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Abstract

Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in 

membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor 

shell method to classify and characterize lipid domains into discrete concentric lipid shells 

surrounding membrane proteins in structurally heterogeneous lipid membranes. This method 

needs only the coordinates of the system and is independent of force fields and simulation 

conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid 

disruption profiles of three simulated membrane systems: phosphatidylcholine, 

phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed 

different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, 

several lipid fractional groups and lipid-interfacial water did not converge to their control values 

with increasing distance or shell order from the protein. This volume divergent behavior was 

confirmed by bilayer thickness and chain orientational order calculations. Our method can also be 

used to analyze high-resolution structural experimental data.
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I. INTRODUCTION

Protein/lipid interactions play a key role in regulating the structure and function of cell 

membranes [1–4]. For membrane-active amyloidogenic proteins, a quantitative 

understanding of the protein-induced lipid disruption behavior upon their insertion into the 

lipid bilayer provides useful insights into the cytolytic mechanisms of these proteins in cells 

[5]. Protein-induced lipid disruptions can be quantified experimentally and computationally 

by examining the structure and dynamics of lipids surrounding the protein [6–10].

Lipids in the presence of a membrane-inserted protein are classified into two classes, 

annular and non-annular lipids [6]. Annular lipids are those lipids nearest to the inserted 

protein and non-annular lipids are those that are not. The structural and dynamical properties 

of these two lipid classes could be compared with those of the bulk lipids. Bulk lipids are 

lipids in the lipid bilayer of identical composition but in the absence of protein. As expected, 

the inserted protein perturbs the structure [6, 9, 11] and dynamics [8] of the annular lipids 

more than the non-annular and bulk lipids. However, two key questions remain unresolved. 

First, how do we further classify the non-annular lipids based on their proximity to the 

annular lipids in a simulation system of limited size? Second, how do we quantify the 

progressive recovery of the structure of non-annular lipids with increasing distance from the 

protein at the atomic and molecular level?

Molecular Dynamics (MD) simulations are useful tools to address the above questions on 

protein-induced disruption on lipids due to the high spatial resolution (~ 0.01 Å) and well-

defined chemical composition and structure of the protein/lipid membranes. Previous 

simulation studies on pure lipid bilayers have demonstrated that the time-averaged volume 

and surface area per lipid, membrane thickness, order parameter, and domain size of the 

bulk lipids compared favorably with those from experiments [12–21]. In the presence of 

protein, different analytical tools based on the grid-method [22], Voronoi tessellations (VT) 

[2], Monte Carlo (MC) Integration [10] and hybrid VT and MC integration [23] have been 

proposed to study protein/lipid interactions. In most cases, a two-dimensional projection of 

the protein and lipid atoms or molecules on the bilayer plane was used to classify the 

annular and non-annular lipids. In addition, most previous studies were focused on the lipid 

surface area, number density profile, order parameter, and membrane thickness at the whole 

lipid level. At present, very little is known about the atomistic volume of the perturbed lipids 

in classified annular and non-annular lipid regions.

In this study, we used a recently established three-dimensional, cell-based VT algorithm 

(Voro++) [24, 25] to classify and characterize protein-induced lipid disruptions in MD 

simulated lipid bilayers containing large number of atoms with periodic boundaries. Our 

simulated membrane systems consisted of a model membrane-inserted peptide, beta-

amyloid (Aβ), in a fully hydrated binary phosphatidylcholine/cholesterol (PC/CHOL) 

bilayer and two controls, fully hydrated PC and PC/CHOL bilayers but without protein. The 
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use of the VT-derived nearest-atom-neighbor-list of each atom allowed us to classify all the 

lipids in the Aβ/PC/CHOL bilayer into a single annular lipid shell and multiple non-annular 

lipid shells. Upon comparing the VT-derived volume of each atom in the lipid shells and the 

bulk lipids in control bilayers, we explored the volumetric perturbations of CHOL and 

protein, separately, and examined the recovery behavior of non-annular lipid perturbations at 

both atomic and molecular levels. Independent biophysical measurements in terms of 

membrane thickness and lipid orientational order calculations on identical lipid shells were 

further performed to confirm the VT-based perturbation recovery behavior.

The major goals of this study are to demonstrate that the Voronoi tessellation (VT) - based 

atomic volumetric distribution analysis of lipid shells is a useful methodology to study lipid/

protein interactions, independent of force fields and simulation conditions, of protein-lipid 

simulated systems. In addition, the results of the VT analysis in simulated membranes might 

provide useful insights into revealing the complex lipid disruption mechanisms induced by 

membrane-active proteins in the crowded environment of biological cell membranes at the 

single-molecule level. Using previously published data, this study provides a proof-of-

concept of the abilities of this analytical method to validate the cholesterol condensing effect 

on lipid membranes and provide new insight into the non-uniform effect of protein on the 

atomic volume and biophysical properties of lipids.

Current interests in membrane biochemistry and biophysics have led to simulations of 

increasingly complex heterogeneous lipid membranes involving multiple lipids, water, and 

proteins. Traditional analysis methods often lack sensitivity to clearly distinguish spatial 

correlations that indicate associations or patterns in nanostructure. As simulation complexity 

increases, ideas from methods of the mechanics of heterogeneous material in which 

macroscale properties are predicted from microscale organization and interaction [26] such 

as the VT analysis will have increased utility. Meso-scale mechanical and electrical 

properties of the membrane will depend on the geometric arrangement and atomic 

interaction of membrane components. Techniques like VT provide a foundation to link 

atomic and mesoscale properties and so will provide clearer physical chemical 

understanding of the role of membrane structure. Here we demonstrate VT as applied to 

compute atomic volume, but its usage may also elucidate a host of other properties including 

meso-scale mechanical processes, including membrane permeability, membrane 

deformation and perturbation, protein association, and membrane invagination, as few 

examples.

II. MATERIALS AND METHODS

A. Lipid structures and atom types

Figure 1 shows the schematics of 1-palmitoyl-2-oleoyl-PC and CHOL lipids with each atom 

labeled by a unique atom type [15, 27] from the force fields. Note that all non-polar 

hydrogen atoms are excluded in the united-atom lipid model [28]. The lipid chemical 

structures are also illustrated for comparisons. PC is divided into 5 structural regions: 

choline, phosphate, interface (glycerol backbone, ester oxygen, and carbonyl groups), 

saturated C16:0 sn-1 chain, and unsaturated 18:1 sn-2 chain. CHOL is grouped into 3 

structural regions: polar, four fused rings, and chain. Two distinctive atom groups of PC: 
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terminal methyl (CH3 groups) of both chains and unsaturated C=C of the sn-2 chain, are also 

highlighted. Note that the numbering of atoms and atom names in this study are based on the 

published protein data bank (PDB) files [27, 29] and do not follow IUPAC-approved 

convention and nomenclature. A comparison of the IUPAC-atom labeling and the PDB 

united atom labeling as well as a conversion table are given in Supporting Material, Figure 

S1 and Table S1.

B. Protein primary structures

A 40-residue long Aβ was our model transbilayer protein for investigating protein-induced 

lipid disruptions in lipid membranes. Its primary sequence [30] is: H-Asp-Ala-Glu-Phe-Arg-

His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-

Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-Val-Val-OH. This protein has 

two domains: N-terminal (Asp1 to Asn27) and C-terminal (Lys28 to Val40). A hydrophobic 

domain spanning Gly29 to Val39 capped by the positively charged Lys28 and negatively 

charged C-terminus (protonated Val40) is in bold above. At neutral pH, Aβ has a net charge 

of −3.

C. MD Simulations

Three MD simulated membrane systems: Aβ/PC/CHOL, PC/CHOL, and PC, were analyzed. 

All simulations were performed in the presence of water. The Aβ/PC/CHOL bilayer 

comprised one Aβ, 574 PC, 383 CHOL, 211,989 water and 3 counter Na+ ions (initial 

system size = 13.5 × 15.6 × 14.0 nm3). The control PC/CHOL bilayer comprised 576 PC 

and 68,809 water molecules (initial system size = 13.6 × 14.8 × 11.6 nm3). The control PC 

bilayer comprised 576 PC, 384 CHOL, and 60,457 water molecules (initial system size = 

13.2 × 14.4 × 11.7 nm3). A 200-ns molecular dynamics (MD) simulation with a rectangular, 

or x-, y- and z-, periodic boundaries for each bilayer system was performed at 1 atmospheric 

pressure and a temperature of 300K with a 2 fs time step using a modified GROMOS87 and 

Berger lipid force fields.[29, 31, 32] Detailed procedures and conditions of the atomistic 

MD simulations of these systems have already been described in detail in our previous study 

[9]. The Berger force field is a united-atom force field in which CH, CH2 and CH3 atoms of 

the PC and CHOL are modeled as single methine-, methylene-, or methyl-group particles, as 

demonstrated in Figure S1 of Supporting Material. For the Aβ/PC/CHOL bilayer used in our 

analysis, the protein was initially (time = 0 ns) in the partially inserted state with ~33% α-

helix in the N-terminal and 23% α-helix in the C-terminal. During the 200 ns simulation 

time, the protein descended into the bilayer, underwent partial unfolding and ended up in a 

fully inserted-state with ~22% alpha-helix, 6% beta-sheet in the N-terminal and no ordered 

structure in the C-terminal [9]. The equilibrated and stable inserted-state trajectory in the last 

30 ns was analyzed in this VT-based study. This time window was chosen because it is long 

compared with individual atomic interactions, such as hydrogen bonding [33], but short 

compared to our simulation time and mesoscale processes such as lipid domain formation. 

The final simulated structures of protein, water, and lipids in the Aβ/PC/CHOL bilayer are 

illustrated in Figure 1D. As controls, the last 30 ns-trajectories of PC and PC/CHOL bilayers 

under identical simulations conditions were also analyzed using identical algorithms. The 

trajectories of the three simulation systems and the protein insertion dynamics have been 

published [9]. The choice of the Aβ/PC/CHOL bilayer for our new proof-of-concept 3D VT 
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analysis was based on its large disruptive effect to bulk membrane structures when 

compared with other simulation systems in our previous non-VT based studies [9, 34].

D. Three-dimensional Voronoi tessellations of MD simulated membranes

We employed a three-dimensional Voronoi tessellation computational approach to study 

protein-induced lipid disruptions. A brief description of the theory underlying this 

methodology is given here.

Given a set of N particles or generators on a domain Ω, a Voronoi tessellation (VT) divides 

Ω into exactly N Voronoi cells. Each Voronoi cell is associated with one particle or a unique 

generator. Any point inside a given Voronoi cell is closer to its own generator than any other 

generators. Given a generator Zi (i = 1,…,N), its nearest-neighboring generators Zk (k = 1,

…,N and k ≠ i) are those whose Voronoi cells share boundaries with the Voronoi cell of Zi. 

In this pilot study, we used two types of Voronoi diagrams: a regular VT where distance is 

defined by a Euclidean distance and a radical or power VT whose generator Zi has its own 

weight w(Zi). For the latter case, the distance from a point X to the generator Zi is defined as 

the square of their Euclidean distance minus the square of w(Zi). More detail about Voronoi 

tessellations can be found in the surveys [35–37].

We denote a regular VT as non-weighted VT and a radical VT as weighted VT. In our 

simulations, each atom represents a generator and its van der Waals radius is considered as 

its weight. Examples of 2D and 3D regular VT-based VT cells are shown in Figures 2A and 

2B respectively. In Figure 2A, a two-dimensional (2D) square domain Ω contains twelve 

randomly generated particles in black circles (N = 12). A 2D VT method divides this square 

domain Ω into twelve Voronoi polygons or 2D cells with blue boundaries. The generator Z1 

with its yellow Voronoi region has six nearest neighbors (Z2 to Z7) with different colored 

Voronoi regions. In Figure 2B, a three-dimensional (3D) cube Ω contains disperse small 

particles [25]. A 3D VT method divides this cube domain Ω into Voronoi polyhedra or 3D 

cells with flat faces as shown in Figure 2B. In both 2D and 3D regular VT, the line or planes 

between two nearest particle neighbors form the 2D and 3D bisectors, respectively, of the 

line joining these two particles. It is important to note that no two Voronoi cells overlap, 

except for the points on bisectors. So the VT cells span the entire domain Ω, and the sum of 

the volumes of the VT cells equals to the volume of the Ω.

Rendering of 3D VT cells of the atoms of PC and cholesterol lipids is illustrated in Figures 

2C and 2D, respectively. The color codes are identical to those used in Figures 1A and 1B, 

respectively. Additionally, the first nearest-neighbor lipids and water of the protein in the 

Aβ/PC/CHOL bilayer based on 3D VT are also demonstrated in Figure 2E.

We employed a recently established 3D VT algorithm (Voro++) [24, 25]. The Voro++ 

algorithm offers three distinctive features adaptable to our large 3D simulated membrane 

systems. These features are: (i) Efficient cell-based computations: Voro++ computes each 

Voronoi cell associated with each generator individually rather than computing the complete 

Voronoi cells or Voronoi diagram as a single computing object. This approach allows 

efficient, computation of cell-based statistics, such as cell volume, number of vertices per 

cell, and nearest-neighbor list, (ii) 3D calculations with periodic boundary conditions: Voro
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++ supports periodic boundary conditions. This feature is important to compute cell-based 

statistics of any simulated system involving x-, y- and z- periodic boundary conditions as in 

our simulated membranes, and (iii) weighted and non-weighted features: Voro++ can 

construct Voronoi diagram with or without van der Waals radii (weight) which allows us to 

analyze the volume discrepancies in different cases. In this study, two key cell-based 

statistical parameters, nearest-atom-neighbor list and atomic volume, have been generated 

for every atom of the simulated membrane at a given time frame of the MD simulation using 

an in-house Java-based program that incorporates the Voro++ functions on nearest-atom-

neighbor list and atomistic volume. The program will be available to public after an initial 

publication of this pilot study. Note that Voro++ has been used in several biophysical and 

biochemical molecular modeling studies, particularly in micelle systems.[38–41] This work 

focuses on 3D lipid shell isolation and analysis.

E. Lipid bilayer thickness and segmental orientation order

The transbilayer, or z-dependent, number density profiles of various lipid polar groups were 

calculated to determine the lipid membrane thickness. Here, a center point along the z-

direction (bilayer normal) of the upper and lower leaflets was determined. Then, 50 z-slices 

of 1Å thickness above and 50 z-slices of 1Å thickness below this center point were 

constructed, for a total of 100, 1Å z slices. The number density in nm−3 of the interested 

lipid polar group (= the number of atoms of the selected group inside each z-slice divided by 

the volume of the slice) as a function of the z-location of each z-slice was computed at each 

time frame of the trajectory. Here, the volume of each slice is defined as the height of each 

slice, 1Å, multiplied by the x and y dimensions of the simulation box. The peak-to-peak z-

distance between two well-resolved number density distributions from the lower and upper 

lipid monolayers was subsequently used to quantify the membrane thickness associated with 

the selected polar group at each time frame.

An order parameter <P2> was used to quantify the segmental orientation order of PC and 

CHOL [29]. Here <P2> is defined as (3<cos2θ> − 1)/2. For the PC acyl chain, <P2> vs. 

carbon number of the chain was calculated. Here, θ is the angle between the z-axis and the 

vector (ri−1 – ri+1) joining the nearest-neighbor (i−1)th and (i+1)th carbons at ri−1 and ri+1 

on each side of the ith carbon atom at ri. The square bracket denotes the average over all the 

participating lipids. For CHOL, a single order parameter was determined. Here, θ is the 

angle between the z-axis and the vector connecting C5 to C21, i.e., along the long axis of the 

sterol rings. All lipid order parameters were calculated using the g-order function of 

GROMACS [42] at each time frame of the trajectory.

III. RESULTS

Time-averaged volumetric and biophysical properties of the lipid bilayers from three 

membranes, Aβ/PC/CHOL, PC/CHOL, and PC, over the last 30 ns (170 to 200 ns with 1 ns 

increment) of the MD trajectories were computed. Each data point represents the mean ± 

standard error of the mean (SE), where SE is standard deviation/N1/2 with sample size N = 

30. We assume that each of the time frames in our analysis is independent of the other 

frames. The true errors of the calculation are likely to be larger.
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A. Classification of VT shells

Classification of VT lipid shells refers to the method of sorting lipid molecules into different 

shells according to their proximity to the inserted protein in the Aβ/PC/CHOL membrane. 

The nearest-atom-neighbor lists of the protein and lipid atoms calculated from Voro++ [24, 

25] were used to classify lipids into VT lipid shells. Each shell had a unique shell order (n).

The first-order (n = 1) VT lipid shell consisted of lipid molecules that were nearest 

neighbors to the protein (see Figure 2E). A nearest neighbor was determined by a lipid 

selection criterion that at least one atom of the lipid in the first shell must be on the nearest-

atom-neighbor list of at least one protein atom. For higher-order VT lipid shells (n ≥ 2), the 

selection criterion was that at least one of the lipid atoms of each lipid in the nth lipid shell 

must be on the nearest-atom-neighbor list of any lipid atom from the previous (n−1)th lipid 

shell. The selection of shells was performed for each time frame.

Both weighted and non-weighted VT methods from Voro++ [24, 25] were used in this work. 

The classical VT or non-weighted VT neglects atomic radii and only the coordinates of each 

atom atoms are considered. On the other hand the radical or weighted VT considers the van 

der Waals radii to weight the atom boundaries according to the relative radii of the atoms.

Figure 3A illustrates the lateral view, i.e. along the surface of the planar lipid bilayer in the 

x-y plane, of all lipid atoms in separated lipid shells at the last time frame (200 ns) of the 

simulated Aβ/PC/CHOL membrane using weighted VT method. Different orders of VT lipid 

shells are color-coded in blue (1st shell), red (2nd shell) black (3rd shell), orange (4th shell), 

yellow (5th shell), dark green (6th shell), gray (7th shell) and light green (8th shell) for 

visualization. Due to the rectangular periodic boundary conditions along the x-, y- and z-

directions in the simulations, the lipids on the simulation box edges were in contact with 

those on the opposite edge along the same axis. Therefore, four repeating simulation boxes 

are displayed to reflect these periodic boundary conditions along the x- and y-directions. 

Figure 3C shows the transverse view, i.e., along the mid x-z cross-section perpendicular to 

the planar bilayer surface, of the separated lipid shells, using the same color codes as the 

above lateral view. Only six lipid shells (n = 1 to 6) are visible. Again, because of the 

periodic boundary, two repeating simulation boxes along the x-direction are demonstrated. 

Results generated from the non-weighted VT method are shown in Figure S2 of Supporting 

Material.

Separated VT lipid shells revealed two types of lipid shells, annular and non-annular. The 

annular lipid shell was the single, first-order (n = 1) lipid shell in which all the constituent 

lipids were nearest to the protein at the single atom level. As shown in Figure 3A, this 

annular lipid shell exhibited non-uniform surface contour following the transmembrane 

shape of the protein that came in contact with the lipids. The non-annular lipids were 

higher-order lipid shells (n = 2 to 8) surrounding the annular lipids. These non-annular lipid 

shells could further be separated into two sub-groups depending on the boundary continuity 

of the lipid shell. As illustrated in Figures 3A and 3C, each lipid shell starting from n = 2 to 

4 formed a continuous, concentric boundary of increasing perimeter around the first annular 

lipid shell. These shells are defined here as the continuous non-annular lipid group. Due to 

the finite rectangular size of the simulation box, the remaining higher-order lipid shells (n = 
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5 to 8) formed discontinuous, non-concentric, boundaries that filled the interstitial space at 

the corners of the simulation box. These discontinuous non-annular lipid shells are therefore 

defined as interstitial non-annular lipids. In this study, we observed 7 or 8 total VT lipid 

shells over 30 time frames. VT-shell characterization was computed independently for each 

time frame. Since the last 8th shell was not observed in all 30 frames due to the movement of 

atoms during simulation, only results from 7 shells were compiled and analyzed.

Water molecules formed nearest neighbors to lipid and protein atoms in our simulated 

membranes. Here, the nearest water shell, or lipid-interfacial water shell, surrounding each 

classified VT lipid shell, was also classified. For the lipid-interfacial water classification, the 

0th- order (n = 0) shell represented those water molecules that were in contact with both 

protein and lipid atoms. The selection criterion was that at least one of the water atoms in 

this 0th- order water shell was on the nearest-atom-neighbor lists of any protein and lipid 

atom. For the higher-order (n ≥ 1), the nth water shell represents the water group in which at 

least one of the water atoms in that group was on the nearest-atom-neighbor list of any lipid 

atom of the nth lipid shell. Figure 3B shows the separated lipid-interfacial water shells (n = 0 

to 8) for the last (200ns) time frame of the simulated Aβ/PC/CHOL membrane. Here, the 

0th- order shell is in purple, and the higher order (n ≥ 1) shells in identical color-codes as the 

lipid shells in Figure 3A. It is clear that the lateral distributions of lipid shells and lipid-

interfacial water shells are similar suggesting the successfully separation of lipid-interfacial 

water molecules in our protein-containing membranes.

Careful examinations of the lipid and lipid-interfacial water shells calculated from both 

weighted and non-weighted methods reveal that almost identical shell classifications were 

achieved in both methods except those at high orders (see Figure S2 in Supporting 

Material). Volumetric and biophysical characterizations of these shells from both methods 

are given below.

B. Volumetric properties of lipid bilayers

The atomic volumes of lipid and lipid-interfacial water in control and protein-containing 

bilayers were determined. We focused on analyzing separately the volume perturbation 

effects of CHOL on PC bilayers and that of the inserted protein Aβ on PC/CHOL bilayers.

1. Volume perturbation effects of cholesterol on PC bilayers—Time-averaged 

volumes of individual atoms in PC and PC/CHOL bilayers without protein (control 

membranes) were calculated separately using the weighted-VT method, which takes into 

account the van der Waals radius. As demonstrated in the first column of Figure 4, the time-

averaged volume of the lipid atom vs. atom type along the length of the lipid, i.e., from the 

polar headgroup to the hydrophobic tail, varied over a broad range. In PC, a volume of 6–7 

Å3 for the N4 or P8 atom in the headgroup (Figure 4A) to a volume of 40–45 Å3 for the 

terminal methyl carbon atom (C50 or CA2) in the chain (Figures 4E and 4G) was found. 

This large volume variation reflects the differences in the bonding and non-bonding 

environments among different united atoms in the lipid. Referring to Figure 1A, the polar, 

N4 or P8 atom is covalently bonded to four neighboring united atoms in the PC headgroup, 

while the non-polar, teminal methyl C50 or CA2 united atom is covalently bonded to only 
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one neighboring chain united atom. Therefore, the terminal united atom has a “larger” free 

space than the tetravalent atom in PC. In CHOL, similar observations of larger volume in 

monovalent united atoms than in multivalent atoms, e.g., C1, C17, and C23 of ~35Å3 vs. C2 

and C16 of ~5Å3, were evident as shown in Figure 4I. Similar atomic volume profile was 

found in both PC and CHOL using non-weighted VT method (Figure S2 of Supporting 

Material).

To assess the time-averaged volume perturbation effect of CHOL on PC in the PC/CHOL 

bilayer at the atomic level, the volume difference, defined as the time-averaged volume of 

each atom in the PC/CHOL bilayer minus that in the PC bilayer, was computed. As shown 

in the second column of Figure 4, the time-averaged atomic volume difference vs. atom type 

plot provides a quantitative measurement of the volumetric perturbation of CHOL along the 

length of PC with single atom resolution.

In the PC headgroup region (Figure 4B), we observed a small volume enhancement 

(positive) effect of CHOL of +0.1Å3 on the C5 atom of the 6-atom choline group but a 

larger volume condensing (negative) effect of CHOL of −0.2 to −0.5Å3 on the O7, O9, and 

O11 atoms of the 5-atom phosphate group. In the interface region (Figure 4D), except for a 

small positive CHOL effect of +0.2Å3 on the C12 atom of glycerol, we identified a 

predominantly negative CHOL effect, particularly of −0.5 and −1Å3on the O35 and O14 

atoms, respectively, for this 9-atom interface group. Large and exclusively negative CHOL 

effects were found in the 15- and 17-atom acyl chain regions of PC. As shown in Figure 4F, 

a well-defined dip or large negative peak of ~ −2Å3 at the C43 atom located at the middle of 

the PC saturated sn-1 (C16:0) chain and a rising negative edge of similar value at the 

terminal C50 atom were evident. In contrast, poorly defined “dip and edge” features were 

found in the unsaturated sn-2 (C18:1) chain as shown in Figure 4H. Interestingly, a close 

inspection of the “spectrum-like” volume difference vs. atom type plot in Figure 4H reveals 

an interesting “symmetry” of the volume difference with respect to the middle of the sn-2 

chain, i.e., between C24 and C25 (C=C). Here, the volume difference profile from C24 

towards C17 is almost identical to that from C25 to CA1 along the length of the sn-2 chain 

in opposite directions, respectively.

In order to compare the CHOL perturbation effects among different regions of PC, the time-

averaged volume difference per atom in each region of PC was calculated, and the results 

were 0.02±0.01, −0.20±0.01, −0.39±0.01, −1.40±0.02, and −1.35±0.02 Å3/atom for the 

choline, phosphate, interface, sn-1 chain and sn-2 chain, respectively. Here, a progressive 

atomic volume condensing effect along the PC lipid from head to tail was evident. 

Therefore, the commonly known cholesterol condensing effect, manifested as the reduction 

of PC atomic volume by CHOL, was much stronger in the hydrocarbon chain region than in 

the headgroup or interface region. Also, the above “volume difference spectrum” of the sn-1 

chain suggests a regionally stronger CHOL effect is at the middle of saturated chain and the 

terminal methyl group of PC.

Similar volume difference profile was also detected using the non-weighted VT methods as 

shown in Figure S3 of Supporting Material.
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2 Volume perturbation effects of protein on PC/CHOL bilayers—The effects of a 

transmembrane protein Aβ on the time-averaged volumetric properties of both PC and 

CHOL lipid molecules in separated VT lipid shells (n = 1 to 7) at the atomic level have been 

investigated. Similar to the approach of investigating the perturbation effects of CHOL on 

PC atoms, the atomic volume difference, defined as the volume of each atom in the Aβ/PC/

CHOL bilayer minus that in the control PC/CHOL bilayer, was computed.

The volume difference vs. atom type profiles or “spectra” for the annular and non-annular 

lipids are presented in the second column of Figure 4 and in Figures S4, S6, and S8 of 

Supporting Material based on the weighted-VT method. The corresponding plots for the 

non-weighted method are given in the second column of Figure S3 and in Figures S5, S7, 

and S9 of Supporting Material. For all lipid shells, very similar positive and negative 

volume differences among lipid atoms were observed in both weighted and non-weighted 

VT calculations.

Positive volume differences were detected in 16 out of 52 PC atoms, mostly in the first half 

of the acyl chains (Figures 4F and H), and in 13 out of 29 CHOL atoms (Figure 4J). In 

contrast, small positive volume differences for the CHOL-condensing effect were found in 

only 2 atoms, i.e., C5 in the choline (Figure 4B) and C12 in the glycerol (Figure 4D) of PC. 

These results suggest a different volume perturbation mechanism of transmembrane protein 

on its nearby annular PC atoms than the predominant condensing effect of cholesterol on the 

bulk PC atoms.

In order to compare the protein perturbation effects among different regions of PC, the time-

averaged volume difference per atom in each region of PC in the annular lipid shell was 

calculated, and the results were −0.08±0.04, −0.13±0.03, −0.21±0.03, −0.31±0.04 and 

−0.14±0.04 Å3/atom for the choline, phosphate, interface, sn-1 chain, and sn-2 chain, 

respectively. Except the choline group, the volume condensing effect of the transmembrane 

protein on PC was significantly smaller than that of CHOL on PC (see above). For the PC 

choline group, the small positive volume difference of 0.02Å3 from the cholesterol is 

strikingly different from the small, negative volume difference of −0.08 Å3 from the 

transmembrane protein. Therefore, the transmembrane protein reduces the average atomic 

volume of all regional groups with the strongest effect on the saturated sn-1 chain region of 

PC as opposed to the progressive negative volume effect of cholesterol from the headgroup 

to the tail regions with similar influences on both chains.

For the non-annular (n > 1) PC lipids (Figures S4–S9 of Supporting Material), a general 

decrease in the atomic volume difference with increasing n was evident till the 4th or 5th 

order. However, the volume difference reappeared as n increased from 5th to 7th for both 

weighted and non-weighted VT.

The perturbation effects of membrane protein on the regional group, or fractional, volume of 

PC were investigated. Figure 5 shows the time-averaged fractional lipid volume vs. n plot 

for each regional lipid group of PC for both weighted (in red) and non-weighted (in black) 

calculations. The fractional lipid volume of the bulk PC lipids in the control PC/CHOL 

bilayer is shown for comparison. It is clear that a convergence of the fractional lipid volume 
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to the control volume occurred at n = 2 and 4 for the choline, n = 3 and 6 for the phosphate, 

n = 3–7 for the interface, n = 4, 6, and 7 for the sn-1 chain and n = 4 for the sn-2 chain. 

Interestingly, the C=C of sn-2 chain started from a volume higher than the control and 

converged to the control at n = 3, 4, and 6. On the other hand, the terminal CH3 of both 

chains started from lower than the control and converged to the control at n = 4. These 

highly heterogeneous, or regional dependent, perturbation effects across different orders of 

non-annular lipid shells suggest a non-progressive effect of membrane protein on the atomic 

volume of different regional groups of PC. The above trend was also found in non-weighted 

VT. Interestingly, the PC-choline volume from weighted VT was significantly higher than 

that from non-weighted VT for each shell. Yet, negligible differences between weighted and 

non-weighted VT volumes were noticed in other regional groups.

Finally, the perturbation effect of protein on the whole molecule volume of PC was 

examined. As shown in Figure 6C, an interesting “over-damping” behavior in which the PC 

volume oscillated around the control value before converging at n = 6 and 7 in the interstitial 

lipid domain was evident.

Similar analysis of the volume perturbation effects of protein on CHOL was performed. At 

the atomic level, predominantly positive or volume enhancing effects of protein on CHOL 

was evident in the annular shell (n = 1) as shown in Figure 4J. As shown in Supporting 

Material, this mostly positive volume difference effect diminished at n = 4 but reappeared at 

higher order. At the regional group level (Figures 5G–I), a very small (< 1Å3) oscillatory 

behavior of volume around the control was observed for the polar group. On the other hand, 

an abrupt decline of the rings volume from n = 1 to 4 until it reached the control following 

by a small overshoot of volume at higher orders, and finally, a sigmoidal drop behavior from 

a higher value to the control was found for the chain region. At the whole molecule level 

(Figure 6D), a clear sigmoidal behavior with convergence from a higher volume value to 

lower control value after the 4th order was clearly found. Identical behavior was detected in 

non-weighted VT.

Other than PC and CHOL lipid volumes, the perturbation effects of protein on the lipid-

interfacial water volume in each lipid shell were also studied as shown in Figure 6B. Here a 

drop of the lipid-interfacial water volume from 34 Å3 in the immediate vicinity of the 

protein (n = 0) to a lower value of 33 Å3 at the highest order shell (n = 7) was found. Good 

agreement with the control value at n = 3 to 5 was evident. The lipid-interfacial water 

volume in weighted VT was slightly smaller than in non-weighted VT. However, the 

difference was insignificant.

To assess the effect of the membrane protein on the compositions of lipid and lipid-

interfacial water in VT shells, time-averaged counts of PC, CHOL, and lipid-interfacial 

water molecules of each VT shell were determined and are shown in Figure 6A. Weighted 

and non-weighted calculations show identical results. The number of lipids and lipid-

interfacial water increased progressively with n until the 5th order and started to decline at 

higher order. A plot of CHOL mole% (insert of Figure 6A) revealed that the cholesterol 

content was ~26% in the annular lipid region (n = 1), reached a plateau of ~ 40% for n = 2 to 
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5 and increased to 46% as n increased further to 7. The bulk CHOL mole% concentration of 

our Aβ/PC/CHOL membrane was 40%.

C. Bilayer thickness and order parameter in lipid shells

Bilayer thicknesses of different lipid polar groups were determined from the time-averaged 

peak-to-peak distances of the number density vs. z plots. The first column of Figure 7 

illustrates the number density vs. z plots of PC-phosphate, PC-carbonyl, and CHOL-O6 in 

the Aβ/PC/CHOL (annular shell), PC/CHOL and PC bilayers based on weighted VT.

The time-averaged peak-to-peak distances of these lipid polar groups from all lipid shells (n 

= 1 to 7) as well as from the controls (PC and PC/CHOL bilayers) were computed and are 

presented in the second column of Figure 7. For the controls, the thicknesses of PC-

phosphate (Figure 7B) and PC-carbonyl (Figure 7D) started from 36 and 30Å, respectively, 

in the control PC bilayer, but increased to 44 and 35Å in the control PC/CHOL bilayer. 

These results support the volume condensing effect of CHOL on PC in terms of an increase 

in the thickness of the bilayer.

For the lipid shells, the thickness of PC-phosphate increased progressively from n = 1 to 4, 

reached the control value but declined at higher orders as shown in Figure 7B. The thickness 

of PC-carbonyl followed similar trend of converging from n = 1 to 4, decreased at higher 

orders of n = 5 and 6, but converged back to the control again at n = 7 (Figure 7D). 

Interestingly, the thickness of CHOL-O6 exhibited a complete convergence behavior with 

increasing n as shown in Figure 7F. Here its value reached the control at n = 3 and remained 

constant at all higher n values.

The time-averaged order parameters of PC and CHOL are shown in Figure 8. Figures 8A 

and 8B show the PC chain order parameter vs. carbon number of the sn-1 and sn-2 chains, 

respectively, in the annual lipid region (n = 1) of the Aβ/PC/CHOL and in the bulk lipids of 

the control PC and PC/CHOL bilayers. As expected, CHOL produced a significant increase 

in the PC chain order parameters of both sn-1 and sn-2 acyl chains in the PC/CHOL bilayer 

when compared with those in the PC bilayer. The chain order parameter of the annular lipids 

was much lower than that of the control PC/CHOL bulk lipids but still higher than that of 

the control PC bulk lipids. The PC chain order parameter difference, defined as the PC chain 

order parameter in Aβ/PC/CHOL minus the PC chain order parameter in PC/CHOL, vs. 

lipid shell number plots are given in Figure 8C and Figure 8D for sn-1 chain and sn-2 chain, 

respectively. Here, we observed a recovery of the PC chain order parameter of either the 

sn-1 or sn-2 chain from n =1 to 4 towards the control and then a significant deviation from 

the control for higher orders. Interestingly, the sterol ring order parameter of CHOL (insert 

of Figure 8B) revealed a similar recovery of the ring order toward the control value from n = 

1 to 4 and a deviation form the control at higher n.

Bilayer thickness and order parameter were also calculated using non-weighted VT as 

shown in Figures S10 and S11 of Supporting Material. They agreed with those from 

weighted VT within the uncertainty of each data point.

Cheng et al. Page 12

Biophys Chem. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



IV. DISCUSSION

A new 3D VT-based nearest-atom-neighbor method was used to classify lipid molecules 

into shells of increasing order according on their proximity to a membrane protein in three- 

or xyz dimensions. Previous MC-, VT- and grid-based studies on lipid domains and lipid/

protein interactions [9, 13, 22, 23] projected the atoms or the center-of-masses of lipids on 

the bilayer surface or xy-plane. This projection approach might introduce uncertainties in the 

lipid classification and averages out atomistic detail about the structure of the protein-lipid 

bilayer interactions. Due to the computational efficiency and accuracy of the cell-based Voro

++ [25], exact nearest-atom-neighbors separated by common Voronoi faces were identified 

for all lipids without the use of projection or any assumptions. Therefore, the first or annular 

lipid shell comprised lipid molecules closest to the membrane protein at the single-atom 

level. Similarly, any higher order (n > 1) lipid shell, or non-annular lipid shell, contained 

lipids adjacent to the lipids of the previous shell, also at the atomic level. Weighted and non-

weighted VT produced similar results in both classification of lipid shells and 

characterization of volume and biophysical properties among those shells.

Some previous analyses of membrane simulations required assumptions about molecular 

size or shape taken from experimental data [14, 16, 28] or forces between neighboring atoms 

[43]. The technique presented here depends only on the parameters of the simulation, and 

therefore are internally consistent. The xyz-coordinates of the atoms in the simulation box at 

a given time frame were the only input parameters of our shell computation. Therefore, this 

three-dimensional, atomistic lipid shell classification method is very general in nature and 

can be applied to any simulated membrane systems with no specific force field requirements 

or assumptions of the structure or shape of the lipid component. Of course, the results of the 

analysis depend on the specific force fields used. In addition, since the only input is the 

coordinates of the particles, this 3D VT shell method can readily be applied to analyze 

membrane disruptive profile of structural experimental data, e.g., x-ray and NMR.

Due to the intrinsic and necessary periodic boundaries in membrane simulations, we further 

classified the non-annular lipids (n > 1) into shells of continuous boundaries (1 < n < 5) and 

shells of non-continuous boundaries (n > 5). The latter represent interstitial lipids that 

occupied the corners of the rectangular simulation box. These interstitial lipids were affected 

by not just one inserted protein but by four nearest self-replicating inserted proteins. The use 

of Voro++ that supports periodic boundaries allowed us to unequivocally identify these 

interstitial lipids from the continuous non-annular lipids. We propose that the approach of 

separating lipids into annular, non-annular, and interstitial-non-annular lipid domains 

provides a quantitative and approximation-free means to examine protein-induced 

deformation zones in lipid membranes based on their proximity from the replicating proteins 

in simulations. The influence of lipids by multiple proteins also reflects the compositionally 

heterogeneous and highly crowded environment of biological membranes [4, 11].

Detailed characterizations of the volume perturbations of phospholipid by cholesterol and 

membrane protein represent an ongoing challenge in studying the structure-function 

relationship of lipid membranes. For a one-component PC bilayer, the molecular volume of 

PC has been measured using neutral flotation and x-ray measurements [17, 18] that provides 
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an important structural parameter for the validation of force fields in membrane simulations 

[19, 20, 43–48]. For a two-component PC/CHOL lipid bilayer, the partial molecular volume 

of each lipid has been determined from the volume per molecule vs. cholesterol mole 

fraction plot generated from experiments [16]. Assumptions about the lipid-associated 

water, a fixed volume of CHOL, and the cylindrical shape of the lipid molecule are required 

[14, 16–18, 28]. Using the same PC/CHOL bilayer as in this study, the molecular volumes 

of PC and CHOL were found to be 1256 and 623 Å3, respectively, from a previous 

experiment [17]. These values were compared with the VT volume of 1127 and 602 Å3, 

respectively, from this simulation study in which lipid-associated water molecules (~ 31 Å3/

molecule) were explicitly separated from the lipids. A difference of ~ four or one lipid-

associated water for PC or CHOL, respectively, may explain the discrepancy between the 

experiment and simulation results other than the choice of force fields in simulations. Note 

that absolute volume values from VT depends on the force fields. An accurate calculation of 

atomistic and regional volume from the method will allow us to validate or improve force 

field parameters in membrane biophysics.

We observed a feature rich spectrum-like volume difference vs. atom type plot that indicated 

a localized volume perturbation effect of CHOL and protein. For the perturbation by 

cholesterol, a dip or a symmetric distribution around the central atom of the sn-1 or sn-2 acyl 

chains of the PC revealed that the single double bond at the center of the sn-2 acyl chain 

created significant perturbation that made the middle of both acyl chains the soft, or highly 

compressible region of the lipid bilayer. The volume difference at the middle of the chain 

was nearly identical to the highly flexible and compressible terminal methyl ends of the 

chains. Interestingly, the presence of a transmembrane protein revealed a transition from a 

positive volume to a negative volume effect at the middle of the acyl chain as well. This 

further supports the significance of a single double bond in the acyl chain in modulating the 

volume perturbation effects of CHOL and membrane protein in the lipid bilayer. Note, that 

the volume condensing effect of CHOL on PC has been found in a previous calorimetric 

measurement [49] on the same PC/CHOL bilayer.

We observed a stronger volume condensing effect of CHOL and protein on the non-polar 

acyl chain region than the polar (headgroup and interface) region of PC. This observation 

indicates a large difference in the volume compressibility of the polar and hydrophobic 

regions of a PC lipid. The reason why the polar region of PC was less perturbed by CHOL 

or protein might be associated with the presence of strong hydrogen bonding and coulomb 

interactions among the polar and charged atoms in the polar region. These interactions make 

the packing density of atoms in the polar region less compressible than the acyl chain 

region. The latter involve steric and hydrophobic interactions among atoms. Previous 

experimental [16, 49–51] and simulation studies [12, 14, 28, 52] indicated the condensing 

effect of cholesterol on PC is mainly limited to the non-polar cholesterol ring region and 

therefore support our findings here.

Our results revealed an intriguing non-uniform recovery behavior of lipid volumes to the 

control values with increasing shell order number. The total volume of either PC or CHOL 

converged towards the bulk lipid value with increasing lipid shell order. This suggests that 

interstitial lipids (n = 6 and 7) at the whole volume level behave like the bulk lipids at the 
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whole lipid level. However, some fractional volumes of both PC and CHOL converged to 

the bulk lipid value within the concentric non-annular lipids (n = 4 or 5) but diverged from 

the bulk lipid value at higher shell order or within the interstitial lipids. These results 

provide evidence that the volumetric properties of the interstitial lipids did not fully recover 

to the bulk lipid properties. The divergent behavior of the lipid-interfacial water volume as 

well as the independent membrane thickness and lipid orientational order measurements 

further support the divergent behavior of the volume of interstitial lipids. Therefore the 

volumetric properties of lipids are highly heterogeneous reflecting a long-range perturbation 

effect of inserted protein up to several lipid shells away from the first annular shell. Note 

that the presence of interstitial lipids is directly related to the limited system size in any MD 

simulations involving periodic boundaries. The perturbation in those interstitial lipids will 

be stronger in smaller simulation systems.

Lipid-peptide interactions are characterized by force-field parameters. For the GROMOS/

Berger lipids used here, it should be noted that the lipid-peptide interactions are likely 

overestimated. Kukol [53] found that the secondary structure and integrity of a 

transmembrane protein was similar for both the GROMOS/Berger force field and the 

frequently used GROMOS96 53A6 field, but after 7 ns of simulation, the protein in the 

GROMOS/Berger field did show greater root mean square deviation, suggesting the 

structure was somewhat less stable. Tieleman et al. [43] found that the strength of lipid-

protein interaction appeared to be overestimated by the combination of the GROMOS/

Berger field. In this study, overestimated lipid-protein interaction strength would show 

reduced lipid volume at low shell number, however, the amount of reduction has not been 

determined yet. The sensitivity of the VT method in determining the lipid volume may 

provide valuable information in quantifying the performance of various force fields in 

describing lipid/cholesterol/protein interactions.

The composition profile among lipid shells revealed an interesting lateral cholesterol 

distribution behavior. The concentration of cholesterol was lowest in the annular lipid shell 

but highest in the interstitial-non-annular lipid shell. The concentric non-annular lipid shell 

had similar cholesterol concentration like the bulk lipids in PC/CHOL. These results indicate 

a complex distribution of cholesterol into varying concentration zones, low, medium, and 

high, surrounding a membrane protein in our simulation system. Longer simulation time is 

needed to observe redistribution of cholesterol due to diffusion in the presence of protein.

V. CONCLUSIONS

Using a novel 3D VT computational approach, lipids were classified into shells based on the 

proximity of the lipids to an inserted protein in a simulated lipid membrane of limited size. 

We distinguish up to eight lipid shells around a beta-amyloid peptide, analyze the lipid 

order, membrane thickness, and volume effects. Weighted and non-weighted calculations on 

volume are reported and validated with earlier studies on the effect of cholesterol. The 

observed complex volume perturbation profile of the lipid shells suggests heterogeneous 

volume distribution of lipids surrounding the protein in a compositionally and structurally 

heterogeneous lipid bilayer, reflecting the crowded molecular environment of cell 

membranes. Our VT-based lipid shell analysis methodology can be generalized and applied 
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to study lipid/protein interactions of simulated membranes independent of the simulation 

conditions and force fields as well as structural experiment data of membranes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• New 3D Voronoi Tessellation (VT) method to study protein-induced lipid 

disruption.

• Classification of multiple VT lipid shells based on VT nearest-atom-neighbors.

• Observed non-uniform recovery of fractional lipid volume across lipid shells.

• Bilayer thickness and lipid order parameter calculations validated the VT 

results.

• This method is applicable to all coordinate-based membrane structural data.
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FIG. 1. Structures of lipid, protein, and protein/lipid bilayer in water
Color-coded atom types and chemical groups of PC (A) and CHOL (B) according to the 

published PDB files are shown. A transmembrane beta-amyloid (C) with backbone structure 

in ribbon, van der Waals surface in pink envelope and three residues (Asp1, Lys28, and 

Val40) in color spheres are given. A cross-section of the inserted beta-amyloid in a PC/

CHOL lipid bilayer in the presence of water (D) is illustrated. The polar headgroups of PC 

and CHOL are in blue and red spheres, respectively. The hydrophobic acyl chain tails of PC 

and CHOL are in blue and red lines, respectively. Water is in gray lines. Scale bar =10Å. A 
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comparison of the IUPAC-atom labeling and the PDB united atom labeling and a conversion 

Table are given in Supporting Material, Figure S1 and Table S1.
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FIG. 2. 
Demonstrations of multi-dimentional Voronoi tessellations. Division of 2D plane (A) and 

3D cube (B) domains into Voronoi cells based on 12 random points and packed spheres, 

respectively. A 2D VT method divides a square domain Ω into twelve Voronoi polygons or 

2D cells. The generator Z1 with its yellow Voronoi region has six nearest neighbors (Z2 to 

Z7) with different colored Voronoi regions. A 3D rendering of polyhedral volume occupied 

by each atom in a representative PC (C) and CHOL (D) molecule in a lipid bilayer. The 

colors correspond to those assigned to different atom group as given in Figure 1. Nearest 
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neighbor lipids and water molecules to a beta-amyloid protein in a PC/CHOL bilayer (E) as 

determined from the nearest-atom-neighbor list of Voro++ are also given. The polar 

headgroups of PC and CHOL are represented by blue and red spheres, and the non-polar 

groups of PC and CHOL are represented by blue and yellow lines, respectively. The protein 

is shown by color spheres. Scale bar =10Å. See Materials and Methods for details.
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FIG. 3. 
Classification of lipids and interfacial water in multiple VT lipid shells in a simulated 

protein/lipid bilayer system using weighted VT. Different lipids shells, in lateral (A) and 

transverse (C) views, in a simulated beta-amyloid/PC/CHOL bilayer are shown in blue, red, 

black, orange, yellow, dark green, gray, and light green according to shell order numbers 

from 1 to 8, accordingly. The lipid-associated interfacial water shells (B) are shown with 

identical color codes. The interfacial water nearest to the protein (0th order) is marked in 

purple. The protein is shown in pink spheres. Periodic images of the system box along the x 
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and y directions are shown. The z-axis aligns with the normal of the bilayer. Scale bar 

=100Å.
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FIG. 4. 
Profile of atomic volume of lipid in PC, PC/CHOL, and Protein/PC/CHOL bilayers (Shell 1) 

vs. atom type based on weighted VT method. The atomic volume of PC (A, C, E, and G) 

and CHOL (I) classified in different chemical groups as well as the corresponding volume 

difference (B, D, F, H, and J) are shown. Each data point represents an average over 30 

frames (170 to 200 ns with 1 ns increment) and the error bar indicates the standard error of 

the mean.
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FIG. 5. 
Fractional volume of lipid vs. VT lipid shell order number. The average volumes of selected 

atom groups: choline (A), phosphate (B), interface (C), acyl chains (D and E), C=C (E 

insert) and terminal CH3 (F) of PC, as well as the polar (G), rings (H) and chain (I) of 

CHOL are shown for weighted (red) and non-weighted VT (black). To facilitate cross 

comparisons, a thick vertical bar of 1Å3 is given. See the legend of Figure 4 for details in the 

uncertainties of data points. The corresponding values of the control, i.e., PC/CHOL with no 
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protein, are given by horizontal lines with dotted lines highlight the standard errors of the 

means.
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FIG. 6. 
Molecular volume of lipid and interfacial water vs. VT shell order number. The lipid and 

water concentration (A), volume of interfacial water (B), volume of PC (C) and volume of 

CHOL (D) in each VT shell are shown for weighted VT (red) and non-weighted VT (black). 

The corresponding values of the control, i.e., PC/CHOL with no protein, are given by 

horizontal lines with dotted lines highlight the standard errors of the means. See the legend 

of Figure 4 for details in the uncertainties of data points.
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FIG. 7. 
Number density of lipid polar group vs. VT lipid shell order number. Plots of number 

density vs. z-axis of the phosphate (A) and carbonyl (C) groups of PC and the O6 (E) group 

of CHOL of the protein/PC/CHOL bilayer are shown using weighted VT. Plots of the 

average polar group thickness defined as peak-to-peak z-distance of the corresponding polar 

groups (B, D and F) are also shown. Plots of the average thickness of the PC and PC/CHOL 

bilayers in the absence of protein (controls) are also shown. See the legend of Figure 4 for 

details in the uncertainties of data points.
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FIG. 8. 
Lipid orientational order in lipid shells. The orientational order of PC acyl chain vs. chain 

carbon number in PC, PC/CHOL and protein/PC/CHOL bilayers (Shell 1) for the saturated 

sn-1 chain (A) and unsaturated sn-2 chain (B) are shown using weighted VT. The 

corresponding order parameter difference (= order parameter in the protein/PC/CHO bilayer 

minus that in the control PC/CHOL bilayer) plots (C and D) are also presented. For clarity, 

the volume difference of the higher order lipid shells are shown in the inserts. The order 
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parameter of the rings of the CHOL is also shown (insert of panel B). See the legend of 

Figure 4 for details in the uncertainties of data points.
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