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A stochastic model of cell cycle
desynchronization

Peter Olofsson∗ and Thomas O. McDonald†

August 22, 2009

Abstract

A general branching process model is suggested to describe cell cy-
cle desynchronization. Cell cycle phase times are modeled as random
variables and a formula for the expected fraction of cells in S phase
as a function of time is established. The model is compared to data
from the literature and is also compared to previously suggested de-
terministic and stochastic models.

Keywords: Cell cycle, branching process, desynchronization, stable
phase distribution AMS 2000 Mathematics Subject Classification Codes:
60G99, 60K99, 62P10, 92D25.

1 Introduction

The cell cycle of a eukaryotic cell consists of four phases. In brief, they are G1

where the cell grows, S where its DNA synthesizes, G2 where it prepares for
division, and M where it divides. Due to variability in individual cell phase
times, an initially synchronous population will eventually lose synchronicity
and the percentages of cells in the difference phases settle in toward a sta-
ble phase distribution. Questions of interest to biologists and mathematical
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modelers alike include how the stable distribution relates to phase time pa-
rameters and how, and at what rate, the phase percentages approach the
stable distribution.

An important publication on the issue is Chiorino et al. (2001). There,
a deterministic model is developed and fitted to data from various cell lines,
obtained specifically for this purpose. A system of partial differential equa-
tions is established and investigated via an asymptotic approximation of the
solution. One noticeable feature is the oscillatory pattern in which cell phase
percentages approach the stable phase distribution, a pattern seen in the
data as well as in the solution to the model. The authors focus mainly on
cells in S phase, starting by labeling cells in that phase, in a cell population in
stable exponential growth, and then measuring the fraction of cells in S phase
at regular time intervals. By design, initially 100% of cells are in S phase
and as time advances, the percentages oscillate to settle in toward a stable
limit. The model is fitted to the data and approximate relations between
phase time parameters on the one hand and the stable phase distribution
together with convergence rate and periodicity on the other are established.
The data from Chiorino et al. was also used in Milotti et al. (2008) where a
nice heuristic stochastic model was suggested, based in part on Bronk et al.
(1968).

We propose a general branching process model. Thus, our approach is
stochastic, putting us closer to the second of the papers mentioned above.
Our model more faithfully describes the biological processes and incorporates
sampling effects due to exponential growth that are disregarded by Milotti
et al. In the model, we describe phase times as random variables, consider a
population that reproduces by splitting, and keep track of the number of cells
that are in S phase at any given time, as well as the total number of cells. For
ease of reading, in the next section we give a brief description of the general
branching process (or Crump-Mode-Jagers process). For a comprehensive
treatment, see Jagers and Nerman (1984).

2 General branching processes

The fundamental mathematical object in a general branching process is the
reproduction process, ξ. This is a point process on [0,∞) that describes how
an individual reproduces, thus ξ(a) =

∫ a
0 ξ(dt) gives the number of children up

to age a. Each newborn individual starts reproducing according to a copy of
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ξ, independently of other individuals. In cell populations where reproduction
is by division, ξ is characterized by two random variables: the lifetime L and
the number of offspring X. Specifically

ξ(dt) = XδL(dt)

where δL is the unit point mass at L (L and X may be dependent). The
expression for ξ simply means that the cell lives for a time L, then produces
X daughter cells. If there is no death, X ≡ 2.

To capture the growth rate of the process, we consider the mean repro-
duction process, µ(dt) = E[ξ(dt)], and, in particular, its Laplace transform

µ̂(r) =
∫ ∞

0
e−rtµ(dt)

The growth rate is now determined by the Malthusian parameter which is
the number α that satisfies µ̂(α) = 1. If α > 0, the process is said to be
supercritical which means that it grows as eαt and has a chance of avoiding
extinction. We deal with cell populations with no death so our process is
supercritical and the equation defining α becomes

2F̂ (α) = 1 (2.1)

where F is the distribution function of L and F̂ (α) =
∫∞
0 e−αtF (dt).

To count, or measure, the population, random characteristics are used.
A random characteristic is a real valued process χ, where χ(a) gives the
contribution of an individual of age a. We assume that χ is nonnegative and
vanishing for negative a (no individual contributes before her birth). Denote
the set of all individuals by I, let the χ-value pertaining to the individual x
be denoted by χx and denote the birth time of the individual x by τx. The
χ-counted population, Zχ

t is defined as

Zχ
t =

∑
x∈I

χx(t− τx),

the sum of the contributions of all individuals (at time t the individual x
is of age t − τx). The simplest example of a random characteristic is the
indicator function χ(t) = I{t ≥ 0}, which is zero before you are born and
one thereafter which gives Zχ

t as the number of individuals born up to time
t. For convenience, we state without conditions the main convergence result
that we need in this paper. To that end, let
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E[χ̂(α)] =
∫ ∞

0
e−αtE[χ(t)]dt

and

β = 2
∫ ∞

0
te−αtFL(dt) (2.2)

Then

e−αtZχ
t →

E[χ̂(α)]

β
W (2.3)

as t → ∞, where W is a random variable with mean 1. For technical de-
tails, assumptions, and a discussion of modes of convergence, see Jagers and
Nerman (1984). In the present paper, our main use of the theorem is to es-
tablish asymptotic proportions of cell with various properties (such as being
in S phase). The main idea is to consider a randomly sampled cell at time
t (sampled from all cells that existed until that time, alive or dead) and let
χA be a characteristic that counts cells that are alive at t and have some
some property A. Let χ be a characteristic that counts cells that are alive.
At time t, the conditional probability that the randomly sampled cell has
property A is then

P (A|Ft) =
ZχA

t

Zχ
t

where Ft is the σ-algebra generated by the entire population up to time t.
By (2.3)

P (A|Ft) =
e−αtZχA

t

e−αtZχ
t

→ E[χ̂A(α)]

E[χ̂(α)]

as t → ∞. One complication is that the population might go extinct, in
which case the probability P (A|Ft) is not always well-defined. As we deal
with cell populations that do not go extinct, we shall not delve deeper into
the issue [which also involves possible degeneracy of W associated with the
so-called x log x condition, a fascinating topic in its own right, see Jagers
(1975), Lyons et al. (1995), Olofsson (1998, 2009)]. The limit of P (A|Ft)
is called the stable population measure, often denoted P̃ (A). Thus, P̃ takes
into account two sources of randomness: the population dynamics and the
sampling, the latter being affected by the exponential growth. As the cell
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populations in Chiorino et al. (2001) are in stable exponential growth, we
use the probability measure P̃ in our calculations.

3 The branching process model: theoretical

results

In this section we describe the branching process model and state some theo-
retical results, leading into the data analysis of the next section where explicit
assumptions are made regarding phase time parameters.

The data in Chiorino et al. (2001) are obtained by flow cytometry where
the last two phases of the cell cycle, G2 and M , are not distinguishable.
Therefore, we let the cell cycle time be denoted by L where L is the sum of the
times of three cell cycle phases: L = G1 +S +G2M , in the obvious notation.
Assume that the lengths G1, S, and G2M of the phases are independent
continuous random variables and use the notation FX and fX for the cdf and
pdf of a random variable X. The Malthusian parameter α is determined by
the relation

2F̂L(α) = 1

and to count cells in S phase we use the random characteristic

χS(a) = I{G1 ≤ a ≤ G1 + S} (3.1)

which is 1 if the cell is in S phase at age a and 0 otherwise so that ZχS
t gives

the number of cells in S phase at time t. The expected value that is needed
to compute the limit in (2.3) is

E[χS(a)] = P (G1 ≤ a ≤ G1 + S) (3.2)

which we can compute once we have explicit distributional assumptions about
G1 and S. The total number of cells alive is counted by the characteristic

χL(a) = I{L ≥ a}
which has expected value

E[χL(a)] = P (L ≥ a)

Thus, the fraction of cells in S phase at time t is given by
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Q(t) =
ZχS

t

ZχL
t

and our first result expresses the limit of Q(t) as t →∞ in terms of the cdf
of S, the pdf of G1, and α.

Proposition 3.1 Let Q(t) be as above. Then, with probability 1,

Q(t) → 2α
∫ ∞

0

∫ t

0
e−αt(1− FS(t− u))fG1(u)dudt

as t →∞.

Proof. Appendix A.

We are interested not only in the limit of Q(t) but also in how the limit is
approached. From now on, we shall focus on the expected value of Q(t) and
use the Taylor approximation

E[Q(t)] ≈ E[Zχs
t ]

E[ZχL
t ]

(3.3)

where we can use results from Jagers and Nerman (1984) to deal directly
with expressions of the type E[Zχ

t ] for t ≥ 0. A brief summary is presented
in Appendix B.

As we observe a population where the ancestor starts in S phase, we are in
fact observing a time-shifted branching process. Our time zero of observation
is really time τ in the branching process where τ = G1+T , T being a random
variable that gives the position of the ancestor within S phase. Thus, at time
t we are in fact observing Q(t+ τ), from now on denoted by Qτ (t), where we
wish to compute

E[Qτ (t)] ≈
E[ZχS

τ+t]

E[ZχL
τ+t]

By (2.3), Proposition 3.1, and dominated convergence, the limit of E[Qτ (t)]
is the same as the limit of Q(t).

Before we start dealing with E[Qτ (t)], let us first state the pdf of the
age of the ancestor. As the cell populations in Chiorino et al. (2001) can
be considered in stable exponential growth, we can get the distribution of τ
through the asymptotic theory of branching processes, expressed in terms of
the distributions of the cell cycle phases.
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Proposition 3.2 Consider a cell population in stable exponential growth and
let τ be the age of a cell that is in S phase. Then τ has pdf

fτ (t) = ce−αt
∫ t

0
(1− FS(t− u))fG1(u)du

where c is a normalizing constant.

Proof. Appendix A.

As an example, consider the simple case where both G1 and S have expo-
nential distributions with mean 1. Then

fτ (t) = ce−αt
∫ t

0
e−(t−u)e−udu

= cte−(1+α)t

and since fτ must integrate to 1, we get c = (1 + α)2 and we recognize that
τ has a Γ(2, 1 + α) distribution (more about this distribution in the next
section). Note that although the distribution of the third phase G2M does
not appear explicitly, it has an impact on the value of α by (2.1).

To deal with E[Qτ (t)], we single out the ancestor and decompose the
χ-counted population by adding the contribution of the ancestor and the
contributions of the populations stemming from the offspring of the ancestor,
a common trick in branching process analysis, see Jagers and Nerman (1984)
for details. For any characteristic χ,

Zχ
t = χ(t) + Zχ

t−L(1) + Zχ
t−L(2)

where L is the lifetime of the ancestor and Zχ
t−L(1) and Zχ

t−L(2) denote the
two independent branching processes initiated by the children of the ancestor.
Now add the ancestor’s age τ to t to obtain the expected value

E[Zχ
τ+t] = E[χ(τ + t)] + 2E[Zχ

τ+t−L]

= E[χ(τ + t)] + 2E[Zχ
t−R] (3.4)
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were R = L − τ , the remaining lifetime of the ancestor at time τ . Let us
deal with the two terms in (3.4) separately, starting with the first term for
the characteristic χS. By (3.2),

E[χS(τ + t)] = P (G1 ≤ τ + t ≤ G1 + S)

= P (G1 ≤ G1 + T + t ≤ G1 + S)

= P (S − T ≥ t)

Hence, if we let X = S − T , the remaining time the ancestor spends in S
phase after observation time 0, the contribution from the ancestor to the
time-shifted population is

E[χS(τ + t)] = P (X ≥ t) (3.5)

where we can express the distribution of X by again invoking asymptotic
results from general branching process theory. Note in particular that at the
initial observation time t = 0 we have E[χS(τ)] = 1 (and even χS(τ) ≡ 1),
thus forcing the ancestor to start in S phase. We give the distribution of X
next.

Proposition 3.3 Consider a cell population in stable exponential growth and
let X be the remaining time a cell that is in S phase spends in that phase.
Then X has pdf

fX(x) = c
∫ ∞

0

∫ t

0
e−αtfS(x + t− u)fG1(u)dudt

where c is a normalizing constant.

Proof. Appendix A.

Note that if S has an exponential distribution, S ∼ exp(λ) for some rate λ,
then fS(s) = λe−λs and we get

fX(x) = e−λxcλ
∫ ∞

0

∫ t

0
e−αte−λ(t−u)fG1(u)dudt
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and as the argument x only appears in the factor e−λx we conclude that
X ∼ exp(λ) as well, regardless of the distribution of G1. Considering the
memoryless property of the exponential distribution and the fact that we
condition on the cell being in S phase, this observation should come as no
surprise. For no other distribution of S will X have an exponential distribu-
tion.

Next, let us deal with χL. For that purpose, let R = X + G2M , the
remaining lifetime of a cell in S phase. Thus, the pdf of R is the convolution

fR(r) =
∫ r

0
fX(r − u)fG2M(u)du (3.6)

where FX is given in Proposition 3.3. Let T and X be as above and note
that L = G1 + S + G2M and τ = G1 + T which gives

E[χL(τ + t)] = P (G1 + S + G2M ≥ G1 + T + t)

= P (R ≥ t)

For the second term in (3.4), note that, for any characteristic χ,

E[Zχ
t−R] =

∫ t

0
E[Zχ

t−r]fR(r)

where fR is the pdf of R given in (3.6). Note that, conditioned on R = r,
the conditional expectation E[Zχ

t−r|R = r] equals E[Zχ
t−r] since the process

starts over and its future is (conditionally) independent of R. Hence, we can
rewrite (3.4) as

E[Zχ
τ+t] = E[χ(τ + t)] + 2

∫ t

0
E[Zχ

t−r]fR(r) (3.7)

which gives

E[Qτ (t)] ≈
P (X ≥ t) + 2

∫ t

0
E[ZχS

t−r]fR(r)dr

P (R ≥ t) + 2
∫ t

0
E[ZχL

t−r]fR(r)dr
(3.8)

where P (X ≥ t) and P (R ≥ t) are computed by invoking Proposition 3.3 and
(3.6), respectively, E[Zχ

t−r] can be computed for χS and χL by the methods
outlined in Appendix B, and fR(r) is given in (3.6).
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Let us finally point out that there is an alternative to considering the
remaining time X the ancestor spends in S phase, namely, to consider this
time as a fraction of the total time in S phase, X = US, where U is a
random variable with support [0, 1]. This is the approach taken by Milotti
et al. (2008) where it is assumed that U is uniform on [0, 1]. Our last
proposition states the cdf of U = X/S.

Proposition 3.4 Consider a cell population in stable exponential growth, let
X and S be as above and let U = X/S. The cdf of U is

F (u) = c
∫ ∞

0

∫ t

0
e−αt

(
FS

(
t− v

1− u

)
− FS(t− v)

)
fG1(v)dvdt

for 0 ≤ u ≤ 1 where c is a normalizing constant.

Proof. Appendix A.

We shall not further utilize this approach, but let us point out that it is
clear from the complicated expression of F (u) that U will typically not be
uniform. As an example, consider the simple situation where G1, S, and G2M
have exponential distributions with mean 1. Simple calculations show that
α = 21/3 − 1 ≈ 0.26 and the cdf of U is

F (u) =
0.26u

0.33− 0.07u
, 0 ≤ u ≤ 1

where all numbers are rounded to 2 decimals. Clearly U is not uniform,
although it is fairly close, see Figure 1. The data in Chiorino et al. (2001)
exhibit an initial linear decline in the fraction of cells in S phase and Milotti
et al. (2008) attribute this fact to cells being uniformly positioned within
S phase. However, as we have seen, this is likely not true. On the other
hand, it is also not necessary to explain an initial linear decline. An intuitive
explanation is that early on, the population is dominated by the contribution
of the ancestor and by (3.5), this contribution equals P (X ≥ t). For many
distributions, the survival function P (X ≥ t) is approximately linear in the
beginning. For example, in the simple case when S ∼ exp(λ), we saw that
X ∼ exp(λ) and hence

E[Qτ (t)] ≈ P (X ≥ t)
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Figure 1: Cdf of U (solid) and of a uniform distribution (dashed).

= e−λt ≈ 1− λt

for small λt. We will elaborate further on this observation in the Discussion
section.

4 The branching process model: data analy-

sis

We now assume that the cell cycle times G1, S, and G2M have gamma dis-
tributions: G1 ∼ Γ(a1, b1), S ∼ Γ(a2, b2), and G2M ∼ Γ(a3, b3). The gamma
distribution is a flexible two-parameter family that is commonly used to
model lifetimes [Oprea and Kepler (2001), Larsson et al. (2008)]. Specifi-
cally, if the parameters are a and b, the probability density function is

f(t) = e−btba ta−1

Γ(a)
, t ≥ 0
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where Γ(a) is the gamma function, the mean is a/b, and the variance is a/b2.
The Malthusian parameter is given by solving the equation 2F̂L(α) = 1. By
independence we get

F̂L(α) = F̂G1(α)F̂S(α)F̂G2M(α)

The Laplace transform for the Γ(a, b) distribution is

F̂ (α) =
∫ ∞

0
e−αtf(t)dt =

ba

(α + b)a

and hence α is the solution to the equation

2ba1
1 ba2

2 ba3
3

(α + b1)a1(α + b2)a2(α + b3)a3
= 1 (4.1)

Further on, for our computations we need not only the Laplace transform
but the distribution of the total cell cycle time L = G1 + S + G2M . The
phase times have gamma distributions but unless all the bj are equal, L does
not have a gamma distribution. It is possible to express its pdf in closed
form as an infinite series [Moschopoulos (1985)] but in order to simplify the
computations, we approximate the distribution of L by a gamma distribution.
To match the mean and variance of the sum G1 + S + G2M , this gamma
distribution must have parameters aL and bL that satisfy

E[L] =
aL

bL

=
a1

b1

+
a2

b2

+
a3

b3

Var[L] =
aL

b2
L

=
a1

b2
1

+
a2

b2
2

+
a3

b2
3

With our gamma approximation, α is instead the solution to the equation

2baL
L

(α + bL)aL
= 1

which gives

α = bL(21/aL − 1)

For one example, let us use a data set from the cell line IGROV1 (ovarian
carcinoma) where the estimated parameter values are
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a1 = 4, b1 = 0.44, a2 = 100, b2 = 11.5, a3 = 100, b3 = 32.2

[Lupi et al. (2006) and Paolo Ubezio (personal communication)] which gives
aL = 20.2, bL = 0.97, and α = 0.034. Inserting this value of α and the
aj and bj into (4.1) gives the result 0.9997, close enough to 1 to deem our
approximation reasonable. It is also easy to verify the practical validity of
the approximation by comparing simulated data sets.

Figure 2 shows Q(t) for the IGROV1 parameters given above and for
t from 0 to 60 hours. The limit of Q(t) by Proposition 3.1 equals 0.38
(dashed line) in agreement with the value obtained by Chiorino et al. Note
the oscillatory pattern which is typical for quantities relating to the cell
cycle and shows up in data as well as in models, see for example Bronk et
al. (1968), Jagers (1975), Chiorino et al. (2001), Milotti et al (2008), and
Olofsson (2008). For details on how to compute Q(t), see Appendix B.

Figure 2: The fraction of cells in S phase converging to 0.38.

In the computation we started at time t = 0 which is why the graph in
Figure 2 starts at Q(0) = 0 (the initial cell starts in G1 phase). Recall that
the data in Chiorino et al. has all cells starting in S phase so we need to
consider E[Qτ (t)]) which is computed according to (3.8). Figure 3 shows

13



E[Qτ (t)] for t from 0 to 60 hours (solid line) using the IGROV1 parameter
values from above. The figure also displays data from Chiorino et al. (2001)
of S phase fractions in an IGROV1 cell line. We have not done any parameter
estimation or fitting and it is remarkable how well our model describes the
data.

Figure 3: The fraction of cells in S phase–model and data.

Another quantity of interest is the period between consecutive maxima
in the desynchronization curve. As our expression for E[Q(t)] does not have
a simple analytic form, we cannot directly establish an expression for the
period. However, we can offer the following argument. If cell cycle times
were deterministic, the period would equal the cell cycle time. In reality, cell
cycle times are random and one might guess that the period instead equals
the expected cell cycle time. However, this is not the case because of effects
from the exponential growth. Recall the probability measure P̃ from Section
2; it is with respect to this measure we need to compute the expected cell
cycle time. It turns out that this expected value is the number β defined
in (2.2) which is thus a reasonable candidate for the period. In our model
where the lifetime L has a Γ(a, b) distribution we can find β explicitly as
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β = 2
∫ ∞

0
te−αte−btba ta−1

Γ(a)
dt

=
a

b21/a
=

m

21/a

where m = E[L] = a/b and we recall α = b(21/a − 1). Chiorino et al. (2001)
denotes the period by T and gives the approximation

T ≈ m

1 + log 2 (σ/m)2

=
m

1 +
log 2

a

since σ/m = 1/
√

a in the Γ(a, b) distribution. Now note the first-order Taylor
approximation

2x ≈ 1 + x log 2

about x = 0 to conclude that β ≈ T unless a is very small. In other words, the
approximation in Chiorino et al. is good for the gamma distribution unless
the coefficient of variation σ/m = 1/

√
a is large. Calculations indicate that

the error is negligible for any realistic values of a, an observation that provides
a nice agreement between our branching process model and the deterministic
model of Chiorino et al.

Note that the period is always shorter than the mean cell cycle time
which makes intuitive sense because at the time of sampling, ancestral lines
with many reproduction events are overrepresented, a typical effect of the
sampling bias that arises from exponential growth. In contrast, Milotti et
al. (2008) present a formula suggesting instead that the period is longer
than the mean cell cycle time. Their formula is obtained through analysis of
the spectral density of the desynchronization curves but as we have already
pointed out, they explicitly disregard exponential growth and hence also the
sampling bias that arises from it.
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5 Discussion

We have proposed a general branching process model to describe the fraction
of cells in S phase in an exponentially growing cell population. The lengths
of the cell cycle phases are modeled by gamma distributions whose parame-
ters are taken from previously published data. Given these parameters, we
can compute the asymptotic stable fraction of cells in S phase and also in-
vestigate how this limit is approached by computing the expected fraction
of cells in S phase for any time t. Our model gives very good agreement
with published data, showing that the branching process model is indeed a
realistic description of how such cell populations evolve.

Our curve shows the typical oscillatory pattern found in the data. It is
also noteworthy how the initial “linear” phase arises automatically and, as
pointed out in the previous section, is not really linear but an artifact of the
distribution of the remaining time in S phase, X (whose distribution is given
in Proposition 3.3). Milotti et al. (2008) uses an explicit linear form for the
initial time period followed by a shifted damped oscillation, which is why
their model gives a sharp edge where the linear part ends and the oscillation
begins. In contrast, our curve is smooth which gives a better description of
the data. It should also be noted that our description of the initial time shift
as random rather than constant is more accurate. Indeed, the integration in
(3.8) affects both period and amplitude which is why the graphs in Figures
2 and 3 are not merely shifted versions of one another with an initial linear
part added.

Our purpose was to develop a model that could accurately describe data
from desynchronization experiments such as those of Chiorino et al. (2001).
A natural continuation for future research would be to develop estimation
and curve fitting procedures based on our model. As our formulas are not
explicit, such procedures will necessarily be computationally demanding. It
would also be of interest to investigate the accuracy of the approximation in
(3.3) which might involve continuous-time versions of the results in Olofsson
and Shaw (2002).

6 Appendix A

In this section we provide proofs of Propositions 3.1–3.4. The proofs are
based on results from Jagers and Nerman (1984) and we omit some of the
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details.

Proof of Proposition 3.1. We invoke Theorem 5.10 in Jagers and Nerman
(1984) which is also stated here in (2.3). Suppose that the mean reproduction
process µ(dt) is nonlattice (cannot be supported by any lattice {a, 2a, 3a, ...}),
let α > 0 be the solution to the equation µ̂(α) = 1, define β =

∫∞
0 te−αtµ(dt),

and let χ1 and χ2 be two random characteristics. Then

Zχ1
t

Zχ2
t

→ E[χ̂1(α)]

E[χ̂2(α)]

almost surely on the set of nonextinction as t →∞ under the following con-
ditions:

(i) β < ∞

(ii) µ̂(r) < ∞ for some r < α

(iii) E
[
sup

a
e−αaχ(a)

]
< ∞

(iv)
∞∑

k=0

sup
k≤a≤k+1

e−αaE[χ(a)] < ∞

Recalling that we have

µ(dt) = 2FL(dt) = 2fL(t)dt

it is easily seen that (i) and (ii) hold if L has finite mean (and recall that we
use the gamma distribution for the data analysis). Moreover, the character-
istic counting all cells is

χL(a) = I{L > a}

which implies that χL(a) ≤ 1, and (iii) and (iv) follow immediately. Similarly,
(iii) and (iv) hold for the characteristic χS. Use (3.2) and condition on G1

to obtain

E[χ̂S(α)] =
∫ ∞

0
e−αtP (G1 ≤ t ≤ G1 + S)dt
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=
∫ ∞

0
e−αt

∫ t

0
P (u ≤ t ≤ u + S)fG1(u)dudt

=
∫ ∞

0

∫ t

0
e−αt(1− FS(t− u))fG1(u)dudt

and, invoking integration by parts,

E[χ̂L(α)] =
∫ ∞

0
e−αt(1− FL(t))dt

=
[
− 1

α
e−αt(1− FL(t))

]∞
0
− 1

α

∫ ∞

0
e−αtfL(t)dt

=
1

2α

since ∫ ∞

0
e−αtfL(t)dt =

1

2

by the definition of α, and Proposition 3.1 follows.

Proof of Proposition 3.2. This proof also relies upon Theorem 5.10 in Jagers
and Nerman (1984). As previously, let χS(t) = I{G1 ≤ t ≤ G1 + S}, the
indicator that the cell is in S phase at age t. Next, let

χa(t) = χS(t)I{t ≤ a}
the indicator that the cell is in S phase and younger than a at age t. The
conditional probability that a randomly sample cell is younger than a given
that it is in S phase at time t is then

P (τ ≤ a|S phase at time t) =
Zχa

t

ZχS
t

which has limit

lim
t→∞

P (τ ≤ a|S phase at time t) =
E[χ̂a(α)]

E[χ̂S(α)]

as t →∞. The denominator is the reciprocal of the constant c and is given
in the proof of Proposition 3.1 above. The numerator equals
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E[χ̂a(α)] =
∫ a

0

∫ t

0
e−αt(1− FS(t− u))fG1(u)dudt

and Proposition 3.2 follows.

Proof of Proposition 3.3. This proof goes along the same line as the pre-
vious proofs, the only difference being that we now need to consider the
characteristic

χx(t) = I{G1 ≤ t ≤ G1 + S ≤ t + x}

which equals 1 if the cell is in S phase at age t and remains there for at most
x more time units. At time t, we have the (conditional) probability

P (X ≤ x) =
Zχx

t

ZχS
t

and for its limit as t →∞, we let c = 1/E[χ̂S(α)], given above. Further,

E[χ̂x(α)] =
∫ ∞

0
e−αt

∫ t

0
P (S ≤ t + x− u)fG1(u)dudt

and Proposition 3.3 follows by differentiating with respect to x.

Proof of Proposition 3.4. The characteristic we now use is

χu(t) = I{G1 ≤ t ≤ G1 + S, G1 + S − t ≤ uS}

which has expected value

E[χu(t)] = P
(
G1 ≤ t ≤ G1 + S, S ≤ t−G1

1− u

)
and as the proof follows the pattern of the previous proofs, we leave out the
details.

7 Appendix B

In Section 4, we used the approximation
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E

[
ZχS

t

ZχL
t

]
≈ E[ZχS

t ]

E[ZχL
t ]

where E[ZχS
t ] and E[ZχL

t ] were computed numerically. To do so, standard
results from renewal theory yield

E[Zχ
t ] = E[χ] ∗ ν(t) =

∫ t

0
E[χ(t− u)]ν(du)

where ν is the renewal measure

ν(du) =
∞∑

n=0

µ∗n(du)

µ∗n being the n-fold convolution of µ (where µ∗0 by definition equals δ0, the
unit point mass at 0). For details, see Jagers and Nerman (1984). In our cell
population reproduction µ(du) = 2F (du) so that

µ∗n(du) = 2nF ∗n(du)

The expression is intuitively reasonable. There are 2n individuals in the nth
generation and F ∗n is the distribution function of the sum of n independent
lifetimes. Hence, an individual in the nth generation is born before time t
with probability F ∗n(t), so the expected number of individuals from the nth
generation that are born before t equals 2nF ∗n(t). Summing over n gives
the expected number of individuals born before time t which is indeed the
interpretation of the renewal measure ν.

With our assumption that L ∼ Γ(a, b), we get, by additivity of the gamma
distribution,

µ∗n(du) = 2nf ∗n(u)du = 2ne−btbna una−1

Γ(na)
du

and we compute expressions of the type

E[Zχ
t ] = E[χ(t)] +

∞∑
n=1

2n
∫ t

0
E[χ(t− u)]f ∗n(u)du

where E[χ(t)] is the term for n = 0. The functions that are to be integrated
are E[χS(t)] and E[χL(t)]. By (3.2) we get
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E[χS(t)] = P (G1 ≤ t ≤ G1 + S)

=
∫ t

0
P (G1 ≤ t ≤ G1 + S|G1 = v)fG1(v)dv

=
∫ t

0
P (S > t− v)fG1(v)dv

and

E[χL(t)] = P (L > t)

We can now compute E[ZχS
t ] and E[ZχL

t ] for any t.
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