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Efimov states embedded in the three-body continuum

N. P. Mehta,* Seth T. Rittenhouse,† J. P. D’Incao,‡ and Chris H. Greene§

1Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
�Received 13 January 2008; published 27 August 2008�

We present analytical solutions for the three-body problem with multichannel interactions and identify a
class of quasibound Efimov states that can be viewed as three-body Fano-Feshbach resonances. Our method
employs a multichannel generalization of the Fermi pseudopotential to model low-energy atom-atom interac-
tions near a magnetically tunable Fano-Feshbach resonance. We discuss the conditions under which quasi-
bound Efimov states may be supported and identify the interaction parameters that limit the lifetimes of these
states. We speculate that it may be possible to observe these states using spectroscopic methods, perhaps
allowing for the measurement of multiple Efimov resonances.

DOI: 10.1103/PhysRevA.78.020701 PACS number�s�: 34.20.Cf, 31.15.xj

Three resonantly interacting particles can form long-range
bound states, called Efimov states �1�, even if the short-range
interparticle interaction supports no two-body bound states.
Such states are supported by an effective R−2 dipole potential
that strongly affects few-body processes at sufficiently low
energies �2–4�, particularly three-body recombination, which
is known to control the lifetime of trapped ultracold gases
�5�. It was only recently that the first strong experimental
evidence of Efimov physics was found in an ultracold ther-
mal gas of cesium atoms �6�. The observation �6� was made
possible by utilizing a magnetically tunable Fano-Feshbach
resonance to precisely control the two-body scattering length
a and by then observing a previously predicted �3,7,8� shape-
resonant feature in the atom-loss rate due to three-body re-
combination. In this work, we identify a class of fully three-
body Fano-Feshbach Efimov resonances embedded in the
three-body continuum. Using a multichannel generalization
of other models �2–4�, we solve the adiabatic hyperspherical
equations and analyze the resulting energy landscape.

Our model permits each atom to have multiple internal
states, allowing for two-body and three-body scattering be-
tween different energy thresholds �9�. We note that Efimov
states attached to excited three-body scattering thresholds are
absent in single-channel models and difficult to infer from
other multichannel approaches �10�. Here, our calculations
show that these states are supported under the rather general
stipulation that a quasibound two-body state is quasidegen-
erate with an excited two-body scattering threshold �11� �see
Fig. 1�. Given the rich structure of resonances in, for ex-
ample, cesium �12�, this condition could likely be satisfied.
We stress that these Efimov states are of a unique character
in that they can be viewed as fully three-body Fano-
Feshbach resonances embedded within the three-body con-
tinuum far above the energy of open channel collisions, in
contrast with the single-channel Efimov resonances predicted
and recently observed that were interpreted as shape reso-
nances �3,7�. Since the scattering length a for ground-state

atoms will not in general be resonant, the gas will be com-
paratively stable with respect to the a4 overall scaling law for
three-body recombination �3,5,7�.

Such Efimov states attached to excited thresholds could
be directly accessed via photoassociation and observed
through the measurement of the resulting atom-loss rates or
photoabsorption spectrum. That is, photons could be used to
form these trimers directly, resulting in resonant absorption,
enhancement of three-body recombination, and atom loss,
thus opening a new toolkit of powerful spectroscopic tech-
niques �13�.

We let each atom have two internal states �hyperfine or
Zeeman� labeled �1� and �2� with energies E1=0 and E2=�,
respectively, where the energy splitting � is a magnetically
tunable parameter. Hence, the scattering of two atoms can
occur between different channels labeled by symmetric prod-
ucts of one-atom states: �����= ��11� , ��12�+ �21�� /	2, �22��
with respective threshold energies �E��= �0,� ,2��. Other
two-body multichannel treatments �10� model Fano-
Feshbach resonances by including a background scattering
channel and a resonant molecule channel, but fail to treat the
internal states of the atoms. In contrast, we label our chan-
nels explicitly by the internal states of the atoms and our
Hamiltonian allows for scattering at excited energy thresh-
olds between atoms in different internal states. Furthermore,
this description is easily generalized to allow for more than
two internal one-atom states.

As illustrated in Fig. 1, the zero-range s-wave two-body
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FIG. 1. �Color online� A schematic representation of our two-
body model is shown. As the range r0 is taken to zero, the potential
is regularized by the derivative in Eq. �1�
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potential is now written in the ����� basis as �in atomic units
which are used throughout this Rapid Communication�

v� �r� =
4�A�

2�2B
�3�r��

�

�r
�r · � , �1�

where �3�r� is the usual three-dimensional Dirac-� function
and �2B=m /2 is the two-body reduced mass. This interac-
tion is the natural extension of the regularized Fermi pseudo-
potential which imposes the Bethe-Peierls boundary condi-
tion on the two-body wave function, ��r�→C�1−a /r� as r
→0. One may consider the matrix A� to be the multichannel
generalization �14,15� of the scattering length a. When the
channels in Fig. 1 are weakly coupled, A� is nearly diagonal
with diagonal elements roughly representing background
scattering lengths. A more rigorous mathematical description
is obtained from multichannel quantum defect theory
�MQDT� �14,16,17�.

The energy-independent symmetric matrix A� has six inde-
pendent parameters Aij allowing one to explore an enormous
six-dimensional parameter space. In order to simplify our
analysis, we choose A33=A11�0, A22=2A33, and A12=A23
=A33 /4. Explicitly allowing A23�A12 or A11�A33 gives
qualitatively similar results in all three-body calculations de-
scribed below. The particular choice A22=2A33 is made sim-
ply to illustrate the effect of a two-body quasibound state on
the three-body dynamics; any A22�A33 would be sufficient
for this purpose. The choice A12=A23=A33 /4 is arbitrary and
provides strong coupling between channels modeling a broad
resonance. For A33�0, the �22� threshold shown in Fig. 1
supports a quasibound two-body state with energy 2�
−1 /mA33

2 . We show below that when this state is degenerate
with the E=� scattering threshold �i.e., when �→1 /mA33

2 �,
an attractive R−2 Efimov potential appears in the three-body
system near E=� and E=2�, supporting a series of Efimov
resonances.

For three atoms with positions r1
� , r2

� , and r3
� , we write the

mass-scaled Jacobi coordinates in the “odd-man-out” nota-

tion: y�1
�1�= �r�2−r�3� /d and y�2

�1�=d�
r�2+r�3

2 −r�1� �with d=21/2 /31/4�.
Other sets of Jacobi coordinates �e.g., �y�1

�2� ,y�2
�2��� are ob-

tained by cyclic permutation of particles. In what follows, we
omit the superscript denoting a particular choice of coordi-
nates whenever possible. Hyperspherical coordinates are ob-
tained by defining the hyperangle � as tan �= �y1� / �y2�, the
hyperradius R as R2=y�1

2+y�2
2 �which is invariant under par-

ticle permutations�, and the spherical polar angles 	i
= �
i ,�i� to point in the direction of ŷi. The angular coordi-
nates �� ,	1 ,	2� are collectively denoted �. The pairwise
interactions are written in the basis of two-body internal
states, with the third spectator particle �near any chosen two-
particle coalescence point� in either state �1� or �2�. Hence, if
particle 1 is the spectator particle, we have the following six
internal three-body product states: ��
��= ��111� , ��112�
+ �121�� /	2, �211� , �122� , ��212�+ �221�� /	2, �222�� with en-
ergies �E
�= �0,� ,� ,2� ,2� ,3��.

In the multichannel generalization �18� of the adiabatic
hyperspherical method �19�, we seek solutions to the follow-
ing matrix equation written in the �
� basis:


�2 + 15/4
2�R2 1� + E� th + V� �R,�� − U�R���� �R;�� = 0. �2�

Here, � is the grand angular momentum operator �20�, E� th is
a diagonal matrix, �Eth�

�=�

�E
, and V� �R ,�� is the sum
of matrices v� �k� for each pairwise interaction. The three-body
reduced mass is �=m /	3. Solutions to Eq. �2� give a spec-
trum of eigenvalues Un�R�, which we recast in terms of a
new variable �
n: �
n��
n+4�=2�R2�Un�R�−E
�−15 /4.
The potentials Un�R� appear in radial equations of the form
�ignoring nonadiabatic effects� −Fn��R� /2�R2+Un�R�Fn�R�
=EFn�R�.

Here, we solve Eq. �2� using a hyperangular Green’s func-
tion. The corresponding Lippmann-Schwinger �LS� equation

for the 
 component of �� reads

�
�R;�� = − 2�R2 �

�,k


 d��G

��,���

� v

�
�k� �R,����
��R;��� , �3�

where components of the free-space �diagonal� hyperangular
Green’s function G� �� ,��� satisfy ��2−�
��


+4��G

�� ,���=��� ,���. Postponing the full derivation to
a later publication �21�, we give this solution �for the first
time� �22�:

G

��,��� = �
l1,m1,l2,m2

�gl1l2

�
 ��,���Yl1m1
�	1�

�Y
l1m1

* �	1��Yl2m2
�	2�Y

l2m2

* �	2��� , �4�

where gl1l2
�
 �� ,���=N�
l1l2

f�
l1l2
�−� ����f�
l1l2

�+� ���� and

f�
l1l2
��� ��� = �sin ��l1�cos ��l2

�2F1
 l1 + l2 − �


2
,
�
 + l1 + l2 + 4

2
,

l� +
3

2
,
1 � cos�2��

2
� , �5�

with l+= l1, l−= l2; l1 �l2� is the orbital angular momentum
quantum number associated with y�1 �y�2�. The normalization
constant is N�
l1l2

= ���
l1+l2−�


2 ���
l1+l2+�
+4

2 �� / �2��l1+ 3
2 ���l2

+ 3
2 ��.
The LS equation �3� is then solved by evaluating the

integral over v

�
�k� in the coordinate system where �y�1

�k��
� �r�i−r� j��R sin ��k�. The zero-range s-wave interaction im-
mediately selects l1=0 for the two interacting particles and
l2=L. For this Rapid Communication, we confine our study
to states with total orbital angular momentum L=0. For
equal-mass particles, in the limit ��k�→0 we have ��i�=��j�

=� /3; the LS equation reduces to a matrix equation of the
form �18�


 31/4

21/2R
�M� �1� + M� �2�P� − + M� �3�P� +� − 1��C� �1� = 0, �6�

where, for bosons,
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M

�
�i� = �A

�

�i�
�
 cot��
�/2� , i = 1,

A

�
�i� − 4 sin��
�/6�

	3 sin��
�/2�
, i = 2,3.� �7�

The vector associated with the nth eigenstate, C� n
�1� in Eq. �6�,

is defined by the boundary and normalization conditions

C
n
�k� = lim

rk→0

��rk�
n�
�rk

and �



��
n��
n� = 1. �8�

We have rewritten the eigenvalue as �
=�
−2 purely for
convenience, and P� + and P� − perform cyclic and anticyclic
particle permutations, respectively, upon the basis ��
��. Ze-
ros of the determinant of the matrix in Eq. �6� yield the
eigenvalues �
n

2 =2�R2�Un�R�−E
�+1 /4.
As mentioned before, by allowing � to vary with the mag-

netic field, it is possible to make a quasibound two-body
state degenerate with the ��=2� threshold. This occurs when
�→1 / �mA33

2 � as illustrated in Fig. 1. Under these conditions,
provided that �A13��A33, an Efimov potential appears at both
the E=� and E=2� three-body thresholds. In Fig. 2�a� we
show the lowest 300 adiabatic potential curves up to E
=3.5�. Note the collection of three-body curves converging
to the various three-body scattering thresholds �E
�, corre-
sponding asymptotically to three free atoms in internal states
given by ��
��. In Fig. 2�b�, which shows in detail the three-
body potentials near E=�, the Efimov potential appears as an
attractive diabatic potential connected through a series of
sharp avoided crossings. The eigenvalues �2

2=�1
2−2�R2�

corresponding to this diabatic potential are shown in
Fig. 2�c� to converge to the universal value �2

2→
−0.171 145=−s0

2. Note that this universal value is appropri-
ate for two identical bosons interacting resonantly with a
third distinguishable particle of equal mass �24,25� and is
consistent with the fact that the E=� threshold corresponds
to atoms in internal states ��112�− �121�� /	2 and �211�.

The lifetime of Efimov states near E=� is limited by the
lifetime of the resonant two-body quasibound state �see Fig.
1�. We find for A13�A33 that the quasibound two-body state

lifetime scales as �A33 /A13�4. This two-body lifetime in turn
controls the radial widths of avoided crossings at large R.
This is understood qualitatively by noting that when A13 is
sizable, direct inelastic transitions between ��=3� and ��
=1� states dominate over two-step transitions via the inter-
mediate ��=2� state, where the presence of the quasibound
two-body state at energy E=� strongly affects the three-body
dynamics. In the limit A13→0, we find that inelastic transi-
tions will occur only for R�A33 due to broader avoided
crossings whose widths are controlled by the couplings A12
and A23. If all transitions occur at short range, the width of
each successive Efimov state scales with the same geometric
factor as the energy: �n /�n−1=En /En−1=e−2�/s0.

Experimentally, the resolution of spectroscopic techniques
is limited by the lifetime of the gas. In the present scheme,
atoms spend time near E=0, where the interaction is not
resonant and the gas is expected to be stable with respect to
the approximate a4 scaling law for three-body recombina-
tion. Photons with energy �	=En�� are then introduced to
associate Efimov trimers directly. Note that since �	��,
two-body collisions at the E=� threshold are not energeti-
cally allowed. It may be possible, therefore, to probe Efimov
resonances attached to excited three-body thresholds for
times long enough to resolve a second resonant feature in
either photoabsorption or atom loss. Further, the geometric
scaling factor e−2�/s0 could be made more favorable by either
using heteronuclear mixtures of atoms, capitalizing on mass
ratios different from unity �1,25,26�, or by considering atoms
with more than two internal states and placing a quasibound
two-body state at a scattering threshold of the form �22�,
recovering the bosonic scaling factor e−2�/s0 �22.7.

In order for the Efimov states to persist, it is sufficient
to show that the positive-definite adiabatic correction
−Q�R�=−���R�� �2

�R2 ���R�� corresponding to the Efimov po-
tential falls off faster than R−2. Following a multichannel
generalization of the method used in �23�, we find that this
correction for the Efimov potential falls off as R−3, consistent
with the single-channel result and allowing these states to
persist.

In Fig. 2�a�, the series of avoided crossings near 0.6� is a

FIG. 2. �Color online� In �a�, we show approximately the lowest 300 potential curves up to 3.5�, while �b� shows an enlarged view of the
region near the E=� threshold and the attractive R−2 diabatic Efimov potential. Note also the series of avoided crossings in �a� near E
=0.6� indicating the presence of a two-body quasibound state. In �c� we show the eigenvalue near E=� converging to the universal value for
two identical bosons and one distinguishable particle �2→−0.171145=−s0

2 indicated by the dashed red line.
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direct result of the quasibound two-body state attached to the
��=2� threshold in Fig. 1. The radial width of these avoided
crossings is controlled by the width of the two-body reso-
nance. For a broad resonance, three-body collisions near this
energy couple strongly to the two-body Fano-Feshbach reso-
nance through this series of avoided crossings. As the two-
body resonance becomes narrower, the avoided crossings be-
come sharper, converging to a true atom-dimer scattering
threshold in the limit of an infinitely narrow resonance. Note
that the degeneracy of a quasibound two-body state with the
E=0 scattering threshold results in the usual Fano-Feshbach
resonance and leads to the series of Efimov states that were
interpreted as shape resonances in Ref. �6�.

To summarize, we have identified a class of Efimov states
embedded in the three-body continuum. The hyperradial po-
tentials supporting these states have universal properties con-
sistent with the symmetry constraints implied by the internal
degrees of freedom of the three-atom system and can further

be understood in terms of relevant two-body length scales.
Further, we have identified the parameter A13 responsible for
the long-range coupling which limits the lifetime of these
Efimov states and have found that the repulsive diagonal
nonadiabatic correction falls off as R−3, consistent with the
single-channel result. We stress that since the potential sup-
porting these states appears when a quasibound two-body
state is degenerate with an excited two-body threshold, the
open-channel scattering length in general will not be reso-
nant, and the gas is expected to be stable with respect to the
general a4 scaling of recombination. We postulate that it may
be possible to observe these states by spectroscopic tech-
niques, perhaps with sufficient accuracy to measure two Efi-
mov resonances.

We thank D. Blume and J. H. Macek for useful discus-
sions during the early stages of this work. This work is sup-
ported by the National Science Foundation.
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