Trinity University Digital Commons @ Trinity

Understanding by Design: Complete Collection

Understanding by Design

Summer 6-12-2015

Data Displays [6th grade]

Melanie R. Webb *Trinity University*, melanierwebb@gmail.com

Follow this and additional works at: http://digitalcommons.trinity.edu/educ_understandings Part of the <u>Education Commons</u>

Repository Citation

Webb, Melanie R., "Data Displays [6th grade]" (2015). Understanding by Design: Complete Collection. 324. http://digitalcommons.trinity.edu/educ_understandings/324

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): melanierwebb@gmail.com. For information about the series, including permissions, please contact the administrator: jcostanz@trinity.edu.

UNDERSTANDING BY DESIGN

Unit Cover Page

Unit Title: Data Displays, Can I Get a Visual?!

Grade Level: 6th Grade

Subject/Topic Area(s): Math

Designed By: Melanie Webb

Time Frame: 13-15 Days

School District: Spring Branch ISD

School: Spring Branch Middle School

School Address and Phone: 1000 Piney Point Rd Houston, TX 77024

(713) 251-4400

Brief Summary of Unit (Including curricular context and unit goals):

This unit was created to cover the data displays portion of statistics and measurement standards. Students will create data displays correctly, and use their knowledge to decide which data displays works best for their data and why.

The students will focus to understand that

- Not every data display is appropriate for data given.
- Each data display has its own purpose.
- The way information is displayed can skew a person's perception of it.

They will do this through representing numeric data graphically including dot plots, stem-andleaf plots, histograms, and boxplots, and using the graphical representation of numeric data to describe the center, spread, and shape of the data distribution. The will also analyze the shape and what that tells us about the data.

Stage 1 – Desired Results				
	Tr	ansfer		
Established Goals (e.g., standards) 6.12 Measurement and	Transfer Students will independently use their learning to Create data displays correctly, and use their knowledge to decide which data displays works best for their data and why			
data. The student applies	M	eaning		
mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to: (A) represent numeric data graphically, including dot plots, stem-and-leaf plots, histograms, and boxplots;	Understandings Students will understand that Not every data display is appropriate for data given. Each data display has its own purpose.	Essential Questions How can we use different data displays to convey the message we want at a glance? How does data influence the type of graph? How does a graph influence		
(B) use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution;	The way information is displayed can skew a person's perception of it.	perception? What question can each data display answer? Can the statistics presented be a lie?		
data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center,	Acq Knowledge Students will know A Dot Plot is a visual display of a distribution of data values where each data value is shown a dot or other mark.	uisition Skills Students will be able to Represent numeric data graphically including dot plots, stem-and-leaf plots, histograms, and boxplots.		
 spread, and shape of the data distribution 6.13 Measurement and data. The student applies mathematical process standards to use numerical or graphical 	Stem-and-Leaf Plots order data from least to greatest and are organized by place value.	Use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution. Analyze the shape and what that tells		
 representations to solve problems. The student is expected to: (A) interpret numeric data summarized in dot plots, stem-and-leaf plots, histograms, and box plots; and 	Histograms is a type of bar-graph used to represent numerical data that have been organized in equal intervals. The visual is a frequency distribution of the data. Does not show individual data. Box Plots uses a number line to	Analyze the shape and what that tells us about the data.		
(B) distinguish between situations that yield data with and without variability.	show the distribution of a set of data by using the median, quartiles, and extreme values			

Stage 1 – Desired Results

Stage 2 – Evidence				
CODE (M or T)	Evaluative Criteria (for rubric)			
т	Correctly create the 4 data displays Perform correct mathematical operations (MMMR)	Performance Task(s) Students will demonstrate meaning-making and transfer by Students will survey their class (for at least 20 pieces of individual data), and use the data to create the four data displays covered in the unit. From this, the goal is to recognize the difference between the different data displays and choose the best one to represent the data. Reflect on each display's impact in discussion and written paragraph, be able to justify reasoning.		
	Analyze which display works best for the time of data collected.			
M/T	Justify reasoning	Other Evidence (e.g., formative) Warm-Ups Homework Exit Tickets Statistics and Data Displays Test		
		Stage 3 – Learning Plan		
CODE (A, M, T) Pre-Assessment The students should have just completed learning about Statistical Measures: Measures of Center (Mean, Median, and Mode) and Measures of Spread (Range). As we move into Data Displays, these will play a major role. Suggested continued review through daily warm-ups.				
A	Think/Pair/Share on what they noticed (Measures of Center of Spread) What does the data tell us? So What? Next show data organized on a data display.			
М	EQ focus - How can a display convey the message at a glance?			

	mode) and measures of spread (range). Pair thoughtfully with	
	data displays that would show these measures intuitively if	
	possible. (Example: Dot plots show mode easily. Box plots show	
	range easily)	
	Homework – Possible Pre Assessment	
	Day Two - Dot Plots	
	Warm Up - Continue review of MMMR with two problems from	
	a small set of data	
	Discussion - Prep butcher paper of large posters with question	
Α	and number line. Give students 2 dots (or Post-Its) and have	
	them place them on the number lines to make a dot plot.	
	Discuss what this shows about the class.	
	EQ focus - How does data influence the type of graph?	
	What question can each data display answer?	
	Lesson - Graphic Organizer Introduction	
Α	Discuss what a dot plot looks like, what it's used for, and the	
	rules of creating one. Which measures of center or spread are	
	easily identifiable?	
5.4	Activity – Given data, create dot plots. The students will write a	
Μ	question they think will be able to be answered by the dot plot. Students can switch papers and answer each other's questions if	
	time permits	
т	Homework – Dot Plot HW	
I		
	Day Three – Dot Plots and Shape	
	Warm Up - Continue review of MMMR with two problems from	
	a small set of data	
	Discussion – Talk about Shape of the display and the vocabulary:	
А	Cluster, Gap, Peak, Symmetry, Outlier, and Skew. Start by	
	defining each term with its meaning outside mathematics. Give	
	the option to draw the word. After the words have been	
	discussed, have them draw what they think it means to a dot	
	plot. Bonus points if they can draw and label five or six terms in	
	the same dot plot.	
	ELL VOCAB GAME	
	EQ focus - How can a display convey the message at a glance?	
N /	Activity – Have students pull dot plots out of a bag and have to	
Μ	use two or three vocab words to describe it to their partner. Students can switch partners each time if desired.	
	Homework – More dot plot practice	
	Day Four – Stem and Leaf Plots	
	Warm Up – Continue review of MMMR with two problems from	
	a small set of data	
	Discussion – Have kids answer a question on the front board –	
А	Think about what kind of question would yield good results to	
	make a stem-and-leaf plot. Use student data to create stem and	
	leaf plot. Add to Graphic Organizer at the end of the discussion.	
	Discuss what a stem-and-leaf plot looks like, what it's used for,	

	-
	and the rules of creating one. Which measures of center or
	spread are easily identifiable? Could we have used the same
	data we used with the dot plots? Why or why not?
	EQ focus - How does data influence the type of graph? What
	question can each data display answer?
	Activity – Stem and Leaf Match. Students match Stem and Leaf
Μ	plot to its Mode, Median, Range, and Key. From one of the
	Stem-and Leaf-Plots, they must find mean.
	Homework – Stem and Leaf HW
	Day Five – Stem and Leaf Plots and Shape
	Warm Up - Continue review of MMMR with two problems from
	a small set of data
	Discuss –Show a stem and leaf plot on the board. Have students
	vote on what vocabulary word they think would best describe
Μ	the shape. Think/Pair/Share could work well for this as there will
	likely be more than one correct answer. Repeat for 3 or 4 stem
	and leaf plots
Ŧ	EQ focus - How can a display convey the message at a glance?
Т	Lesson – Creating Stem and Leaf Plots.
	Homework – Finish Classwork
	Day Six - Histograms
	Warm Up - Continue review of MMMR with two problems from
	a small set of data
	Discussion – Go through Interpreting Histograms PPT, discussing
А	along the way. Add to Graphic Organizer. Discuss what a
7.	histogram looks like, what it's used for, and the rules of creating
	one. Which measures of center or spread are easily identifiable?
	EQ focus - What question can each data display answer?
	How does data influence the type of graph?
М	Activity – Interpreting Histograms
	Homework – Histogram HW
	Day Seven – Histogram Practice
	Warm Up – Given data, tell what interval you think you would
	split it into to make a histogram.
	Discussion – What's important to remember when creating a
	histogram? If you change the intervals used, would it change the
	perception? Using one set of data – pre-determined or collected
	from the class – create two or three histograms with different
Μ	intervals. Have students compare and contrast. Focus on shape
	vocabulary if possible. Words that work well with histograms:
	gap, peak, symmetry
	EQ focus - How can we use different data displays to convey the
	message we want at a glance?
	Activity – Creating Histograms. Students will receive data and
Т	create a frequency table and histogram. They will need to write
	two sentences to state what they understand from the
	histogram and verbally share with their partner or group.
	· · · · · · · · · · · · · · · · · · ·

	Homework – Creating Histograms HW	
	Day Eight – Box Plots	
	Warm Up - Continue review of MMMR with two problems from	
	a small set of data, today use range and median	
	Discussion – Box plots are not as intuitive as the other data	
А	displays we have learned about. Because of this, we break down	
	creating a box plot to its simplest terms.	
	Lesson – Box plot notes. Add to Graphic Organizer. Discuss what	
А	a box plot looks like, what it's used for, and the rules of creating	
	one. Which measures of center or spread are easily identifiable?	
	EQ focus - How can we use different data displays to convey the	
N 4	message we want at a glance?	
Μ	Activity – Box Plot Match	
	Homework – Box Plot HW	
	Day Nine – Box Plot Practice	
	Warm Up - Continue review of MMMR with two problems from	
	a small set of data, focus on quartiles	
	Discussion – Focus on shape of the box plot, stressing quartiles.	
	Individual data disappears once the box plot is created and what	
Μ	does that mean for the visual? Possible idea is showing a box	
	plot and ask where the data is most concentrated. The same	
	amount of data is in each quartile, but some quartiles are across	
	a smaller range of numbers. Would this be a peak on another	
	display? Does a quartile with a large range represent gaps? EQ focus - How does data influence the type of graph? How	
	does a graph influence perception?	
	Activity – Box Plot Activity/Practice TBD	
	Homework – Finish Classwork	
	Day Ten – Test Review	
	Warm Up – Continue review of MMMR with two problems from	
	a small set of data. Today find 1 st and 3 rd Quartiles	
	EQ focus - What question can each data display answer?	
	Activity – You Choose Two Data Displays Activity. Students are	
М	given cards with different test-like questions on them. They choose two out of each set to complete for their test review	
IVI	Homework – Pick a Display	
	Day Eleven-	
Т	Statistics and Data Displays Test	
	Day Twelve – Fifteen Project	
	Day Twelve – Brainstorm questions that yield numeric	
т	responses (and not categorical) with plenty of variability. Can do	
	this in groups. Have students eliminate questions that may not	
	be good or are overdone or don't pertain to the population in	
	the classroom. Once they do that, each student picks one and	
	begins to collect their data from their classmates.	

Day Thirteen – Finish collecting data, calculate measures of	
center and measures of spread from data, and begin rough	
drafts of data displays.	
Day Fourteen – Create and finish final data displays. Students	
may have to do some work at home.	
Day Fifteen – Discuss with group about their topic and data	
displays. Which worked best, how does each one convey the	
message? Students should use their EQs as sentence stems for	
their paragraph. Teacher discretion whether everything is due at	
the end of class or beginning of next day.	

Data Displays Project

Goal: Recognize the difference between the different data displays we have learned about this quarter and choose the best one to represent our data.

The Process:

1. Survey Question

You will create a survey question that will have **numeric** responses. It is your job to think of a survey question that will yield **variability** among your classmates. Try to think of new ones – not the ones we used for your notes, get creative!

Once you have a question you know will work, we will spend the class period interviewing your classmates to collect the data for your survey question. You need to interview **AT LEAST 20** classmates.

2. Calculations

You will take your data and calculate the mean, median, mode, and range.

3. Data Displays

You will also use your data to create the 4 types of data displays we studied: Dot Plot, Stemand-Leaf Plot, Histogram, and Box Plot.

You may do this on a poster board you bring from home, or on four different letter sized papers. Either way, you should use a ruler to make nice, straight, neat lines. Your displays should be easy to read and something you would be proud to have displayed in our classroom.

4. Conclusion

Not all of your data displays will be easy – but this will help you recognize why we have different data displays.

You will write one paragraph telling which data display worked best for your data **and why**. Address each display and what the person looking at it might be able to see about the data. What would you want them to see from the data? You may also include which, if any, displays did not work for your data **and why**. Your paragraph should be at least 10 sentences long.

Consult your rubric to make sure you have included everything to be successful.

We will be working on the project in class and it is due by the end of the period:

Date: _____

Data Displays Project

Student Checklist - Turn this in with your final project!

My question:

Is this a question that would yield <u>numeric</u> results?	Yes □	No 🗆
---	-------	------

Is this a question that would yield <u>variability</u>? Yes \Box No \Box

My Data (find a way to list your data in this space):

From my data

Measures of Center:

Mean, show formula NEATLY	Median
	Mode

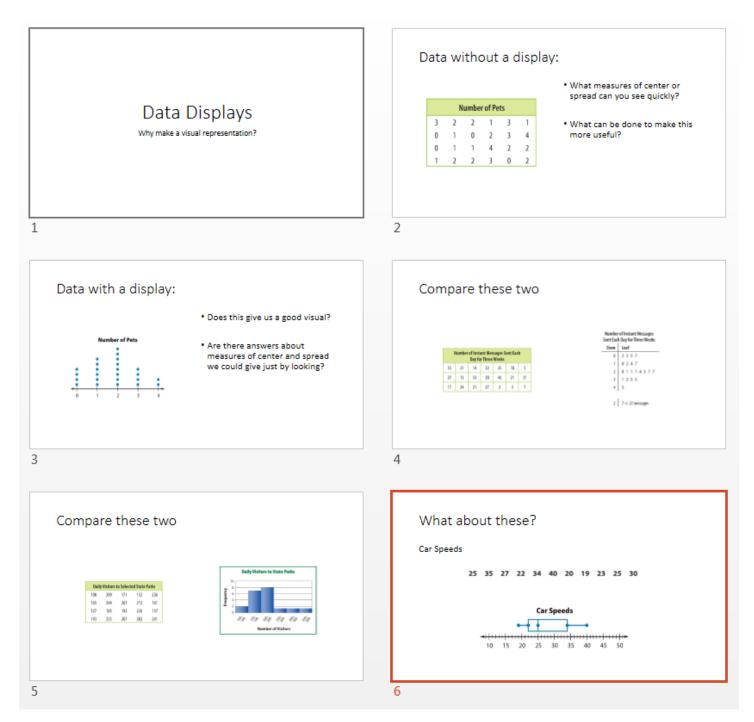
Measure of spread:

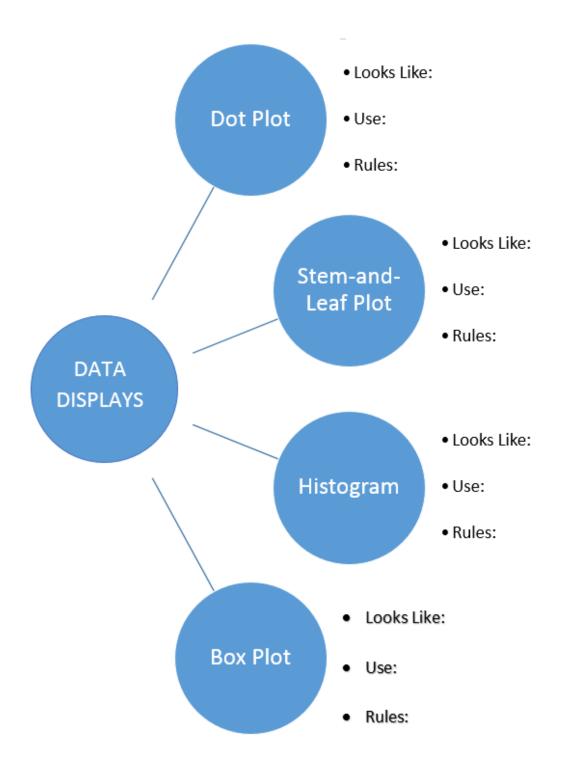
Range:	

You will include your 4 data displays separately.

On the back of this page, you will write your paragraph. <u>Please write a first draft on a separate</u> piece of paper before transferring your final draft to this Project Checklist.

My paragraph:	

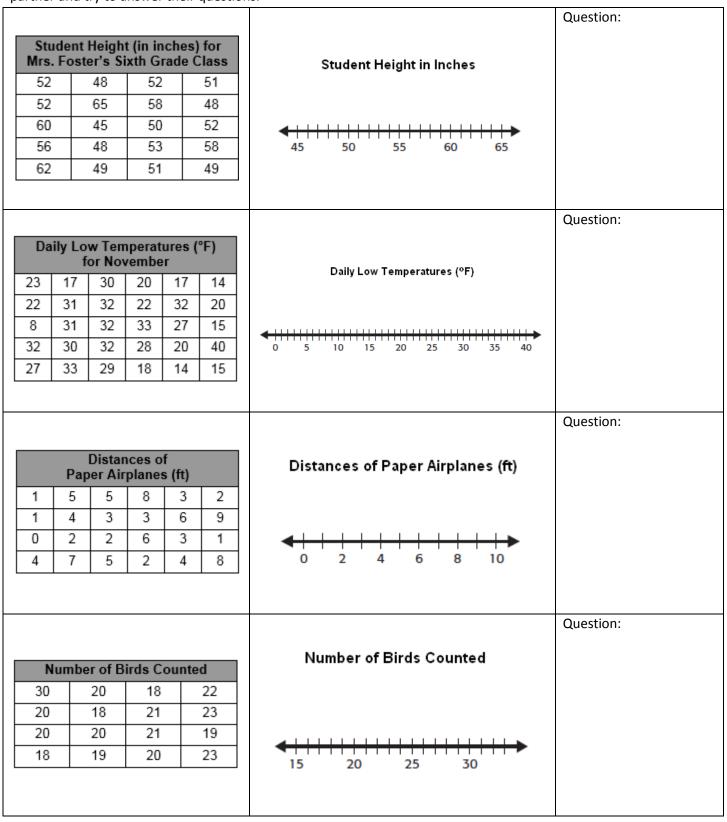

My paragraph included


- \square Which data display worked best for my data and why
- \square If any, displays did not work for my data and why
- \square At least one sentence about EACH data display, telling what the reader would be able to see
- \square At least 10 sentences
- $\hfill\square$ My paragraph was edited for grammar and spelling errors

	Not Included = 0	Below Expectations = 2	Approaching Expectations = 3	Meeting Expectations = 4	Exceeding Expectations = 5
Question x 1		Question does not yield variability	Question yield variability, but only 2 or 3 possible responses	Question yields variability with 4 – 9 possible responses	Question yields variability with 10 or more possible responses. Creative
Data Collection x 1		Surveyed less than 15 classmates	Surveyed 16 – 19 classmates	Surveyed 20 classmates	Surveyed more than 20 classmates
MMMR x 2		Calculated measures of center and spread 2 out of 4 correctly	Calculated measures of center and spread 3 out of 4 correctly	Calculated measures of center and spread correctly 4 out of 4	Calculated all measures correctly and showed all work, neatly
Dot Plot x 3		Range of numbers used does not reflect data well, data is missing	Range of numbers is acceptable, though spacing between numbers is not measured. Displayed data correctly	Used an acceptable range of numbers on well-spaced number line, displayed all data correctly	Everything included correctly, colored, very neat, visually appealing
Stem and Leaf x 3		Range of numbers of stems used does not reflect data well, data is missing	Range of numbers is acceptable, though spacing between leaves is not measured. Displayed data correctly	Used an acceptable range for stems, displayed all data correctly, leaves are measured and spaced evenly	Everything included correctly, colored, very neat
Histogram x 3		Range of numbers and intervals used does not reflect data well, data is missing	Range of numbers is acceptable, though intervals are not equal.	Used an acceptable range of number/intervals, displayed all data correctly	Everything included correctly, colored, very neat
Box Plot x 3		Range of numbers used does not reflect data well, data is missing	Range of numbers is acceptable, though spacing between numbers is not measured. Displayed data correctly	Used an acceptable range of numbers on well-spaced number line, displayed all data correctly	Everything included correctly, colored, very neat
Paragraph x 4		Does not meet length requirement OR does not show reflection of data	Meets length requirement, but reflections on data are shallow	Meets length requirement, reflects on data, includes errors in grammar and spelling	Meets or exceeds length requirement. Reflects on data. Well-written without grammar or spelling errors

Total/Comments:

Example slides for PPT



Name:

Period:

Making Dot Plots

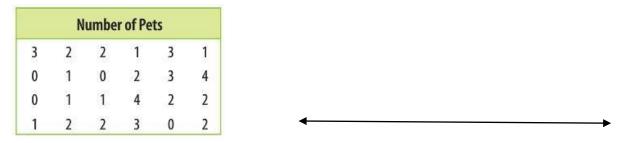
Using the data in the first column, make a dot plot in the second column. In the third column, write a question you think could be answered using the dot plot you drew. Every question needs to be different! When you finish, switch with a partner and try to answer their questions.



Name:

Period:

Dot Plot HW

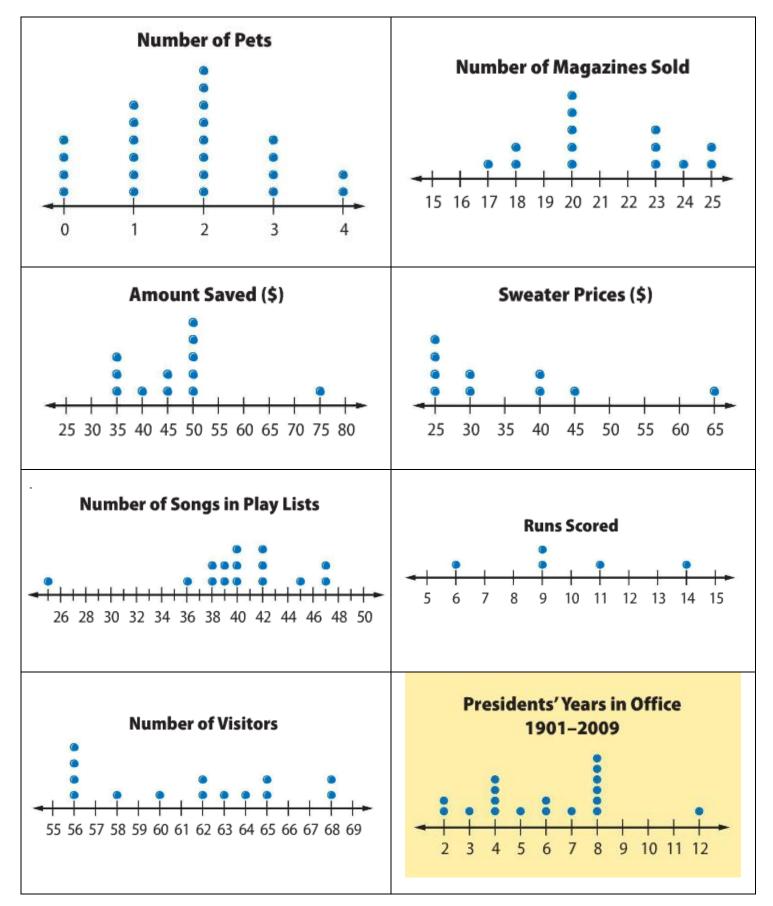

1. Javier asked the members in his 4-H club how many projects they were taking. The results are in the table below. Represent the data in a dot plot.

2. The dot plot below shows the number of songs in a play list. Use that data to find the mean, median, mode, and range.

3. Jasmine asked her class how many pets they have. Use the results from the table to create a dot plot. Then, answer the question below.

What do you think does this tells us about the data?

4. The dot plot shows the number of magazines sold. Determine the mean, median, mode, and range of the data.


Mean: _____ Median: _____ Mode: _____ Range: _____

Data Display Vocabulary

F		splay vocabulary	
WORD	MY PICTURE	Have I heard this word outside of math? What	MATH MEANING IN DATA DISPLAYS
		did it mean?	
Cluster			
Gap			
Peak			
Symmetry			
Outlier			
Skew			

Practice using these words when we discuss data displays along with your measures of center and spread ⁽²⁾

Dot Plots to use to describe shape.

Number of Instant Messages Sent Each Day for Three Weeks Stem Leaf 0 2 3 5	Median: 21	Mode: 21	
1 0247 2 01114577 3 1235 4 5	Range: 43	2 7 = 27 messages	
Approximate Height of the 20 Tallest World Waterfalls Stem Leaf 4 6 7 9 9 5 0 3 6 8	Median: 610	Mode: 490 and 610	
6 0 1 1 5 6 7 0 4 6 7 8 0 9 5 8	Range: 520	4 6 = 460 meters	
Miles Driven on Vacation Stem Leaf 34 0 0 1 5 8	Median: 358	Mode: 340, 358, and 361	
35 889 36 11267	Range: 27	35 6 = 356 miles	
Test Scores Stem Leaf 7 6	Median: 90	Mode: 92	
8 0 4 8 8 9 2 2 2 6 10 0	Range: 24	8 4 = 84%	

Period:

Stem-and-Leaf Match Recording Sheet

Stem-and-Leaf Plot Title	Кеу	Median	Mode	Range

Choose ONE stem-and-leaf plot and find the mean:

Stem and Leaf Plot	Show Work	Mean

What does this number tell us?

Think about it! A stem-and-leaf plot has a leaf of 0 for the stem 5. It has no leaves for the stem 6. Explain the difference between having a leaf of 0 and no leaves for a stem.

Name:

Date:

Period:

Stem and Leaf HW

1. Interpret the data shown in the stem-and-leaf plot below.

 Number of Base Hits
 Mean: ______

 Stem
 Leaf
 Median: ______

 0
 8 9
 Mode: ______

 1
 0 3 4 5 7 7
 Range: ______

1 | 3 = 13 hits

2.

Determine the median, mode, and range of the data shown

in the stem-and-leaf plot below.

	story Test Scores	
Stem	4 th Period	Median:
6	4	Mode:
7	5778	Mode
8	0 3 4 5 6 7 8 8 9 1 2 3 4 5 5 5 7	Range:
9	1 2 3 4 5 5 5 7	
8	3 = 83%	

4.

Interpret the data shown in each stem-and-leaf plot.

3.

Free Throws Made					
Stem					
1	4 8 0 1 3 5 5 0 1 2 3 4 5 2				
2	01355				
3	0 1 2 3 4 5				
4	2				
	free throws				

Mass of Apples (kg)						
Stem						
4	02					
5	267899					
6	44456					
7	0349					
8	01235					
9	0 2 2 6 7 8 9 9 4 4 4 5 6 0 3 4 9 0 1 2 3 5 0 9					
6 5 = 65						

5. Why is it important to include a "key" when using a stem-and-leaf plot to represent data?

Represent the data sets in a stem-and-leaf plot. Remember to make a key and give it a title!

- 1. Minutes spent on homework: 37, 28, 25, 29, 31, 45, 32, 31, 46, 39
 - A. What is the longest time spent on HW?
 - B. What is the shortest time spent on HW?
 - C. Most values occur in what interval?
 - D. Find the: Median: _____

Range: _____

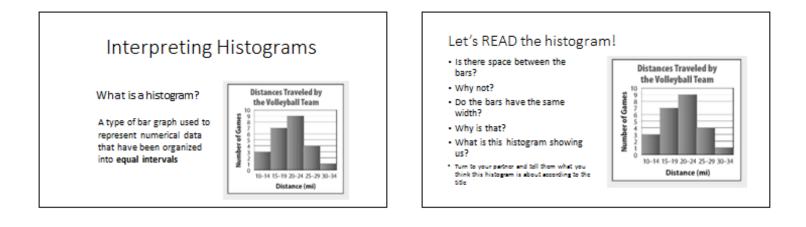
Mode: _____

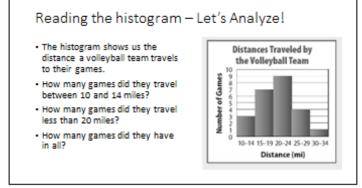
- 2. Wait time for amusement park rides (min): 81, 76, 55, 90, 71, 80, 83, 85, 79, 99, 70, 75, 70, 92
 - A. What is the longest wait time?

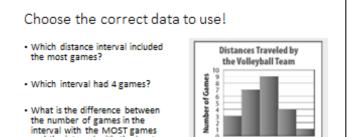
- 3. Weight of potatoes (oz): 10.5, 11.7, 12.9, 10.4, 14.4, 12.3, 10.8, 11.6, 12.0, 11.9, 11.0
 - A. What is the weight of heaviest potato?

В.	What is the	e weight of the lightest potato?	
C.	Most value	s occur in what interval?	
D.	Find the:	Median:	
		Mode:	
		Range:	

- 4. Points scored by the Spurs: 80, 70, 65, 52, 66, 86, 74, 54, 77, 88, 78, 58, 89
 - A. What was the highest points scored?

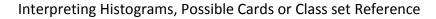

Β.	What was the lowest points scored?

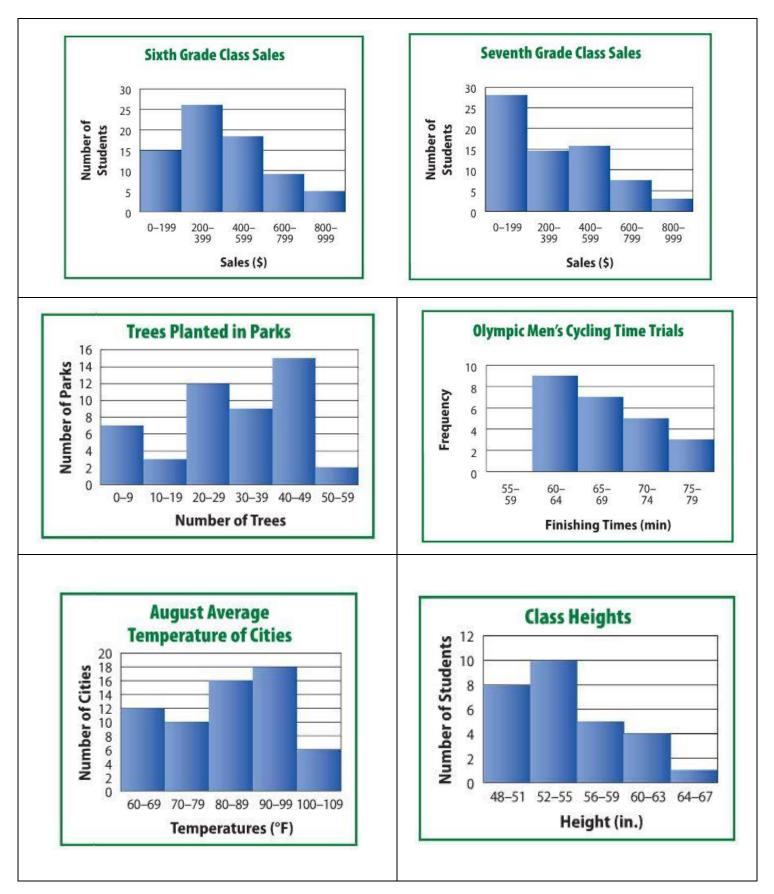

- C. Most values occur in what interval?
- D. Find the: Median: _____


Mode: _____

Range: _____

10-14 15-19 20-24 25-29 30-34


Distance (mi)

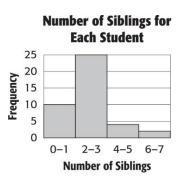

and the interval with the least

games?

Now you try!

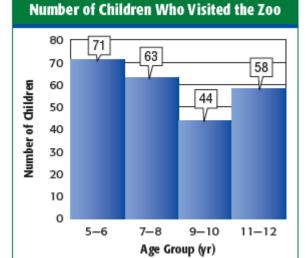
- Using the cards provided, read the histograms!
- Find the questions that match the title of the histogram on your recoding sheet.
- Work with a partner to interpret and analyze the histograms!

Interpreting Histograms Recording Sheet Sixth and Seventh Grade Class Sales About how many sixth grade students earned \$400-599 in sales? About how many seventh grade students earned \$200-399 in sales? 3. What is the interval for the sales? About how many students from BOTH grades earned \$600 or more? About how many more students in the sixth grade earned between \$400 and \$599 than in the seventh. grade? Trees Planted in Parks Olympic Men's Cycling Times What is the total number of parks? 1. How many men had finishing times between 60 Which interval has 12 trees planted? and 64 minutes? How many men had finishing times between 75 How many parks have more than 40 trees? and 79 minutes? _____ 4. How many parks have less than 20 trees? Which interval has 7 cyclists? 4. Which interval represents the greatest number What is the difference in the number of parks that had the of cyclists? most trees planted and the least 5. How many cyclists had a time less than 70 trees planted? minutes? _____ August Average Temperature of Cities Class Heights What is the total number of cities How many students are between 56 and 59 inches tall? included in the histogram? How many students are shorter than 56 inches 2. How many cities have a monthly tall? temperature of less than 80°F? _____ 3. Which interval has 4 students? 3. Which interval has the most cities? How many more students are between 52 and 55 inches tall than 48 and 51 inches tall? 4. What is the difference in the number of cities with 5. How many students are taller than 59 inches? the lowest temperatures and highest temperatures? _____ 5. How many cities have temperatures between 70°F and 99°F?

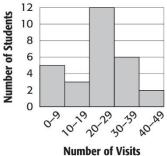

Name:

Date:

Histogram HW


For Exercises 1–5, use the histogram shown at the right.

- 1. What is the interval used?
- 2. Which age group had the most children visit the zoo?
- **3.** How many children between 7 and 10 years old visited the zoo?
- **4.** How many more children from the 5–6 age group visited than the 9–10 age group?
- 5. How many children older than 8 visited the zoo?
- 6. Refer to the histogram below. In one or two sentences, write a conclusion you can make about the data.



For Exercises 7–10, use the histogram shown at the right.

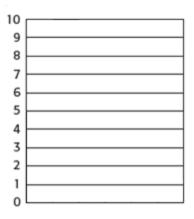
- 7. Which interval represents the most number of students?
- 8. Which interval has three students?
- **9.** How many students went to a pool at least ten times last summer?
- **10.** How many students went to a pool less than ten times last summer?

Creating Histograms. Students can do one or multiple if time allows.

Your data! Look at th number of points sco Frequency Table		-		.8, 33, 29), 37, 39 _.	, 18, 38,	42, 37, 3	2
Interval	Tally	Amount	Frequency					
				/	/			
What does this displ	ay tell you about t	his data?		 				

Your data! Look at this data and decide what intervals you will use.									
speeds of roller coas	sters (mph): 62, 64,	72, 75, 71, 68, 55,	58, 68, 72	, 70, 60, 7	72				
Frequency Table			Histogr	am					
Interval	Tally	Amount							
			Frequency						
]						
					,		/	/	
What does this displ	ay tell you about th	nis data?							

Creating Histograms


Draw Histograms to represent the data.

1	Highest Recorded Wind Speeds for Selected U.S. Cities (mph)							
	Speed (mph)	Tally	Frequency					
	40-49	₩	5					
	50-59	₩₩	10					
	60-69		2					
	70-79	=	4					
	80-89		2					
	90-99		1					

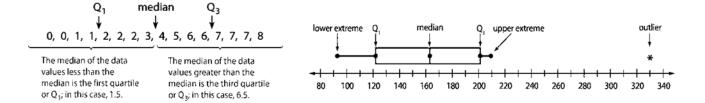
	,	st necoraca mina specas
	10	
	9	
	8	
	7	
Σ	6	
Frequency	6 5	
Fre	4	
	4 3	
	2	
	1	
	0	
	,	そそのべめみ
		Care of (and the same harms)

Speed (miles per hour)

10	
9	
8	
7	
6	
5	
4	
3 2	
2	
1	
0	

2	Number of Candy Bars Sold								
	Bars	Frequency							
	50–69		10						
	70–89		8						
	90–109		7						
	110–129		10						
	130–149		4						

3. .


Weekly Earnings (\$)								
95	120	96	100	90	105			
145	185	160	98	104	130			
115	106	97	118	125	134			

Highest Recorded Wind Speeds

Box Plots Notes

Definitions

- <u>Box plot</u>: or box-and-whisker plot, uses a _______ to show the distribution of a set of data by using the ______, quartiles, and _______. Box plots separate data into ______ parts.
- <u>Quartiles</u>: values that divide the data set into ______ equal parts.
- <u>1st quartile</u>: the ______ of the data values less than the median
- <u>3rd quartile</u>: the ______ of the data values greater than the median
- Interquartile Range (IQR): the ______ between the 1st and 3rd quartiles
- <u>Outlier</u>: data value that is either much ______ or much _____ than the median. These are represented on the box plot with an asterisk (*)

Steps to Draw Box Plot

- 1. Order the numbers from least to greatest. Then draw a number line that covers the range of the data.
- 2. Find the median, the extremes, and the 1st and 3rd quartiles. Mark these points above the number line using a dot.
- Draw the box so that it includes the quartile values.
 Draw a vertical line through the box at the median value.
 Extend the whiskers from each quartile to the extreme data points.
- 4. Include a title.

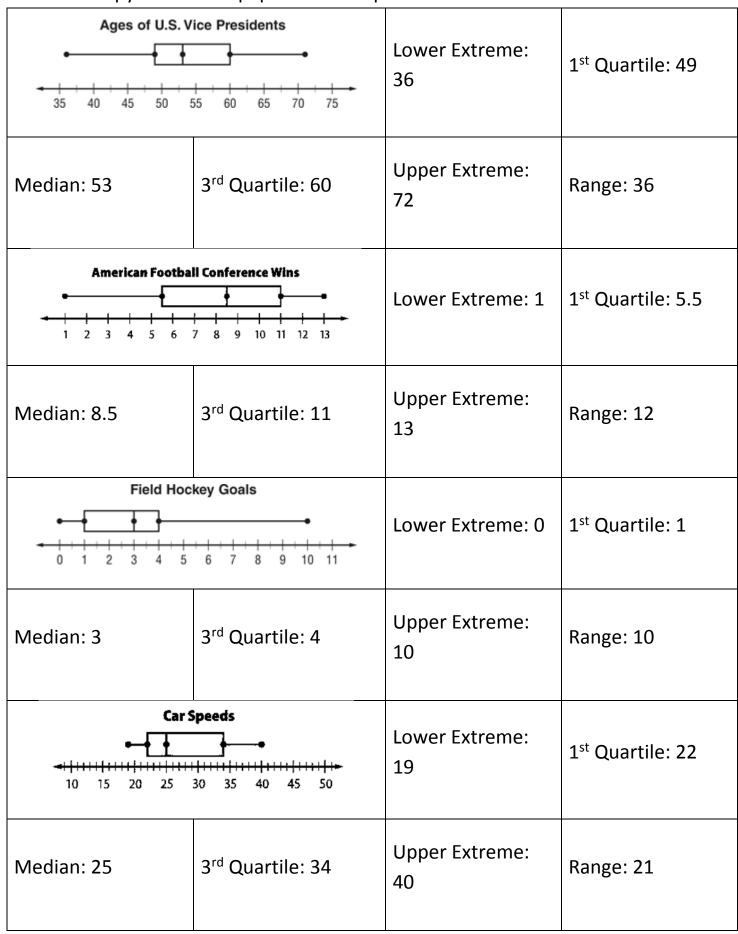
Example Data: ages of children taking dance classes are 10, 8, 9, 7, 10, 12, 14, 14, 10, 16, 4, and 15

Examples

 1. Represent the car speed data in a box plot.

 25
 35
 27
 22
 34
 40
 20
 19
 23
 25
 30

Median:	
Lower Extreme:	
Upper Extreme:	
1 st Quartile:	
3 rd Quartile:	


Represent the depth of recent earthquakes (km) in a box plot.
 5 15 1 11 2 7 3 9 5 4 9 10 5 7

•

•

Median:	
Lower Extreme:	
Upper Extreme:	
1 st Quartile:	
3 rd Quartile:	

Teacher: Copy on colored paper and cut apart

Period:	Date:
---------	-------

Box Plot Match Recording Sheet

Box Plot	Lower	1st Q	Median	3rd Q	Upper	Range

- 1. According to the box plot, what percent of US Vice Presidents were between 48 and 60 years old?
- 2. According to the box plot, what percent of Field Hockey Games had 4 or more Goals?
- 3. According to the box plot, what percent of cars drive 34 miles per hour or slower?
- 4. According to the box plot, what's the most conference wins a team has had?
- 5. According to the box plot, what percent of teams have had more than 8 wins?

Name:

Date:

Period:

Box Plot HW

Draw a box plot for each set of data. Title the box plot something that would represent the values in the data.

1. {23, 19, 20, 22, 26, 17, 15}

Median: _____

Lower Extreme: _____

Upper Extreme: _____

1st Quartile: _____

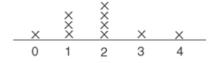
3rd Quartile: _____

2. {54, 61, 58, 68, 66, 51, 66}

15 16 17 18 19 20 21 22 23 24 25 26

3. {2, 3, 5, 4, 3, 3, 2, 5, 6}

Median: ______ Lower Extreme: _____ Upper Extreme: ______ 1st Quartile: ______

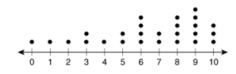

3rd Quartile: _____

Median: ______ Lower Extreme: _____ Upper Extreme: _____ 1st Quartile: _____

3rd Quartile: _____

SET ONE

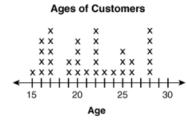
Problem #1


The dot plot above shows the number of pets in each of ten households. The dot plot shows which set of data?

Α.	1,	0,	1,	1,	2,	2,	З,	4,	1, 2	
в.	1,	0,	2,	2,	з,	4,	1,	1,	2, 3	
C.	1,	0,	1,	2,	1,	2,	2,	2,	2,3	
D.	2,	1,	0,	1,	2,	3,	4,	1,	2, 2	

Problem #2

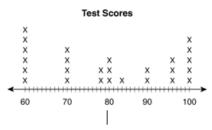
The dot plot shows the numbers of books read by a group of students.


Number of Books Read

Which statement is true?

- A. The graph is symmetrical.
- B. The mean is 9.
- C. The range and IQR are the same.
- D. The graph is skewed to the left.

Problem #3



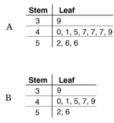
The dot plot shows the ages of the first 34 customers at a music store sale. Which question CANNOT be answered by the data in the dot plot?

- A. What is the range of the ages of the customers?
- B. What was the age of the first customer?
- C. What was the median age of the customers?
- D. How many more 25-year-olds were customers than 19-year-olds?

Problem #4

Mr. Peterson displayed test scores on a dot plot.

What conclusion can he draw?


- A. More students made Cs (70-79) than any other letter grade.
- B. About half the students made As (90-100) and Bs (80-89).

C. The data are clustered around 75 because that is the score that best represents the class performance.

D. Because it is so difficult to make a 100 on a test, the 100s can be considered outliers.

SET TWO

Problem #5

Problem #6

Michael made the stem-and-leaf plot above to display the favorite numbers of the students in his class, based on a survey he did. His results: 38, 11, 28, 45, 12, 18, 6, 32, 6, 18, 43, 7, 13, 18, 20, 25

What is wrong with the stemand-leaf plot that Michael made?

A. The key is incorrect.

B. The stems are not in order.

C. All numbers are not represented.

D. Some numbers are shown more than once.

Stem	Leaf
0	667
1	123888
2	0 5

KEY

 $2 \mid 5 = 25$

Coach Carlson gathered data

team who scored the greatest

game last season. His data is

number of points in a single

39, 40, 41, 45, 47, 47,

Which stem-and-leaf plot

correctly displays the

47, 49, 52, 56, 56

shown below.

data?

on the basketball players on his

Problem #7

Short Stories Read by Mrs. Moriarty's Class								
	Stem		Le	eaf				
	4	4	8					
	5	1	2	3	3	4		
	6	4	8					
	7	3						

The stem and leaf plot above shows the number of short stories read by students in Mrs. Moriarty's language arts class during the first ten months of school.

Which of the following is true?

A. Mean > median

- B. Mode > mean
- C. Mode
- D. Median > mean

Problem #8

The stem-and-leaf plot below shows the ages of the people attending a charity dinner.

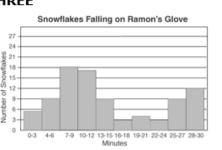
Ages of People at a Charity Dinner								
Stem		Le	af					
2	3	5	7					
3	0	0	0	2	4			
4	4	8						
5	3	5						

Which of the following statements is supported by the information in the stemand-leaf plot?

A. The most common age was 30.

B. The range of the ages was 28.

C. There were more people in their twenties than in any other age group.


D. The oldest person at the charity dinner was 48.

SET THREE

Problem #9

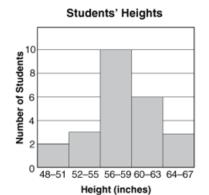
It started to snow, and Ramon wanted to know when it snowed the most. So, he made a tally of the number of snowflakes that landed on his glove every few minutes for the first 30 minutes of the storm. When he went inside, he made the following histogram. Which tally chart matches Ramon's histogram?

Α.

Minutes	Tally of Snowflakes] B. [Minutes	Tally of Snowflakes
0-3	18ť	1	0-3	THL I
4-6	THE III	1	4-6	THL III
7-9	YKL YKL YKL III	1 [7-9	THL THL THL III
10-12	THL THL THL II	1 (10-12	THL THL THL III
13-15	THE, IIII	1	13-15	THL III
16-18	111	1	16-18	111
19-21	1111	1	19-21	
22-24	111	1 [22-24	111
25-27	THE, IIII	1 [25-27	THL. IIII
28-30	THE THE II	1	28-30	JHT JHT II

C.	Minutes	Tally of Snowflakes] D.	Minutes	Tally of Snowflakes
	0-3	'18f'	1	0-3	1.141.
	4-6	784, 1111	1	4-6	THL I
	7-9	THU, THU, THU, II	1	7-9	THL THL THL III
	10-12	THL THL THL III	1	10-12	JHT JHT JHT III
	13-15	THE INIT	1	13-15	THL III
	16-18	1111	1	16-18	111
	19-21	111	1	19-21	111
	22-24	1111	1	22-24	111
	25-27	THE III]	25-27	THL III
	28-30	JHT JHT II]	28-30	JHT IIII

Problem #10

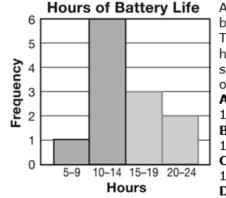

Alex collected the following data about the ages of people who came to the beach on Friday afternoon.

19, 25, 32, 35, 7, 10, 35, 42, 39, 15, 12, 18, 49

He wants to put this data into a histogram. Which would be the best intervals for him to use?

A. 0 to 10, 11 to 20, 21 to 30, and 31 to 40 B. 10 to 20, 20 to 30, 30 to 40, and 40 to 50 C. 0 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50 D. 0 to 20, 20 to 50

Problem #11



Marcus gathered information on the heights of all the students in his class. He put his data in this histogram. Which of the following statements is true about the histogram?

A. Most of the students in Marcus's class are between 56 and 59 inches tall.

B. There are more students that are 64-67 inches in height than students 52-55 inches tall. C. There are more students in the 56-to-59-inch height range than in any other height range. **D.** There are 2 students in the class with a height greater than 67 inches.

Problem #12

A battery company tracked the battery life on 12 of its batteries. The data is displayed in the histogram above. Which statement is true about the life of the batteries? A. Most batteries last less than 10 hours. B. Most batteries last more than 15 hours. C. Most batteries last between 15 and 24 hours.

D. Most batteries last more than 10 hours.

SET FOUR

Problem #13

Which data set has no variability? Tell how you know.

- A. The number of days in March each year
- B. The heights of several plants in a park
- C. The ages of different students in a school
- **D.** The number of daily visitors to a museum in a given week

Problem #14

Which question would yield a data set with variability? **Tell how** you know.

A. What were the daily high temperatures in Houston for one year?

- B. What is the distance from the Earth to the Moon?
- C. How many legs does an octopus have?
- D. How many inches are in a foot?

Problem #15

Which question will result in a data set with the least variability? **Tell how you know.**

- A. Do you drink a sports drink?
- **B.** What sports drinks do you drink?
- C. When do you drink a sports drink?
- D. What is your favorite flavor for a sports drink?

Problem #16

Which data set is most likely to have the greatest variability? **Tell** how you know.

A. The number of pencils in 27 sixth graders' desks

 ${\bf B}_{\text{-}}$ Measuring 27 sixth graders' pencils to the nearest quarter of an inch

 $\ensuremath{\mathbf{C}}\xspace$ Measuring 27 sixth graders' pencils to the nearest sixteenth of an inch

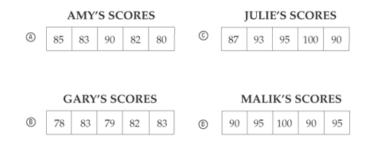
D. Measuring 27 sixth graders' pencils to the nearest inch

SET FIVE

Problem #17

Hiroshi looked at the following set of data and determined some measures:

89, 93, 99, 110, 128, 135, 144, and 159.


Determine his mistake and correct it.

Median: 128

Mode: No Mode

Range: 70

Problem #18

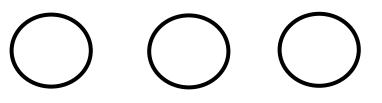
In which set of test scores are the median and the mean the same?

Problem #19

First Half			
Player	Points		
Ben	6		
Damon	4		
Mike	5		
Pedro	12		
Shaun	8		

Second Half			
Player	Points		
Ben	5		
Damon	8		
Mike	12		
Pedro	6		
Shaun	14		

The tables above show how many points the players on a basketball team scored in the first and second halves of a <u>game</u>. By how much did the **mean** number of points for the players change from the end of the first half to the end of the game?

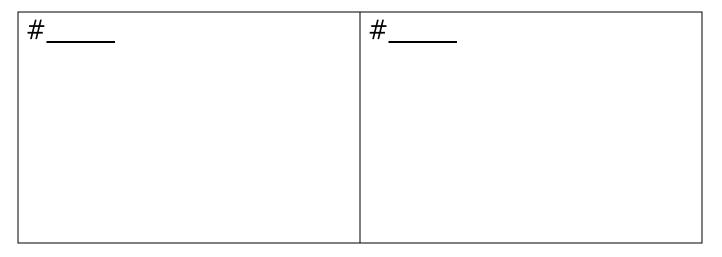

A. 1
B. 2
C. 9
D. 10

Problem #20

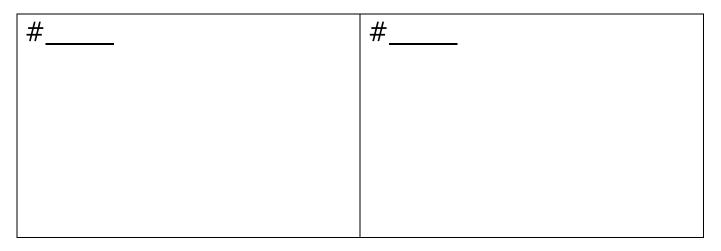
You have taken 4 quizzes in math. Your quiz grades so far are 84, 91, 92, and 87. Your parents tell you they will give you \$100 if you have a 90 or above for your quiz average. What do you need to make on your next quiz to have an average of 90?

Period: _____

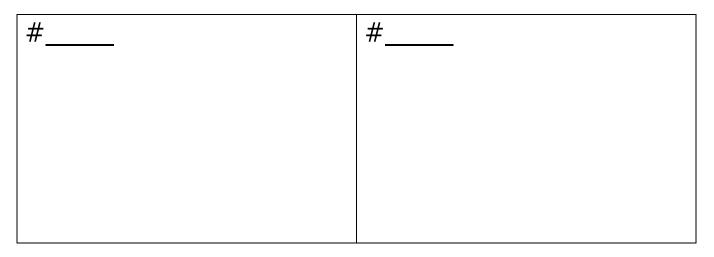
Answer Sheet (with 3 lifelines)


Set 1: Choose 2.

#	#


Set 2: Choose 2.

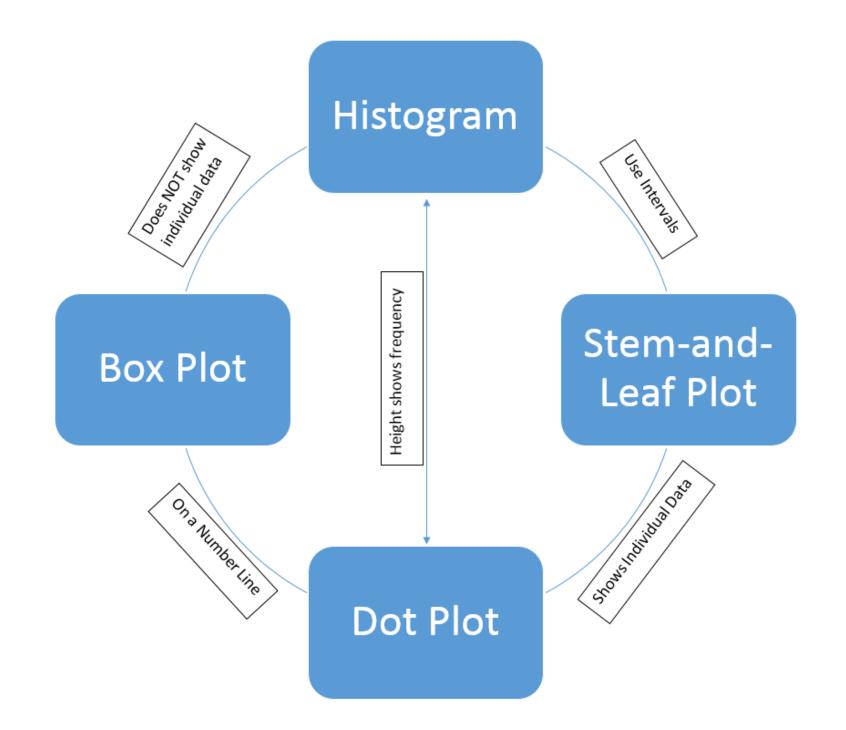
#	#


Set 3: Choose 2.

Set 4: Choose 2.

Set 5: Choose 2.

Pick a Display


Select an appropriate type of display for data gathered about each situation. Choose from the four displays we have learned about in this unit (Dot plot, Stem-and-Plot, Histogram, Box Plot). Be sure to justify your reasoning. Refer to your graphic organizer if you need help!

Situation	Display	Justification
heights of buildings in town		
number of cars a dealer sold each month over the past year		
number of scores made by each team member in a basketball season		
the different price of a music CD at five different stores?		

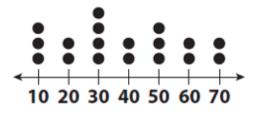
Select and make an appropriate type of display for the following data and create it.

Steepness of Wooden Roller Coasters				
70°	63°	61°		
59°	57°	56°		
55°	55°	54°		

A graphic organizer to show similarities of data displays

Data and Statistics Test

1. Wendy kept track of the number of text messages she sent each day for two weeks. The data is listed below.

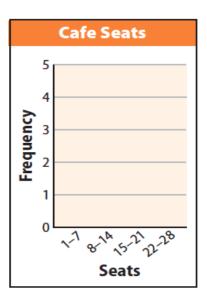

35, 20, 46, 29, 27, 33, 15, 52, 27, 30, 35, 24, 34, 42

Complete a stem-and-leaf plot for the number of text messages Wendy sent.

Welluy 5 Text Messages				
Stem	Leaves			
	Key:			

Wendy's Text Messages

2. What is the median of the data represented by the dot plot?


				•		
0	0	0	0		0	0
1	1	1	1		1	0 1
2	2		2		2	2
3	2 3 4 5	2 3 4 5	3		2 3 4 5	3
4	4	4	4		4	4
6	(5)	6	(4) (6) (7)		(5)	6
6	6	6	6		6	6
	$\overline{0}$	$\overline{0}$	7		7	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8	8	8 9	8		7 8 9	8
9	9	9	9		9	9

3. Ed counted the number of seats available in each café in his town. The data is listed below.

18, 20, 22, 26, 10, 12, 16, 18, 7, 8

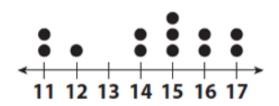
Complete the frequency table and the histogram.

Interval	Frequency
1–7	
8–14	
15–21	
22–28	

4. Samira recorded the number of likes her recent profile pictures have received. She placed the data in the stem-and-leaf plot below.

Stem	Leaf	
3	3579	
4	89	
5	1123356	
6	0379	Key: 3 5 = 35

What is the range of the data represented by the stem-and-leaf plot?


A 27

B 30

C 33

D 36

5. The dot plot shows the number of participants in each age group in a science fair.

Which of the following statements is not supported by the dot plot?

A The range is 6.

- **B** The mean of the ages is about 14.4.
- **C** The mode of the ages is 13.
- **D** The median of the ages is 15.

6. A local TV station reported the average monthly high temperatures for two cities, over the last 13 months. The data is listed below.

Average Monthly High Temperature (°F)	
Miami, FL	76, 78, 80, 83, 87, 90, 91, 91, 89, 86, 82, 78, 84
Chicago, IL	31, 35, 47, 59, 70, 80, 84, 82, 75, 62, 48, 35, 59

Based on the information in the data, which statement is true?

A The mean and range of the average temperatures in Chicago are the same.

B Typically, Chicago's temperatures are warmer than Miami's.

C Both cities have two mode average temperatures.

D The spread of Chicago's average temperatures is smaller than the spread of Miami's average temperatures.

7. The heights (in inches) of 8 students are 50, 53, 52, 68, 54, 49, 55, and 51. What is the mean height if the outlier is removed from the data?

A 52

B 54

C 45.5

D There's not enough information given.

8. Which situation does NOT yield data with variability?

A The number of cars that go through the intersection of Vance Jackson and Jackson Keller during different times of the day

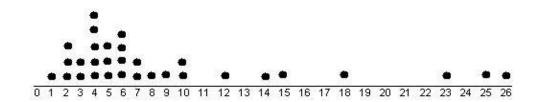
B The type of dog owned by students in Ms. Bailey's class.

C The number of students in Ms. Webb's 4th period on April 1.

D The average number of hours that students at Jackson Middle School spend on the Internet each day during the week

9. A baseball coach recorded the number of homeruns the team made last season. The data is shown in the stem-and-leaf plot below.

Home Runs		
	Stem	Leaves
	0	0557789
	1	0 5 5 7 7 8 9 0 0 7 9
	2	
	2 3 4	
	4	4
		Key: 1 7 means 17


What is the mean number of homeruns the team made last season?

A 12.8 homeruns

B 10.1 homeruns

- **C** 9 homeruns
- D 11.8 homeruns

10. Oliver recorded the number of minutes he was on social media sites each day over the last few weeks. The data is shown in the dot plot below.

What is the shape of the data?

- A It is symmetrical.
- **B** It is skewed right.
- C It is skewed left.
- D None of these.

SPIRAL BACK BONUS (+5 each)

11. A trapezoid shaped window has a height of 16 feet and bases of 16 feet and 20 feet. What is the area of the window?

12. The area of a triangular pennant is 24 square feet. If the base is 8 feet, what is the height?