. 229) (a) convergent (b) convergent (c) divergent (d) divergent

(e) convergent (f) convergent (g) divergent (h) convergent

4:3:10 (p. 229) (a) p > 1 (b) p > 1 (c) p > 1

4:3:15 (p. 230) (a) convergent (b) convergent if 0 < r < 1, divergent if r � 1
(c) divergent (d) convergent (e) divergent (f) convergent

4:3:17 (p. 231) (a) convergent (b) convergent (c) convergent (d) convergent

4:3:18 (p. 231) (a) divergent (b) convergent if and only if 0 < r < 1 or r D 1 and

p < �1 (c) convergent (d) convergent (e) convergent

4:3:19 (p. 231) (a) divergent (b) convergent (c) convergent (d) convergent if

˛ < ˇ � 1, divergent if ˛ � ˇ � 1
4:3:20 (p. 231) (a) divergent (b) convergent (c) convergent (d) convergent

4:3:21 (p. 231) (a)
P
.�1/n (b)

P
.�1/n=n,

P�
.�1/n
n
C 1

n logn

�

(c)
P
.�1/n2n (d)

P
.�1/n

4:3:27 (p. 232) (a) conditionally convergent (b) conditionally convergent (c) abso-

lutely convergent (d) absolutely convergent

4:3:28 (p. 232) Let k and s be the degrees of the numerator and denominator, respec-

tively. If jr j D 1, the series converges absolutely if and only if s � k C 2. The series

converges conditionally if s D k C 1 and r D �1, and diverges in all other cases, where

s � k C 1 and jr j D 1.

4:3:30 (p. 232) (b)
P
.�1/n=

p
n 4:3:41 (p. 233) (a) 0 (b) 2A� a0
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Section 4.4 pp. 253–256

4:4:1 (p. 253) (a) F.x/ D 0; jxj � 1 (b) F.x/ D 0; jxj � 1
(c) F.x/ D 0; �1 < x � 1 (d) F.x/ D sinx; �1 < x <1
(e) F.x/ D 1; �1 < x � 1; F.x/ D 0; jxj > 1 (f) F.x/ D x; �1 < x <1
(g) F.x/ D x2=2; �1 < x <1 (h) F.x/ D 0; �1 < x <1
(i) F.x/ D 1; �1 < x <1
4:4:5 (p. 254) (a) F.x/ D 0 (b) F.x/ D 1; jxj < 1; F.x/ D 0; jxj > 1
(c) F.x/ D sinx=x

4:4:6 (p. 254) (c) Fn.x/ D xn; Sk D Œ�k=.k C 1/; k=.k C 1/�
4:4:7 (p. 254) (a) Œ�1; 1� (b) Œ�r; r �[ f1g [ f�1g; 0 < r < 1 (c) Œ�r; r �[ f1g; 0 <
r < 1

(d) Œ�r; r �; r > 0 (e) .�1;�1=r� [ Œ�r; r �[ Œ1=r;1/[ f1g; 0 < r < 1
(f) Œ�r; r �; r > 0 (g) Œ�r; r �; r > 0 (h) .�1;�r� [ Œr;1/[ f0g; r > 0
(i) Œ�r; r �; r > 0
4:4:12 (p. 254) (b) Let S D .0; 1�, Fn.x/ D sin.x=n/, Gn.x/ D 1=x2; then F D 0,

G D 1=x2, and the convergence is uniform, but kFnGnkS D1.

4:4:14 (p. 255) (a) 3 (b) 1 (c) 1
2

(d) e � 1
4:4:17 (p. 255) (a) compact subsets of .�1

2
;1/ (b) Œ�1

2
;1/ (c) closed sub-

sets of

 
1 �
p
5

2
;
1C
p
5

2

!
(d) .�1;1/ (e) Œr;1/; r > 1 (f) compact subsets

of .�1; 0/ [ .0;1/
4:4:19 (p. 255) (a) Let S D .�1;1/, fn D an (constant), where

P
an converges

conditionally, and gn D janj. (b) “absolutely"

4:4:20 (p. 255) (a) (i) means that
P
jfn.x/j converges pointwise and

P
fn.x/ con-

verges uniformly on S , while (ii) means that
P
jfn.x/j converges uniformly on S .

4:4:27 (p. 256) (a)
1X

nD0

.�1/n x2nC1

nŠ.2nC 1/
(b)

1X

nD0

.�1/n x2nC1

.2nC 1/.2nC 1/Š

Section 4.5 pp. 275–280

4:5:2 (p. 276) (a) 1=3e (b) 1 (c) 1
3

(d) 1 (e)1
4:5:8 (p. 276) (a) 1 (b) 1

2
(c) 1

4
(d) 4 (e) 1=e (f) 1

4:5:10 (p. 277) x.1C x/=.1 � x/3 4:5:12 (p. 277) e�x2

4:5:16 (p. 277)
1X

nD1

.�1/n�1

n2
.x � 1/nI R D 1

4:5:17 (p. 277) Tan�1x D
1X

nD0

.�1/n x2nC1

.2nC 1/
I f .2n/.0/ D 0I f .2nC1/.0/ D .�1/2.2n/Š;
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�

6
D Tan�1 1p

3
D

1X

nD0

.�1/n
.2nC 1/3nC1=2

4:5:22 (p. 278) cosh x D
1X

nD0

x2n

.2n/Š
, sinh x D

1X

nD0

x2nC1

.2nC 1/Š

4:5:23 (p. 278) .1 � x/
P1

nD0 x
n D 1 converges for all x

4:5:24 (p. 278) (a) x C x2 C x3

3
� 3x

5

40
C � � � (b) 1 � x � x

2

2
C 5x3

6
C � � � (c)

1 � x
2

2
C x4

24
� 721x

6

720
C � � � (d) x2 � x

3

2
C x4

6
� x

5

6
C � � �

4:5:27 (p. 279) (a) 1C x C 2x2

3
C x3

3
C � � � (b) 1 � x � x

2

2
C 3x3

2
C � � � (c) 1C x2

2
C 5x4

24
C 61x6

720
C � � �

(d) 1C x2

6
C 7x4

360
C 31x6

15120
C � � � (e) 2 � x2 C x4

12
� x6

360
C � � �

4:5:28 (p. 279)F.x/ D 5

.1 � 3x/.1C 2x/ D
3

1 � 3x C
2

1C 2x D
1X

nD0

Œ3nC1 � .�2/nC1 �xn

4:5:29 (p. 279) 1

Section 5.1 pp. 299–302

5:1:1 (p. 299) (a) .3; 0; 3; 3/ (b) .�1;�1; 4/ (c) .1
6
; 11

12
; 23

24
; 5

36
/

5:1:3 (p. 299) (a)
p
15 (b)

p
65=12 (c)

p
31 (d)

p
3

5:1:4 (p. 299) (a)
p
89 (b)

p
166=12 (c) 3 (d)

p
31

5:1:5 (p. 299) (a) 12 (b) 1
32

(c) 27

5:1:7 (p. 299) X D X0 C tU .�1 < t <1/ in all cases.

5:1:8 (p. 299) : : :U and X1 �X0 are scalar multiples of V.

5:1:9 (p. 299) (a) X D .1;�3; 4; 2/C t.1; 3;�5; 3/
(b) X D .3; 1;�2; 1; 4; /C t.�1;�1; 1; 3;�7/
(c) X D .1; 2;�1/C t.�1;�3; 0/
5:1:10 (p. 300) (a) 5 (b) 2 (c) 1=2

p
5

5:1:11 (p. 300) (a) (i)
˚
.x1; x2; x3; x4/

ˇ̌
jxi j � 3 .i D 1; 2; 3/with at least one equality

	

(ii)
˚
.x1; x2; x3; x4/

ˇ̌
jxi j � 3 .i D 1; 2; 3/

	
(iii) S

(iv)
˚
.x1; x2; x3; x4/

ˇ̌
jxi j > 3 for at least one of i D 1; 2; 3

	

(b) (i) S (ii) S (iii) ; (iv)
˚
.x; y; ´/

ˇ̌
´ ¤ 1 or x2 C y2 > 1

	

5:1:12 (p. 300) (a) open (b) neither (c) closed

5:1:18 (p. 300) (a) .�; 1; 0/ (b) .1; 0; e/

5:1:19 (p. 300) (a) 6 (b) 6 (c) 2
p
5 (d) 2L

p
n (e)1

5:1:29 (p. 302)
˚
.x; y/

ˇ̌
x2 C y2 D 1
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5:1:33 (p. 302) : : : if for A there is an integer R such that jXr j > A if r � R.

Section 5.2 pp. 314–316

5:2:1 (p. 314) (a) 10 (b) 3 (c) 1 (d) 0 (e) 0 (f) 0

5:2:3 (p. 315) (b) a=.1C a2/

5:2:4 (p. 315) (a)1 (b)1 (c) no (d) �1 (e) no

5:2:5 (p. 315) (a) 0 (b) 0 (c) none (d) 0 (e) none

5:2:6 (p. 316) (a) . . . if Df is unbounded and for each M there is an R such that

f .X/ > M if X 2 Df and jXj > R. (b) Replace “> M ” by “< M ” in (a).

5:2:7 (p. 316) limX!0 f .X/ D 0 if a1Ca2C� � �Can > b; no limit if a1Ca2C� � �Can �
b and a2

1C a2
2C � � �C a2

n ¤ 0; limX!0 f .X/ D1 if a1 D a2 D � � � D an D 0 and b > 0.

5:2:8 (p. 316) No; for example, limx!1 g.x;
p
x/ D 0.

5:2:9 (p. 316) (a) R
3 (b) R

2 (c) R
3 (d) R

2 (e)
˚
.x; y/

ˇ̌
x � y

	
(f) R

n

5:2:10 (p. 316) (a) R
3 � f.0; 0; 0/g (b) R

2 (c) R
2 (d) R

2 (e) R
2

5:2:11 (p. 316) f .x; y/ D xy=.x2 C y2/ if .x; y/ ¤ .0; 0/ and f .0; 0/ D 0

Section 5.3 pp. 335–339

5:3:1 (p. 335) (a)
2p
3
.x C y cos x � xy sinx/� 2

r
2

3
.x cos x/ (b)

1 � 2yp
3
e�xCy2C2´

(c)
2p
n
.x1 C x2 C � � � C xn/ (d) 1=.1C x C y C ´/

5:3:2 (p. 335) �2
1�2 5:3:3 (p. 335) (a) �5�=

p
6 (b) �2e (c) 0 (d) 0

5:3:5 (p. 335) (a) fx D fy D 1=.x C y C 2´/, f´ D 2=.x C y C 2´/
(b) fx D 2x C 3y´ C 2y, fy D 3x´ C 2x, f´ D 3xy (c) fx D ey´, fy D x´ey´,

f´ D xyey´ (d) fx D 2xy cos x2y, fy D x2 cos x2y, f´ D 1
5:3:6 (p. 335) (a) fxx D fyy D fxy D fyx D �1=.x C y C 2´/2, fx´ D f´x D
fy´ D f´y D �2=.x C y C 2´/2, f´´ D �4=.x C y C 2´/2

(b) fxx D 2, fyy D f´´ D 0, fxy D fyx D 3´C 2, fx´ D f´x D 3y, fy´ D f´y D 3x
(c) fxx D 0, fyy D x´2ey´, f´´ D xy2ey´, fxy D fyx D ´ey´, fx´ D f´x D yey´,

fy´ D f´y D xey´

(d) fxx D 2y cos x2y � 4x2y2 sin x2y, fyy D �x4 sinx2y, f´´ D 0, fxy D fyx D
2x cos x2y � 2x3y sinx2y, fx´ D f´x D fy´ D f´y D 0
5:3:7 (p. 336) (a) fxx.0; 0/ D fyy.0; 0/ D 0, fxy .0; 0/ D �1, fyx.0; 0/ D 1
(b) fxx.0; 0/ D fyy.0; 0/ D 0, fxy.0; 0/ D �1, fyx.0; 0/ D 1
5:3:8 (p. 336) f .x; y/ D g.x; y/Ch.y/, where gxy exists everywhere and h is nowhere

differentiable.
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5:3:18 (p. 337) (a) df D .3x2C4y2C2y sinxC2xy cos x/ dxC.8xyC2x sinx/ dy,

dX0
f D 16 dx, .dX0

f /.X � X0/ D 16x
(b) df D �e�x�y�´ .dx C dy C d´/, dX0

f D �dx � dy � d´,

.dX0
f /.X �X0/ D �x � y � ´

(c) df D .1C x1 C 2x2 C � � � C nxn/
�1
Pn

j D1 j dxj , dX0
f D

Pn
j D1 j dxj ,

.dX0
f /.X �X0/ D

Pn
j D1 jxj ,

(d) df D 2r jXj2r�2
Pn

j D1 xj dxj , dX0
f D 2rnr�1

Pn
j D1 dxj ,

.dX0
f /.X �X0/ D 2rnr�1

Pn
j D1.xj � 1/,

5:3:19 (p. 337) (b) The unit vector in the direction of .fx1
.X0/; fx2

.X0/; : : : ; fxn.X0//

provided that this is not 0; if it is 0, then @f .X0/=@ˆ D 0 for every ˆ.

5:3:24 (p. 338) (a) ´ D 2xC4y�6 (b) ´ D 2xC3yC1 (c) ´ D .�x/=2Cy��=2
(d) ´ D x C 10y C 4

Section 5.4 pp. 356–360

5:4:2 (p. 357) (a) 5 duC 34 dv (b) 0 (c) 6 du� 18 dv (d) 8 du

5:4:3 (p. 357) hr D fx cos � C fy sin � , h� D r.�fx sin � C fy cos �/, h´ D f´

5:4:4 (p. 357) hr D fx sin� cos �Cfy sin � sin �Cf´ cos �, h� D r sin �.�fx sin �C
fy cos �/, h� D r.fx cos � cos � C fy cos� sin � � f´ sin�/

5:4:6 (p. 357) hy D gxxy C gy C gwwy , h´ D gxx´C g´ C gww´

5:4:13 (p. 358) hrr D fxx sin2 � cos2 �Cfyy sin2 � sin2 �Cf´´ cos2 �Cfxy sin2 � sin 2�C
fy´ sin 2� sin � C fx´ sin 2� cos � ,

hr� D .�fx sin � C fy cos �/ sin � C r

2
.fyy � fxx/ sin2 � sin 2� C rfxy sin2 � cos 2� C

r

2
.f´y cos � � f´x sin �/ sin 2�

5:4:16 (p. 358) (a) 1C x C x2

2
� y

2

2
C x3

6
� xy

2

2

(b) 1 � x � y C x2

2
C xy C y2

2
� x

3

6
� x

2y

2
� xy

2

2
� y

3

6
(c) 0 (d) xy´

5:4:21 (p. 359) (a) .d 2
.0;0/

p/.x; y/ D .d 2
.0;0/

q/.x; y/ D 2.x � y/2

Section 6.1 pp. 376–378

6:1:3 (p. 376) (a)

2
4
3 4 6

2 �4 2

7 2 3

3
5 (b)

2
664

2 4

3 �2
7 �4
6 1

3
775

6:1:4 (p. 376) (a)

2
4

8 8 16 24

0 0 4 12

12 16 28 44

3
5 (b)

2
4
�2 �6 0

0 �2 �4
�2 2 �6

3
5
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6:1:5 (p. 376) (a)

2
4
�2 2 6

6 7 �3
0 �2 6

3
5 (b)

2
4
�1 7

3 5

5 14

3
5

6:1:6 (p. 376) (a)

2
4
13 25

16 31

16 25

3
5 (b)

�
29

50

�

6:1:10 (p. 377) A and B are square of the same order.

6:1:12 (p. 377) (a)

2
4
7 3 3

4 7 7

6 �9 1

3
5 (b)

2
4
14 10

6 �2
14 2

3
5

6:1:13 (p. 377)

2
4
�7 6 4

�9 7 13

5 0 �14

3
5,

2
4
�5 6 0

4 �12 3

4 0 3

3
5

6:1:15 (p. 377) (a)
�
6xy´ 3x´2 3x2y

�
;
�
�6 3 �3

�

(b) cos.x C y/
�
1 1

�
;
�
0 0

�

(c)
�
.1 � x´/ye�x´ xe�x´ �x2ye�x´

�
;
�
2 1 �2

�

(d) sec2.x C 2y C ´/
�
1 2 1

�
;
�
2 4 2

�

(e) jXj�1
�
x1 x2 � � � xn

�
;
1p
n

�
1 1 � � � 1

�

6:1:20 (p. 377) (a) .2; 3;�2/ (b) .2; 3; 0/ (c) .�2; 0;�1/ (d) .3; 1; 3; 2/

6:1:21 (p. 378) (a)
1

10

�
4 2

�3 1

�
(b)

1

2

2
4
�1 1 2

3 1 �4
�1 �1 2

3
5

(c)
1

25

2
4

4 3 �5
6 �8 5

�3 4 10

3
5 (d)

1

2

2
4

1 �1 1

�1 1 1

1 1 �1

3
5

(e)
1

7

2
664

3 �2 0 0

2 1 0 0

0 0 2 �3
0 0 1 2

3
775 (f)

1

10

2
664

�1 �2 0 5

�14 �18 10 20

21 22 �10 �25
17 24 �10 �25

3
775

Section 6.2 pp. 390–394

6:2:12 (p. 392) (a) F0.X/ D

2
64

2x 1 2

� sin.x C y C ´/ � sin.x C y C ´/ � sin.x C y C ´/

y´exy´ x´exy´ xyexy´

3
75;

JF.X/ D exy´ sin.x C y C ´/Œx.1 � 2x/.y � ´/ � ´.x � y/�;
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G.X/ D

2
4
0

1

1

3
5C

2
4
2 1 2

0 0 0

0 0 �1

3
5
2
4
x � 1
y C 1
´

3
5

(b) F0.X/ D
�
ex cos y �ex siny

ex sin y ex cosy

�
; JF.X/ D e2x;

G.X/ D
�
0

1

�
C
�
0 �1
1 0

��
x

y � �=2

�

(c) F0.X/ D

2
4

2x �2y 0

0 2y �2´
�2x 0 2´

3
5; JF D 0;

G.X/ D

2
4

2 �2 0

0 2 �2
�2 0 2

3
5
2
4
x � 1
y � 1
´ � 1

3
5

6:2:13 (p. 392) (a) F0.X/ D
�
.x C y C ´C 1/ex ex ex

.2x � x2 � y2/e�x 2ye�x 0

�

(b) F0.X/ D

2
6664

g0
1.x/

g0
2.x/
:::

g0
n.x/

3
7775

(c) F0.r; �/ D

2
4

ex siny´ ´ex cosy´ yex cosy´

´ey cos x´ ey sin x´ xey cos x´

ye´ cos xy xe´ cos xy e´ sinxy

3
5

6:2:14 (p. 392) (a) F0.r; �/ D
�

cos � �r sin �

sin � r cos �

�
; JF.r; �/ D r

(b) F0.r; �; �/ D

2
4

cos � cos � �r sin � cos� �r cos � sin �

sin � cos� r cos � cos � �r sin � sin�

sin � 0 r cos�

3
5;

JF.r; �; �/ D r2 cos�

(c) F0.r; �; ´/ D

2
4

cos � �r sin � 0

sin � r cos � 0

0 0 1

3
5; JF.r; �; ´/ D r

6:2:20 (p. 393) (a)

�
0 0 4

0 �1
2

0

�
(b)

�
�18 0

2 0

�
(c)

2
4
9 �3
3 �8
1 0

3
5

(d)

�
4 �3 1

0 1 1

�
(e)

�
2 0

2 0

�
(f)

2
4

5 10

9 18

�4 �8

3
5
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Section 6.3 pp. 414–417

6:3:4 (p. 414) (a) Œ1; �=2� (b) Œ1; 2�� (c) Œ1; �� (d) Œ2
p
2; 9�=4� (e)

Œ
p
2; 3�=4�

6:3:5 (p. 414) (a) Œ1;�3�=2� (b) Œ1;�2�� (c) Œ1;��� (d) Œ2
p
2;�7�=4�

(e) Œ
p
2;�5�=4�

6:3:6 (p. 414) (b) Let f .x/ D x .0 � x � 1
2
/, f .x/ D x � 1

2
.1

2
< x � 1/; then f is

locally invertible but not invertible on Œ0; 1�.

6:3:7 (p. 414) F.S/ D
˚
.u; v/

ˇ̌
� � C 2� < arg.u; v/ < � C 2�

	
, where � is an argu-

ment of .a; b/;

F�1
S
.u; v/ D .u2 C v2/1=4

"
cos.arg.u; v/=2/

sin.arg.u; v/=2/

#
; 2� � � < arg.u; v/ < 2� C �

6:3:10 (p. 415) (a)

�
x

y

�
D 1

10

�
u� 2v
3uC 4v

�
; .F�1/0 D 1

10

�
1 �2
3 4

�

(b)

2
4
x

y

´

3
5 D 1

2

2
4
uC 2v C 3w

u �w
uC v C 2w

3
5; .F�1/0 D 1

2

2
4
1 2 3

1 0 �1
1 1 2

3
5

6:3:12 (p. 415) G1.u; v/ D
1p
2

� p
uC vp
u� v

�
, G0

1.u; v/ D
1

2
p
2

�
1=
p
uC v 1=

p
uC v

1=
p
u� v �1=

p
u � v

�

G2.u; v/ D
1p
2

�
�
p
uC vp
u � v

�
, G0

2.u; v/ D
1

2
p
2

�
�1=
p
uC v �1=

p
uC v

1=
p
u� v �1=

p
u � v

�

G3.u; v/ D
1p
2

� p
uC v

�
p
u� v

�
, G0

3.u; v/ D
1

2
p
2

�
1=
p
uC v 1=

p
uC v

�1=
p
u� v 1=

p
u� v

�

G4.u; v/ D
1p
2

�
�
p
uC v

�
p
u � v

�
, G0

4.u; v/ D
1

2
p
2

�
�1=
p
uC v �1=

p
uC v

�1=
p
u� v 1=

p
u � v

�

6:3:15 (p. 416) From solving x D r cos � , y D r sin � for � D arg.x; y/. Each equation

is satisfied by angles that are not arguments of .x; y/, since none of the formulas identifies

the quadrant of .x; y/ uniquely. Moreover, (c) does not hold if x D 0.

6:3:16 (p. 416)

�
x

y

�
D G.u; v/ D .u2 C v2/1=4

"
cosŒ 1

2
arg.u; v/�

sin.arg.u; v/=2/

#
,

where ˇ � �=2 < arg.u; v/ < ˇ C �=2 and ˇ is an argument of .a; b/;

G0.u; v/ D 1

2.x2 C y2/

�
x y

�y x

�

6:3:19 (p. 416) If F.x1; x2; : : : ; xn/ D .x3
1 ; x

3
2; : : : ; x

3
n/, then F is invertible, but

JF.0/ D 0.

6:3:20 (p. 416) (a) A.U/ D
�

1

�1

�
� 1

25

�
5 5

3 8

� �
uC 5
v � 4

�
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(b) A.U/ D
�
1

1

�
C 1

6

�
4 �2
�3 3

��
u� 2
v � 3

�

(c) A.U/ D

2
4
0

1

1

3
5C

2
4

0 �1 1

�1 1 0

1 0 0

3
5
2
4
u� 1
v � 1
w � 2

3
5

(d) A.U/ D

2
4

1

�=2

�

3
5C

2
4
0 �1 0

1 0 0

0 0 �1

3
5
2
4

u

v C 1
w

3
5

6:3:21 (p. 417) G0.x; y; ´/ D

2
66664

cos � cos� sin � cos� sin�

� sin �

r cos�

cos �

r cos�
0

�1
r

cos � sin� �1
r

sin � sin �
1

r
cos �

3
77775

6:3:22 (p. 417) G0.x; y; ´/ D

2
6664

cos � sin � 0

�1
r

sin �
1

r
cos � 0

0 0 1

3
7775

Section 6.4 pp. 431–434

6:4:1 (p. 431) (a)

�
u

v

�
D 1

2

�
�3 4

1 �2

��
x

y

�

(b)

2
4
u

v

w

3
5 D �1

2

2
4

3 3

�1 2

2 3

3
5
�
x

y

�
(c)

�
u

v

�
D 1

5

�
2 �1
�1 3

� �
�y C sinx

�x C siny

�

(d) u D �x, v D �y, ´ D �w

6:4:3 (p. 431) fi .X;U/ D

0
@

nX

j D1

aij .xj � xj 0/

1
A

r

� .ui � ui0/
s , 1 � i � m, where r

and s are positive integers and not all aij D 0. (a) r D s D 3; (b) r D 1, s D 3; (c)
r D s D 2
6:4:4 (p. 431) ux.1; 1/ D �5

8
, uy.1; 1/ D �1

2

6:4:5 (p. 431) ux.1; 1; 1/ D 5
8

, uy.1; 1; 1/ D �9
8

, u´.1; 1; 1/ D 1
2

6:4:6 (p. 431) (a) u.1; 2/ D 0, ux.1; 2/ D uy .1; 2/ D �4
(b) u.�1;�2/ D 2, ux.�1;�2/ D 1, uy .�1;�2/ D �1

2

(c) u.�=2; �=2/ D ux.�=2; �=2/D uy.�=2; �=2/ D 0
(d) u.1; 1/ D 1, ux.1; 1/ D uy.1; 1/ D �1

6:4:7 (p. 431) (a) u1.1; 1/ D 1,
@u1.1; 1/

@x
D 5,

@u1.1; 1/

@y
D 2
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u2.1; 1/ D 2,
@u2.1; 1/

@x
D �14;

@u2.1; 1/

@y
D �2

(b) uk.0; �/ D .2k C 1/�=2,
@uk.0; �/

@x
D 0,

@uk.0; �/

@y
D �1, k D integer

6:4:8 (p. 432)
1

5

�
�1 �2 1

�1 �2 1

�
6:4:9 (p. 432) u0.0/ D 3, v0.0/ D �1

6:4:10 (p. 432)
1

6

2
4

5 5

�5 �5
6 6

3
5

6:4:11 (p. 432) U1.1; 1/ D
�
3

1

�
, U0

1.1; 1/ D
�

1 3

�1 2

�
;

U2.1; 1/ D �
�
3

1

�
, U0

2.1; 1/ D �
�

1 3

�1 2

�

6:4:12 (p. 432) ux.0; 0; 0/ D 2, vx.0; 0; 0/ D wx.0; 0; 0/ D �2

6:4:13 (p. 433) yx D �

@.f; g; h/

@.x; ´; u/

@.f; g; h/

@.y; ´; u/

, yv D �

@.f; g; h/

@.v; ´; u/

@.f; g; h/

@.y; ´; u/

, ´x D �

@.f; g; h/

@.y; x; u/

@.f; g; h/

@.y; ´; u/

,

´v D �

@.f; g; h/

@.y; v; u/

@.f; g; h/

@.y; ´; u/

, ux D �

@.f; g; h/

@.y; ´; x/

@.f; g; h/

@.y; ´; u/

, uv D �

@.f; g; h/

@.y; ´; v/

@.f; g; h/

@.y; ´; u/

6:4:14 (p. 433) x D �2y � u, ´ D �2v; x D �2y � u, v D �´
2

; y D �x
2
� u
2

,

´ D �2v; y D �x
2
� u
2

, v D �´
2

; ´ D �2v, u D �x � 2y; u D �x � 2y, v D �´
2

6:4:15 (p. 433) yx.1;�1;�2/ D �1
2

, vu.1;�1;�2/ D 1
6:4:16 (p. 433) uw .0;�1/ D 5

6
, uy .0;�1/ D 0, vw.0;�1/ D �5

6
, vy.0;�1/ D 0,

xw.0;�1/ D 1, xy.0;�1/ D �1
6:4:18 (p. 434) ux.1; 1/ D 0, uy.1; 1/ D 0, vx.1; 1/ D �1, vy .1; 1/ D �1, uxx .1; 1/ D
2,

uxy .1; 1/ D 1, uyy.1; 1/ D 2, vxx.1; 1/ D �2, vxy.1; 1/ D �1, vyy.1; 1/ D �2

6:4:19 (p. 434) ux.1;�1/ D 0, uy .1;�1/ D
1

2
, vx.1;�1/ D �

1

2
, vy.1;�1/ D 0,

uxx.1;�1/ D �
1

8
, uxy.1;�1/ D

1

8
, uyy.1;�1/ D

1

8
, vxx.1;�1/ D �

1

8
,

vxy.1;�1/ D �
1

8
, vyy.1;�1/ D

1

8
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Section 7.1 pp. 459–462

7:1:2 (p. 459) (a) 28 (b) 1
4

7:1:6 (p. 460) 3.b�a/.d�c/, 0 7:1:13 (p. 460)˚
.m; n/

ˇ̌
m; n D integers

	

Section 7.2 pp. 480–484

7:2:1 (p. 480) (a) 12 (b) 79
20

(c) �1 (d) .1 � log 2/=2

7:2:5 (p. 481) (a) 7
4

(b) 17 (c) 2
3
.
p
2 � 1/ (d) 1=4�

7:2:7 (p. 481) (a) 3
8

, 5
8

(b) 3
8

, 5
8

7:2:8 (p. 482) (a) 3
4

, 5
4

(b) 3
4

�
´C 1

2

�
,

5
4

�
´C 1

2

�
(c) ´C 1

2
, 1

7:2:11 (p. 482) (a) �285 (b) 0 (c) 0 (d) 1
4
.e � 5

2
/

7:2:12 (p. 483) (a) 324 (b) 1
6

(c) 1 7:2:13 (p. 483) 52
15

7:2:14 (p. 483) (a) 36 (b) 1 (c) 64
3

(d) .e6 C 17/=2
7:2:17 (p. 483) (a) 2

27
(b) 1

2
.e � 5

2
/ (c) 1

24
(d) 1

36

7:2:18 (p. 483) (a) 16� (b) 1
6

(c) 128
21

(d) �
2

7:2:19 (p. 484) (a) 1
2
.b1 � a1/ � � � .bn � an/

Pn
j D1.aj C bj /

(b) 1
3
.b1 � a1/ � � � .bn � an/

Pn
j D1.a

2
j C aj bj C b2

j /

(c) 2�n.b2
1 � a2

1/ � � � .b2
n � a2

n/

7:2:20 (p. 484)
Rp

3=2

�
p

3=2
dx
Rp

1�x2

1=2 f .x; y/ dy 7:2:22 (p. 484) 1
2

Section 7.3 pp. 514–517

7:3:1 (p. 514) Let S1 and S2 be dense subsets of R such that S1 [ S2 D R.

7:3:7 (p. 514) (a) �1; c (constant); 1 7:3:9 (p. 515) .u2�u1/.v2�v1/=jad �bcj
7:3:10 (p. 515) 5

6
7:3:14 (p. 515) (a) 4

9
(b) log 5

2
7:3:15 (p. 516) 3

7:3:16 (p. 516) 1
2

7:3:17 (p. 516) 5
4
e.e � 1/

7:3:18 (p. 516) 4
3
�abc 7:3:19 (p. 516) 2�.e25 � e9/ 7:3:20 (p. 516) 16�=3

7:3:21 (p. 516) 21=64

7:3:22 (p. 516) (a) .�=8/ log 5 (b) .�=4/.e4 � 1/ (c) 2�=15

7:3:23 (p. 517) �2a4=2

7:3:24 (p. 517) (a) .ˇ1�˛1/ � � � .ˇn�˛n/=j det.A/j 7:3:25 (p. 517) ja1a2 � � �anjVn
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A
Abel’s test, 219

Abel’s theorem, 273, 279

Absolute convergence, 215

of an improper integral, 160

of a series of constants, 215

of a series of functions, 247

Absolute integrability, 160

Absolute uniform convergence, 247, 255

(Exercises 4.4.17 and 4.4.20),

256 (Exercise 4.4.21)

of a power series, 257

Absolute value, 2

Addition of power series, 267

Adjoint matrix, 370

Affine transformation, 380

Alternating series, 203

test, 203, 219

Analytic transformation, 416 (Exercise 6.3.17)

Angle between two vectors, 286

Antiderivative, 143, 150 (Exercise 3.3.16)

Archimedean property, 5

Area under a curve, 116

Argument, 398

branch of, 409, 410, 415 (Exercise 6.3.14)

Ascoli–Arzela theorem, 543

Associative laws

for the real numbers, 2 (see p. 1)

for vector addition, 283

B
Bessel function, 277 (Exercise 4.5.11)

Binomial coefficient, 17 (Exercise 1.2.19),

102, 194 (Exercise 4.1.35)

Binomial series, 266

Binomial theorem, 17 (Exercise 1.2.19)

Bolzano–Weierstrass theorem, 27, 294,

301 (Exercise 5.1.22)

Bound

lower, 7

upper, 3

Boundary, 526

point, 289, 526

of a set, 23, 289

Bounded convergence theorem, 243

Bounded function, 47, 60, 313

Boundedness of a continuous function

on a closed interval, 62, 199

on a compact set, 313

Boundedness of an integrable function,

119

on a metric space, 537

Bounded sequence, 181, 197, 292

Bounded set

above, 3, 313

below 7, 313

Bounded variation, 134–135 (Exercises 3.2.7,

3.2.9, 3.2.10)

Branch

of an argument, 409, 415

of an inverse, 409

C
C[a,b], 521

equicontinuous subset of, 541

566
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uniformly bounded subset of, 541

Cartesian product, 31, 435

Cauchy product of series, 226, 233 (Ex-

ercise 4.3.40), 280 (Exercise 4.5.32)

Cauchy sequence, 527

Cauchy’s convergence criterion

for sequences of real numbers, 190

for sequences of vectors, 292

for series of real numbers, 204

Cauchy’s root test, 215

Cauchy’s uniform convergence criterion

for sequences, 239

for series, 246

Chain rule, 77, 340, 388

Change of variable, 145, 147

in an improper integral, 164

in a multiple integral, 496

formulation of the rule for, 494

in an ordinary integral, 145, 147

Changing the order of integration, 478

Characteristic function, 70 (Exercise 2.2.9),

485

Closed

under scalar multiplication, 519

under vector addition, 519

Closed interval, 23

Closed n-ball, 291

Closed set, 21, 289, 525

Closure of a set, 23, 289

Cofactor, 370

expanding a determinant in, 371–372

Commutative laws

for the reals, 2 (See p. 1)

for vector addition, 283

Compact set, 20, 293, 537

Comparison test

for improper integrals, 156

for series, 206

Complement of a set, 20

Complete metric space, 527

Completeness axiom, 4

Complete ordered field, 4

Component function, 311

Components, 284 (see p. 281)

of a vector-valued function, 311, 362

Composite function, 58, 311

continuity of, 59, 311

differentiability of, 77, 340

higher derivatives of, 345

Taylor polynomial of, 109–110

(Exercise 2.5.11)

Composition of functions, 58

Conditional convergence

of an improper integral, 162

of a series, 217

Conditionally integrable, 162

Connected metric space, 549 (Exercise 8.3.2)

Connected set, 295

polygonally, 296

Containment of a set, 19

Content, 453

of a coordinate rectangle, 437

of a set, 485

zero, 448, 514 (Exercise refexer:7.3.2)

Continuity, 54, 302

of a composite function, 59, 311

of a differentiable function, 76, 325

of a function of n variables, 309

of a function of one variable, 54

on an interval, 55

from the left, 54

of a monotonic function, 67

piecewise, 56

from the right, 54

on a set, 56, 311

of a sum, difference, product, and

quotient, 57, 311

in terms of sequences, 198

of a transformation, 379

uniform, 64, 66, 314, 392 (Exercise 6.2.10)

of a uniform limit, 242

of a uniformly convergent series, 250

Continuous function 54, 309

boundedness of, 62, 313

extreme values of on a closed inter-

val, 62

integrability of, 133

intermediate values of, 63, 313

on a metric space, 545

Continuous transformation, 379
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Continuously differentiable, 73, 80, 329,

385, 409

Contraction mapping theorem, 547

Convergence

absolute

of an improper integral, 160

of a series of constants, 215

absolute uniform, 247

conditional

of a series, 217

of an improper integral, 162

of an improper integral, 152

of an infinite series, 201

interval of, 258

pointwise

of a sequence of functions, 234,

238

of a series of functions, 244

of a power series, 257

radius of, 258

of a sequence in a metric space, 526

of a sequence in R
n, 292

of a sequence of real numbers, 179

of a series of constants, 200

of a sum, difference, or product of

sequences, 184

of a Taylor series, 264

uniform, 246

of a sequence, 237

of a series, 246

Coordinate cube, 437

degenerate, 437

nondegenerate, 437

Coordinate rectangle, 437

Coordinates,

polar, 397, 502, 505

spherical, 507

Covering, open, 25, 293, 536

Cramer’s rule, 373

Critical point, 81, 335

Curve, differentiable, 453

D
Decreasing sequence, 182

Dedekind cut, 9 (Exercise 1.1.8)

Dedekind’s theorem, 9 (Exercise 1.1.8)

Defined inductively, 12

Degree

of a homogeneous polynomial, 352

of a polynomial, 98

Deleted �-neighborhood, 22

Deleted neighborhood, 525

Dense set, 6, 29 (Exercise 1.3.22), 70 (Ex-

ercise 2.2.10)

Density of the rationals, 6, 392 (Esercise 6.2.11)

Density of the irrationals, 6

Denumerable set, 176

Derivative, 73

of a composite function, 77

directional, 317

infinite, 88 (Exercise 2.3.26)

of an inverse function, 86 (Exercise 2.3.14)

left-hand, 79

nth, 73

one-sided, 79

ordinary, 317

partial, 317

of a power series, 261–262

right-hand, 79

r th order, 319

second, 73

of a sum, difference, product, and

quotient, 77

zeroth, 73

Determinant, 368 (see p. 369)

expanding in cofactors, 371–372

of a product of square matrices, 370

Diameter of a set, 292, 586

Difference quotient, 73

Differentiability

of a composite function, 340

continuous, 329

of a function of one variable, 73

of a function of several variables, 323

of the limit of a sequence, 243

of a power series, 260–262

of a series, 252

Differentiable 73, 323

continuously, 73, 80, 409

curve, 453
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function, continuity of, 76, 325, 385

on an interval, 80

on a set, 73

surface, 453

transformation, 380

vector-valued function, 339

Differential, 326

higher, 348

of a linear transformation, 367

matrix, 367, 381

of a real-valued function, 326

of a sum, difference, product, and

quotient, 328

of a transformation, 381

Differential equation, 170–171

(Exercises 3.4.27–3.4.29)

Directional derivative, 317

Dirichlet’s test

for improper integrals, 163

for series of constants, 217

for uniform convergence of series,

248

Disconnected set, 295

Discontinuity

jump, 56

removable, 58

Discrete metric, 519

Disjoint sets, 20

Distance

in a metric space, 518

from a point to a set, 301

(Exercise 5.1.24)

between subsets of a metric space,

549 (Exercise 8.3.3)

between two sets, 301

(Exercise 5.1.25)

between two vectors, 283

Distributive law, 2 (see p. 1)

Divergence, unconditional, 233

(Exercise 4.3.38)

Divergent improper integral, 152

Divergent sequence, 179

Divergent series, 201

Domain of a function, 31 (see p. 30), 545

Double integral, 438

E
Edge lengths of a coordinate rectangle,

437

Elementary matrix, 488

Empty set, 4

Entries of a matrix, 364

�-neighborhood, 21, 289, 525

�-net, 539

Equicontinuous subset of CŒa; b�, 541

Equivalent metrics, 530

Error in approximating derivatives, 112

(Exercises 112–112)

Euclidean n-space, 282 (see p. 281)

Euler’s constant, 230 (Exercise 4.3.14)

Euler’s theorem, 357–358 (Exercise 2.4.8)

Existence of an improper integral, 152

Existence theorem, 420

Expanding a determinant, 362–372

Exponential function, 70 (Exercise 2.2.12),

72 (Exercise 2.2.33), 228, 273

Extended mean value theorem, 106

Extended reals, 7,

Exterior point, 289, 526

Exterior of a set, 23, 289, 526

F
Faa di Bruno’s formula, 109

(Exercise 2.5.11)

Fibonnacci numbers, 17 (Exercise 1.2.17)

Field

complete ordered, 4

ordered, 2

properties, 2 (see p. 1)

Finite real, 7

First mean value theorem for integrals,

139

Forward differences, 104, 71 (Example 2.2.18),

112 (Exercises 2.5.19–2.5.22)

Fredholm’s integral equation, 548

Function 31, 32

absolutely integrable, 160

Bessel, 277 (Exercise 277)

bounded, 47, 60, 313

above, 60, 313

below, 60, 313
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of bounded variation, 134 (Exercise 3.2.7)

characteristic, 70 (Exercise 2.2.9), 485

composite, 58, 311

decreasing, 44

differentiable at a point, 73, 323

domain of, 31, 32

exponential, 70 (Exercise 2.2.12), 72

(Exercise 2.2.33), 227, 273

generating, 278 (Exercise 4.5.26)

homogeneous, 357 (Exercise 5.4.8)

increasing, 44

infimum of, 55, 313

inverse of, 68

linear, 325

locally integrable, 152

maximum of, 60

monotonic, 44, 67

nondecreasing, 44

nonincreasing, 44

nonoscillatory at a point, 162

nth power of, 33

oscillation of, 171

piecewise continuous, 56

range of, 31, 32

rational, 33, 232, (Exercise 4.3.28),

276 (Exercise 4.5.4)

real-valued, 302

restriction of, 399

Riemann integrable, 114, 438

Riemann–Stieltjes integrable, 125

strictly monotonic, 44

supremum of, 313

value of, 31, 32

vector-valued, 311

Functions,

composition of, 58, 311

difference of, 32

product of, 32

quotient of, 32

sum of, 32

Fundamental theorem of calculus, 143

G
Generalized mean value theorem, 83

Generating function, 278 (Exercise 4.5.26)

Geometric series, 202

Grouping terms of series, 220

H
Heine–Borel property,

Heine–Borel theorem, 172, 66, 172, 293

Higher derivatives of a composite func-

tion, 345

Higher differential, 348

Homogeneous function, 357 (Exercise 5.4.8),

359 (Exercise 5.4.23)

Homogeneous polynomial, 359 (Exercise 5.4.22),

Homogeneous system, 375

Hypercube, 295 (see p. 294)

Hölder’s inequality, 521

I
Identity matrix, 370

Image, 394

Implicit function theorem, 420, 423

Improper integrability, 146

Improper integral, 152

absolutely convergent, 160

change of variable in, 164

conditionally convergent, 162

convergence of, 152

divergence of, 152

existence of, 152

of a nonnegative function, 156

Incompleteness of the rationals, 6

Increasing sequence, 182

Indeterminate forms, 91, 93–95

Induction assumption, 12

Induction proof, 12

Inequality,

Hölder, 521

Minkowski, 522

Schwarz, 284

triangle, 2, 285

Infimum

of a function, 60, 313

of a set, 7

existence and uniqueness of, 7, 9

(Exercise 1.1.6)
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Infinite derivative, 88 (Exercise 2.3.26)

Infinite limits, 42, 306, 317, 316(Exercise 5.2.6)

Infinite sequence, 179

in a metric space, 526

Infinite series, 210, 244

convergence of, 201

integrability of, 251

oscillatory, 201

Infinity norm, 496, 523, 524

Inner product, 284

Instantaneous

rate of change, 74

velocity, 74

Integrability

conditional, 162

of a continuous function, 133

of a function of bounded variation,

134 (Exercise 3.2.7)

improper, 152

of an infinite series, 251

local, 152

of a monotonic function, 133

of a power series, 264

Integrable

Riemann, 114, 438

Riemann–Stieltjes, 125

Integral

over an arbitrary set in R
n, 452

of a constant times a function, 136,

456

double, 439

improper, 151

iterated, 462

lower

for Riemann integral, 120, 442

for Riemann–Stieltjes integral 128

(Exercise 3.1.17)

multiple, 439

ordinary, 439

of a product, 138, 456

proper, 153

over a rectangle in R
n, 436 (See p. 435)

Riemann, 114, 438

Riemann–Stieltjes, 125, 127 (Exer-

cise 3.1.16), 135 (Exercises 3.2.8–

3.2.10), 151 (Exercise 3.3.23)

over subsets of R
n, 436 (See p. 435),

450, 452, 471–472

of a sum, 136, 456

test, 207

triple, 439

Integration by parts, 144

for Riemann–Stieltjes integrals, 135

(Exercise 3.2.8)

Interior of a set, 21, 289

Interior point, 21, 289, 525

Intermediate value theorem

for continuous functions, 63, 313

for derivatives 82

Intersection of sets, 20

Interval

closed, 23

half closed, 23

half open, 23

open, 21

semi-infinite, 21, 23

Interval of convergence, 258

for derivatives, 82

Inverse function, 68

branch of, 409

derivative of, 86 (Exercise. 2.3.14)

of a function restricted to a set, 399

of a matrix, 370

of a transformation, 396

Inverse function theorem, 412

Invertible, locally, 400

Invertible transformation, 396

Irrational number, 6

Isolated point, 23, 289, 526

Iterated integral, 462

Iterated logarithm, 97 (Example 2.4.42),

167 (Exercise 3.4.10), 208 230

(Exercise 4.3.11), 230 (Exercise 4.3.16)

J
Jacobian, 384, 426

Jordan content, 485

changed by linear transformation, 488
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Jordan measurable set, 485, 488

Jump discontinuity, 56

L
Lebesgue measure zero, 175, 177 (Exer-

cises 3.5.7, 3.5.8)

Lebesgue’s existence criterion, 176

Left limit inferior, 47

Left limit superior, 47

Left-hand derivative, 79

Left-hand limit, 38

Legendre polynomial, 278 (Exercise 4.5.27)

Leibniz’s rule, 86, (Exercise. 2.3.12)

Length of a vector, 283

l’Hospital’s rule, 88

Limit of a real-valued function, 302

Limit

along a curve, 315 (Exercise 5.2.3)

in the extended reals, 43

inferior of a sequence, 188

left, 47

infinite, 42, 306, 316 (Exercise 5.2.6)

at infinity, 307, 316 (Exercise 5.2.6)

left-hand, 38

one-sided, 37, 40

point, 23, 289, 526

pointwise, 234, 238, 244

at ˙1, 40

of a real-valued function

as x approaches x0, 34

as x approaches1, 40

as x approaches �1, 50 (Exer-

cise 2.1.14)

right-hand, 39

of a sequence, 179, 292

uniqueness of, 35, 305

of a sum, product, or quotient, 35,

305

superior, left, 47

superior of a sequence, 188

uniform, 237

uniqueness of, 35, 305

Line segments in R
n, 288

Line, parametric representation of, 288–

289

Linear function, 325

Linear transformation, 362

change of content under, 490

differential of, 367

matrix of, 363

Lipschitz condition, 84, 87 (Exercise 2.3.24),

140

Local extreme point, 80, 334

Local extreme value, 80

Local integrability, 152

Local maximum point, 80, 334

Local minimum point, 80, 334

Locally invertible, 400

Lower bound, 7

Lower integral, 120, 442

Lower sum, 120, 442

M
Maclaurin’s series, 264

Magnitude, 2

Main diagonal of a matrix, 370

Mathematical induction, 10, 13

Matrices

product of, 364

sum of, 364

Matrix

adjoint, 370

of a composition of linear transfor-

mations, 366

differential, 367, 381

elementary, 488

identity, 370

inverse, 370

of a linear transformation, 363

main diagonal of, 370

nonsingular, 370

norm of, 368

scalar multiple of, 364

singular, 370

square, 368 (See p. 369)

transpose of, 370

Maximum value, local, 80

Maximum of a function, 60

Mean value theorem, 83, 347

extended, 106
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generalized, 83

for integrals, 138, 144

Metric, 518

discrete, 519

induced by a norm, 520

Metrics, equivalent, 530

Metric space, 518

complete, 527

connected, 549 (Exercise 8.3.2)

Minimum of a function, 60

Minimum value, local, 80

Minkowski’s inequality, 522

Monotonic function, 44, 67, 84

integrability of, 133

Monotonic sequence, 182

Multinomial coefficient, 322, 336 (Exer-

cise 5.3.12)

Multiple integral, 439

Multiplication

of matrices, 364

of series, 223

scalar, 519

Multiplicityof a zero, 87 (Exercise. 2.3.21),

108 (Exercises 2.5.5–2.5.7)

N
Natural numbers, 10

n-ball, 290–291

Negative definite polynomial, 353

Negative semidefinite polynomial, 353

Neighborhood, 21, 289, 525

deleted, 22, 525

deleted �, 22

�, 21

Nested sets, 292, 530

principle of, 292, 530

Nondecreasing sequence, 182

Nondegenerate coordinate cube, 437

Nondenumerable set, 176

Nonempty set, 4

Nonincreasing sequence, 182

Nonoscillatory at a point, 162

Nonsingular matrix, 370

Nontrivial solution, 375

Norm

infinity, 496, 523, 524

of a matrix, 368

metric induced by, 520

of a partition, 114, 437

on a vector space, 519

Normed vector space, 519

nth derivative, 73

nth partial sum of a series, 201

nth term of a series, 201

Number, natural, 10

Number, prime, 15

O
One-sided derivative, 79

One-sided limit, 37

One-to-one transformation, 396

Open ball, 525

Open covering, 25, 293, 536

Open interval, 21

Open n-ball, 290

Open set, 21, 289, 525

Ordered field, 2

complete, 4

Order relation, 2

Ordinary derivative, 317

Ordinary integral, 439

Origin of R
n, 283

Oscillation of a function, 171

at a point, 172

Oscillatory infinite series, 201

P
Parametric representation of a line, 288,

289

Partial derivative, 317

r th order, 319

Partial sums, 244

Partition, 114, 437

norm of, 114, 437

points, 114

refinement of, 114, 438

Path, polygonal, 296

Peano’s postulates, 10–11

Piecewise continuous function, 56

Point, 19
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boundary, 23, 289, 526

critical, 81, 335

exterior, 23, 289, 526

at infinity, 7

interior, 21, 289

isolated, 23, 289, 526

limit, 23, 289, 526

local extreme, 80, 334

local maximum, 80, 334

local minimum, 80, 334

in terms of sequences, 197

Pointwise convergence

of a sequence of functions, 234, 238

of a series, 244

Pointwise limit, 234, 238, 244

Polar coordinates, 397, 502, 505

Polygonal path, 296

Polygonally connected, 296

Polynomial, 33, 98

homogeneous, 352

negative definite, 353

negative semidefinite, 353

positive definite, 353

positive semidefinite, 353

semidefinite, 353

Taylor, 99, 351

Power series, 257

arithmetic operations with, 267

continuity of, 260–261

convergence of, 257

differentiability of, 260–261

integration of, 264

of a product, 268

of a reciprocal, 271

of a quotient, 269

uniqueness of, 263

Prime, 15

Principal value, 155

Principle of mathematical induction, 11,

14

Principle of nested sets, 530

Product

Cartesian, 31, 436 (see p. 435)

Cauchy, 226, 233 (Example 4.3.40)

inner, 284

of matrices, 364

of power series, 268

of series, 223

Proper integral, 153

R
R

n, 282 (see p. 281)

r th order partial derivative, 319

Raabe’s test, 212

Radius of convergence, 258

Range of a function, 31, 32, 545

Ratio of a geometric series, 202

Ratio test, 210

Rational function, 33, 232 (Exercise 4.3.28),

276 (Exercise 4.5.4)

Rational numbers, 2

density of, 6

incompleteness of, 6

Real line, 19

Real number system, 19

Real-valued function,

of n variables, 302

of a real variable, 31

Reals, extended, 7

Rearrangement of series, 221

Rectangle, coordinate, 437

Refinement of a partition, 114, 438

Region, 295, 297

Region of integration, 476

Regular transformation, 405

Remainder in Taylor’s formula, 405

Removable discontinuity, 58

Restriction of a function, 399

Riemann integrable, 114, 438

Riemann integral 114 (see p. 113), 438

uniqueness of, 125 (Exercise 3.1.1)

Riemann sum, 114, 438

Riemann–Stieltjes integral, 125

integration by parts for, 135 (Exer-

cise 3.2.8)

Riemann–Stieltjes sum, 125

Right limit inferior, 53 (Exercise 2.1.39)

Right limit superior, 53 (Exercise 2.1.39)

Right-hand derivative, 79

Right-hand limit, 39
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Rolle’s theorem, 82

S
Scalar multiple, 282

Scalar multiplication, 519

Schwarz’s inequality, 284

Secant plane, 332–333

Second derivative, 73

Second derivative test, 103

Second mean value theorem for integrals,

144

Sequence, 179, 526

bounded, 181, 292

bounded above, 181

bounded below, 181

Cauchy, 527

convergence of, 179, 292, 526

decreasing, 182

divergent, 179

to˙1, 181

of functional values, 183

of functions,

pointwise, 234

increasing, 182

limit of, 179, 292

uniform, 237

limit inferior of, 188

limit superior of, 188

monotonic, 182

nondecreasing, 182

nonincreasing, 182

nth term of, 179

terms of, 179

unbounded, 292

uniformly convergent, 237

Series

alternating, 203

binomial, 266

Cauchy product of, 226, 233 (Exer-

cise 4.3.40), 280 (Exercise 4.5.32)

differentiability of, 252

divergent, 201

geometric, 202

grouping terms in, 220

Maclaurin, 264

multiplication of, 223

of nonnegative terms, 205

partial sums of, 244

power, 257

product of, 218

rearrangement of, 221

Taylor, 223

term by term differentiation of, 252

term by term integration of, 251

uniformly convergent, 246

Set

boundary of, 23, 289, 526

bounded, 7, 537

above, 3

below, 7

closed, 21, 289, 525

closure of, 23, 289, 526

compact, 26, 293, 537

complement of, 20

connected, 295

containment of, 19

content of, 485

dense, 6, 29 (Example 1.3.22), 70

(Exercise 2.2.10)

denumerable, 176

diameter of, 292, 537

disconnected, 295

empty, 4

exterior of, 23, 289, 526

interior of, 21, 289, 525

nondenumerable, 176

nonempty, 4

open, 21, 289, 525

singleton, 20

strict containment of, 20

subset of, 19

totally bounded, 539

unbounded below, 7

uniformly bounded, 541

universal, 19

Sets

disjoint, 20

equality of, 19

intersection of, 20

nested, 530
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union of, 20

Simple zero, 108 (Exercise 2.5.5)

Singleton set, 20

Singular matrix, 370

Solution of a system of linear equations

nontrivial, 375

trivial, 375

Space

metric, 518

vector, 519

Spherical coordinates, 507

Square matrix, 368 (see p. 369)

Subsequence, 195

of a convergent sequence, 196, 527

Subset, 19

Subspace of a vector space, 519

Successor, 11

Sum

of matrices, 364

Riemann, 114, 438

lower, 120, 442

upper, 120, 442

Riemann–Stieltjes, 125

of vectors, 282

Summation by parts, 218

Supremum

of a function, 60, 313

of a set, 3

existence and uniqueness of, 4

Surface, 331

differentiable, 453

T
Tangent

to a curve, 75

line, 75

plane, 332

Taylor polynomial, 99, 351

of a composite function, 109 (Exer-

cise 2.5.11)

of a product, 109 (Exercise 2.5.10)

of a reciprocal, 110 (Exercise 2.5.12)

Taylor series, 264

convergence of, 264

Taylor’s theorem

for functions of n variables, 350

for a function of one variable, 104

Terms of a sequence, 179

Term by term differentiation, 252

Term by term integration, 251

Test

Cauchy’s root, 215

comparison

for improper integrals, 156

for series, 206

integral, 207

Raabe, 212

ratio, 210

second derivative, 103

Topological properties of R
n, 282 (See

p. 281)

Topological space, 26

Total variation, 134 (Exercise 3.2.7)

Totally bounded, 539

Transformation, 362

affine, 380

analytic, 416 (Exercise 6.3.17)

continuous, 379

differentiable, 339, 379–380

differential of, 381

inverse of, 396

invertible, 396396

linear, 362

one-to-one, 396

regular, 405

Transitivity of <, 31

Transpose of a matrix, 370

Triangle inequality, 2, 285

in a metric space, 518

Triple integral, 439

Trivial solution, 375

U
Unbounded

above, 7

below, 7

sequence, 292

Unconditional divergence, 233 (Exercise 4.3.38)

Uniform continuity, 64, 72 (Exercises 2.2.30–

2.2.32), 546
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for functions of n variables, 314, 392

(Exercise 6.2.10)

Uniform convergence

properties preserved by

continuity, 242

differentiability, 243

integrability, 242

of a sequence, 236

of a series, 246

Uniformly bounded set in CŒa; b�, 541

Union of sets, 20

Uniqueness

of infimum, 7

of limit, 35, 305, 527

of power series, 263

of prime factorization, 16 (Exercise 1.2.14)

of Riemann integral, 125 (Exercise 3.1.1)

of supremum, 4

Uniform continuity, 64, 66, 72 (Exercises 2.2.30–

2.2.32)

Unit vector, 283

Universal set, 19

Upper bound, 3

Upper integral, 120, 442

Upper sum, 120, 442

V
Value

of a function, 31, 32

local maximum, 80

local minimum, 80

principal, 155

Variation, total, 134 (Exercise 3.2.7)

Vector, 283, 519

Vector space, 283, 519

normed, 519

subspace of, 519

Vector sum, 282

Vector, unit, 283

Vector-valued function, 362 (see p. 361)

continuous, 379

differentiable, 379–380

W
Weighted average, 139

Weierstrass’s test, 246

Z
Zero content, 448, 460 (Exercises 7.1.14,

7.1.15), 461 (Exercises 7.1.16–

7.1.19), 487, 514 (Exercise 7.3.2),

515 (Exercise. 7.3.11)

Zero

multiplicityof, 108 (Exercises 2.5.5–

2.5.7)

simple 108 (Exercise 2.5.5)

Zeroth derivative, 73
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