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Abstract
The problem of a few interacting fermions in quantum physics has sparked intense interest,
particularly in recent years owing to connections with the behaviour of superconductors,
fermionic superfluids and finite nuclei. This review addresses recent developments in the
theoretical description of four fermions having finite-range interactions, stressing insights that
have emerged from a hyperspherical coordinate perspective. The subject is complicated, so we
have included many detailed formulae that will hopefully make these methods accessible to
others interested in using them. The universality regime, where the dominant length scale in
the problem is the two-body scattering length, is particularly stressed, including its
implications for the famous BCS–BEC crossover problem. Derivations and relevant formulae
are also included for the calculation of challenging few-body processes such as recombination.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of four interacting particles in non-relativistic
quantum mechanics arises in a number of different physical
and chemical contexts [1–4]. While tremendous theoretical
progress has been achieved in the three-body problem [5–15],
particularly in the past two decades, the four-body problem
still remains in its infancy by comparison. Like the three-body
problem, the four-body problem consists of two qualitatively
different subcategories, one in which some of the particles have
Coulombic interactions [16–23], and the other subcategory in
which all forces between particles have a finite range or else
have at most a rapidly decaying multipole interaction at long
range [1, 2, 24–29]. The subject of this review concerns the
latter category, which is particularly relevant to modern day
studies of ultracold quantum gases composed of neutral atoms
and/or molecules. The scope of this subject is much broader
than that of ultracold gases alone, however, as four-body
reactive processes such as AB+CD→AC+BD, or →A+BCD,
or →A+B+C+D occur in nuclear and high-energy physics
as well as in chemical physics. The time reverse of these
processes is also important for understanding the loss rate in

a degenerate quantum gas, notably the process of four-body
recombination which had hardly received any attention until
very recently.

While of course many important advances have
been achieved in few-body physics without the use of
hyperspherical coordinates, treatments using these coordinates
have real advantages for a number of problems. Early on, for
instance, Thomas [30] proved an important theorem about the
non-zero range of nucleon–nucleon forces, using an analysis
in which the hyperradial coordinate played a crucial role
although he did not refer to it by that name. (See, for
instance, equation (111c) of [4].) Further developments in
the use of hyperspherical coordinates in collision problems
were pioneered by Delves [31, 32] and they played a key
role in the derivation of the Efimov effect [33, 34]. As we
will see below, the advantages accrue not only in terms of
computational efficiency, but also in terms of the insights and
quasi-analytical formulae that can be deduced for scattering,
bound, and resonance properties of the system. For this
reason, this review concentrates on the hyperspherical studies
of the four-body problem, concentrating on recent progress
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and results that have emerged and on problems that currently
seem ripe for pursuit in the near future.

In early studies [35, 36], hyperspherical coordinates
were viewed as capable of providing a deeper understanding
of the nature of exact bound state solutions for instance
for the helium atom [37]. Delves [31, 32] used these
coordinates to discuss rearrangement nuclear collisions from
a formal perspective. But a turning point in the utility
of hyperspherical coordinate methods was introduced by
Macek in 1968 [38] in the form of two related tools: the
adiabatic hyperspherical approximation and the (in principle
exact) adiabatic hyperspherical representation. Both of these
methods single out a single collective coordinate for special
treatment, the hyperradius R of the N-body system, which
is handled differently from all remaining space and spin
coordinates, �. The hyperradius is a positive ‘overall size
coordinate’ of the system, whose square is proportional to the
total moment of inertia of the system, i.e. R2 = 1

M
�imir

2
i ,

where mi is the mass of the ith particle at a distance ri from
the centre of mass, and M is any characteristic mass which can
be chosen with some arbitrariness [39].

In Macek’s adiabatic approximation, the Hamiltonian is
diagonalized at fixed values of R, and the resulting energies
plotted as functions of the hyperradius can be viewed as
adiabatic potential curves Uμ(R) as in the ordinary Born–
Oppenheimer approximation for diatomic molecules. The
first prominent success of the adiabatic approximation was
the grouping together of He autoionizing levels having similar
character into one such potential curve [38]. Subsequent
studies showed that He and H− photoabsorption is dominated
by a small subset of such potential curves [40–42], suggesting
that Macek’s adiabatic scheme is much more than just
a mathematical technique for solving the Schrödinger
equation, but that it also provides an insightful physical
and intuitive formulation that can be used qualitatively
and semiquantitatively in the same manner as the Born–
Oppenheimer treatment which has been so successful in
molecular physics.

At the same time, however, subsequent applications
of the strict adiabatic hyperspherical approximation showed
its limitations [43, 44]. Some classes of energy levels
or low-energy scattering properties could be described to
semiquantitative accuracy, but in other cases it failed to give
a reasonable description of the spectrum, sometimes even
qualitatively. As this has become more and more appreciated,
it has become increasingly common to treat few-body
systems using the adiabatic hyperspherical representation,
in principle an exact theory that does not make the
adiabatic approximation; in this method, several adiabatic
hyperspherical states are coupled together and their non-
adiabatic interactions are treated explicitly. Implementation
of the adiabatic hyperspherical representation is sometimes
carried out in exact numerical calculations [8, 45, 46], but
in many cases semiclassical theories such as the Landau–
Zener–Stueckelberg formulation are sufficiently accurate and
useful [47].

In the four-body problem, some initial studies using
hyperspherical coordinates were carried out for the description

of three-electron atoms such as Li, He−, and H−−

[48, 49]. But the method was improved to the point of
being a comprehensive approach by [16–22]. Despite our
focus in this review on four interacting particles with short-
range interactions, we summarize briefly the headway that has
previously been achieved for Coulombic systems. For three-
electron atoms, the topology is of course quite different and
more interesting than for two-electron atoms. For instance,
whereas one observes one or more two-electron hyperspherical
potential curves that converge at R → ∞ to every possible
one-electron bound state, the three-electron atom potential
curves converge also to unstable resonance levels of the
residual two-electron ion that have a non-zero autoionizing
decay width. There are multiple families of potential curves
that represent new physical processes such as post-collision
interaction in addition to the triply excited states and their
decay pathways. Tremendous technical challenges were
overcome in an impressive series of articles by Lin, Bao,
Morishita, and their collaborators to enable the calculation
of accurate hyperspherical potential curves for three-electron
atoms [16–22]. For a recent broader review of triply excited
states that also discusses alternative approaches beyond the
hyperspherical analysis, see [23].

Another theoretically challenging type of four-body
problem in chemical physics has been the dissociative
recombination of H+

3 induced by low energy electron collision.
Here the three bodies are the nuclei (augmented by two ‘frozen’
1s electrons that play no dynamical role at low energies), while
the fourth body is the incident colliding electron. The solution
of this problem, including the identification of Jahn–Teller
coupling as the controlling mechanism, has been greatly aided
by the use of hyperspherical internuclear coordinates. They
allowed a mapping of the dynamics to a single hyperradius, in
addition to multichannel Rydberg electron dynamics that could
be efficiently handled using multichannel quantum defect
techniques and a rovibrational frame transformation [50–52].

More relevant to this review of four-body interactions
of short-range character are some long-standing problems
of reactive processes in nuclear physics and in chemical
physics. Fundamental groundwork was laid by Kuppermann
[53, 54] and by Aquilanti and Cavalli [55], which concentrated
on developing coordinate systems and useful solutions of
the non-interacting problem, which are the hyperspherical
harmonics. However, whereas hyperspherical harmonics
constitute a complete, orthonormal basis set in general, which
have numerous useful formal properties, in our experience
they provide poor convergence when used alone as a basis set
to expand a reactive collision wavefunction.

The tremendous growth of ultracold atomic physics has
stimulated much of the current interest in few-body and
many-body processes that are deeply quantum mechanical in
nature. And indeed, some of the progress can be traced to
the advances that have been made in our understanding of
few-body collisions and resonances in the low-temperature
limit. Some of the most important advances were the
development of accurate theoretical models for atom–atom
collisions at sub-millikelvin temperatures [56–62]. Ab initio
theory was not sufficiently advanced to predict the atom–atom
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interaction potentials to sufficient accuracy, so refinements
and adjustments of a small number of parameters (the singlet
and triplet scattering lengths and in some cases the van der
Waals coefficient and the total number of singlet and triplet
bound levels) were needed to specify the two-body models.
Once the two-body interactions were well understood, the next
challenge became three-body collisions. In most degenerate
quantum gases created during the past decade or longer, the
lifetimes have been controlled by three-body recombination,
i.e. in a single-component BEC, this is the process A+A+A →
A2 + A. Advances in understanding and in the ability to carry
out non-perturbative three-body recombination calculations
resulted, by the late 1990s, in some of the first survey studies
of the dependence of the three-body recombination rate K3 on
the two-body scattering length. Two independent treatments
utilizing the adiabatic hyperspherical representation [10, 11]
led to the prediction that destructive interference minima
should exist at positive atom–atom scattering lengths a,
with universal scaling behaviour connected intimately with
the Efimov effect. Such minima have apparently been
observed recently in experiments [63]. Reference [10]
additionally predicted that three-body shape resonances, also
connected intimately with the Efimov effect, should arise
periodically in a, and the first such Efimov resonance was
observed experimentally in 2006 by the Innsbruck group of
Grimm [64].

Not long after the dependence of K3 on a had been
identified by the aforementioned theoretical treatments in
hyperspherical coordinates, alternative treatments provided
different ways to understand many of these results: effective
field theory [65], functional renormalization [66], Faddeev
treatments in momentum space [67, 68], a transition matrix
approach based on the three-body Green’s function [69],
and an analytically solvable model treatment of the Efimov
problem [70]. This large number of independent theoretical
formulations, which by and large reproduce and in some cases
extend the 1999 predictions, is an encouraging confluence that
suggests our understanding of the three-body problem with
short-range forces is nicely on track.

In contrast, the description of many four-body scattering
processes, especially those with a final or initial state having
four free particles such as the recombination process A+A+A+
A → A3 +A or A2 +A2 or A2 +A+A, is a field in its infancy by
comparison with the state of the art for the three-body problem.
Most previous attention to date has concentrated on either four-
body bound states such as the alpha particle ground or excited
states [71], or else simple exchange reactions with two-body
entrance and exit channels, such as H + H2O → H2 + OH
[1, 2]. Some theoretical results of this class have been derived
in the context of ultracold fermi or bose gases. One of
the most important was the prediction by Petrov, Salomon,
and Shlyapnikov [72] that the rate of inelastic collisions,
between weakly bound dimers composed of two equal masses
but opposite spin fermions, should decay at large fermion–
fermion scattering lengths, a, as a−2.55. Two experiments are
consistent with this prediction [73, 74]. This result has been
confirmed at a qualitative level in a separate hyperspherical
coordinate treatment discussed below in section 5.4, but with

some quantitative, temperature-dependent differences [75].
The real part of the dimer–dimer scattering length, associated
with purely elastic scattering, is also important in the BEC–
BCS crossover problem, and its value has been predicted in a
number of independent studies to equal 0.6a.

For four identical bosons with large scattering lengths,
an insightful theoretical conjecture by Hammer and Platter
[76] suggested that two four-body bound levels should exist
that are attached to every three-body Efimov state. When
this problem was tackled using the toolkit of hyperspherical
coordinates, the resulting potential curves and their bound
and quasi-bound levels provided strong numerical evidence
in support of this conjecture [77]. Moreover, once the major
technical challenge of computing the adiabatic hyperspherical
potential curves had been overcome, through the use of a
correlated Gaussian basis set expansion [78], it was possible
to calculate four-body recombination rates and demonstrate
that signatures of four-body physics had in fact already
been present and observed in the 2006 Efimov paper by the
experimental Innsbruck group [64]. The four-body resonance
features had not been interpreted as such in that study, but a
subsequent experiment by the same group [79] provided strong
confirmation of this point. This theoretical development was
also aided by a general derivation of the N-body recombination
rate [80] in terms of a scattering matrix determined within the
adiabatic hyperspherical representation. Further extensions
have permitted an understanding of dimer–dimer collisions
involving four bosonic atoms [81]. Another positive advance
during the last few years has been a treatment of atom-trimer
scattering that has determined the lifetime of universal bosonic
tetramer states [82] and the analysis of the Efimov trimer
formation via four-body recombination [83].

Our aims in this review are to present some of the technical
developments that have recently enabled an extension of the
adiabatic hyperspherical framework that can handle four or
more particles. The most technically challenging aspect
of this is the solution of the fixed-hyperradius Schrödinger
equation to determine the adiabatic potential curves and
their couplings that drive inelastic, non-adiabatic processes.
Once those couplings and potential curves are known, it
is comparatively simple and intuitive to understand at a
glance the competing reaction pathways that can contribute
to any given process. In many cases, those pathways are
sufficiently small in number, and sufficiently localized in
the hyperradius, to permit semiclassical WKB and Landau–
Zener–Stueckelberg-type theories [47, 84–86] to give a
semiquantitative description. Such approximate treatments are
especially useful for interpreting the results of quantitatively
accurate coupled channel solutions to the coupled equations.

2. General form of the adiabatic hyperspherical
representation

One of the greatest advantages of using the hyperspherical
adiabatic representation is that it offers a simple, yet
quantitative, picture of the bound and quasi-bound spectrum
as well as scattering processes. It reduces the problem
to the study of the hyperradial collective motion of the
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few-body system in terms of effective potentials and where
inelastic transitions are driven by non-adiabatic couplings.
The effective potentials, and the couplings between different
channels, offer a unified, conceptually clear, picture of
all properties of the system. Below, we give a general
description of the adiabatic hyperspherical representation for
a general N-body problem. Details regarding the coordinate
transformations that accomplish the conversion from Cartesian
to angular variables (along with R) are given in appendix A.

2.1. Channel functions and effective adiabatic potentials

In the adiabatic hyperspherical representation, the N-body
Schrödinger equation can be written in terms of the rescaled
wavefunction ψ = R(3(N−1)−1)/2� as (in atomic units):[

− 1

2μ

∂2

∂R2
+ Ĥad(R,�)

]
ψ(R,�) = Eψ(R,�), (1)

where μ is the arbitrary reduced, mass and E is the total
energy. It is interesting to note that the above form of the
Schrödinger equation is the same irrespective of the system
in question, leaving all the details of the interactions in the
adiabatic Hamiltonian Ĥad(R,�), where � denotes the set of
all hyperangles necessary to describe the N-body system.

The N-body effective potentials are eigenvalues of the
adiabatic Hamiltonian Ĥad, obtained for fixed values of R, i.e.
with all radial derivatives omitted from the operator:

Ĥad(R,�)�ν(R;�) = Uν(R)�ν(R;�) (2)

where �ν(R;�), the eigenstates, are the channel functions,
Uν(R) the few-body potentials, and the adiabatic Hamiltonian
given by

Ĥad(R,�) = 	̂2(�) + (3N − 4)(3N − 6)/4

2μR2
+ V̂ (R,�). (3)

The operator 	̂2 is the squared grand angular momentum
defined in equation (B.3), and V̂ contains all the interparticle
interactions. In the above equations, ν is a collective index
that represents all quantum numbers necessary to label each
channel.

Since the channel functions �ν(R;�) form a complete
set of orthonormal functions at each R, they are a natural base
to expand the total rescaled wavefunction

ψ(R,�) =
∑

ν

Fν(R)�ν(R;�), (4)

where the expansion coefficient Fν(R) is the hyperradial
wavefunction. In this representation, the total wavefunction
is, in principle, exact. Upon substituting equation (4) into
the Schrödinger equation (1) and projecting out �ν , the
hyperradial motion is described by a system of coupled
ordinary differential equations[

− 1

2μ

d2

dR2
+ Uν(R)

]
Fν(R)

− 1

2μ

∑
ν ′

[
2Pνν ′(R)

d

dR
+ Qνν ′(R)

]
Fν ′(R) = EFν(R),

(5)

where Pνν ′(R) and Qνν ′(R) are the non-adiabatic coupling
terms responsible for the inelastic transitions in N-body
scattering processes. They are defined as

Pνν ′(R) =
〈〈

�ν(R,�)| ∂

∂R
|�ν ′(R,�)

〉〉
(6)

and

Qνν ′(R) =
〈〈

�ν(R,�)| ∂2

∂R2
|�ν ′(R,�)

〉〉
, (7)

where the double brackets denote integration over the angular
coordinates � only.

Although in the adiabatic hyperspherical representation
the major effort is usually in solving the adiabatic equation
(2), the hyperradial Schrödinger equation (5) is central to the
simplicity of this representation. Since R represents the overall
size of the system, the hyperradial equation (5) describes the
collective radial motion under the influence of the effective
potentials Wν , defined by

Wν(R) = Uν(R) − 1

2μ
Qνν(R), (8)

while the inelastic transitions are driven by the non-adiabatic
couplings Pνν ′ and Qνν ′ . Scattering observables, as well
as bound and quasi-bound spectrum, can then be extracted
by solving equation (5). As it stands, equation (5) is
exact. In practice, of course, the sum over channels must be
truncated, and the accuracy of the solutions can be monitored
with successively larger truncations. Therefore, in the
adiabatic hyperspherical representation the usual complexity
due to the large number of degrees of freedom for few-body
systems is conveniently described by a one-dimensional radial
Schrödinger equation, reducing the problem to a ‘standard’
multichannel process.

The hyperspherical adiabatic representation has been
shown to offer a simple and unifying picture for describing
few-body ultracold collisions in the regime where the short-
range two-body interactions are strongly modified due to
a presence of a Fano–Feshbach resonance [87]. In this
regime, the long-range properties of the few-body effective
potentials Wν become very important and other analytical
few-body collision properties can be derived. For instance,
the asymptotic behaviour of the few-body effective potentials
Wν determine the generalized Wigner threshold laws for few-
body collisions [88], i.e. the energy dependence of the ultracold
collisions rates in the near-threshold limit. Moreover, when
the two-body interactions are resonant, few-body effective
potentials are modified accordingly to universal physics
[89, 90], as we will show in the following sections. From this
analysis, a simple picture describing both elastic and inelastic
transitions emerges. We also discuss the validity of our results
in the context of numerical calculations carried out through
the solution of equations (2) and (5) for a model of two-body
interaction.

2.2. Generalized cross sections

Here we derive a formula for the generalized cross-section
describing the scattering of N-particles. Our formulation is
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based on the solutions of the hyperadial equation (5) but is
sufficiently general to describe any scattering process with
particles of either permutation symmetry [80]. The only
information required in our derivation is that at large R, the
solutions to the angular portion of the Schrödinger equation
yield the fragmentation channels of the N-body system, i.e. the
same asymptotic form of the adiabatic effective potentials (8),
and the quantum numbers labelling those solutions index the
S-matrix.

This derivation begins by considering the scattering by
a purely hyperradial finite-range potential in d-dimensions,
and then the resulting cross section is generalized to the
case of anisotropic finite-range potentials in d-dimensions ‘by
inspection’, which we interpret in the adiabatic hyperspherical
picture. For clarity, we adopt a notation that resembles the
usual derivation in three dimensions.

In d-dimensions, the wavefunction at large R behaves as

�I → eik ·R + f (k̂, k̂
′
)

eikR

R(d−1)/2
, (9)

where R and k are d-dimensional position and wave vectors,
respectively. Equivalently, an expansion in hyperspherical
harmonics is written in terms of unknown coefficients Aλμ:

�II =
∑
λ,μ

AλμYλμ(R̂)
(
jd
λ (kR) cos δλ − nd

λ(kR) sin δλ

)
.

(10)

Here, Yλμ is an eigenfunction of the grand angular momentum
operator, called a hyperspherical harmonic, which satisfies the
eigenequation

	̂2Yλμ = λ(λ + d − 2)Yλμ, (11)

where λ is the hyperangular momentum quantum number. The
subscript μ is used to enumerate the degenerate states for each
λ. The radial functions jd

λ

(
nd

λ

)
are hyperspherical Bessel

(Neumann) functions [91]:

jd
λ (kR) = �(α)2α−1

(d − 4)!!

Jα+λ(kR)

(kR)α
, (12)

where Jn is a cylindrical Bessel function and α = d/2 − 1.
We will make use of the asymptotic expansion

jd
λ (kR)

kR→∞≈ �(α)2α−1

(d − 4)!!

√
2

π

cos
(
kR − α+λ

2 π − π
4

)
(kR)α+1/2

(13)

and the plane wave expansion in d-dimensions [91]:

eik · R = (d − 2)!!
2π(d/2)

�(d/2)

∑
λ,μ

iλjd
λ (kR)Y ∗

λμ(k̂)Yλμ(R̂). (14)

Identifying the incoming wave parts of �I and �II yields the
coefficients Aλμ:

Aλν = eiδλ (d − 2)!!
2πd/2

�(d/2)
iλY ∗

λμ(k̂). (15)

Inserting the coefficients Aλν back into the expression for �II

gives the expression for the scattering amplitude:

f (k̂, k̂
′
) =

(
2π

ik

) d−1
2 ∑

λμ

Y ∗
λμ(k̂)Yλμ(k̂

′
)(e2iδλ − 1). (16)

The immediate generalization of this elastic scattering
amplitude to an anisotropic short-range potential is of course

f (k̂, k̂
′
) =

(
2π

ik

) d−1
2 ∑

λμλ′μ′
Y ∗

λμ(k̂)Yλ′μ′(k̂
′
)

× (Sλμ,λ′μ′ − δλλ′δμμ′). (17)

Upon integrating |f (k̂, k̂
′
)|2 over all final hyperangles k̂,

and averaging over all initial hyperangles k̂
′

as would be
appropriate to a gas phase experiment, we obtain the average
integrated elastic scattering cross section by a short-range
potential:

σ dist =
(

2π

k

)d−1 1

�(d)

∑
λμλ′μ′

∣∣Sλμ,λ′μ′ − δλλ′δμμ′
∣∣ 2 (18)

where �(d) = 2πd/2/�(d/2) is the total solid angle in
d-dimensions [91]. This last expression is immediately
interpreted as the average generalized cross section resulting
from a scattering event that takes an initial channel into a
final channel, i ≡ λ′μ′ → λμ ≡ f . Since this S-matrix
is manifestly unitary in this representation, it immediately
applies to inelastic collisions as well, including N-body
recombination, in the form

σ dist
i→f =

(
2π

ki

)d−1 1

�(d)
|Sf i − δf i |2. (19)

It is worth noting that this expression needs to be simply
summed up for all initial and final channels contributing to a
given process of interest, including degeneracies. For instance,
we note that in the case of a purely hyperradial potential, each
λ has M(d, λ) = (2λ+d−2)�(λ+d−2)

�(λ+1)�(d−1)
degenerate values of μ.

In this form, we can readily interpret the generalized
cross section derived above in terms of the unitary
S-matrix computed by solving the exact coupled-channels
reformulation of the few-body problem in the adiabatic
hyperspherical representation [38]. In principle this can
describe collisions of an arbitrary number of particles.
Identical particle symmetry is handled by summing over
all indistinguishable amplitudes before taking the square,
averaging over the solid angle, and then integrating over
distinguishable final states to obtain the total cross section:

σ indist =
∫

dk̂

Np

∫
dk̂

′

�(d)
|Npf (k̂, k̂

′
)|2 = Npσ dist.

Here, Np is the number of terms in the permutation symmetry
projection operator (e.g. for N identical particles, Np = N !).

The cross section for total angular momentum J and parity
� includes an explicit 2J + 1 factor. Hence, the cross section
from the incoming channel i to the final state f , properly
normalized for identical particle symmetry, is given in terms
of general S-matrix elements as [80]

σ indist
f i (J�) = Np

(
2π

ki

)d−1 1

�(d)
(2J + 1)

∣∣SJ�

f i − δf i

∣∣2.
(20)

For the process of N-body recombination in an ultracold
trapped gas that is not quantum degenerate, the experimental
quantity of interest is the recombination event rate constant
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KN which determines the rate at which atoms are ejected from
the trapping potential:

d

dt
n(t) =

Nmax∑
N=2

−KN

(N − 1)!
nN(t), (21)

where n is the number density. The above relation assumes that
the energy released in the recombination process is sufficient
to eject all collision partners from the trap. The event
rate constant (recombination probability per second for each
distinguishable N-group within a (unit volume)(N−1)) is the
generalized cross section equation (20) multiplied by a factor
of the N-body hyperradial ‘velocity’ (including factors of h̄ to
explicitly show the units of KN ):

KJ�

N =
∑
i,f

h̄ki

μN

σ indist
f i (J�). (22)

Here, the sum is over all initial and final channels that
contribute to atom loss.

The relevant S-matrix element appearing in equation (20)
from an adiabatic hyperspherical viewpoint is SJ�

f i where i and
f are the initial and final channels (i.e. solutions to equation
(2) in the limit R → ∞). In the ultracold limit, the energy
dependence of the recombination process is controlled by
the long-range potential equation (8) in the entrance channel
i → λmin, where λmin is the lowest hyperangular momentum
quantum number allowed by the permutation symmetry of
the N-particle system. For any combination of bosons and
distinguishable particles, λmin = 0, while for fermions, the
permutation antisymmetry adds nodes to the hyperangular
wavefunction leading to λmin > 0.

As a concrete example, consider the recombination
formula for the four-fermion process F + F ′ + F + F ′ →
FF ′ + FF ′. In applying the permutation symmetry operator,
it is convenient to employ the H-type coordinates given in
equation (C.3). Expressing the hyperangular momentum
operator in these coordinates, it is possible to show (see
section 3.2) that λ = (l1 + l2 +2n1)+ l3 +2n2, where l1, l2 and l3
are the angular momentum quantum numbers associated with
the three Jacobi vectors in equation (C.3) and n1, n2 are both
non-negative integers. Antisymmetry under the exchange of
identical particles in these coordinates implies that l1 and l2
must be odd. The lowest allowed values are then l1 = l2 = 1,
l3 = n1 = n2 = 0 such that λmin = 2.

The preceding arguments enable us to calculate the
generalized Wigner threshold law for strictly four-body
recombination processes where the four particles undergo an
inelastic transition at R ∼ a; any non-adiabatic couplings
(equations (6) and (7)) at R 	 |a| can be viewed as three-
body processes with the fourth particle acting as a spectator.
The asymptotic (R 	 |a|) form of the effective potential can
be written in terms of an effective angular momentum quantum
number le:

Wλmin(R) −−→
R	|a|

le(le + 1)

2μNR2
with le = (2λmin + d − 3)/2.

(23)

Table 1. The generalized Wigner threshold laws are given for a
limited set of four-body recombination processes. Here, B denotes a
boson, F and F ′ are fermions in different ‘spin’ states, and X and Y
are distinguishable atoms. Note that since in general the scattering
lengths for the F–X, F–Y and X–Y interactions are different, the
scaling with respect to a is not given for this three-component case.

Process λmin

Energy
dependence
of K4

a-
dependence
of K4

B + B + B + B →
BBB + B

0 Constant |a|7

F + F + F ′ + F ′ →
FF ′ + FF ′

2 E2 |a|11

F + F + X + Y →
FFX + Y

1 E –

It was shown in [80] following the treatment of Berry [92] that
the WKB tunnelling integral gives the threshold behaviour of
the S-matrix element Sf i ∝ e(−2γ ) with

γ = Im
∫ (3N−5+2λmin)/2k

R∗
dR

√
2μN(E − W ′(R)) (24)

and where W ′(R) = W(R) + 1/4
2μNR2 is the effective potential

with the Langer correction [93]. The lower limit of the integral
R∗ coincides with the maximum of the non-adiabatic coupling
strength P 2

f i/|Ui(R) − Uf (R)| defined in equation (6). For
recombination into weakly bound dimers or trimers (of size
|a|), R∗ ≈ |a| so that in the threshold limit E → 0 [80]:

1 − |Sii |2 ∝ e−2γ = (k|a|)2λmin+3N−5. (25)

Unitarity of the S-matrix implies that 1−|Sii |2 = ∑
f �=i |Sf i |2,

which is related to the total inelastic cross section through
equation (20). If inelastic transitions are dominated by
recombination, then the scaling law for the recombination
event rate constant is

KN ∝ k2λmin |a|2λmin+3N−5. (26)

We stress that the above expression gives the overall scaling
of the event rate, and in cases where the coupling to lower
channels occurs in the region r0 � R∗ � |a|, one must include
the additional WKB phase leading to a modified scaling with
respect to a. The k dependence arises through the outer turning
point limit in the WKB tunnelling phase integral. This occurs,
for example, in the case of four identical bosons treated in
[80]. For the four-fermion problem, the effective angular
momentum quantum numbers for the universal potentials in
the region r0 � R � |a| are calculated in [94]. Table 1 gives
the value of λmin along with the overall recombination rate
scaling with |a| for a few select cases.

3. Variational basis methods for the four-fermion
problem

The solution of the four-body hyperangular equation, equation
(2), poses significant challenges, since the difficulty grows
exponentially with the number of particles. For four particles
with zero total angular momentum, equation (2) consists of
a five-dimensional partial differential equation. Some state-
of-the-art methods for three-particle systems often employ

6
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Figure 1. The two possible configurations of Jacobi coordinates in
the four-body problem are shown schematically.

B-splines or finite elements. In fact, if 40–100 B-splines
were used in each dimension to solve equation (2) (a common
number in three-body calculations [10, 89, 95]), there would be
108–109 basis functions resulting in 1011–1013 non-zero matrix
elements in a sparse matrix. The computational power required
for such a calculation is currently beyond reach. Therefore,
in order to proceed numerically, a different strategy must be
developed. In this review, we describe two of our current
numerical techniques.

The method of this section for a two-component system
of four fermions uses a non-orthogonal variational basis set
consisting of some basis functions that accurately describe
the system at very large hyperradii, R 	 |a|, and other
functions that describe the system at very small hyperradii,
R � |a|. If both possible limiting behaviours are accurately
described within the basis, then a linear combination of these
two behaviours might be expected to describe the intermediate
behaviour of the system [41, 96].

As with the correlated Gaussian method of section 4.1,
the use of different Jacobi coordinates plays a central role in
the variational basis method. Depending on the symmetries,
interactions, and fragmentation channels inherent in the
problem, different coordinates may significantly affect the
ease with which the problem can be described. For example,
in the four fermion problem, the fermionic symmetry of the
system can be used to significantly reduce the size of the
basis set needed to describe the possible scattering processes.
Describing this symmetry in a poorly chosen coordinate
system can create considerable difficulty. The two main types
of Jacobi coordinate systems are called H-type and K-type,
shown schematically in figure 1. We discuss some of the
relevant properties of the different coordinate systems here.
Appendix C gives a detailed account of the Jacobi coordinate
systems used in this review and of the transformations between
them.

H-type Jacobi coordinates are constructed by considering
the separation vector for a pair of two-body subsystems, and
the separation vector between the centres of mass of those
two subsystems. Physically, H-type coordinates are useful for
describing correlations between two particles, for example a
two-body bound state or a symmetry between two particles, or
two separate two-body correlations. K-type Jacobi coordinates
are constructed in an iterative way by first constructing a three-
body coordinate set as in equation (C.2), and then taking the
separation vector between the fourth particle and the centre

of mass of the three-particle sub-system. When two particles
coalesce (e.g. when ri = rj in equation (C.1)), the H-type
coordinate system reduces to a three-body system with two of
the four particles acting like a single particle with the combined
mass of its constituents. Locating these ‘coalescence points’
on the surface of the hypersphere is crucial for an accurate
description of the interactions between particles, and this
coordinate reduction will prove useful for the construction
of a variational basis set.

Examination of figure 1 shows that K-type Jacobi
coordinate systems are useful for describing correlations
between three particles within the four-particle system. In
the four-fermion system, there are no weakly bound trimer
states, whereby K-type Jacobi coordinates will not be used
here, but the methods described in this section can be readily
generalized to include such states. Unless explicitly stated, all
Jacobi coordinates from here on will be of the H-type.

The task of parameterizing the three Jacobi vectors in
hyperspherical coordinates remains. There is no unique way
of choosing this parameterization. The simplest method comes
in the form of Delves coordinates. Construction of these
hyperangular coordinates is outlined in appendix A and is
described in detail in a number of references (see [91, 97]
for example). This construction method also allows for a
physically meaningful grouping of the Cartesian coordinates.
For example a hyperangular coordinate system that treats the
dimer–atom–atom system as a separate three-body subsystem
can be created. This type of physically meaningful coordinate
system plays a crucial role in the construction of the variational
basis set that follows.

After adoption of the Jacobi vectors, the centre of
mass of the four-body system is removed, which leaves a
nine-dimensional partial differential equation to solve. By
applying hyperspherical coordinates, this becomes an eight-
dimensional hyperangular PDE that must be solved at each
hyperradius, a daunting task. A further simplification is
achieved by initially considering only zero total angular
momentum states of the system. This implies that there is no
dependence on the three Euler angles in the final wavefunction,
and in a body-fixed coordinate system these three degrees of
freedom can be removed. The body-fixed coordinates adopted
here are called democratic coordinates, adequately described
in several references (see [55, 98, 99]). The parameterization
of Aquilanti and Cavalli is convenient for our purposes (for
more details, see their work in [55]).

At the heart of democratic coordinates is a rotation from
a space-fixed frame to a body-fixed frame:

� = DT (α, β, γ ) �bf (27)

where � is the matrix of ‘lab frame’ Jacobi vectors defined
in equation (C.12), �bf is the matrix of body-fixed Jacobi
coordinates, and D (α, β, γ ) is an Euler rotation matrix
defined in the standard way as

D =
⎡
⎣cos α − sin α 0

sin α cos α 0
0 0 1

⎤
⎦
⎡
⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤
⎦

×
⎡
⎣cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦ . (28)

7
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Figure 2. Surfaces surrounding the coalescence points in the body-fixed democratic coordinates are shown for θ1 = π/2 and θ2 = π

4 (a), π

6
(b), and π

12 (c), respectively. Blue surfaces surround interaction coalescence points while red surfaces surround Pauli exclusion nodes.

This parameterization is described in detail in appendix A.
After removing the Euler angles, the body-fixed Jacobi vectors
are then described by a set of five angles {�1,�2,�1,�2,�3}
and the hyperradius R. The angles �1 and �2 parameterize the
overall x, y, and z spatial extent of the four-body system in the
body-fixed frame, while the angles �1, �2, and �3 describe
the internal configuration of the four particles.

The description of coalescence points in democratic
coordinates is especially important. These are the points
at which interactions occur and also where nodes must
be enforced for symmetry. Figure 2 shows these points
for �1 = π/2, which enforces planar configurations, and
for several values of �2. The body-fixed coordinates in
question are H-type Jacobi coordinates that connect identical
fermions, so symmetry is easily described. Here, F(�1) =
sin−1 {sign [cos(�1)] sin(�1)} is plotted instead of �1 in
figure 2 to emphasize symmetry. The surfaces indicate where
any two-particle separation distance is equal to 0.1R. The
red surfaces surround Pauli exclusion nodes while the blue
surfaces surround interaction points. It is clear that using a
symmetry-based coordinate system leaves a simple description
of the Pauli exclusion nodes.

3.1. Unsymmetrized basis functions

With the Jacobi vectors and democratic coordinates in hand,
the 12-dimensional four-body problem is reduced to a 6-
dimensional problem for total orbital angular momentum J =
0. After the hyperradius is treated adiabatically, the remaining
five-dimensional hyperangular partial differential equation (2)
must be solved at each R to obtain the adiabatic channel
functions and potentials used in the adiabatic hyperspherical
representation. In equation (3), V̂ (R;�) is chosen as
a sum of short-range pairwise interactions, which to an
excellent approximation affects only the s-wave for each pair:
V̂ (R;�) = ∑

i,j V̂ (rij ), where the sum runs over all possible
pairs of distinguishable fermions. This section only considers
a potential whose zero energy s-wave scattering length a is
positive and large compared with the range r0 of the interaction.
Further, unless otherwise stated, we assume that the potential
can support only a single weakly bound dimer.

The strategy used here is not unknown [100]. It involves
using a variational basis that diagonalizes the adiabatic

Hamiltonian in two limits asymptotically (R 	 a) and at small
distances (R � r0). It is thought that linear combinations
of these basis elements will provide a variationally accurate
description of the wavefunction at intermediate R-values.

Next we describe the unsymmetrized basis functions that
exactly diagonalize equation (2) in the small-R and large-R
regimes. At large R, three scattering thresholds arise: a
threshold energy corresponding to weakly bound dimers at
twice the dimer-binding energy, another threshold consisting
of a single weakly bound dimer and two free particles, and
finally a threshold associated with four free particles. In
general, it would be necessary to consider another set of
thresholds associated with trimer states plus a free atom (for
instance, a set of Efimov states for bosons). But for equal
mass fermions, such considerations are irrelevant since no
weakly bound trimers occur in the a 	 r0 regime. At
small R, the physics is dominated by the kinetic energy,
and the eigenstates of the adiabatic Hamiltonian are simply
the four-body hyperspherical harmonics which also describe
four free particles at large R. For a detailed description of
hyperspherical harmonics, see appendix B. Identification of
these threshold regimes gives a simple interpretation of the
corresponding channel functions and provides a starting point
for the construction of our variational basis.

3.1.1. Dimer–atom–atom three-body basis functions (2+1+1).
One fragmentation possibility that must be incorporated into
the asymptotic behaviour of the four-fermion system is that
of an s-wave dimer with two free particles. The dimer
wavefunction φd is best incorporated using a hyperangular
parameterization that treats the dimer–atom–atom system with
a set of three-body hyperangles, described by

�λ3Bμ3B (R,�) = φd (r12) Yλ3Bμ3B

(
�12

3B

)
, (29)

where Yλ3Bμ3B
is a three-body hyperspherical harmonic defined

in equation (A.13), λ3B is the three-body hyperangular
momentum, and μ3B indexes the degenerate states for each
value of λ3B . The dimer wavefunction φd is chosen as the
bound state solution to the two-body Schrödinger equation:[

− h̄2

2μ2b

∂2

∂r2
+ V (r)

]
rφd (r) = −Ebrφd (r) . (30)

Here, the superscript 12 in �12
3B indicates that the third particle

in the three-body subsystem is a dimer of particles 1 and 2.
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Further, for notational simplicity, μ3B has been used to denote
the set of quantum numbers, {l2, l3,m2,m3}, which enumerate
the degenerate states for each λ3B .

So far, the basis function defined by equation (29) is
easily written in Delves coordinates. However, in order to
ensure that L is a good quantum number, one must couple
the angular momenta corresponding to the interaction Jacobi
coordinates i1 (defined in equation (C.10)) to the total angular
momentum L = 0. The angular momentum of the (s-wave)
dimer is by definition zero and all that remains is to restrict the
angular momentum of the three-body sub-system to zero. This
can be achieved by recognizing that the angular momentum
associated with the individual Jacobi vectors are good quantum
numbers for the hyperspherical harmonics defined by equation
(A.13), meaning that we can proceed using normal angular
momentum coupling, i.e.

�
λ3B l1l2
2+1+1 (R,�) = φd (r12)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉

×Yλ3Bμ3B

(
�12

3B

)
, (31)

where 〈l2m2l3m3|LM〉 is a Clebsch–Gordan coefficient, and
l2 (l3) is the angular momentum quantum number associated
with ρi1

2 (ρi1
3 ) from the interaction Jacobi coordinates defined

in equations (C.10). Now with the total angular momentum set
to L = 0, there must be no Euler angle dependence in the total
wavefunction. The Delves coordinates can then be defined
for this system in the body-fixed frame using equation (A.9).
The Delves hyperangles are accordingly rewritten in terms of
the democratic coordinates without including the Euler angle
dependence.

3.1.2. Four-body basis functions (1 + 1 + 1 + 1). Another
important asymptotic threshold that must be considered is that
of four free particles. Using Delves coordinates, the free-
particle eigenstates are four-body hyperspherical harmonics
(see appendix B):

�
(4b)
λμ (�) = N33

ll lmλl,m
N63

λl,mln
sinλl,m(αlm,n) cosln (αlm,n)

×P
λl,m+5/2,ln+1
(λ−λl,m−ln)/2(cos 2αlm,n)N

λl,m

ll ,lm
sinll (αl,m) coslm (αl,m)

×P
ll+1,lm+1
(λl,m−ll−lm)/2(cos 2αl,m)

×Yllml
(ωl) Ylmmm

(ωm) Ylnmn
(ωn) ,

where μ has again been used to denote the set of
quantum numbers {λ12, l1, l2, l3,m1,m2,m3} that enumerate
the degenerate states for each λ. Here li is the spatial
angular momentum quantum number associated with the
Jacobi vector ρσ

i with z-projection mi , and λl,m is the sub-
hyperangular momentum quantum number associated with the
sub-hyperangular tree in figure A5 (for example, λ12 = l1 +
l2 +2n12 where n12 is a non-negative integer.) The hyperangles
{αlm,n, αl,m} are defined here using Delves coordinates as
described in appendix A and ωn refers to the spherical polar
angles associated with the Jacobi vector ρn.

The choice of quantum numbers described above does not
give the total orbital angular momentum of the four-particle
system as a good quantum number. To accomplish this, the
three angular momenta of the Jacobi vectors must be coupled to

a resultant total, in this case to L = 0. This gives a variational
basis function of the form

�
λλ12l1l2l3
1+1+1+1 (�) =

L12∑
M12=−L12

l3∑
m3=−l3

l2∑
m2=−l2

l1∑
m1=−l1

〈L12M12l3m3|00〉

× 〈l1m1l2m2|L12M12〉 �
(4b)
λμ (�). (32)

Now that the total angular momentum is set to L = 0
and the same procedure used for the �

λ3B l1l2
2+1+1 basis functions

can be employed. However, this time the hyperangular
parameterization is defined using the symmetry Jacobi
coordinates in equations (C.3). Since there is no dependence
on the Euler angles, the Jacobi coordinates can then be defined
in the body-fixed frame.

3.1.3. Dimer–dimer basis functions (2+2). The asymptotic
behaviour of the two-component four-fermion system must
include a description of two s-wave dimers separated by a
large distance. To incorporate this behaviour the variational
basis must include a basis function of the form

�2+2 (R,�) = φd (r12) φd (r34) , (33)

where the subscript 2+2 indicates the dimer–dimer nature of
this function, and the dimer wavefunction, φd , is given by the
two-body Schrödinger equation. Here, μ2b is the reduced mass
of the two distinguishable fermions, and Eb ≈ h̄2/2μ2ba

2

is the binding energy of the weakly bound dimer. At first
glance, the right-hand side of equation (33) depends only
implicitly on the hyperradius and hyperangles. To make
this dependence explicit, equations (A.22) and (A.27) are
employed to extract r12 (R,�) and r34 (R,�). It can also be
noted that the basis function, equation (33), does not respect
the symmetry of the identical fermions, i.e. P13�2+2 �= −�2+2.
The antisymmetrization of the variational basis is discussed in
the next section.

3.2. Symmetrizing the variational basis

The definitions of the basis functions developed in the previous
subsection do not include the fermionic symmetry of the four-
particle system in question. Until this point, we have only
been concerned with Jacobi coordinate systems in which the
particle exchange symmetry is well described and with a single
set of Jacobi vectors that describe some of the interactions.
In order to impose the S2 ⊗ S2 symmetry of two sets of two
identical fermions, we now incorporate the extra H-type Jacobi
coordinates described in appendix C. As a first step, we define
the projection operator

P̂ = 1
4 (Î − P̂13)(Î − P̂24), (34)

where Î is the identity operator, and P̂ij is the operator that
permutes the coordinates of particles i and j. This operator
will project any wavefunction onto the Hilbert space of
wavefunctions that are antisymmetric under the exchange of
identical fermions. Since we are treating the fermionic species
as distinguishable, permutations of members of different
species are ignored. Applying this projection operator to

9
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the dimer–dimer basis function yields an unnormalized basis
function

�
(symm)

2+2 (R,�) = P̂�2+2(R,�)

= 1
2 (φd(r12)φd(r34) − φd(r14)φd(r23)) , (35)

where the inter-particle distances r14 and r23 are given in
equations (A.24) and (A.25).

Imposition of the antisymmetry constraints on the dimer–
atom–atom basis functions in equation (31) yields

�
(symm)λ3bl2l3
2+1+1 (R,�) = P̂�

λ3bl2l3
2+1+1 (R,�)

= 1

4
φd (r12)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉 Yλ3Bμ3B

(
�12

3B

)

− 1

4
φd (r23)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉 Yλ3Bμ3B

(
�23

3B

)

− 1

4
φd (r14)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉 Yλ3Bμ3B

(
�14

3B

)

+
1

4
φd (r34)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉 Yλ3Bμ3B

(
�34

3B

)
,

(36)

where �
ij

3B is the set of three-body hyperangles associated with
particles i and j in a dimer and the remaining two particles
free. The democratic parameterizations for the inter-particle
distances from equations (A.22)–(A.27) can be used in the
dimer wavefunction directly. Through the use of symmetry
coordinates, the hyperangles of the four-body system can be
divided into a dimer subsystem and a three-body subsystem
where the third particle is the dimer itself. Using the three-
body hyperangles in the three-body harmonic in each term
of equation (36), combined with the kinematic rotations from
equations (C.14) and (C.15), the three-body harmonics are then
fully described in the hyperangles defined using symmetry
Jacobi coordinates. Since �

(symm)λ3bl2l3
2+1+1 has been constrained

to zero total spatial angular momentum, L = 0, the body-fixed
parameterization of the Jacobi vectors can be inserted directly
without worrying about the Euler angles α, β and γ .

The final set of basis functions that must be
antisymmetrized with respect to identical fermion exchange
are the hyperspherical harmonics representing four free
particles. Permutation of the identical fermions is
accomplished in the symmetry coordinates using equations
(C.4)–(C.9). Using these permutations gives

P̂13�
λλ12l1l2l3
1+1+1+1 (�) = (−1)l1 �

λλ12l1l2l3
1+1+1+1 (�) ,

P̂24�
λλ12l1l2l3
1+1+1+1 (�) = (−1)l2 �

λλ12l1l2l3
1+1+1+1 (�) ,

where the antisymmetry of the four free particle basis functions
is enforced simply by choosing l1 and l2 to be odd.

Another symmetry in this system is that of inversion
(parity), in which all Jacobi coordinates are sent to their
negatives,

ρσ
j → −ρσ

j ,

where σ = s, i1, i2 and j = 1, 2, 3. Following the
definitions of the Jacobi coordinates, positive inversion
symmetry in the 1 + 1 + 1 + 1 basis functions, �

λλ12l1l2l3
1+1+1+1 (�),

is imposed by choosing λ to be even. The 2 + 1 +
1 basis functions,�(symm)λ3bl2l3

2+1+1 (R,�), must already have
positive inversion symmetry since φd (r) is an s-wave dimer
wavefunction and l2 = l3 for zero total spatial angular
momentum, L = 0. The dimer–dimer basis function,
�

(symm)

2+2 (R,�), is already symmetric under inversion and does
not need further restrictions placed on it.

The final symmetry to be imposed is not quite as obvious
as the symmetries discussed so far. By performing a ‘spin-flip’
operation in which the distinguishable species of fermions are
exchanged, i.e. P̂12P̂34, the Hamiltonian in equation (3) (with
N = 4) remains unchanged. This operation is identical to
inverting the two dimers in the dimer–dimer basis function.
One can see that �

(symm)

2+2 is unchanged under this operation.
We will limit ourselves to dimer–dimer collisions in this
section and will only be concerned with basis functions that
have this symmetry. This symmetry is imposed on both
�

(symm)λ3bl2l3
2+1+1 and �

λλ12l1l2l3
1+1+1+1 by demanding l3 to be even.

Recalling that λ = (l1 + l2 + 2n1) + l3 + 2n2 where n1 and
n2 are both non-negative integers, the combination of these
symmetries implies that the minimum λ for �

λλ12l1l2l3
1+1+1+1 must be

λmin = 2. This argument plays a pivotal role in determining
the overall threshold scaling law for four-body recombination,
as is discussed in section 2.2.

4. Correlated Gaussian and correlated Gaussian
hyperspherical method

4.1. Correlated Gaussian method

In this section, we discuss alternative numerical techniques to
study the four-body problem. First, we present a powerful
technique to describe few-body trapped systems where the
solutions are expanded in the correlated Gaussian (CG)
basis set. Additional details regarding the CG basis set,
including the evaluation of matrix elements, symmetrization,
and basis set selection, are discussed in appendix D. We
then present an innovative method which combines the
adiabatic hyperspherical representation with the CG basis set
and the stochastic variational method (SVM). For additional
information on the methods described in this section, see [101,
102].

4.1.1. General procedure. Different types of Gaussian basis
functions have long been used in many different areas of
physics. In particular, the usage of Gaussian basis functions is
one of the key elements of the success of ab initio calculations
in quantum chemistry. The idea of using an explicitly
correlated Gaussian to solve quantum chemistry problems
was introduced in 1960 by Boys [103] and Singer [104].
The combination of a Gaussian basis and the stochastical
variational method SVM was first introduced by Kukulin and
Krasnopol’sky [105] in nuclear physics and was extensively
used by Suzuki and Varga [106–109]. These methods were
also used to treat ultracold many-body Bose systems by
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Sørensen, Fedorov and Jensen [110]. A detailed discussion of
both the SVM and CG methods can be found in a thesis by
Sørensen [111] and, in particular, in Suzuki and Varga’s book
[112]. In the following, we present the CG method and its
application to few-body trapped systems.

Consider a set of coordinate vectors that describe the
system {x1, . . . ,xN }. In this method, the eigenstates are
expanded in a set of basis functions

�(x1, . . . ,xN) =
∑
A

CA �A(x1, . . . ,xN)

=
∑
A

CA 〈x1, . . . ,xN |A〉 . (37)

Here, A is a matrix with a set of parameters that characterize
the basis function. In the second equality, we have introduced
a convenient ket notation. Solving the time-independent
Schrödinger equation in this basis set reduces the problem
to a diagonalization of the Hamiltonian matrix:

HC i = EiOC i . (38)

Here, Ei are the energies of the eigenstates, C i is a vector
form with the coefficients CA and H and O are matrices
whose elements are HBA = 〈B|H|A〉 and OBA = 〈B|A〉.
For a 3D system, the evaluation of these matrix elements
involves 3N -dimensional integrations which are in general
very expensive to compute. Therefore, the effectiveness of the
basis set expansion method relies mainly on the appropriate
selection of the basis functions. As we will see, the CG basis
functions permit a fast evaluation of overlap and Hamiltonian
matrix elements; they are flexible enough to correctly describe
physical states.

To reduce the dimensionality of the problem we take
advantage of its symmetry properties. Since the interactions
considered are spherically symmetric, the total angular
momentum, J, is a good quantum number, and here we restrict
ourselves to J = 0. Observe that if the basis functions only
depend on the interparticle distances, then equation (37) only
describes states with zero angular momentum and positive
parity (J� = 0+). Furthermore, in the problems we consider,
the centre-of-mass motion decouples from the system. Thus,
the CG basis functions take the form

�{αij }(x1, . . . ,xN) = ψ0(RCM)S

⎧⎨
⎩exp

⎛
⎝−

N∑
j>i=1

αij r
2
ij /2

⎞
⎠
⎫⎬
⎭,

(39)

whereS is a symmetrization operator and rij is the interparticle
distance between particles i and j . Here, ψ0 is the ground
state of the centre-of-mass motion. For trapped systems, ψ0

takes the form ψ0(RCM) = e−R2
CM/2aM

ho . Because of its simple
Gaussian form, ψ0 can be absorbed into the exponential factor.
Thus, in a more general way, the basis function can be written
in terms of a matrix A that characterizes them:

�A(x1,x2, . . . ,xN) = S
{

exp

(
−1

2
xT · A · x

)}

= S

⎧⎨
⎩exp

⎛
⎝−1

2

N∑
j>i=1

Aijxi · xj

⎞
⎠
⎫⎬
⎭ ,

(40)

where x = {x1,x2, . . . ,xN } and A is a symmetric
matrix. The matrix elements Aij are determined by the αij

(see appendix D.3). Because of the simplicity of the
basis functions, equation (39), the matrix elements of the
Hamiltonian can be calculated analytically.

Analytical evaluation of the matrix elements is enabled
by selecting the set of coordinates that simplifies the integrals.
For basis functions of the form of equation (39) with matrices
A and B, the matrix elements are characterized by a matrix
M = A + B in the exponential. Hence, the matrix element
integrand can be greatly simplified if we write it in terms of the
coordinate eigenvectors that diagonalize that matrix M. This
change of coordinates permits, in many cases, the analytical
evaluation of the matrix elements. The matrix elements are
explicitly evaluated in appendices D.1 and D.2.

Two properties of the CG method are worth mentioning.
First, the CG basis set is numerically linearly dependent
and over-complete, so a systematic increase in the number
of basis functions will in principle converge to the exact
eigenvalues [111]. Secondly, the basis functions �A are
square-integrable only if the matrix A is positive definite. We
can further restrict the basis function by introducing real widths
dij such that αij = 1/d2

ij which ensures that A is positive
definite. Furthermore, these widths are proportional to the
mean interparticle distances in each basis function. Thus,
it is easy to select them after considering the physical length
scales relevant to the problem. Even though we have restricted
the Hilbert space with this transformation, we have numerical
evidence that the results converge to the exact eigenvalues.

The linear dependence in the basis set causes problems
in the numerical diagonalization of the Hamiltonian matrix
(equation (38)). Different ways to reduce or eliminate such
problems are explained in appendix D.5.

Finally, we stress the importance of selecting an
appropriate interaction potential. For the problems considered
in this review, the interactions are expected to be characterized
primarily by the scattering length, i.e. to be independent of
the shape of the potential. We capitalize on that flexibility by
choosing a model potential that permits rapid evaluation of the
matrix elements. A Gaussian form,

V0(r) = −d exp

(
− r2

2r2
0

)
, (41)

is particularly suitable for this basis set choice. If the range r0

is much smaller than the scattering length, then the interactions
are effectively characterized only by the scattering length.
The scattering length is tuned by changing the strength of the
interaction potential, d, while the range, r0, of the interaction
potential remains unchanged. This is particularly convenient
in this method since it implies that we only need to evaluate
the matrix elements once and we can use them to solve
the Schrödinger equation at any given potential strength (or
scattering length). Of course, this procedure will give accurate
results only if the basis set is complete enough to describe
the different configurations that appear at different scattering
lengths.

In general, a simple version of this method includes four
basic steps: generation of the basis set, evaluation of the matrix
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elements, elimination of the linear dependence, and evaluation
of the spectrum. The stochastical variational method (SVM),
briefly discussed in appendix D.6, combines the first three
of these steps in an optimization procedure where the basis
functions are selected randomly.

4.2. Correlated Gaussian hyperspherical method

Several techniques have been developed to solve few-body
systems in the last few decades [38, 112–115]. Among these
methods, the correlated Gaussian (CG) technique presented in
the previous section has proven to be capable of describing
trapped few-body systems with short-range interactions.
Because of the simplicity of the matrix element calculation, the
CG method provides an accurate description of the ground and
excited states up to N = 6 particles [116]. However, CG can
only describe bound states. For this reason, it is numerically
convenient to treat trapped systems where all the states are
quantized. The CG cannot (without substantial modifications)
describe states above the continuum nor the rich behaviour of
atomic collisions such as dissociation and recombination.

The hyperspherical representation, on the other hand,
provides an appropriate framework to treat the continuum.
In the adiabatic hyperspherical representation (see section 2),
the Hamiltonian is solved as a function of the hyperradius
R, reducing the many-body Schrödinger equation to a single
variable form with a set of coupled effective potentials.
The asymptotic behaviour of the potentials and the channels
describe different dissociation or fragmentation pathways,
providing a suitable framework for analysing collision
physics. However, the standard hyperspherical methods
expand the channel functions in B-splines or finite element
basis functions [95, 117–119], and the calculations become
very computationally demanding for N > 3 systems.

Ideally, we would like to combine the fast matrix element
evaluation of the CG basis set with the capability of the
hyperspherical framework to treat the continuum. Here, we
explore how the CG basis set can be used within the adiabatic
hyperspherical representation. We call the use of CG basis
function to expand the channel functions in the hyperspherical
framework, the CG hyperspherical method (CGHS)
[101, 102].

In the hyperspherical framework, matrix elements of the
Hamiltonian must be evaluated at fixed R. To proceed, consider
first how the matrix element evaluation is carried out in the
standard CG approach.

In the CG method, we select, for each matrix element
evaluation, a set of coordinate vectors that simplifies the
integration, i.e. the set of coordinate vectors that diagonalize
the basis matrix M which characterizes the matrix element
(see appendix D.3). The flexibility to choose the best set of
coordinate vectors for each matrix element evaluation is the
key to the success of the CG method.

The optimal set of coordinate vectors are formally selected
by making an orthogonal transformation from an initial set
of vectors x = {x1, . . . ,xN } to a final set of vectors
y = {y1, . . . ,yN }: xT = y, where T is the N × N

orthogonal transformation matrix. The hyperspherical method

is particularly suitable for such orthogonal transformations
because the hyperradius R is an invariant under them. Consider
the hyperradius defined in terms of a set of mass-scaled Jacobi
vectors [31, 32, 95, 120], x = {x1, . . . ,xN }:

R2 =
∑

i

xi
2. (42)

If we apply an orthogonal transformation to a new set of vectors
y, then

R2 =
∑

i

xi
2 = yT T Ty =

∑
i

yi
2 (43)

where we have used that T T T = I , and I is the identity.
Therefore, in the hyperspherical framework we can also
select the most convenient set of coordinate vectors for each
matrix element evaluation. This is the key to reducing the
dimensionality of the matrix element integrals. One can view
the flexibility afforded by such orthogonal transformations of
the Jacobi vectors instead in terms of the hyperangles � that
best simplify the evaluation of matrix elements.

As an example of how the dimensionality of matrix
elements is reduced, consider a three-dimensional N-particle
system in the centre-of-mass frame and with zero orbital
angular momentum (J = 0). We will show that this technique
reduces a (3N − 7)-dimensional numerical integral4 to a sum
over (N − 3)-dimensional numerical integrals (see subsection
4.2.1). Hence, for N = 3 the matrix elements can be evaluated
analytically, and the N = 4 matrix elements require a sum of
one-dimensional numerical integrations.

The next three subsections discuss the implementation
of the CGHS. Many of the techniques used in the standard
CG method can be directly used in the CGHS approach.
For example, the selection and symmetrization of the basis
function can be directly applied in the CGHS method.
Also, the SVM method can be used to optimize the basis
set at different values of the hyperradius R. Subsection
4.2.1 describes how the hyperangular Schrödinger equation
(equation (44)) can be solved using a CG basis set expansion
and shows, as an example, how the unsymmetrized matrix
elements can be calculated analytically for a four-particle
system. Finally, subsection 4.2.2 discusses the general
implementation of this method.

4.2.1. Expansion of the channel functions in a CG basis set
and calculation of matrix elements. In the hyperspherical
method (see section 2), channel functions are eigenfunctions
of the adiabatic Hamiltonian HA(R;�):

HA(R;�)�ν(R;�) = Uν(R)�ν(R;�). (44)

The eigenvalues of this equation are the hyperspherical
potential curves Uν(R). The adiabatic Hamiltonian has the
form

HA(R;�) = h̄2	2

2μR2
+

(d − 1)(d − 3)h̄2

8μR2
+ V (R,�). (45)

4 The (3N − 7) numerical integration results from the following reasoning:
initially we have 3N numerical integration but three dimensions are removed
by decoupling the centre-of-mass motion, three dimensions are removed fixing
the Euler angles and one dimension is removed fixing R.
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Here, d = 3NJ where NJ is the number of Jacobi vectors.
A standard way to solve equation (44) is to expand the

channel functions in a basis

|�μ(R;�)〉 =
∑

i

ci
μ(R) |Bi(R;�)〉 . (46)

Here μ labels the channel functions and |Bi(R;�)〉 are the
CG basis functions (equation (40)) written in hyperspherical
coordinates. With this expansion, equation (44) reduces to the
generalized eigenvalue equation

HA(R)cμ = Uμ(R)O(R)cμ. (47)

The vectors cμ = {
c1
μ, . . . , cD

μ

}
, where D is the dimension

of the basis set. HA and O are the Hamiltonian and overlap
matrices whose matrix elements are given by

HA(R)ij = 〈〈Bi |HA(R;�)|Bj 〉〉 , (48)

O(R)ij = 〈〈Bi |Bj 〉〉 . (49)

Efficient evaluation of the matrix elements, e.g. equations
(48) and (49), is essential for the optimization of the
basis functions and the overall feasibility of the four-body
calculations. Here, we demonstrate how to speed up the
calculation by reducing the dimensionality of the numerical
integrations involved in the matrix element evaluation.

Consider a four-body system described by three Jacobi
vectors, x ≡ {x1,x2,x3}, once the centre-of-mass motion
is decoupled. The calculation of the matrix elements
of symmetrized basis function can be easily expanded in
unsymmetrized basis function matrix elements. Thus, for
simplicity here we focus on the matrix element evaluation of
unsymmetrized basis functions. The overlap matrix elements
between two unsymmetrized basis functions �A and �B

(characterized by matrices A and B in the respective exponents)
is significantly simplified if we change variables to the set of
coordinates that diagonalize A + B. We call β1, β2 and β3 the
eigenvalues and y ≡ {y1,y2,y3} are the eigenvectors of A +
B. In this new coordinate basis set the overlap integrand takes
the form

�A(x1,x2,x3)�B(x1,x2,x3)

= exp

(
−β1y

2
1 + β2y

2
2 + β3y

2
3

2

)
. (50)

In this set of eigencoordinates, the integration over
the polar angles of yi vectors is easily carried out. To
fix the hyperradius, we express the magnitude of the yi

vectors in spherical coordinates, i.e. y1 = R sin θ cos φ,
y2 = R sin θ sin φ and y3 = R cos θ . In these coordinates
the overlap matrix elements read

〈B|A〉|R = (4π)3

×
∫

exp

(
−R2(β1 sin2 θ cos2 φ + β2 sin2 θ sin2 φ + β3 cos2 θ)

2

)
× sin5 θ cos2 θ cos2 φ sin2 φ dθ dφ. (51)

The integration over one of the angles can be carried out
analytically. Introducing a variable dummy y, the overlap

matrix element takes the form

〈B|A〉|R = (4π)3π

2R2(β1 − β2)

×
∫ 1

0
exp

(
−R2

4
[(β1 + β2)(1 − y2) + 2β3y

2]

)

× I1

[
R2 (β1 − β2)(1 − y2)

4

]
y2(1 − y2) dy, (52)

where I1 is the modified Bessel function of the first kind.
To simplify the interaction matrix element evaluation, it

is advantageous to use a Gaussian model potential as was
used in the CG method. In this case, the interaction term
can be evaluated in the same way as the overlap term since
the interaction is also a Gaussian. Each pairwise interaction

can be written as Vij = V0 exp
(− r2

ij

2d2
0

) = V0 exp
( − xT ·

M(ij) ·x/(2d2
0

))
(see appendix D.3 for the definition of M(ij)).

Therefore, the interaction matrix element has the structure

〈B|Vij |A〉 = V0

∫
d� exp

(
−xT · (A + B + M(ij)

/
d2

0

) · x

2

)
.

(53)

This integration can be performed following the same steps
used for the overlap matrix element. Equation (52) can be
used directly if we multiply it by V0, and β1, β2 and β3 are
replaced by the eigenvalues of A + B + M(ij)/d2

0 . Note that
for each pairwise interaction, the matrix M(ij) changes and
requires a new evaluation of the eigenvalues.

The third term we need to evaluate is the hyperangular
kinetic term at fixed R. This kinetic term is proportional to the
grand angular momentum operator 	, defined for the N = 3
case as

	2h̄2

2μR2
= −

∑
i

h̄2∇2
i

2μ
+

h̄2

2μ

1

R5

∂

∂R
R5 ∂

∂R
. (54)

The expression can be formally written as

T� = TT − TR, (55)

where

T� = 	2h̄2

2μR2
, TT = −

∑
i

h̄2∇2
i

2μ
, and

TR = − h̄2

2μ

1

R5

∂

∂R
R5 ∂

∂R
. (56)

In typical calculations, T� is evaluated by directly applying
the corresponding derivatives in the hyperangles �. However,
in this case, it is convenient to evaluate TT and TR separately,
since it is easier to differentiate over the Jacobi vectors and the
hyperradius. These two matrix elements are not separately
symmetric, but the angular kinetic energy matrix, i.e. the
total kinetic energy minus the hyperradial kinetic energy, is
symmetric. To obtain an explicitly symmetric operator, we
symmetrize the operation 〈B|T�|A〉 |R = (〈B|TT − TR|A〉 |R+
〈A|TT − TR|B〉 |R)/2 and obtain

〈B|T�|A〉
∣∣∣
R

= (4π)3

R8

∫
exp

(
−β1y

2
1 + β2y

2
2 + β3y

2
3

2

)

×ϒ(y1, y2, y3)y
2
1y

2
2y2

3 dy1 dy2 dy3

∣∣∣∣
R

, (57)
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where

ϒ(y1, y2, y3)= 1

2

{
3∑

i=1

[
−3βi +

(
β2

i − 2(A · B)ii +
βi

R2

)
y2

i

]

−
(

3∑
i=1

βiy
2
i

R2

)2

+
(y · A · y)(y · B · y)

R2

⎫⎬
⎭ . (58)

It is easy to show that (A · B)ii = ∑3
j=1 aij bij since A and

B are symmetric matrices. Here the bar sign indicates the
integration over the angular degrees of freedom of y1, y2 and
y3. We then divide the total result by (4π)3. Making these
integrations analytically, we obtain

(y · A · y)(y · B · y) =
3∑

i=1

aiibiiy
4
i

+
3∑

i>j

(
aiibjj + biiajj +

4

3
aij bij

)
y2

i y
2
j . (59)

Rewriting the yi variables in spherical coordinates, we
separate the hyperradial dependence in equation (57). As
in equation (51), one of the angular integrations can be
evaluated analytically and the final expression reduces to a one-
dimensional integral involving the modified Bessel function of
the first kind (see [101] for more details).

The matrix elements involved in the P and Q couplings
can be evaluated by following the above strategy, and it also
reduces to a one-dimensional numerical integration. The
symmetrization of the matrix elements is handled just as in
the standard CG method and is described in appendix D.1.

4.2.2. General considerations. Many of the procedures
of the standard CG method can be easily extended to the
CGHS. The selection, symmetrization, and optimization of
the basis set follow the standard CG method (see appendices
D.1, D.3, D.4, D.5 and D.6). However, the evaluation of the
unsymmetrized matrix elements at fixed R is clearly different.
Furthermore, the hyperangular Hamiltonian (equation (44))
needs to be solved at different hyperradii R.

There are several properties that make the CGHS method
particularly efficient. For the model potential used, the
scattering length is tuned by varying the potential depths of the
two-body interaction. Therefore, as in the CG case, the matrix
elements need only be calculated once; then, they can be used
for a wide range of scattering lengths. Of course, the basis
set should be sufficiently complete to describe the relevant
potential curves at all desired scattering length values.

The selection of the basis function generally depends on
R. To avoid numerical problems, the mean hyperradius of
each basis function 〈R〉B should be of the same order of the
hyperradius R in which the matrix elements are evaluated. We
can ensure that 〈R〉B ∼ R by selecting some (or all) of the
weights dij to be of the order of R.

We consider two different optimization procedures. The
first possible optimization procedure is as follows. First, we
select a few basis functions and optimized them to describe
the lowest few hyperspherical harmonics. The widths of these
basis functions are rescaled by R at each hyperradius so that

they represent the hyperspherical harmonics equally well at
different hyperradii. These basis functions are used at all
R, while the remaining are optimized at each R. Starting from
small R (of the order of the range of the potential), we optimize
a set of basis functions. As R is increased, the basis set is
increased and reoptimized. At every R step, only a fraction of
the basis set is optimized, and those basis functions are selected
randomly. After several R-steps, the basis set is increased.

Instead of optimizing the basis set at each R, one can
alternatively try to create a complete basis set at large Rmax.
In this case, the basis functions should be complete enough
to describe the lowest channel functions with interparticle
distances varying from the interaction range r0 up to the
hyperradius Rmax. Such a basis set can be rescaled to any R <

Rmax and should efficiently describe the channel functions at
that R. The rescaling procedure is simply dij /R = dmax

ij /Rmax.
This procedure avoids the optimization at each R. Furthermore,
the kinetic, overlap, and couplings matrix elements at R are
straightforwardly related to the ones at Rmax. In general, the
interaction potential needs to be recalculated at each R since it
introduces a new length scale (the range of the potential d0) and
it cannot be simply rescaled. However, in universal systems
such as two-component fermions for which the scattering
length is the only relevant quantity, the actual range of the
two-body potential is not relevant and we can change it as
long as R, a 	 d0. So, we can actually also rescale the two-
body interactions as long as we always fix the potential depth
to the same scattering length. In such a case, the optimization
and the calculation of the matrix elements are only carried out
once.

These two choices, the complete basis set or the
small optimized basis set, can be appropriate in different
circumstances. If a large number of channels are needed, the
complete basis method is often the best choice. But, if only a
small number of channels are needed, then the optimized basis
set might be more efficient.

The most convenient method we have found to optimize
the basis functions in the four-boson and four-fermion problem
is the following. First we select a hyperradius Rm that
is Rm ≈ 300 d0 where the basis function will be initially
optimized. The basis set is increased and optimized until the
relevant potential curves are converged and, in that sense, the
basis is complete. This basis is then rescaled, as proposed in
the second optimization method, to all R < Rm. For R > Rm,
it is too expensive to have a ‘complete’ basis set. For that
reason, we use the first optimization method to find a reliable
description of the lowest potential curves.

Note that for standard correlated Gaussian calculations,
the matrices A and B need to be positive definite. This
condition restricts the Hilbert space to exponentially decaying
functions. In the hyperspherical treatment, this is not
necessary since the matrix elements are always calculated at
fixed R, even for exponentially growing functions. This gives
more flexibility in the choice of optimal basis functions.

5. Application to the four-fermion problem

This section presents our results for the four-body fermionic
problem using the methods discussed in sections 3 and 4. Our
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Figure 3. The calculated hyperradial potentials (solid lines) for a = 100r0 are shown as a function of R/a. Also shown are the expectation
values of the fixed-R Hamiltonian for the individual variational basis functions (dashed curves).

finite-energy calculations for elastic and inelastic processes
are compared to establish zero-energy results and are seen
to exhibit significant qualitative and quantitative differences.
Several properties of trapped four-fermion systems are also
discussed, along with the connections between this few-body
system and the many-body BEC–BCS crossover physics.

5.1. Four-fermion potentials and the dimer–dimer
wavefunction

Calculation of the hyperradial potentials and channel functions
using the variational basis method of section 3 is conceptually
simple. Matrix elements of the hyperangular part of the full
Hamiltonian are required:

Had = h̄2

2μ

	2

R2
+
∑
i,j

V (rij ),

where the sum runs over all interacting pairs of distinguishable
fermions. Section 3 considered a general two-body
interaction, only requiring the two-body potential to support
a weakly bound dimer state (and hence a positive scattering
length much larger than the range of the interaction). At this
point, we adopt the so-called Pöschl–Teller potential

V (r) = − U0

cosh2 (r/r0)
, (60)

where r0 is the range of the interaction. Unless otherwise
stated U0 is tuned so that V (r) gives the appropriate scattering
length with only a single shallow bound state. This potential
is adopted because the bound state wavefunctions and binding
energies are known analytically [121], but any two-body
interaction could be used here, provided that one obtains the
wavefunctions and energies numerically or analytically.

Application of the variational basis results in a generalized
eigenvalue problem

H(R)xν(R) = Uν(R)S(R)xν(R) (61)

where Uν(R) is the νth adiabatic hyperradial potential, and xν

is the channel function expansion coefficient in the variational

basis. The matrix elements of H are given by matrix elements
of the adiabatic Hamiltonian at fixed hyperradius,

Hnm = 〈�n |Had | �m〉 .

Because the variational basis is not orthogonal, a real,
symmetric overlap matrix, S, appears in this matrix equation.
While the method employed here is conceptually simple,
the actual calculation of the matrix elements is numerically
demanding because the interaction valleys in the hyperangular
potential surface,

∑
i,j V (rij ), become localized into narrow

cuts of the hyperangular space at large hyperradii. Further,
examination of figure 2 shows that the locus of coalescence
points where the interatomic potential is appreciable has
a complicated structure in the five-dimensional body-fixed
hyperangular space. To accurately calculate the matrix
elements in equation (61) numerically, a large number of
integration points must be placed within the interaction valleys.

Despite all of these complications, the adiabatic potential
can be found approximately. Figure 3 shows the full set of
hyperradial potentials including the diagonal non-adiabatic
correction (solid curves) calculated using eight variational
basis elements: one 2 + 2 element, four 2 + 1 + 1 elements,
and three 1 + 1 + 1 + 1 elements. Also shown are the
expectation values of the basis elements themselves, i.e. the
diagonal of H(R) from equation (61) (dashed curves). All
calculations shown here are performed for a = 100r0. It is
clear that the lowest potential curve converges very quickly
with respect to the number of variational basis elements
used. The lowest potentials converge well when only a
few variational basis functions are included, while the higher
potentials are somewhat suspect. According to the universal
theory of zero-range interactions, the hyperspherical potential
curves should only depend on a in the regime where a is the
dominant length scale in the problem. Thus, in our finite
range interaction calculations, the adiabatic potentials should
become universal in the R 	 r0 regime for large scattering
lengths, i.e. a 	 r0. In other words, the potentials should look
the same when scaled by the scattering length and the binding
energy, Uν(R 	 r0) = (h̄2/ma2)uν(R/a) where uν(x) is a
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Figure 4. The non-adiabatic coupling strength between the
dimer–dimer potential and the lowest dimer–atom–atom potential is
shown as a function of R (r0 = 100 au was chosen to be the van der
Waals length of 40K). The blue dashed line shows the position of the
coupling peak at R/a ≈ 3.5.

universal function for the νth effective potential. Comparison
with the potential curves computed in the correlated Gaussian
method shows excellent agreement in the lowest dimer–dimer
potential, and reasonable agreement for the lowest few dimer–
atom–atom potentials [101].

At large R, the lowest hyperradial adiabatic potential curve
(see figure 3) approaches the bound-state energy of two dimers
that are approximately separated by a distance R. It is natural
to interpret processes for which flux enters and leaves this
channel as ‘dimer–dimer’ collisions. Examining this potential
further, one can see that at hyperradii less than the scattering
length, R < a, the adiabatic dimer–dimer potential becomes
strongly repulsive. This can be visualized qualitatively as hard
wall scattering, which would give a dimer–dimer scattering
length comparable to the two-body scattering length add ∼ a.
Higher potential curves approach the single dimer-binding
energy at large R, indicating that these potentials correspond
to a dimer with two free particles in the large R limit. Note
that the variational basis functions described in section 3 give
the correct large R adiabatic energies by construction. As
the scattering length becomes much larger than the range of
the two-body potential, the effective four-fermion hyperradial
potential becomes universal and independent of a. In the range
of r0 � R � a:

U(R) → h̄2

2μ

p2
0 − 1/4

R2
, (62)

where p0 = 2.51. This universal potential was extracted in
[122, 123] by examining the behaviour of the ground state
energy of four fermions in a trap in the unitarity limit.

Figure 4 shows the coupling strengths, h̄2P 2
nm/

{2μ[(Um(R) − Un(R))]}, between the dimer–dimer potential
and the lowest three dimer–atom–atom adiabatic potentials for
a two-body scattering length of a = 100r0. In each case, the
coupling strength peaks strongly near the short-range region,

Figure 5. An isosurface of the dimer–dimer probability density is
shown. The surfaces are found by integrating the total probability
over θ1 and θ2 and plotting with respect to the remaining democratic
angles (�1, �2, �3). The peak probability always occurs in planar
configurations, �1 = π/2. The colouring (light to dark) indicates
the value of �2 at the peak.

R ∼ r0, and near the scattering length, R ∼ a, and then
falls off quickly in the large R limit. This behaviour indicates
that recombination—from a state consisting of a dimer and
two free particles to the dimer–dimer state—occurs mainly
at hyperradii of the order of a. Looking at figure 4 one
might think that a recombination path which occurs at small
R, R ∼ r0, could also contribute, but the strong repulsion in
the dimer–atom–atom potentials between R ∼ r0 and R ∼ a,
shown in figure 3, suppresses this pathway.

Figure 5 shows an isosurface of the hyperangular
probability density in the configurational angles {�1,�2,�3}
after integrating out �1 and �2 at a fixed hyperradius of R =
0.41a. The function F(�1) = sin−1{sign(cos �1) sin(�1)}
has been plotted instead of �1 directly to emphasize the
symmetry of the system. Each cobra-like surface corresponds
to a peak in the four-body probability density. By examining
figure 2, one sees that the spine of each cobra corresponds to
the locus of interaction coalescence points. For each choice
of {�1,�2,�3}, the maximum of the probability density in
�1 and �2 is given in a planar geometry, �1 = π/2. The
colouring of each cobra indicates the value of �2 at which
the maximum occurs. Darker colours indicate a more linear
geometry, i.e. �2 is closer to 0. Figure 6 shows the same plot
for the 2 + 2 basis function only. A comparison of figures 5
and 6 indicates that the added variational basis elements are
critical for describing the full dimer–dimer channel function
for hyperradii less than the scattering length.
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Figure 6. The same as figure 5, but using only the 2 + 2 function.
The dashed grey lines are purely for perspective.

5.2. Elastic dimer–dimer scattering

With the hyperradial potentials and non-adiabatic couplings
in hand, low energy dimer–dimer scattering properties can be
examined. The zero-energy dimer–dimer scattering length
in the limit of large two-body scattering length was first
calculated by Petrov et al [124] and found to be

add (0) = 0.60(1)a, (63)

where the number in the parentheses indicates ±0.01, the 2%
error stated in [124]. This result has been confirmed using
several different theoretical approaches [75, 122, 123, 125].

Using the adiabatic potentials shown in figure 3 and
the resulting non-adiabatic couplings, the energy-dependent
dimer–dimer scattering length defined by

add (Ecol) = − tan δdd

kdd

(64)

can be calculated. Here, Ecol is the collision energy of the
two dimers with respect to the dimer–dimer threshold, and
δdd is the s-wave dimer–dimer phase shift. When the collision
energy becomes greater than the dimer-binding energy, the two
dimers collide with enough energy to potentially dissociate
one of them. When this happens, the four-fermion system can
fragment in an excited hyperspherical channel causing a loss
of flux from the dimer–dimer channel. This inelastic process
is parameterized by the imaginary part of the dimer–dimer
scattering length which becomes non-zero when Ecol > Eb.

Figures 7 and 8, respectively, show the real and imaginary
parts of the dimer–dimer scattering length calculated with
different numbers of adiabatic channels plotted as functions
of Ecol in units of the dimer-binding energy. Also shown

Figure 7. The real part of the energy-dependent dimer–dimer
scattering length is shown in units of the atom–atom scattering
length a, plotted versus the collision energy in units of the
dimer-binding energy. The calculation is carried out with one, two,
three, four, and five adiabatic channels (blue, black, red, green and
purple curves, respectively) from the adiabatic potential curves and
couplings computed using eight basis functions. The red dashed line
shows add = 0.6a, the prediction of [126].

Figure 8. The imaginary part of the energy-dependent dimer–dimer
scattering length is shown in dimensions of a plotted versus the
collision energy in units of the binding energy. The calculation is
carried out with one, two, three, four and five adiabatic channels
(blue, black, red, green and purple curves, respectively) from the
adiabatic potential curves and couplings computed using eight basis
functions.

in figure 7 is the dimer–dimer scattering length calculated
from the variational potential that results from using a single
variational basis element. It is important to note that the single
adiabatic channel calculation and the single basis function
calculation are not the same. In the former, the single potential
used is the lowest potential resulting from a calculation using
multiple basis functions, while the latter is the result of using
only the 2 + 2 variational basis function and is guaranteed to
be less accurate. Not surprisingly, the scattering length at
collision energies comparable to the binding energy depends
strongly on the number of channels used. With just a single
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channel in use, there is no decay pathway available for the
system. As more channels are included, the system has more
pathways into which it can fragment, which modifies the high
energy behaviour.

What is more surprising is the low energy behaviour seen
in figure 7. For a single variational basis element, the dimer–
dimer zero energy scattering length is found to be add =
0.72a, which is already within 20% of the result of [124],
add (0) = 0.6a. A single channel calculation using the dimer–
dimer potential and channel function that results from using
five basis elements improves considerably on this yielding
add (0) = 0.64a, showing that inclusion of correlations
characteristic of two free particles at hyperradii less than
a gives a significant contribution to the physics of dimer–
dimer scattering. It is somewhat unexpected that the single
channel calculation is only 8% off the predicted value. As the
scattering energy approaches zero, the higher fragmentation
channels become strongly closed but still apparently play a
small role in the dimer–dimer scattering process. By including
progressively more channels in the scattering calculation, the
zero-energy dimer–dimer scattering length can be extracted
for large two-body scattering length:

add (0) = 0.605(5)a. (65)

This result is in agreement with the results of [122, 123] and
the results of section 5.6 which found the zero-energy dimer–
dimer scattering length to similar accuracy using different
methods.

5.3. Energy-dependent dimer–dimer scattering

By examining the low energy behaviour of the energy-
dependent dimer–dimer scattering length, the effective range
can be extracted. The two dimers ‘see’ each other when their
wavefunctions are overlapping, i.e. when the hyperradius is
approximately equal to the scattering length, R ∼ a. If one
thinks of the effective range of an interaction as proportional
to the size of the interaction region, then one would expect the
effective range for dimer–dimer scattering to be proportional
to the scattering length. By fitting the low energy scattering
phase shift to the effective range expansion,

−1

add(E)
= kdd cot δdd = − 1

add (0)
+

1

2
rddkdd

2 + O
(
kdd

4
)
,

(66)

this intuitive behaviour is born out, giving an effective range:

rdd = 0.13(3)a, (67)

where a is the two-body scattering length. Figure 9 shows
both the real and imaginary parts of the energy-dependent
dimer–dimer scattering length as a function of collision energy
in units of the binding energy compared to the effective
range expansion, equation (66). This clearly shows that,
while the low energy behaviour of dimer–dimer scattering
is well described by the effective range expansion, it is
only accurate over a small range of collision energies. In
fact, for collision energies larger than the binding energy,
add (Ecol) actually turns over and decreases as dimer breakup
channels become open. Further, when the collision energy

a
d

d
/
a

Figure 9. The real (red) and imaginary (green) parts of the
energy-dependent dimer–dimer scattering length are shown in units
of a, plotted versus the collision energy in units of the binding
energy. Also shown is the energy-dependent scattering length
predicted by the effective range expansion. Adapted from [75].

exceeds the dimer-binding energy, Ecol = Eb, the dimer–
dimer scattering length becomes complex, with an imaginary
part that parameterizes inelastic processes. These results
indicate that both the real and imaginary dimer–dimer
scattering lengths are universal functions of the collision
energy. Specifically, they are insensitive to the short range
nature of the two-body interaction for scattering lengths much
larger than the two-body interaction length scale, r0. Because
very few basis functions were used in these calculations, the
results at higher energies, Eb � Ecol � h̄2/mr2

0 , are not
well converged, though their qualitative nature is expected to
persist. Well above the dissociation threshold, the real part
of add exhibits an oscillatory behaviour. These oscillations
are caused by the interference between different scattering
pathways. As more basis functions are included and the
high energy results converge, the large number of available
pathways generally washes out the oscillatory behaviour and
produces incoherence, but the decrease in the real part of the
add at higher energies is expected to survive as the calculations
become better converged.

The dependence of add on a at finite collision energy is
particularly interesting. In the large a limit, the dimer-binding
energy becomes Eb ≈ h̄2/ma2, so that as a increases, the
binding energy decreases. At the critical value of the scattering
length,

ac = h̄√
mEcol

,

the collision energy coincides with the binding energy, and
the dimer–atom–atom channel becomes open. As a result
(see figure 9), one expects the real part of add to turn over
and remain finite for all values of a. This behaviour is
demonstrated in figure 10 which compares the real part of
the dimer–dimer scattering length at several fixed collision
energies with the zero-energy result, add (0) = 0.6a. The
scattering length scale has been fixed by setting the range of
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Figure 10. The real part of the energy-dependent dimer–dimer
scattering length is shown as a function of the two-body scattering
length in atomic units for several collision energies: Ecol/kb =
250 nK, 100 nK, 25 nK, 10 nK, 2.5 nK, 1 nK, 10−1 nK and 10−2 nK.
Also shown is the zero energy prediction (black dashed curve).
Adapted from [75].

the interaction to be approximately the Van der Waals length
of 40K, r0 ≈ 100 au. Another aspect of the finite collision
energy behaviour is that at large scattering length, the dimer–
atom–atom channels become open, and dimer dissociation is
allowed. Thus, near unitarity, the Fermi gas might be viewed
as a mixture of atoms and weakly bound dimers.

5.4. Dimer–dimer relaxation

A significant loss process in an ultracold gas of bosonic dimers
is that of dimer–dimer relaxation, in which two dimers collide
and in the process at least one of the dimers relaxes to a
deeply bound two-body state. The extra binding energy is
released as the kinetic energy which is sufficient to eject the
remaining fragments from the trap. This process was studied
by Petrov, Salomon and Shlyapnikov [124, 126], who assumed
that the relaxation rate is controlled by the probability for three
particles to be found in close proximity to one another. With
this assumption and the further assumption that the fourth
particle is far away and plays no role in the scattering process,
they predict that the relaxation rate is suppressed at large two-
body scattering lengths with a scaling law, V dd

rel ∝ a−2.55.
Here we introduce a new method for finding the dimer–

dimer relaxation rate based directly on Fermi’s golden rule.
The key observation in this section is that the final allowed
states appear as an infinite set of hyperspherical potentials
corresponding to a deeply bound dimer with two free atoms.
The transition rate to a single one of these potentials can be
described by the Fermi-popularized golden rule, i.e.

V
dd(λ)

rel ∝ |〈�dd (R;�) |V (R,�)| �λ (R,�)〉|2 . (68)

Here �λ is the final outgoing state, �dd is the dimer–dimer
wavefunction, and V (R,�) is the sum of the two-body
interactions. This matrix element and the sum of probabilities
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Figure 11. The integrand from equation (69) is shown for a = 50r0

(red), 64r0 (green), 80r0 (blue) and 100r0 (black) as a function of
R/a.

over final states are evaluated in appendix E. The final result
of this analysis is expressed as an integral over the hyperradius

V dd
rel ∝

∫
PWKB(R)F(R)

Rκ(R)
ρ(R) dR (69)

where PWKB(R) is the WKB probability density of the dimer–
dimer wavefunction at hyperradius R, and κ(R) is the WKB
wavenumber:

κ(R) =
√

2μ

h̄2

(
Vdd(R) +

h̄2

2μ

1/4

R2
− Ecol

)
. (70)

In equation (69) ρ(R) is the nearly constant density of final
states, and F(R) is the probability for three particles to be near
one another in the dimer–dimer wavefunction at hyperradius
R:

F(R) = 〈�dd (R;�) |f (R,�)| �dd (R;�)〉 . (71)

Here, �dd is the hyperangular dimer–dimer channel function,
and f (R,�) is a proximity function that is appreciable only
when three particles are all approximately within the range of
the two-body interaction.

Equation (69) makes physical sense upon closer
examination. It says that the rate at which a dimer relaxes
to a deeper state is determined, with some extra factors, by the
probability that three particles are close enough together so
that two of them can fall into a deeply bound state and release
the extra binding energy to the third particle. Figure 11 shows
the integrand from equation (69) for several scattering lengths
as a function of the hyperradius in units of the scattering length.
This quantity can be interpreted as being proportional to the
transition rate per unit hyperradius, i.e. the probability that the
transition will occur between R and R +dR. The full transition
rate is determined by the nature of the interaction at short range
and is not predictable using this method. By examining the
relaxation rate as a function of scattering length, however, a
scaling law can be extracted at each fixed hyperradius.

Figure 12 shows the relaxation rate per unit hyperradius
for several fixed values of R/a as a function of the scattering
length a. The large a behaviour in each case appears to follow
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Figure 12. The logarithm of the integrand from equation (69) is
shown for several fixed values of R as a function of a/r0.

Figure 13. The relaxation rate in a dimer–dimer collision is shown
as a function of the atom–atom scattering length (see the text).
Adapted from [75].

a scaling law, but the scaling law changes with R/a. This
behaviour indicates that contrary to the prediction of [126],
when the integral in equation (69) is evaluated, the relaxation
rate will not be determined by a simple power law. By
integrating over different hyperradial regions, contributions
to the transition rate from different processes can be extracted.
For instance, if the integral in equation (69) is performed only
over small hyperradii, R � 5r0, the result is the transition
rate due to processes in which all four particles are in close
proximity. If the integral is evaluated over larger hyperradii,
R > 10r0, the result is the rate due to three-body processes
influenced by the presence of the fourth particle.

Figure 13 shows the relaxation rate as a function of the
scattering length in atomic units as a solid line. In this result,
the range of interaction is set to the van der Waals length of 40K,
r0 ≈ 100 au. Also shown in figure 13 are the contributions
to this relaxation rate due to four-body processes (dashed blue
curve), and due to three-body processes (dotted green curve).
Also shown is the expected scaling law for transitions that

occur at small hyperradius, R = 5r0. Because the hyperradius
is small in this regime, the probability of three particles being in
proximity is near unity, meaning that the transition probability
per unit hyperradius is determined by the probability that
the system can tunnel through the repulsive potential seen in
figure 3 at R � a. The universal repulsive potential in this
regime [75, 101],

U(R) = h̄2

2μ

p2
0 − 1/4

R2
, (72)

p0 = 2.51(1), (73)

leads to a scaling law for transitions in the small R regime that
behaves as

V dd
rel ∝ a1−2p0 = a−4.02(2). (74)

Figure 13 also shows the experimentally determined relaxation
rates from [73]. Both the scaling law predicted in [126] of
a−2.55 and the prediction using equation (69) are consistent
with the experimental data in the regime for 1000 au � a �
4000 au. The experimental data for a > 3000 au are in
the regime where the average dimer separation is less than the
dimer size, where the dimer–dimer scattering picture discussed
here no longer applies.

5.5. Trapped four-body system

In this section, we abandon the hyperspherical methods of the
previous sections and examine the case of trapped four-fermion
systems. The four-body system in confined geometries
has recently become more computationally accessible. In
particular, the trapped two-component Fermi system has been
intensely studied in the last few years and has become a
benchmark for different theories and universal predictions.
One of the challenges present in the study of universal four-
body physics in dilute gases with short range forces is the
description of disparate length scales associated with the
large interparticle distances and the short-range two-body
interactions.

In this section, we analyse the spectrum, dynamics
and universal properties of four-body solutions in confined
geometries. The four-body system is described by the model
Hamiltonian

H =
2∑

i=1

(−h̄2

2m1
∇2

i +
1

2
m1ω

2r2
i

)

+
2∑

i ′=1

(−h̄2

2m2
∇2

i ′ +
1

2
m2ω

2r2
i ′

)
+

2∑
i=1

2∑
i ′=1

V (rii ′) (75)

where unprimed indices label the fermionic species with mass
m1, primed indices label the species with mass m2, and ri is the
position vector of the ith fermion. The trapping frequency ω is
assumed to be equal for both species. In order to facilitate
a calculation with the CG method described in section 4,
we take the interaction potential V to be a purely attractive
Gaussian (see equation (41)) and tune the depth of V to give
the desired (large) scattering length. The mass ratio κ is
defined by m1/m2, and throughout the analysis we assume
m1 � m2. A trap length a

mi

ho = √
h̄/miω is defined for
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each species as well as a trap length associated with the pair
a

2μ

ho = aho = √
h̄/2μω, where μ = m1m2/(m1 + m2). For

equal mass systems, aho = a
m1
ho = a

(2)
ho .

This section reviews a series of predictions for the two-
component four-fermion system. The spectrum and structural
properties of the four-fermion system are analysed throughout
the BCS–BEC crossover, followed by an exploration of the
system dynamics as the scattering length is tuned close to
a Fano–Feshbach resonance. Finally, we review a series
of numerical studies that confirm and quantify universal
predictions.

5.5.1. Spectrum in the BCS–BEC crossover. To obtain the
J = 0 spectra for the four-fermion system in the BCS–BEC
crossover problem, the CG method (section 4) is utilized to
solve the time-independent Schrödinger equation for different
values of a. Like most numerical methods, this method
provides an adiabatic spectrum (in time), i.e. the energies of
the spectrum are labelled according to their energy values as a
changes. The four-body spectra present a series of crossings
or narrow avoided crossings when the scattering length is
tuned across the BCS–BEC crossover. For this reason, it
is convenient to use a representation where these narrow
avoided crossings are treated diabatically, and the spectrum
smoothly evolves from the BCS to the BEC side. The diabatic
representation is more relevant from the physical point of view
since the diabatic states are usually associated with good or
‘approximately good’ symmetries of the problem.

To illustrate the diabatization procedure, consider the
spectrum of the four-fermion system in the strongly interacting
region shown in figure 14. A series of crossings and avoided
crossings occur when the adiabatic parameter λ ≡ 1/a is
varied in the strongly interacting region. The avoided crossings
can be roughly characterized by their width �λ, the range
where the two adiabatic energy curves are coupled. There
are narrow crossings where �λ � 1/aho and there are wide
crossings where �λ � 1/aho. To obtain smooth energy values,
we use the variation of the diabatization procedure presented
in [127].

The objective of the diabatization algorithm is to make
the one-to-one connection between states and energies in
consecutive points of the λ grid that maximize the sum of
the overlaps between connected states. The diabatization
procedure starts from the BCS (a < 0) side of the
resonance and connects the states (and their energies) between
consecutive values of λ for which their overlap is maximum.
When two initial energies connect to the same final energy, a
refinement of the diabatization procedure is applied.

Diabatization is controlled by the spacing between
consecutive values of λ given by �λg . If the width of the
avoided crossing is smaller than �λg , then that crossing is
diabatized. But if the width of the avoided crossing is larger
than �λg , then that crossing is not diabatized. Thus, �λg

is selected so that narrow crossings are diabatized and wide
crossings remain adiabatic. For example, in figure 14 we see
how this procedure diabatizes the narrow crossings of �4A;
however, wide crossings such as the one between �DAA and
�4A are still adiabatic in this representation.
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Figure 14. Four-fermion energy spectrum as a function of aho/a in
the unitarity region with J = 0. The thin solid black curves
correspond to the adiabatic spectrum. The thick curves with circles
correspond, from bottom to top, to (1) the diabatic ground state
labelled �DD1, (2) the diabatic first-excited state labelled �DD2, (3)
the diabatic state �DAA and (4) the diabatic state �4A.

ω

Figure 15. Energy spectrum for four particles with J = 0 in the
crossover region (lowest 20 diabatic states). The solid curve
corresponds to the ground state. The long dashed curves are the
states that go diabatically to excited dimer–dimer configurations.
The short dashed curves correspond to states that connect
diabatically to configurations of a dimer plus two free atoms, and
the dash-dotted curves correspond to states that connect diabatically
to configurations of four free atoms. The lowest green curve is the
atomic ground state on the BEC side of the resonance. Results from
[128].

This structure of avoided crossings permits a global view
of the manner in which states evolve from weakly interacting
fermions at a < 0 to all the different configurations of a Fermi
gas at a > 0, i.e. molecular bosonic states, fermionic states,
and molecular Bose–Fermi mixtures. Furthermore, it allow us
to visualize concretely the alternative pathways of the time-
dependent sweep experiments.

The diabatic spectrum of the four-fermion system is
presented in figure 15. The structure of avoided crossings
is complicated because two different thresholds exist, one
corresponding to the dimer–atom–atom and one to the dimer–
dimer state. We identify three different families of diabatic
states in this spectrum. The dimer–dimer family, represented
by the solid and long dashed curves, describes the ground
and excited dimer–dimer states. These states are separated
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by approximately 2h̄ω on the BEC side. The dimer–two-
atom family, represented by the short dashed energy curves,
follows the dimer-binding energy. In the BEC limit, the
dimer–two-atom family reproduces the degeneracies of three
distinguishable particles: a spin-up atom, a spin-down atom
and a dimer. The third family (dash-dotted curve) describes
four-atom bound states for which the atoms form no dimers,
and whose energy remains positive in the crossover region. In
the BEC limit as a → 0, the four-atom family reproduces the
spectrum of the non-interacting four-body system.

The evolution of the N = 4 spectra through the
BCS–BEC crossover region can be understood qualitatively
by considering the important quantum numbers for the
description of the dimer. For each vibrational excitation of 2h̄ω

in the non-interacting limit, there is one state that diabatically
becomes a dimer–dimer state. These states correspond
qualitatively to states where the relative angular momentum
of two spin-up–spin-down pairs is zero [L↑↓

rel = 0], and the
relative angular momentum between the pairs is also zero. The
spin-up–spin-down pairs are in the lowest vibrational state. In
the weakly interacting BCS limit, where the degeneracy of the
vibrational states is broken, pair–pair states correspond to the
lowest states.

A direct and more concrete way to visualize the structure
of the spectrum is to analyse the evolution of the adiabatic
hyperspherical potential curves. Figure 16 presents the
four-fermion adiabatic hyperspherical potential curves Uν(R),
obtained with the correlated Gaussian hyperspherical method
(CGHS). Panel (a) presents the potential curves in the BCS
regime, which are clearly grouped into families. Potential
curves belonging to the same family are degenerate in the
non-interacting limit. Thus, the weak interactions in the BCS
regime break the degeneracies of the potential curves forming
these families of potential curves. Panel (b) describes the
system in the BEC regime. In this case, the description of the
system is quite clear. The lowest potential curve is more than
twice as deep as the rest of the curves and is associated with
the dimer–dimer threshold. The family of dimer–dimer states
live mainly in the lowest potential curve. The remainder of
the displayed potential curves are associated with the dimer–
two-atom threshold. The dimer–two-atom states are mainly
described by this family of potential curves. A third family
of potential curves, not shown in figure 16(b), describes four-
atom states. This family of potential curves has a different
large-R asymptotic behaviour.

In order to benchmark the four-body energies, figure 17
compares CG results with fixed-node diffusion Monte Carlo
(FN-DMC) results carried out by Blume [129]. From the
ground-state energy, the energy crossover curve 	

(κ)
4 is

constructed as in [94, 129]:

	
(κ)
4 = E(4) − 2E(2)

2h̄ω
. (76)

Here, E(4) is the ground-state energy of the four-particle
system and E(2) is the ground-state energy of the two-particle
system. By construction, the energy crossover curve 	

(κ)
4

varies from 1 in the non-interacting-BCS regime (a → 0−) to
0 in the BEC limit (a → 0+). The energy crossover curve is

R/ahoR/aho

U
ν
/h̄

ω

(a) (b)

Figure 16. Hyperspherical potential curves in the BCS–BEC
crossover for N = 4 particles with J = 0 angular momentum. (a)
Potential curves in the BCS regime, a ∼ −0.3aho. (b) Potential
curves in the BEC regime, a ∼ 0.3aho.

Figure 17. Energy crossover curve 	
(κ)

4 as a function of a
(2μ)

ho /a for
κ = 1. The solid curve was calculated by the CG approach, and
symbols by the FN-DMC method. Adapted from [129].

convenient for comparisons because any effects of finite-range
interactions on the two-body binding energy are significantly
reduced by the subtraction in equation (76). Therefore, even
though both E(4) and E(2) are not completely universal, 	(κ)

4
is universal to a very good approximation.

The solid line in figure 17 correspond to the CG prediction
while the symbols correspond to the FN-DMC predictions
obtained by Blume for an equal mass system. To describe
the four-fermion ground state with the FN-DMC method,
two different guiding wavefunctions were used: a ‘normal’
and a ‘paired’ guiding function. The ‘normal’ wavefunction
can be written as the non-interacting solution multiplied by
a Jastrow term that improves the description of short-range
correlation. This guiding function is well suited to describe the
ground state of the system in the BCS-unitarity regime. The
‘paired’ wavefunction is constructed as an antisymmetrized
product of two-body solutions and leads to a good description
of the ground state in the BEC-unitarity regime. In order
to reduce finite range corrections, the ranges r0 of the two-
body potentials used in figure 17 are set to be much smaller
than the oscillator lengths, i.e. r0 ≈ 0.01a

(2μ)

ho . By analysing
the dependence of the energy on the finite range r0, we
can extrapolate the zero-range prediction and estimate the
deviation in the crossover curve 	

(κ)
4 from the zero range

predictions. Such analysis estimates a 1% deviation in the
crossover curve presented in figure 17. For example, at
unitarity the CG energies are E = 5.027h̄ω for r0 = 0.01a

(2μ)

ho
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and E = 5.099h̄ω for r0 = 0.05a
(2μ)

ho . After a more careful
analysis of the range dependence, we obtain an extrapolated
zero-range value of E = 5.009h̄ω. For comparison, the FN-
DMC energy for the square well potential with r0 = 0.01a

(2μ)

ho

is E = 5.069(9)h̄ω, which agrees well with the energy
calculated by the CG approach.

A test of the validity of the guiding function in FN-DMC
calculations is fundamental for an accurate description of
many-body fermionic systems. Comparisons, such as the
one presented in figure 17, represent much-needed benchmark
tests for the ‘normal’ and ‘paired’ trial wavefunctions used in
the FN-DMC approach [129]. The good agreement between
these two numerical methods suggests that, first, 	(κ)

4 is indeed
universal and, second, that both numerical methods accurately
describe the BCS–BEC crossover for this four-body system.

5.6. Extraction of dimer–dimer collisional properties

In the BEC limit, the lowest four-body levels describe different
vibrational states of a dimer–dimer configuration. Therefore,
the systems can be treated effectively in this limit as two-
particle systems. A comparison between the two-particle
solutions and the N = 4 solutions allows us to extract
information on the effective dimer–dimer interactions.

To model the effective dimer–dimer interaction we
introduce a zero-range pseudopotential. Since the size of the
dimers are of the order of a, the range of the effective potentials
should also be of the order of a. Accordingly, effective range
effects are discussed using an energy-dependent scattering
length. Inclusion of the scattering length energy dependence
is well known to extend the validity of the zero-range
pseudopotential when applied to the scattering of two
atoms with finite-range potentials under external confinement
[130, 131]. This energy dependence is included here through
the effective range expansion

− 1

add(Ecol)
≈ − 1

add

+
1

2
k2rdd . (77)

Here add(Ecol) is the energy-dependent dimer–dimer
scattering length parameterized by the (zero-energy) scattering
length add and the effective range rdd . The momentum k is
associated with the relative kinetic energy of the dimer. Thus,
k2/2μ = Ecol where Ecol = E4b − 2E2b. The appropriate
reduced mass μ is μdd = M/2, where M is the mass of the
bosonic molecules M = m1 + m2.

Using the effective range expansion (equation (66)), the
regularized zero-range potential V (r) [132] takes the form
V (r) = g(E)δ(r)(∂/∂r)r . The scattering strength g is
parameterized by the scattering length add and the effective
range rdd , i.e.

g(E) = 2πh̄2 add

μdd

[
1 − μddEcolrddadd

h̄2

]−1

. (78)

The J = 0 spectrum of the two-particle trapped system is
given by [130, 131]

√
2
�
(−Ecol

2h̄ω
+ 3

4

)
�
(−Ecol

2h̄ω
+ 1

4

) = a
(μdd )

ho

add(Ecol)
. (79)
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Figure 18. Four-body energies of the three energetically
lowest-lying dimer–dimer states as a function of a/a

(M)

ho for κ = 8.
(a) The energetically lowest-lying energy level (i = 0), (b) the
energetically second-lowest (i = 1) and (c) the energetically
third-lowest state (i = 2). Circles and crosses show our CG and
FN-DMC results, respectively. Solid lines show the zero-range
model results. Adapted from [129].

Equation (79) is a transcendental equation that can be easily
solved numerically. The solutions of equation (79) are
obtained as functions of the add and rdd parameters and fitted
to the numerical results. The calculation can be carried out
at different values of the two-body scattering length a and, in
this way, one obtains a reliable estimation of add and rdd .

Since the properties of weakly bound dimers are
controlled by the scattering length, it is natural to assume
that the properties of dimer–dimer interactions are controlled
only by a. This implies that add and rdd should be proportional
to the two-body scattering length a. Therefore, we propose
expressions of the form add = cdda and rdd = ddda. The
parameters cdd and ddd are obtained by fitting the zero-range
two-particle solution to the dimer–dimer states of the N = 4
system.

The results in figure 18 illustrate the fitting procedure.
The circles in figures 18(a)–(c) show the lowest-lying dimer–
dimer energy levels, referred to as Ei(4), where i = 0–2
with the centre-of-mass energy and the dimer-binding energy
subtracted. These energies correspond to a two-heavy two-
light four-body system with mass ratio κ = 8. Solid lines
represent the energy-dependent zero-range pseudopotential
predictions obtained by fitting the two-boson model (equation
(79)) to the four-body energies. The range of atom–atom
scattering lengths, a, over which the four-fermion system can
be described by the two-boson model is significantly extended
by the inclusion of the effective range rdd . Such inclusion also
allows for a more stable and reliable determination of add .

The crosses in figure 18(a) correspond to FN-DMC
energies for the energetically lowest-lying dimer–dimer state.
The Blume FN-DMC energies, presented in [129], are found
to be slightly higher than the CG energies, the deviation
increasing with a. This increasing deviation might be
attributed to the variational implications of the fixed-node
constraint. The functional form of the nodal surface used in
the FN-DMC calculations was constructed for non-interacting
dimers and should be best in the very deep BEC regime.
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Figure 19. Circles and crosses show add/a as a function of κ
extracted from the four-fermion CG and FN-DMC energies,
respectively. For comparison, a solid line shows the results from
figure 3 of [133]. Diamonds and squares show rdd/a extracted from
the four-fermion CG and FN-DMC energies, respectively. Adapted
from [129].

Table 2. The dimer–dimer scattering length, add , and dimer–dimer
effective range, rdd , obtained using (a) the CG spectrum and (b) the
FN-DMC energies. The reported uncertainties reflect the
uncertainties due to the fitting procedure, e.g. the potential
limitations of the FN-DMC method to accurately describe the
energetically lowest-lying gas-like state are not included here (see
section IIIB of [129]).

κ add/a (a) add/a (b) rdd/a (a) rdd/a (b)

1 0.608(2) 0.64(1) 0.13(2) 0.12(4)
4 0.77(1) 0.79(1) 0.15(1) 0.23(1)
8 0.96(1) 0.98(1) 0.28(1) 0.38(2)

12 1.10(1) 1.08(2) 0.39(2) 0.55(2)
16 1.20(1) 1.21(3) 0.55(2) 0.60(5)
20 1.27(2) 1.26(5) 0.68(2) 0.74(5)

Application of the two-boson model and the fitting procedure
to the Blume FN-DMC energies provides an alternative
determination of add and rdd . The increasing deviation
between the FN-DMC and CG energies with increasing a
explains why the effective range predicted by the analysis of
the FN-DMC energies is somewhat larger than that predicted
by the analysis of the CG approach (see the discussion of
figure 19 below).

The formation of few-body states, such as trimers or
tetramers, can affect the scattering properties and limit the
applicability of the two-boson model. For example, the lowest
four-body energy for κ = 1, constitutes the true ground state
of the system, i.e. no energetically lower-lying bound trimer
or tetramer states with J� = 0+ symmetry exist. However,
for larger mass ratios, bound trimer and tetramer states exist.
These few-body states can in principle be associated with
either universal Efimov or non-universal physics. Even in
the regime where few-body bound states exist, the four-
body spectrum contains universal states that are separated
by approximately 2h̄ω and are best described as two weakly
interacting composite bosons. For fixed a (a > 0), the energy
of these ‘dimer–dimer states’ changes smoothly as a function
of κ even in the regime where bound trimer states appear.
Thus, our two-boson model and the fitting procedure can be
extended to this regime of mass ratios.

Table 2 and figure 19 summarize the dimer–dimer
scattering length and effective range for selected values of

the mass ratio κ . Circles and crosses in figure 19 correspond
to the dimer–dimer scattering length, add , extracted from the
energies calculated by the CG and the FN-DMC approach,
respectively, as a function of κ . The add two-boson model
predictions compare well with those calculated by Petrov
et al within a zero-range framework [133] (solid line in
figure 19). The existence of Efimov states limited Petrov
et al calculations to κ � 13.6 since beyond this mass ratio a
three-body parameter is needed to solve the zero-range four-
body equations. As mentioned above, the four-body solutions
for a finite-range potential include deeply bound solutions
which correspond to either a trimer-atom or a tetramer. The
trimer-atom states affect the dimer–dimer scattering properties
only when the dimer–dimer configuration is close in energy
to the trimer-atom energy, which usually corresponds to a
narrow window in two-body scattering length. Away from
this window, the dimer–dimer states are well described by the
two-boson mode which predicts a smooth increase of the add

up to mass ratio κ = 20.
Note that the existence of energetically open atom-trimer

channels at the dimer–dimer collisional energy provides a
decay mechanism for the dimers. Clearly, such a decay
mechanism cannot be captured within this rather simple two-
boson model and a more sophisticated treatment should be
used to extract the inelastic scattering properties.

A recent theoretical study found good agreement with the
two-boson model predictions beyond 13.6 [134].

The two-boson model also provides estimates for the
dimer–dimer effective range, rdd (shown as diamonds and
squares in figure 19). The uncertainty of rdd obtained from the
CG approach is estimated to be about 10%; this uncertainty
is expected to be larger for the results extracted from the
FN-DMC energies since those calculations only include one
energy curve. As shown in figure 19, the ratio rdd/a increases
from about 0.2 for κ = 1 to about 0.5 for κ = 20. The
existence of a finite effective range can be attributed to the
effective broad soft-core potential that the dimers experience
[133]. Reference [129] predicts rdd as a function of the
mass ratio κ . The large value obtained for rdd suggests that
effective-range corrections may need to be considered in order
to accurately describe the physics of molecular Fermi gases.

To conclude, we have shown that studies of few-body
trapped systems can be used to extract information about the
collisional properties of free systems. Dimer–dimer scattering
lengths can be extracted by analysing the trapped few-body
spectrum for different two-body scattering length values.
Furthermore, energy-dependent corrections to add can also
be obtained with this method.

5.7. Structural properties

The analysis of the BCS–BEC crossover spectrum can be
complemented by an analysis of the wavefunctions and their
structural properties. This section determines the one-body
densities and pair-distribution functions for two-component
Fermi systems in the crossover regime. The averaged radial
densities, ρi(r), are normalized such that 4π

∫
ρi(r)r

2 dr = 1;
4πr2ρi(r) represents the probability of finding a particle with
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mass mi at a distance r from the centre of the trap. Here
we focus on the m1 = m2 case, where we find that the
radial one-body densities ρ1(r) and ρ2(r) coincide and we
can omit the species label. The unequal mass case, in which
the radial one-body densities ρ1(r) and ρ2(r) differ, will not be
considered here but was discussed in [123]. Also the averaged
radial pair distribution functions, Pij (r), are normalized so that
4π

∫
Pij (r)r

2 dr = 1; 4πr2Pij (r) represents the probability
of finding a particle of mass mi and a particle of mass mj at a
distance r from each other.

These structural properties are computed using the CG
method. Since we are only focusing on J = 0 states, all the
structural properties presented here are spherically symmetric.
The structural properties are calculated using the following
general expression:

4πr2F(r) = 〈�n|δ(x − r)|�n〉 =
∫

dr1 . . . drNδ(x − r)

× |�n(r1, r1′ , . . . , rN1 , rN2)|2. (80)

Here, F(r) is a generic structural property, e.g. the density
profiles ρ1 or ρ2, the interspecies pair-correlation function P12,
or the intraspecies pair-correlation functions P11 or P22. x is
the length of the coordinate vector that describes the structural
property. For ρ1 and ρ2, x = r1 and x = r1′ , respectively.
For P12, x is the interparticle distance between opposite-spin
or different species, x = r11′ . For P11 and P22, x is the same-
spin or same-species interparticle distance, with x = r12 and
x = r1′2′ , respectively. To evaluate 4πr2F(r), �n is expanded
in the CG basis set, permitting the integral in equation (80) to
be carried out analytically.

Figure 20 presents the single particle density profiles
for different interaction strength across the crossover. The
radial density profiles of the equal mass four-fermion system
smoothly evolve from the non-interacting solution (less peaked
thin black curve) in the BCS limit to the prediction of dimer–
dimer model in the BEC limit (more peaked thin black
line). In the BEC limit (a → 0+), the density profile
coincides with that of two point-like bosonic dimers, i.e.
ρ(r) = exp

(−r2
/
a

(M)
ho

)/(
a

(M)
ho

√
π
)3

. For small but finite
positive scattering lengths (dash-dotted curve), the density
profile is broader which can be attributed to both the finite
size of the dimers and the effective repulsive dimer–dimer
interaction.

Next, we analyse the opposite spin pair distribution
function. For a zero-range pseudopotential, the opposite
spin pair correlation function obeys a boundary condition
[135, 136]

[rP12(r)]′r=0

[rP12(r)]r=0
= −2

a
. (81)

This behaviour is a direct consequence of the Bethe–Peierls
(B-P) boundary condition [r12�(r12)]′r12=0/[r12�(r12)]r12=0 =
−1/a. The factor of 2 in equation (81) appears because the
pair correlation function is proportional to the square of the
wavefunction, i.e. P12(r) ∝ �(r12)

2. A direct consequence of
equation (81) is that at unitarity, i.e. when |a| = ∞, r2P12(r)

has zero slope at r → 0.
The numerical verification of equation (81) is challenging.

For systems with finite-range interactions, equation (81) is

ρ

Figure 20. Single-particle density profiles for interaction strength
across the crossover. Thick curves correspond to numerical results:
a = −aho (solid curves), a = ±∞ (dashed curves) and a = 0.1aho

(dash-dotted curves). Thin curves correspond to analytic limiting
solutions: non-interacting four-fermion prediction (less peaked),
dimer–dimer solution in the BEC limit (more peaked).
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Figure 21. Pair-distribution functions P12(r), multiplied by r2, for
equal-mass–two-component Fermi systems with N = 2 (dashed
curve) and N = 4 (solid curve). The N = 2 pair-correlation
function has an arbitrary norm selected to match the N = 4 pair
correlation in the small r regime.

valid in a narrow regime of r values. For a < 0, equation (81)
is valid when r is much larger than the range of the potential
and much smaller than the mean interparticle distance, i.e. the
r0 � r � aho regime. For a > 0, equation (81) is valid
when r is much larger than the range of the potential and
much smaller than the size of the dimer (given by a) and the
mean interparticle distance, i.e. the r0 � r � min[a, aho]
regime. This regime is almost non-existent for our numerical
calculations, because we consider only the aho/r0 = 100 case.

An alternative procedure test (equation (81)) is to compare
the numerical results with the two-body analytical results of
the zero-range pseudopotential. This comparison is more
convenient because the two-body analytical results include
corrections to equation (81) for trapping effects and finite r.
Figure 21 presents the N = 2 and N = 4 pair correlation
r2P12(r). The calculations are done on the BEC side [a =
aho], where both the N = 2 and N = 4 pair correlations in the
small r region are controlled by molecule formation (see the
discussion below). The good agreement between the N = 2
and N = 4 pair correlations in the small r region suggests that
the N = 4 numerical results correctly describe the zero-range
pseudopotential limit.

The pair distribution function changes considerably
as interactions are tuned across the BCS–BEC crossover.
Figure 22 shows the pair distribution function P12(r) along
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π

Figure 22. Pair-distribution functions P12(r), multiplied by r2, for
equal-mass–two-component Fermi systems with N = 4 and J = 0.
The solid curve corresponds to a = −aho (BCS regime), dashed
curve 1/a = 0 (unitarity) and dashed-dotted a = aho (BEC regime).
Adapted from [94].

the crossover for equal mass systems [κ = 1] in the BCS
(solid lines), unitary (dashed lines) and BEC (dash-dotted
lines) regime. As attractive interactions increase, the pair
distribution function evolves from a single peak structure
to a double peak structure. The single peak structure is
usually associated with solutions where spin-up–spin-down
interparticle distances are mainly controlled by a single length
scale and all particles are roughly at the same distance.
This single peak structure appears in the BCS regime since
the attraction is not strong enough to bind the particles
and the typical interparticle distance is set mainly by the
external trapping potential. The multipeak structures in
pair distribution functions would generally be associated
with solutions were more than one length scale control the
interspecies interparticle distance. In this case, a double
peak structure already appears at unitarity and becomes
more pronounced in the BEC regime. The peak at small
r indicates the formation of weakly bound dimers and its
width is associated with the size of the dimers. The broader
peak between 1 aho and 2 aho is related to the presence of
larger atom–atom length scales set approximately by the
typical dimer–dimer separation in the harmonic oscillator
potential. Understanding the BEC solutions as two dimers
in a trap implies that the four-body configurations include two
interspecies distances of the size of the dimer (short) and two
interspecies distances of the size of the trap (large). Thus, the
probability of finding two particles from different species at
short distances should be equal to the probability of finding
them at large distances. This premise is verified by comparing
the area under first and second peaks in the P12(r)r

2 plot.
Finally, note that moving through the BCS–BEC crossover
region, the slope of r2P12(r) at small r changes from positive
to zero to negative, as is predicted by equation (81).

The dimer–dimer model can be quantitatively tested in
the deep BEC regime (0 < a � aho). In this regime, the
two peaks of the pair distribution function are well separated
and can be independently analysed (see figure 23). The small-
r corresponds to dimer formation and is well described by
the pair-distribution function multiplied by r2 and normalized
to 1/2 for two trapped atoms with a = 0.1aho (dash-dotted
curve). The large-r peak describes dimer–dimer correlations
and is well described by the pair distribution function of

4π
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2
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)/
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−
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o

r/aho
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Figure 23. (a) Circles show the pair-distribution function, P12(r),
multiplied by r2 for a = 0.1aho (BEC regime). For comparison, the
blue dash-dotted line shows P12(r)r

2 for two atoms of mass m with
the same scattering length but normalized to 1/2, the red dashed line
shows P12(r)r

2 for two trapped bosonic molecules of mass 2 m
interacting through a repulsive effective potential with add = 0.6a,
and the green dotted line shows P12(r)r

2 for two trapped
non-interacting bosonic molecules of mass 2 m. Panel (b) shows a
blow-up of the small r region. Adapted from [94].

two bosonic molecules of mass 2m in a harmonic trap
(dotted line). The agreement is quite good but it can be
improved by including the effective dimer–dimer interaction
corrections. The dashed curve, almost indistinguishable
from the large r part of the pair-distribution function for the
four-particle system, shows dimer–dimer model prediction
including the effective repulsive potential with dimer–dimer
scattering length add ≈ 0.6a [129, 133]. Thus, even though
the dimer–dimer interaction corrections are small, they are
noticeable in the pair distribution function.

5.7.1. Dynamics across the BCS–BEC crossover region.
The diabatic representation can be used to ramp an
initial configuration through the BCS–BEC crossover region,
mimicking experiments carried out at different laboratories
at JILA and Rice University. The initial configuration is
propagated using the time-dependent Schrödinger equation

ih̄
d |�〉

dt
= H[λ(t)] |�〉 . (82)

The time dependence of the Hamiltonian comes entirely
from that of λ(t) ≡ 1/a(t) term. In this case, we focus
on unidirectional ramps. Starting from the ground state
on the BCS side, the parameter λ is ramped through the
resonance to the BEC side at different speeds, ν = dλ

dt
. The

relevant dimensionless speed quantity is ξ = ahoν/ω. The
parameter ξ can be rewritten in terms of ν, the density of
the system ρ and the particle mass to relate few-body and
many-body predictions [137]. This reformulated version of
ξ (see [128]) agrees with the functional form of the Landau–
Zener parameter obtained in [138, 139]. The dependence of
the Landau–Zener parameter on ρ has been experimentally
verified [140].

To propagate the initial configuration, we use the diabatic
representation obtained previously in section 5.5.1. First, we
divide the BCS–BEC crossover range into sectors. Starting
from the BCS side at λ ≈ λBCS and finishing at the BEC side
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at λ ≈ λBEC, the BCS–BEC crossover is divided into 40–80
sectors. At the middle of each sector, the time-independent
Hamiltonian is diagonalized using the CG method. For four-
body systems, thousands of CG basis functions are usually
needed to describe the spectrum. While in principle this
basis set could be used to solve equation (82), in practice
this large basis would make the numerical propagation very
slow. Instead, we use the diabatic representation obtained at
the middle of the j th sector to expand the time-dependent
wavefunction throughout that sector, i.e.

|�(t)〉 =
Nd∑
i

c
j

i (t)
∣∣�j

i

〉
. (83)

Here,
∣∣�j

i

〉
is the diabatic basis function i of sector j , and

Nd is the number of diabatic states considered. The time
dependence only appears in the complex coefficients c

j

i (t).
Upon selecting only the lowest 20–100 diabatic states at that
point, we drastically reduce the size of the Hamiltonian matrix
in equation (82). Since the inverse scattering length λ changes
very little in each sector, the relevant diabatic states are well
described by this reduced basis set throughout the sector.
The time-dependent Schrödinger equation, equation (82), is
propagated from one edge of the sector to the other using an
adaptive-step Runge–Kutta method.

To understand the time propagation of this system,
consider the way the probabilities evolve as the system transits
the BCS–BEC crossover region. At each point of the time
propagation, the probability of residing in state i is given by
pi(t) = ∣∣cj

i (t)
∣∣2. Here j denotes the sector that includes

λ(t). The probabilities of evolving into a given family can
be found by summing the probabilities of all states belonging
to the same family. For two particles, there are two families,
the dimer family, which only includes the lowest state, and
the two-atom family, which includes the rest of the states. In
this case, the appropriate definitions are pd(t) = ∣∣cj

1(t)
∣∣2 and

P2a(t) = ∑Nd

i=2

∣∣cj

i (t)
∣∣2.

The N = 4 system has four relevant families: the
ground state, the excited dimer–dimer states, the dimer–two-
atom states, and the four-atom states. These families are
characterized by the probabilities pg(t), pdd(t), pd2a(t), and
p4a(t), respectively.

Figure 24 presents examples of the numerical time
evolution of an N = 4 system during a unidirectional ramp at
constant speed from the BCS to the BEC side. As expected,
the probability of staying in the ground state decreases with
increasing ramp speed. The probability of evolving into the
final four-atom configuration increases with speed, which is
in agreement with the projection argument. The transfer of
probability occurs mainly in the strongly interacting regime,
−2 � aho/a � 2. In this region, the diabatic states are
sometimes mixed, producing jumps in the probabilities. For
example, around aho/a ≈ 1, the red and blue curves have a
kink due to an avoided crossing between an excited dimer–
dimer state and a dimer–two-atom state.

The probabilities at the end of the time evolution can also
be studied as functions of the speed ξ . Before analysing
these numerical results, however, consider first the simple

Figure 24. Probabilities of different families of the N = 4 system
during a unidirectional ramp at constant speed dλ/dt from the BCS
to the BEC side. The initial configuration is |�BCS

1 〉. The solid curve
corresponds to pg(t). The long dashed curve corresponds to pdd(t).
The short dashed curve corresponds to pd2a(t) and the dash-dotted
curve corresponds to p4a(t). Probabilities obtained for ramping at a
speed of ξ ≈ 13 (top panel), ξ ≈ 52 (middle panel) and ξ ≈ 128
(bottom panel).

Landau–Zener model that provides insights into our numerical
calculations.

In its simplest form, the Landau–Zener model considers a
two-level system whose energy difference depends linearly on
the adiabatic parameter λ, i.e. ε1 − ε2 = αλ, and are coupled
by ε12 independent of λ. The time evolution of this model
can be easily solved, yielding the non-adiabatic transition
probability Tna to evolve into a final adiabatic state different
from the initial adiabatic state after the parameter λ is varied
through an avoided crossing. To obtain this probability, the
time-dependent Schrödinger equation is propagated starting at
t = −∞ (with ψ(t) = ψ1) to t = +∞. The non-adiabatic
probability is then given by Tna = | 〈ψ(+∞)|ψ2〉 |2. Landau
and Zener solved this problem analytically and showed that

Tna(ν) = e−δ, (84)

where δ = 2πε2
12/(αν).

Our goal is to use this simple expression to describe each
of the important non-adiabatic transitions in the four-fermion
description. However, equation (84) is not very useful in its
current form when it comes to analysing numerical results
since it requires a knowledge of non-adiabatic quantities such
as α and ε12. ε12 can be estimated from the difference between
adiabatic energy curves at the closest approach. But, in the
four-body problem, α is very difficult to extract because there
is a rich structure of avoided crossings. Nevertheless, Clark
[141] showed how α can be obtained from an analysis of
the P-matrix coupling between two adiabatic states. In the
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Figure 25. (a) Energy of the most important states amenable to a
Landau–Zener description, through the BCS–BEC crossover regime.
The curves correspond, from bottom to top, to (1) |�1〉 which
represents the ground state configuration, (2) |�2〉 which represents
the excited dimer–dimer configuration, (3) |�5〉 which represents a
dimer plus two atoms, and (4) |�13〉 which represents the lowest
four-atom configuration. (b) Probability of ending up in a given
configuration after the ramp, as a function of the dimensionless
speed parameter ξ . The symbols correspond to the numerical
evolution, while the curves correspond to the Landau–Zener
approximation. Solid curve and circles correspond to |�1〉,
dash-dotted curve and crosses to |�2〉, dashed curve and squares to
|�5〉, and dotted curve and diamonds to |�13〉. Results from [128].

Landau–Zener model, the P-matrix between the two adiabatic
states |ψ+〉 and |ψ−〉 is

P+−(λ) =
〈
ψ+

∣∣∣∣dψ−
dλ

〉
= α

4ε12

1

1 + [αλ/(2ε12)]2
(85)

and has a characteristic Lorentzian form whose parameter is
directly related to α and ε12.

Analysis of the spectrum and the P-matrices permits an
identification of the states �i and �j involved in the most
important non-adiabatic transitions, and a determination of
the Landau–Zener transition probability

Tij (ν) = e−δij = e− ηij

ξ . (86)

The Landau–Zener parameter δij characterizes the transition
and is extracted by analysing the spectrum, while the P-matrix
is obtained from the numerical description of the adiabatic
states using the Hellmann–Feynman theorem.

Figure 25(b) displays the results obtained from the
numerical time propagation. The black symbols correspond to
the dimer–dimer ground state. The blue symbols correspond
to the excited dimer–dimer family, the red symbols to the
dimer–two-atom family, and the green symbols to the four-
atom family. For slow ramps (small ξ ), the probability of
forming a ‘condensate’, i.e. remaining in the ground state, is
large. For intermediate ramps, the greatest probability is to
break one bond and end up with a dimer plus two particles. For
fast ramps (large ξ ), the probability of staying in the atomic
ground state on the BEC side is dominant. The probability of
the system evolving into an excited dimer–dimer configuration
remains small for all ramping speeds.

To analyse these transitions within the Landau–Zener
approximation, the partially diabatic states have been labelled
according to their energies in the BCS regime. This labelling
is arbitrary since many of the states are almost degenerate.
Based on the P-matrix couplings, the possible pathways point

towards the states that are most likely important. Starting from
the ground state, note that |�1〉 has important couplings with
states |�2〉 and |�5〉. Here, |�2〉 is the first excited dimer–
dimer state, i.e. the lowest state of the excited dimer–dimer
family. The state |�5〉 is the first excited state of the dimer–
two-atom configuration. Since an important probability is
transferred to states |�2〉 and |�5〉, we analyse the couplings
of these states to follow the flow of probability. The state |�2〉
has an important coupling with |�5〉, and the state |�2〉 has an
important coupling with |�13〉. Here, |�13〉 is the lowest state
of the four-atom configuration, i.e. the atomic ground state on
the BEC side. Figure 25(a) presents the energy curves of these
four states. Conveniently, each of these states represents a
different configuration. For that reason, this is the minimal set
of states that can describe the numerical results. While more
states could be included in the analysis, here only the simplest
possible case is considered. The P-matrix analysis also reveals
the order in which the transition usually occurs. The order of
the peaks reveals the following sequence: the first transition
is 1 → 2, then 2 → 5, then 1 → 5, and finally 5 → 13. The
Landau–Zener prediction for this sequence is

p1 = (1 − T1,2)(1 − T1,5),

p2 = T1,2(1 − T2,5),

p5 = ((1 − T1,2)T1,5 + T2,5T1,2)(1 − T5,13),

p13 = ((1 − T1,2)T1,5 + T2,5T1,2)T5,13.

(87)

Again, the sum of all these probabilities is, by construction,
unity. The Landau–Zener parameters obtained from the
P-matrix analysis are η12 ≈ 5.4, η15 ≈ 6.6, η25 ≈ 2.1 and
η5,13 ≈ 13.8. The sequence of Landau–Zener transitions in
the model shows good agreement with the numerical results
even though many possible transitions have been neglected in
the approximate model.

5.7.2. Universal properties. The universal properties of two-
component Fermi gases interacting through s-wave collisions
has been intensively studied in recent years. Some particularly
important research has been carried out concerning the
universal properties of four-fermion systems. Here we select
two studies that benchmark the universal behaviour of four-
fermion systems.

The specific point in the strongly interacting region where
the s-wave interaction strength reaches its maximal value is
usually called unitarity. Unitarity is alternatively characterized
by a divergent s-wave scattering length, |a| = ∞. If
inelastic two-body scattering channels are energetically open,
the scattering length is complex and it does not diverge all
the way to infinity, but the following discussion assumes that
such inelastic processes can be neglected. In this situation, if
the range of the interaction is much smaller than the typical
interparticle distance and if the scattering length is divergent,
then no relevant length scale exists that can characterize the
interaction. This situation is similar to the non-interacting
limit, where the absence of interactions implies, of course,
the absence of a length scale that describes the interaction.
The absence of a length scale that describes the interaction
allows us to extract the functional form of various quantities
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Figure 26. Hyperspherical potential curves at unitarity for the
four-fermion system multiplied by 2μR2/h̄2. The solid lines
represent the predictions extracted from the spectrum obtained with
the CG method. The symbols correspond to direct evaluation of the
potential curves with the CGHS method. Solid lines correspond to
predictions of the large R behaviour of the potential curves extracted
from the analysis of the excitation spectrum of the four-fermion
trapped system.

via dimensional analysis. Furthermore, it allows us to relate
quantities at unitarity to those in the non-interacting limit.

Dimensional analysis becomes particularly simple in the
hyperspherical framework for a non-interacting or unitary
system in free space, where the hyperradius is the only
coordinate with dimensions of length. Since the potential
curves have units of energy and the only length scale is given
by R, it follows that U(R) ∝ 1/R2. This is equivalent to
saying that the potential curves at unitarity are proportional
to the non-interacting potential curves, i.e. U(R) ∝ UNI (R),
since the non-interacting potential curves have the form 1/R2.
The resulting predictions have been derived in [142, 143].

The four-fermion potential curves calculated at unitarity
using CGHS methods allow us to test the premise of
universality at the four-body level. Figure 26 presents
predictions for the lowest 20 adiabatic potential curves for a
Gaussian interaction model potential. At large R the potential
curves become proportional to 1/R2 as predicted by the
universal theory. This behaviour of the potential curves can be
used to understand universal predictions for trapped systems
such as the virial theorem and the energy spacing of the trapped
spectrum.

The notion of universality extends beyond the unitarity
regime and can be applied to any finite scattering length.
Recently, Tan was able to derive a series of relations between
different observables in two-component Fermi systems
[144–146]. These relations were obtained under the premise
of universality and are a consequence of the wavefunction
behaviour when two particles come close together (which is
well described by the Bethe–Peierls boundary condition). The
universal Tan relations connect the energy, the expectation
value of the trapping potential, the pair and momentum
distribution functions of two-component Fermi systems
through a quantity termed the integrated contact intensity I (a).

Blume and Daily investigated the Tan relations for a
trapped four-fermion system [147]. Using the CG method,
they extracted the spectrum, the pair correlation function, the

Figure 27. Integrated contact intensity obtained in four different
ways: through the analysis of the energy dependence on a (solid
curve), virial theorem (dashed curve), momentum distribution (blue
symbols), and pair correlation function (red symbols). The solid and
dashed curves are essentially indistinguishable on this scale.
Adapted from [147].

momentum distribution and the external potential expectation
value for determining I (a) in four different ways. Figure 27
presents a comparison of the different predictions for the
contact intensity. The excellent agreement between the
different predictions numerically demonstrates the validity
of the Tan relations. Furthermore, it quantifies the contact
intensity for the four-fermion system, which can serve as a
benchmark for further studies.

6. Summary

This review has concentrated on recent developments in the
four-body problem, emphasizing those insights that have either
used hyperspherical coordinate techniques directly, or else
which have benefited indirectly from those insights. The
utility of formulating the few-body or even the many-body
problem in hyperspherical coordinates was glimpsed early on
by some of the pioneers in the field such as Delves [31, 32],
Smirnov and Shitikova [148], Macek [38], Lin [40], Fano
[149], Kuppermann [98], and Aquilanti [55]. This class of
methods has been especially valuable for studying ultracold
collisions in recent years, and ultracold applications have been
the focus of this overview.

Bosonic four-body systems could not be discussed in
much detail in this review, owing to length constraints, but
they have provided an important proving ground for many of
the methods discussed in this review. Early ideas on three-
body recombination for three bosons or for three non-identical
fermions that arose first from an adiabatic hyperspherical
perspective [10, 11] have since been confirmed and developed
further, with many useful new insights from independent
theoretical perspectives. The few-body system receiving the
most attention over the years has been the three-body problem,
both with and without long-range Coulombic interactions. The
exciting headway represented by that body of literature has had
some extensions to handle non-trivial reactive processes for
systems with four interacting particles [150], and in a handful
of studies, for systems with many more particles [151–157].

Numerous questions still remain to be addressed in this
field, aiming in the long run towards not only answering
questions of universality in the ultracold but also developing
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systematic ways of handling four-body chemical reaction
dynamics at the fully quantum level. A large parameter space
also remains to be explored just in the ultracold limit of the
four-body problem, such as varying mass ratios for fermionic
and for bosonic systems as well as mixed Bose–Fermi systems.

Acknowledgments

Many of the results described in this review were developed
in close collaboration with Doerte Blume, and we deeply
appreciate her contributions and insights. In particular, we
thank D Blume and K M Daily for providing the results
presented in figure 27. We also thank Brett Esry for numerous
informative discussions and for access to some of his results
prior to publication. This project was supported by the NSF.

Appendix A. Hyperangular coordinates

As with Jacobi coordinates, there is no unique way to construct
the hyperangles of a system. In this appendix, we construct the
hyperangular coordinates used in the four-fermion problem.
The choice of hyperangular parameterization has physical
meaning. Different parameterizations can be used to describe
different correlations within the system. Also in the case
of body-fixed coordinates, hyperspherical coordinates can be
used to remove the Euler angles of solid rotation, reducing the
dimensionality of the system.

A.1. Delves coordinates

Unfortunately, or possibly fortuitously depending on your
view point, there is no unique way to define the hyperangles
in a given system. Here we use a simple, standardized
method of defining them used by many others [38, 97, 151,
156–158] in the form of the so-called Delves coordinates
[31, 32]. We will begin by examining a well-known example
of hyperspherical coordinates, that of normal spherical polar
coordinates. Clearly these coordinates can be used to describe
the relative motion of two particles in three dimensions or
the position of a single particle in a trap-centred coordinate
system, but it can also be used in less obvious ways. For
instance, spherical polar angles may be used to describe the
relative motion of four particles in one dimension.

The components of a three-dimensional vector, r, can be
written in terms of a radius and two angles as

x = r cos φ sin θ, (A.1)

y = r sin φ sin θ, (A.2)

z = r cos θ. (A.3)

This parameterization can be represented in a simple tree
structure shown in figure A1.

The end points of the tree represent each component of the
vector r, and each node in the tree represents an angle. Also
associated with each node is a subradius. For the lowest node,
the ‘subradius’ is merely the total length of the vector, r. For
the upper node, the subradius is merely the cylindrical radius
ρ =

√
x2 + y2. Using the tree structure from figure A1, a set of

Figure A1. The tree that gives the standard spherical coordinates
for a three-dimensional system is shown.

rules can be developed for extracting the parameterization of
equations (A.1), (A.2), and (A.3). Starting at the bottom node
with total radius, r, move up through the tree to the desired
coordinate. For each move through the tree, if you move to
the left (right) from a node, multiply by the sine (cosine) of
the angle associated with that node. Continue until you reach
the Cartesian component.

This procedure can be generalized readily from three to
d dimensions. Start by building a tree with d free ends and
d − 1 nodes, associate an angle with each node and follow the
above rules. Using the tree structure, starting at the bottom
node with total hyperradius, R, move up through the tree to
the desired coordinate. If you move to the left (right) from
a node, multiply by the sine (cosine) of the angle associated
with that node. Continue until you have reached the desired
Cartesian component. A specific tree for d dimensions is
shown in figure A2. Following the rules, this tree gives the
hyperangular representation

xn = R cos αn−1

d−1∏
j=n

sin αj ,

0 � αj � π, j = 2, . . . , d − 1

0 � α1 � 2π

(A.4)

where cos α0 ≡ 1 and
∏d−1

j=d sin αj ≡ 1. This can also be
written as

tan αn =
√∑n

j=1 x2
j

xn+1
, (A.5)

n = 1, 2, 3, . . . , d − 1.

This hyperspherical tree has been dubbed the canonical tree
[91, 97] as it is simple to construct and very easy to add more
dimensions to.

To avoid double counting, the range that the hyperangles
take on is restricted depending on how many free branches are
attached to the node corresponding to a given angle. If the node
has two free branches, then the angle takes on the full range
0 to 2π . If the node has one free branch attached, the angle
goes from 0 to π . If the node has no free branches attached to
it, the associated angle goes from 0 to π/2. Following these
rules for the canonical tree gives the ranges of the angles αi :

0 � α1 � 2π,

0 � αi � π, i = 2, . . . , d − 1.

Another slightly more abstract way of considering this
construction is to start by breaking the d-dimensional space
into two subspaces of dimensions d1 and d2, and assuming
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Figure A2. The canonical tree that gives a hyperangular
parameterization for a d-dimensional system is shown.

Figure A3. The tree structure used to correlate two subspaces to a
single hyperradius.

that these two subspaces are already described by two sets of
sub-hyperspherical coordinates (R1,�1) and (R2,�2). With
these assumptions all that remains is to correlate the sub-
hyperradii. This is done by following the type of procedure
described above using the tree structure shown in figure A3,

R1 = R sin α,

R2 = R cos α,
(A.6)

where α is now the final hyperangle in the system. Using this
procedure recursively, one can define the hyperangles in the
subspaces until the only remaining subspaces are the individual
Cartesian components of the total d-dimensional space. The
concept of dividing the total space up into subspaces will prove
very useful for the purpose of constructing basis functions.

As a final example of hyperangular parameterizations,
we introduce a parameterization for N three-dimensional
vectors {ρi}Ni=1. One could break each vector up into its
individual components and use the canonical parameterization
from equation (A.4), but this removes much of the spatial
physical intuition that one could bring to bear, such as the
individual spatial angular momentum corresponding to each
vector. Instead one can use a variation on the canonical tree
shown in figure A4. On first glance, this tree might seem the
same as the canonical tree shown in figure A2. In this case,
though, the large dot at the end of each branch represents the
spherical polar sub-tree of the form shown in figure A1 for
each vector ρi .

Using this tree structure and following the rules
outlined above, 2N of the 3N − 1 hyperangles are given
by the normal spherical polar angles for each vector

Figure A4. The tree structure used to parameterize the hyperangles
for N three-dimensional vectors is shown. Note that the dot at the
end of each branch on the tree on the left stands for a spherical polar
tree.

(θ1, φ1, θ2, φ2, . . . , θN , φN). The remaining N−1 hyperangles
are given by

tan αi =
√∑i

j=1 ρ2
j

ρi+1
,

0 � αi � π
2 ,

i = 1, 2, 3, . . . , N − 1,

(A.7)

where ρi is the length of the ith vector. It will be shown in the
next appendix that this parameterization is useful when spatial
angular momentum plays a role in the problem of interest. For
completeness, the hyperangular volume element that results
from this parameterization is given by

d� =
(

N∏
i=1

dωi

)⎛
⎝N−1∏

j=1

cos2 αj sin3j−1 αj

⎞
⎠

where ωi is the normal spherical polar differential volume
for ρi .

The first hyperangular parameterization used here is in the
form of equation (A.7) for three 3D vectors. The hyperradius
is defined in the same way as in equation (B.1):

R2 =
d∑

i=1

x2
i , (A.8)

where each xi is a Cartesian component of one of the Jacobi
vectors. The hyperspherical trees that will be used for the
four-fermion problem will be of the type in figure A4 in which
N vectors are described by the spherical polar angles of each
vector and a set of hyperangles correlating the lengths of each
vector. Specifically, the hyperangles are defined by the tree
shown in figure A5 combined with the spherical polar angles
of each Jacobi vector.

Following the rules described above gives the hyperangles

ασ
l,m = tan−1 |ρσ

l ||ρσ
m| ,

ασ
lm,n = tan−1

√
|ρσ

l |2
+|ρσ

m|2

|ρσ
n | .

(A.9)

Here the superscript σ = s, i1, i2 indicates which Jacobi
system is being used, while l, m, n indicate the three Jacobi
vectors from that system. In principle, there are six of
these hyperangular coordinate systems that can be constructed
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Figure A5. The hyperspherical tree used to parameterize the
hyperangular coordinates in the four-fermion problem is shown. See
chapter 2 or [97] for details.

from each set of Jacobi vectors giving a total of 18 different
hyperangular systems. Fortunately we will not need all of
these to tackle the four-fermion problem. If one considers
two particles, say 1 and 2, the tree defined by figure A5 with
σ = i1, l = 2,m = 3 and n = 1 can be decomposed into
two subtrees. The right branch describes the hyperangular
behaviour of the dimer alone, while the left branch describes
the behaviour of the remaining three-body system composed
of a dimer and two free particles. This type of decomposition
will be important for evaluating kinetic energy matrix elements
and defining basis functions.

Using the recursive definition of the hyperangular
momentum operator in equation (B.4) the total hyperangular
momentum operator can be written in terms of the
hyperangular coordinates as

	2 = �1
(
ασ

lm,n

) − 1

sin2 ασ
lm,n sin ασ

l,m cos ασ
l,m

×
[

∂

∂ασ
l,m

]2

sin ασ
l,m cos ασ

l,m

+
l̂2
l

sin2 ασ
lm,n sin2 ασ

m,n

+
l̂2
m

sin2 ασ
lm,n cos2 ασ

m,n

+
l̂2
n

cos2 ασ
lm,n

,

�1
(
ασ

lm,n

) = −1

sin2 ασ
lm,n cos ασ

lm,n

1

sin ασ
lm,n

∂

∂ασ
lm,n

× sin ασ
lm,n

∂

∂ασ
lm,n

sin2 ασ
lm,n cos ασ

lm,n, (A.10)

where l̂l , l̂m and l̂n are the normal spatial angular momentum
operators for each Jacobi vector. This can also be written
directly from equation (B.4) as

	2 = �1
(
ασ

lm,n

)
+

	2
l,m

sin2 αlm,n

+
l̂2
n

cos2 ασ
lm,n

,

	2
l,m = − 1

sin ασ
l,m cos ασ

l,m

[
∂

∂ασ
l,m

]2

sin ασ
l,m cos ασ

l,m

+
l̂2
l

sin2 ασ
m,n

+
l̂2
m

cos2 ασ
m,n

, (A.11)

where all of the hyperangular behaviour above the second node
in figure A5 is described by a sub-hyperangular momentum,
	2

lm,n.

Constructing the hyperspherical harmonics for the four-
body system is accomplished following the procedure in
appendix B giving

Y
(4b)

[λλl,mll ,lm,ln] (�) = N33
ll lmλl,m

N63
λl,mln,λ

sinλl,m(αlm,n) cosln (αlm,n)

×P
λl,m+5/2,ln+1
(λ−λl,m−ln)/2(cos 2αlm,n)N

λl,m

ll ,lm
sinll (αl,m) coslm (αl,m)

×P
ll+1,lm+1
(λl,m−ll−lm)/2(cos 2αl,m)yllml

(ωl)ylmmm
(ωm)ylnmn

(ωn),

(A.12)

where P α,β
γ (x) is a Jacobi polynomial of order γ , ylm (ω) is a

normal spherical harmonic with spherical polar solid angle ω,

and Nde
abc is a normalization constant [91, 97]:

Nde
abc =

[
(2c + d + e − 2) �

(
a+b+c+d+e−2

2

) (
c−a−b

2

)
!

�
(

c+a−b+d
2

)
�
(

c+b−a+e
2

)
]1/2

.

In equation (A.12), the degeneracy quantum number μ

has been replaced with an explicit tabulation of the
hyperangular momentum quantum numbers, i.e. λμ →
[λλl,mll, lm, ln]. The total four-body hyperspherical harmonics
satisfy the eigenvalue equation 	2Y

(4b)

[λλl,mll ,lm,ln] (�) =
λ (λ + 7) Y

(4b)

[λλl,mll ,lm,ln] (�). The sub-harmonics that are

eigenfunctions of 	2
l,m can be found as well:

Y
(3b)
[λl,mll ,lm](�l,m) = N33

ll ,lmλl,m
sinll (αl,m) coslm (αl,m)

×P
ll+1,lm+1
(λl,m−ll−lm)/2(cos 2αl,m)yllml

(ωl) ylmmm
(ωm) . (A.13)

Here the superscript (3b) indicates that this eigenfunction
behaves as a three-body hyperspherical harmonic. For
instance, if a hyperspherical tree is used with Jacobi vectors
defined in the i1 interaction coordinate system and l = 1,
m = 3, and n = 2, this three-body harmonic describes
the free-space behaviour of a dimer with two free particles.
The three-body harmonics obey the eigenvalue equation
	2

l,mY
(3b)
[λl,mll ,lm](�l,m) = λl,m(λl,m + 4)Y

(3b)
[λl,mll ,lm](�l,m). The

restrictions on the values of λ and λl,m are

λl,m = ll + lm + 2j,

λ = λl,m + ln + 2k

= ll + lm + ln + 2j + 2k,

(A.14)

where j, k = 0, 1, 2, . . . . The quantum numbers ll , lm
and ln are the spatial angular momentum quantum numbers
associated with Jacobi vectors ρl , ρm and ρn, respectively,
and each has a z-projection quantum number associated with
it which we have suppressed in equations (A.12) and (A.13).

A.2. Democratic coordinates

Using Delves coordinates greatly simplifies evaluating
hyperangular momentum matrix elements, but it still leaves
the eight-dimensional space of hyperangles. We will
only be considering systems with total angular momentum
L = 0. Therefore, it is convenient to move into a
body-fixed coordinate system, as the final wavefunction
for the four-body problem will not depend on the Euler
angles that produce a solid rotation of the system.
Removing the Euler angle dependence is accomplished
by transforming into the so-called democratic or body-
fixed coordinates. Four-body democratic coordinates
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are developed in several references (see [55, 98, 99]).
In this work, we use the parameterization of Aquilanti and
Cavalli. For a detailed derivation of the coordinate system see
their work in [55].

At the heart of democratic coordinates is a rotation from
a space-fixed frame to a body-fixed frame:

� = DT (α, β, γ ) �bf (A.15)

where � is the matrix of Jacobi vectors defined in equation
(C.12), �bf is the set of body-fixed Jacobi coordinates, and
D (α, β, γ ) is an Euler rotation matrix defined in the standard
way as

D =
⎡
⎣cos α − sin α 0

sin α cos α 0
0 0 1

⎤
⎦
⎡
⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤
⎦

×
⎡
⎣cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦ . (A.16)

The ‘T ’ in equation (A.15) indicates that a transpose has been
taken.

The body-fixed coordinates are defined in a system whose
axes are defined by the principle moments of inertia, I1, I2

and I3. In this coordinate system, the body-fixed Jacobi
coordinates are given by

�bf = ΠD (φ1, φ2, φ3) , (A.17)

where D is defined in the same way as in equation (A.16) with
φ1, φ2 and φ3 replacing α, β, and γ . � is a 3 × 3 diagonal
matrix whose diagonals are given by ξ1, ξ2 and ξ3 which are
parameterized by the hyperradius and two hyperangles �1 and
�2:

ξ1 = R√
3

cos �1,

ξ2 = R√
3

√
3 sin2 �1 sin2 �2 + cos2 �1,

ξ3 = R√
3

√
3 sin2 �1 cos2 �2 + cos2 �1.

(A.18)

To avoid double counting and to allow for different chiralities,
�1 and �2 are restricted to 0 � �1 � π and 0 � �2 � π/4.

With this parameterization, the moments of inertia are given
by

I1

μ
= ξ 2

2 + ξ 2
3 = R2

3
(2 + sin2 �1),

I2

μ
= ξ 2

1 + ξ 2
3 = R2

3
(3 sin2 �1 cos2 �2 + 2 cos2 �1), (A.19)

I3

μ
= ξ 2

1 + ξ 2
2 = R2

3
(3 sin2 �1 sin2 �2 + 2 cos2 �1).

The hyperradius in terms of the principle moments of inertia
can then be written as R2 = ξ 2

1 + ξ 2
2 + ξ 2

3 = (I1 + I2 + I3) /2μ.

With this parameterization, all eight hyperangles have
been defined. The first three are the Euler angles {α, β, γ },
which are external degrees of freedom describing solid
rotations of the four-body system. The two angles, �1 and
�2, defined in equation (A.18) describe the overall x, y and z

extent of the four-body system in the body-fixed frame. From

equation (A.19), if �1 = 0, π, then the principle moments of
inertia are all equal, i.e. I1 = I2 = I3, meaning that the four
particles are arranged at the vertices of a regular tetrahedron.
When �1 = π/2, equation (A.18) shows that the particles are
in a planar configuration. The remaining angles, {φ1, φ2, φ3},
are kinematic rotations within the system, and coalescence
points and operations like particle exchange are described in
these angles. Broadly speaking, the democratic angles �1 and
�2 can be thought of as correlating the overall x, y, and z

spatial extent of the four-body system in the body-fixed frame,
while the kinematic angles φ1, φ2, and φ3 parameterize the
internal configuration of the particles.

Since transformations from one Jacobi set to another
are merely rotation matrices (sometimes combined with an
inversion), the democratic parameterization can always be
written in the same form for any given Jacobi coordinate
system. For example, the symmetry coordinates (equation
(C.3)) can be transformed into the second set interaction
coordinates (equation (C.11)) using the kinematic rotation
defined by equation (C.15). If the democratic parameterization
defined in equations (A.15) and (A.17) is used, this
transformation reads

�i2 = D (α, β, γ )ΠDT (φ1, φ2, φ3)U s→i2,

= D (α, β, γ )ΠDT
(
φ′

1, φ
′
2, φ

′
3

)
where we have used the fact that the product of two rotations in
3D is itself a rotation. From this it is clear that within a given
type of Jacobi coordinate (H-type or K-type), all coalescence
points are equally well described. This is an important feature
as it does not appear in Delves-type coordinates, which are
strongly dependent on which Jacobi tree is used to define them.
For the purposes of this review, to make symmetrization of
the wavefunction easier, we will always define the body-fixed
coordinates in terms of the symmetry Jacobi system �s .

Putting this all together, the body-fixed Jacobi vectors in
terms of the internal hyperangles can be defined as

ρs
1x = R√

3
cos �1 (cos φ1 cos φ2 cos φ3 − sin φ1 sin φ3) ,

ρs
1y = R√

3

√
sin2 �1 sin2 �2 + cos2 �1

× (sin φ1 cos φ2 cos φ3 + cos φ1 sin φ3) ,

ρs
1z = −R√

3

√
sin2 �1 cos2 �2 + cos2 �1 sin φ2 cos φ3,

ρs
2x = −R√

3
cos �1 (cos φ1 cos φ2 sin φ3 + sin φ1 cos φ3) ,

ρs
2y = −R√

3

√
sin2 �1 sin2 �2 + cos2 �1

× (sin φ1 cos φ2 sin φ3 − cos φ1 cos φ3) , (A.20)

ρs
2z = R√

3

√
sin2 �1 cos2 �2 + cos2 �1 sin φ2 sin φ3,

ρs
3x = R√

3
cos �1 cos φ1 sin φ2,

ρs
3y = R√

3

√
sin2 �1 sin2 �2 + cos2 �1 sin φ1 sin φ2,

ρs
3z = R√

3

√
sin2 �1 cos2 �2 + cos2 �1 cos φ2,
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0 � �1 � π; 0 � �2 � π

4
,

0 � φ1, φ2, φ3 � π.

The restriction on the range of the internal hyperangles
is to avoid double counting configurations and allow for
configurations of different chirality.

By moving into democratic coordinates, the
dimensionality of the four-body problem can be
decreased from 9 to 6, but, as with many simplifica-
tions, there is a cost. This cost comes in the form of the
differential volume element d� [55]:

d� = (dα sin β dβ dγ )√
3 cos3 �2 sin3 �2 cos 2�2 sin9 �1

[(cos2 �2+3 sin2 �1 cos2 �2)(cos2 �2+3 sin2 �1 sin2 �2)]1/2

× d�1 d�2 dφ1 sin φ2 dφ2 dφ3. (A.21)

The first factor is purely from the Euler angle rotation and will
always yield a factor of 8π2 for functions that are independent
of α, β and γ .

Another price that is paid using democratic coordinates
comes in the form of the hyperangular momentum operator,
	2. In terms of the democratic hyperangles, 	2 is quite
complex and can be found in [55]:

	2 = −�(�1,�2) + 2μR2

{
I1

2 (I2 − I3)
2

(
L2

1 + J 2
1

)
+

I2

2 (I1 − I3)
2

(
L2

2 + J 2
2

)
+

I3

2 (I1 − I2)
2

(
L2

3 + J 2
3

)

+
2
[
I 2

1 − (I2 − I3)
2
]1/2

(I2 − I3)
2 L1J1

+
2
[
I 2

2 − (I1 − I3)
2
]1/2

(I1 − I3)
2 L2J2

+
2
[
I 2

3 − (I1 − I2)
2
]1/2

(I1 − I2)
2 L3J3

}
,

where J is the total angular momentum operator and

�(�1,�2) = 1

sin7 �1

∂

∂�1
sin7 �1

∂

∂�1

+
2

sin2 �1

[
∂2

∂�2
2

+ cot �1

(
4

sin2 2�2
− 1

)
∂

∂�1

]

+
4

sin2 �1

{
1

4 sin 4�2

∂

∂�2
sin 4�2

∂

∂�2

+
2

3
cot2 �1

[
1 + 3 cos2 2�2

sin2 2�2

(
1

4

∂2

∂�2
2

+
cot 2�2

2

∂

∂�2

)

− 1

sin 4θ2

∂

∂�2

]
+ cot �1 cot 2�2

∂

∂�2

∂

∂�2

}
.

Terms in J 2
i are centrifugal contributions, terms in LiJi are

Coriolis contributions and terms in L2
i are contributions from

internal kinematic angular momentum with

L = ih̄

⎡
⎢⎢⎢⎢⎣

sin φ1 cot φ2 cos φ1 − sin φ1

cos φ2

cos φ1 cot φ2 − sin φ1 − sin φ1

sin φ2

1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂φ1

∂

∂φ2

∂

∂φ3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Fortunately, the methods for evaluating matrix elements
in what follows will not directly require this form of
the hyperangular momentum, but it is included here for
completeness.

The final element needed from the democratic coordinates
is the inter-particle spacing. The ability to define these will be
necessary to describe pairwise interactions and correlations.
Using equations (C.1), (C.13) and (A.17),

|r12|2 =
√

μ

μ12

[(
�s

bf U s→i1
)†(

�s
bf U s→i1

)]
11, (A.22)

|r13|2 =
√

μ

μ13

[
�

s†
bf �s

bf

]
11, (A.23)

|r14|2 =
√

μ

μ14

[(
�s

bf U s→i2
)†(

�s
bf U s→i2

)]
11, (A.24)

|r23|2 =
√

μ

μ23

[(
�s

bf U s→i2
)†(

�s
bf U s→i2

)]
22, (A.25)

|r24|2 =
√

μ

μ24

[
�

s†
bf �s

bf

]
22, (A.26)

|r34|2 =
√

μ

μ23

[(
�s

bf U s→i1
)†(

�s
bf U s→i1

)]
22, (A.27)

where []ij indicates the ij th element of a matrix. In
this equation, only the body-fixed Jacobi coordinates from
equation (A.17) are used. This is because the unitary Euler
rotation used to rotate into the body-fixed frame is the same for
all Jacobi coordinates cancelling out the {α, β, γ } dependence
in the inter-particle spacings.

Figure 2 shows the surfaces in {φ1, φ2, φ3} for constant
rij in a planar configuration for �2 = π/4, π/6, and π/12
for equal mass particles. The φ1 coordinate axis has been
transformed into φ1 −π� (φ1 − π/2), where �(x) is the unit
step function, to emphasize the symmetry of the surfaces.
The red surfaces correspond to the interacting particles in
the four-fermion system (r12, r14, r23 and r34) while the blue
surfaces correspond to the identical fermions (r13 and r24).
The identical particle surfaces surround a coalescence point
that must be a Pauli exclusion node in the final four-body
wavefunction. The simple nature of these coalescence points
makes clear the reason for choosing to base the democratic
coordinates on the symmetry Jacobi vectors. The red surfaces
will play an important role in the pairwise interaction as these
surfaces outline the valleys of the potential. As the system
becomes more linear (�2 becomes smaller) it can be seen that
the surfaces become broader in the φ1 direction. In fact, when
�2 = 0 (in perfectly linear configurations) these surfaces
become independent of φ1.
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Appendix B. Hyperspherical harmonics

Strictly speaking an overview of hyperspherical coordinates is
not really needed for this review as there are many excellent
existing works on the subject (see for instance [31, 32, 91, 97,
151, 158] ). This appendix is included in order to provide a
more complete foundation for the variational basis functions
used in this review.

To begin, consider a d-dimensional Cartesian space whose
coordinate axes are given by {xi}di=1. For the majority of this
review, these coordinates are considered to be the components
of a set of Jacobi vectors or the components of a set of trap-
centred vectors, but for now we proceed with a more abstract
approach. The basic concept of the hyperradius is introduced
here as

R2 =
d∑

i=1

x2
i . (B.1)

While this definition is used here, often a mass scaling will be
inserted. For instance in a trap-centred system of equal mass
atoms an extra factor of 1/N , where N is the number of atoms,
will be used to simplify the interpretation of the hyperradius.
For the purpose of this section, though, this definition will be
adequate. With equation (B.1), the d-dimensional Laplacian
can be rewritten in terms of the hyperradius [91, 97]:

∇2 =
d∑

i=1

∂2

∂x2
i

= 1

Rd−1

∂

∂R
Rd−1 ∂

∂R
− 	2

R2
. (B.2)

In this equation, 	 is called the hyperangular momentum or
grand angular momentum operator, the square of which is
given by

	2 = ∑
i>j −|	ij |2,

	ij = xi

∂

∂xj

− xj

∂

∂xi

.
(B.3)

Already the d-dimensional Laplacian has a rather pleasing
form reminiscent of its 3D counterpart. In fact if d is taken to
be 3, equation (62) reduces exactly to the three-dimensional
Laplacian in spherical coordinates, and 	 becomes merely the
normal spatial angular momentum operator. To proceed from
here, a way of defining the remaining d−1 degrees of freedom
in terms of angles is needed.

The hyperangular momentum operator in terms of
hyperangular coordinates can be found by using the fact that
each subset of Cartesian components is itself a Cartesian
vector space. With that in mind, consider the hyperspherical
tree given by figure A3. By writing the Laplacian for each
subspace in terms of the sub-hyperradii R1 and R2 and the
sub-hyperangular momentum operators 	1 and 	2 the total
hyperangular momentum operator can be extracted [91]. It is

	2 = −1

sin(d1−1)/2 α cos(d2−1)/2 α

∂2

∂α2
sin(d1−1)/2 α cos(d2−1)/2 α

+
	2

1 + (d1 − 1)(d1 − 3)/4

sin2 α
+

	2
2 + (d2 − 1)(d2 − 3)/4

cos2 α

− (d − 1)(d − 3) + 1

4
(B.4)

where α is defined as in equation (A.6) and 	i is the sub-
hyperangular momentum of the subspace of dimension di .
If one of the subspaces corresponds to a single Cartesian
component then the sub-hyperangular momentum for that
space is zero, i.e. if di = 1 then 	2

i = 0. To find 	2
1

(
	2

2

)
,

ones only needs to apply equation (B.4) recursively to each
subspace. In this way, there is a sub-hyperangular momentum
operator associated with each node in any given hyperspherical
tree.

It is useful to be able to diagonalize the hyperangular
momentum operator. The eigenfunctions of 	2 are detailed
in several references (see [38, 97, 158] for example), and the
method of constructing them is given in appendix A. These
functions, Yλμ (�), are called hyperspherical harmonics. Their
eigenvalue equation is

	2Yλμ (�) = λ (λ + d − 2) Yλμ (�) , (B.5)

where λ = 0, 1, 2, . . . is the hyperangular momentum
quantum number. The index μ enumerates the degeneracy
for each λ and can be thought of as the collection of sub-
hyperangular momentum quantum numbers that result from a
given tree. Hyperspherical harmonics are also constructed as
to diagonalize the sub-hyperangular momenta of each node in
a given hyperspherical tree, e.g.

	2
1Yλμ (�) = λ1 (λ1 + d1 − 2) Yλμ (�) , (B.6)

where λ1 = 0, 1, 2, . . . is the sub-hyperangular momentum
quantum number associated with 	2

1. The total hyperangular
momentum quantum number λ is limited by the relation

λ = |λ1| + |λ2| + 2n, (B.7)

where n is a non-negative integer. The absolute values in this
case are there to allow for when either d1 or d2 are 2. In this
special case, the hyperangular momentum quantum number λi

associated with the two-dimensional subspace can be negative,
as with the magnetic quantum number, m, in spherical polar
coordinates. Equation (B.7) only applies if both d1 and d2 are
greater than 1. If, for instance, d2 = 1, then the restriction
takes on the form

λ = |λ1| + n.

The behaviour illustrated in equation (B.6) clearly
demonstrates why the parameterization shown in figure A4
is useful. Each three-dimensional spherical polar subtree will
have a spatial angular momentum and z-projection associated
with it, e.g.

l2
i Yλμ (�) = li (li + 1) Yλμ (�) ,

where l2
i is the square of the angular momentum operator for

the ith vector. This property allows for the addition of angular
momentum in the normal way, through sums over magnetic
quantum numbers and Clebsch–Gordan coefficients. Now
that the hyperspherical harmonics are defined, it is useful to
examine a simple example applying them.
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Appendix C. Jacobi coordinate systems and
kinematic rotations

Here we detail the variety of coordinate systems that are
used to describe the four-fermion problem in the adiabatic
hyperspherical framework and the necessary transformations
to describe one set in terms of another. The coordinate
systems used here are not only needed to describe correlations
between particles, but they also allow the system to be
reduced in dimensionality by removing the centre-of-mass
motion and moving into a body-fixed frame. H-type Jacobi
coordinates are constructed by considering the separation
vector for two two-body subsystems, and the separation vector
between the centres of mass of those two subsystems. K-type
Jacobi coordinates are constructed in an iterative way by first
constructing a three-body coordinate set, and then taking the
separation vector between the fourth particle and the centre of
mass of the three-particle sub-system.

C.1. Jacobi coordinates: H-trees versus K-trees:
fragmentation and symmetry considerations

The first and most obvious symmetry in the four-body
Hamiltonian is that of translational symmetry. By describing
the system in the centre-of-mass frame, the dimensionality of
the system can be reduced from d = 12 to d = 9. This is done
with the use of Jacobi coordinates. In the interest of brevity,
we consider here only those coordinates directly relevant to the
four-fermion problem. These coordinates may be broken into
two sets, H-type and K-type, shown schematically in figure 1.

H-type Jacobi coordinates are constructed by considering
the separation vector for two two-body subsystems, and the
separation vector between the centres of mass of those two
subsystems, i.e.

ρHσ
1 =

√
μij

μ
(ri − rj ),

ρHσ
2 =

√
μkl

μ
(rk − rl ) ,

ρHσ
3 =

√
μij,kl

μ

(
miri + mjrj

mi + mj

− mkrk + mlrl

mk + ml

)
,

ρcm = (m1r1 + m2r2 + m3r3 + m4r4)

m1 + m2 + m3 + m4
,

μij = mimj

mi + mj

,μij,kl = (mi + mj)(ml + mk)

m1 + m2 + m3 + m4
.

(C.1)

Here the superscript σ enumerates the 24 different H-type
coordinates that may be obtained through particle permutation,
ρcm is the position of centre of mass of the four-body system,
and μ is an arbitrary reduced mass for the four-body system.
The prefactors in each Jacobi vector, which are given in terms
of the various reduced masses in the problem, are chosen to
give the so-called mass scaled Jacobi vectors. The kinetic
energy in these coordinates can be written as

−
4∑

i=1

h̄2

2mi

∇2
ri

= − h̄2

2M
∇2

ρcm
− h̄2

2μ

3∑
j=1

∇2
ρj

,

where M is the total mass of the four particles. The
reduced mass, μ, can be chosen to preserve the differential

volume element for the full 3D problem, ensuring that
d3ρσ

1 d3ρσ
2 d3ρσ

3 d3ρcm = d3r1 d3r2 d3r3 d3r4:

μ =
(

m1m2m3m4

m1 + m2 + m3 + m4

)1/3

.

Physically, the H-type coordinates are useful for describing
correlations between two particles, for example a two-body
bound state or a symmetry between two particles, or two
separate two-body correlations.

When two particles coalesce (e.g. when ri = rj in
equation (C.1)), the H-type coordinate system reduces to a
three-body system with two of the four particles acting like a
single particle with the combined mass of its constituents:

ρHσ
1 = 0,

ρHσ
2 =

√
μkl

μ
(rk − rl ) ,

ρHσ
3 =

√
μij,kl

μ

(
ri − mkrk + mlrl

mk + ml

)
.

Locating these ‘coalescence points’ on the surface of
the hypersphere is crucial for accurately describing the
interactions between particles, and the coordinate reduction
described above will prove useful for the construction of a
variational basis set.

K-type Jacobi coordinates are constructed in an iterative
way by first constructing a three-body coordinate set, and then
taking the separation vector between the fourth particle and
the centre of mass of the three-particle sub-system, yielding

ρKσ
1 =

√
μij

μ

(
ri − rj

)
,

ρKσ
2 =

√
μij,k

μ

(
miri + mjrj

mi + mj

− mkrk

)
,

ρKσ
3 =

√
μijk,l

μ

(
miri + mjrj + mkrk

mi + mj + mk

− mlrl

)
,

ρcm = (m1r1 + m2r2 + m3r3 + m4r4)

m1 + m2 + m3 + m4
,

μij = mimj

mi + mj

, μij,k = (mi + mj)mk

mi + mj + mk

,

μijk,l = (mi + mj + mk)ml

m1 + m2 + m3 + m4
.

(C.2)

Again σ enumerates the 24 different K-type coordinates that
result from particle permutations. Examining figure 1 shows
that K-type Jacobi coordinate systems are useful for describing
correlations between three particles within the four-particle
system. In the four-fermion system, there are no weakly bound
trimer states meaning that K-type Jacobi coordinates will not
be used here, but the methods described in this report can
be easily generalized to include these types of states. Unless
explicitly stated, all Jacobi coordinates from here on will be
of the H-type, and for notational simplicity, we will drop the
H superscripts.

C.1.1. Coalescence points and permutation symmetry.
The proper description of coalescence points is crucial for
describing two-body interactions, but they are also important
for describing points of symmetry. For instance, if two
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identical fermions are on top of one another it is known
that the wavefunction must vanish at this point owing to the
anti-symmetry of fermionic wavefunctions. Here, we are
concerned with four fermions in two different ‘spin’ states.
Away from a p-wave resonance, the interactions between
identical fermions can be neglected for low energy collisions.
This means that there are two types of coalescence points that
must be described; two ‘symmetry’ points, when two fermions
of the same type are on top of each other, and four ‘interaction’
points, places where two distinguishable fermions interact via
an s-wave potential.

It might be tempting at this point to choose a single Jacobi
coordinate system and then try to describe the interactions and
symmetries in the same coordinates, but this leads to problems.
For instance, if it is assumed that particles 1 and 3 are spin-
up and particles 2 and 4 are spin-down, one might start with
coordinates that are simple to anti-symmetrize the system in

ρs
1 =

√
41/3

2
(r1 − r3) ,

ρs
2 =

√
41/3

2
(r2 − r4) ,

ρs
3 =

√
41/3

(r1 + r3

2
− r2 + r4

2

)
,

(C.3)

where it has been assumed that all of the particle masses are
equal, m1 = m2 = m3 = m4 = m leaving μ = m/41/3.
The generalization to distinguishable fermions of different
masses is clear. We refer to this Jacobi coordinate system
as the symmetry coordinates for fairly obvious reasons. If
a permutation of two identical fermions is considered, for
instance 1 and 3, the transformation is simple:

P13ρ
s
1 = −ρs

1, (C.4)

P13ρ
s
2 = ρs

2, (C.5)

P13ρ
s
3 = ρs

3. (C.6)

Similarly for the exchange of particles 2 and 4,

P24ρ
s
1 = ρs

1, (C.7)

P24ρ
s
2 = −ρs

2, (C.8)

P24ρ
s
3 = ρs

3. (C.9)

The points where two identical fermions coalesce are also
simply described by taking either ρs

1 → 0 or ρs
2 → 0.

The symmetry coordinates are not suited for describing an
interaction between two distinguishable fermions, for instance
1 and 2. This interaction occurs around the point r1 = r2. In
the symmetry coordinates, this means that

ρs
1 = ρs

2 −
√

2ρs
3.

This equation describes a six-dimensional sheet in the nine-
dimensional space, something that is not easy to describe
directly in any basis set. To get around this problem, we

introduce two more Jacobi coordinate systems that are useful
for describing interactions:

ρi1
1 =

√
41/3

2
(r1 − r2) ,

ρi1
2 =

√
41/3

2
(r3 − r4) ,

ρi1
3 =

√
41/3

(r1 + r2

2
− r3 + r4

2

)
,

(C.10)

and

ρi2
1 =

√
41/3

2
(r1 − r4) ,

ρi2
2 =

√
41/3

2
(r3 − r2) ,

ρi2
3 =

√
41/3

(r1 + r4

2
− r2 + r3

2

)
.

(C.11)

The superscripts i1 and i2 in equations (C.10) and (C.11)
indicate that these Jacobi coordinates are appropriate for
interactions between distinguishable fermions. For instance,
a coalescence point between particles 1 and 2 is described by
ρi1

1 → 0. Another benefit of these coordinates is that they are
well suited to describing a dimer wavefunction. If particles 2
and 3 are in a weakly bound molecule then the wavefunction
for that molecule is only a function of ρi2

2 .
Using combinations of these three coordinate systems,

ρs
j , ρi1

j and ρi2
j can describe all of the possible two-body

correlations of the fermionic system. This assumes that the
system in question is that of four equal mass fermions in two
internal states with s-wave interactions only. However, the
method used is quite general. For instance, K-type coordinates
can be chosen to describe the possible three-body correlations
that can arise due to Efimov physics in bosonic systems
[12, 159, 160].

C.2. Kinematic rotations

Since we use different Jacobi systems to describe different
types of correlations, a method of transforming between
different sets of coordinates is needed. In the above section,
equal mass particles are considered; extension to arbitrary
masses is fairly straightforward. To describe the kinematic
rotations we keep the masses arbitrary and specify for equal
masses later. It is convenient here to deal with transforming
all of the Jacobi coordinates at once. Thus, the matrices whose
columns are made of the Jacobi vectors are used:

�s = {
ρs

1, ρs
2, ρs

3

}
�i1 = {

ρi1
1 , ρi1

2 , ρi1
3

}
�i2 = {

ρi2
1 , ρi2

2 , ρi2
3

}
.

(C.12)

The transformation that takes one coordinate system to another
cannot stretch or shrink the differential volume element,
and thus it must be a unitary transformation. Further, the
transformation cannot mix the Cartesian components of the
Jacobi vector, i.e. ρi1

x has no part of ρs
y in it. This means that

the transformation will be a unitary matrix that acts from the
right, e.g.

�i1 = �sU s→i1. (C.13)
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The matrices that perform these operations are called
kinematic rotations [55, 98, 99], and they will be put to
extensive use in the calculations that follow. In truth,
transformations between coordinates systems that do not
require an inversion should be considered, but the general
principle still holds if improper rotations are included. Note
that all of the matrix elements must be real, so that the inverse
transformation is given merely by the transpose.

We employ a direct ‘brute force’ method of finding these
matrices where the system of equations given in equation (C.1)
are solved for r1, r2, r3 and r4 in a given Jacobi system. These
normal lab-fixed coordinates can then be inserted into the
definition of the Jacobi coordinates that we wish to describe.
The kinematic rotation can then be extracted from the resulting
relations. Following this procedure gives

U s→i1 =⎡
⎢⎢⎢⎢⎣

m3
m1+m3

√
μ12

μ13
− m1

m1+m3

√
μ34

μ13

√
μ13

μ12,34

− m4
m2+m4

√
μ12

μ24

m2
m2+m4

√
μ34

μ24

√
μ24

μ12,34√
μ12

μ13,24

√
μ34

μ13,24

m1m4−m2m3
(m1+m2)(m3+m4)

√
μ12,34

μ13,24

⎤
⎥⎥⎥⎥⎦ ,

(C.14)

U s→i2 =⎡
⎢⎢⎢⎣

m3
m1+m3

√
μ14

μ13
− m1

m1+m3

√
μ23

μ13

√
μ13

μ12,34

m4
m2+m4

√
μ14

μ24
− m2

m2+m4

√
μ23

μ24
−
√

μ24

μ14,23√
μ14

μ13,24

√
μ23

μ13,24

m1m2−m3m4
(m2+m3)(m1+m4)

√
μ14,23

μ13,24

⎤
⎥⎥⎥⎦ ,

(C.15)

U i1→s = [U s→i1]T ;U i2→s = [U s→i2]T , (C.16)

U i1→i2 = U i1→sU s→i2 = [U s→i1]T U s→i2;U i2→i1

= [U i1→i2]T . (C.17)

The same method can be used to find the kinematic rotations
to other Jacobi systems, for instance to K-type coordinates.

Appendix D. Implementation of correlated Gaussian
basis set expansion

D.1. Symmetrization of the basis functions and evaluation of
the matrix elements

The CG basis functions take the form

�A(x1,x2, . . . ,xN) = S
{

exp
( − 1

2xT · A · x)
}
. (D.1)

The symmetrization operator S can be expanded in a set of
simple particle permutations

|S(A)〉 =
Np∑
i=1

sgn(Pi) |Pi(A)〉 . (D.2)

Here, Np is the number of permutations that characterize the
symmetry S. Each of these permutations, Pi , has a sign

associated, sgn(Pi), and is a given rearrangement of the spatial
coordinates

Pi(�A(x1, . . . ,xN) = �A(xPi(1), . . . ,xPi(N)). (D.3)

The label i characterizes the rearrangement. This
rearrangement of the spatial coordinates is equivalent to a
rearrangement of the interparticle widths {dij } (or the {αij }):

Pk({dij }) = {dPk(ij)}. (D.4)

Therefore, permutation operations can be easily applied and
become transformations of the matrix A.

In general, the evaluation of the symmetrized matrix
elements of an operator O is

〈S(A)|O|S(B)〉

=
Np∑
i=1

Np∑
i ′=1

sgn(Pi)sgn(Pi ′) 〈Pi ′(A)|O|Pi(A)〉 , (D.5)

which implies an N2
p evaluation of unsymmetrized matrix

elements. Fortunately, if S(O) = O, then

〈S(A)|O|S(B)〉 = Np 〈A|O|S(B)〉 = Np 〈S(A)|O|B〉 .

(D.6)

This property significantly reduces the numerical demands
since the left-hand side of equation (D.6) implies N2

p

permutations, while the right-hand side only implies Np

permutations. All operators of the Hamiltonian are invariant
under the S operator and their matrix elements obey
equation (D.6).

To obtain density profiles and pair-correlation functions,
we use the delta function operator. A single delta function
operator in a given coordinate is not invariant under this
transformation; for this reason, the computational evaluation is
more expensive. Alternatively, we can create a similar operator
as a sum of delta functions. If the sum of delta functions
reflects the symmetry of the problem, the new operator would
be invariant under S.

The permutation operator clearly depends on the
symmetry properties of the constituent particles. For identical
bosons and fermions,

S =
Np∑
i=1

αiPi, (D.7)

where Np = N ! and αi = 1 for bosons and αi = (−1)p;
p = 0, 1 is the parity of the operator Pi . For two-component
systems (boson–boson, fermion–fermion, or a Bose–Fermi
mixture),

S =
Np1∑
i1=1

Np2∑
i2=1

αi1αi2Pi1Pi2 , (D.8)

where Np1 = N1!, Np2 = N2!, and N1 and N2 are the number
of particles in components 1 and 2, respectively.

The symmetrization operation, if it involves a permutation
with a negative sign, can significantly reduce the accuracy
of matrix elements. In certain cases, the unsymmetrized
matrix elements can be almost identical. Because of the
negative sign of the permutation, the symmetrized matrix
elements can become a subtraction of very similar numbers.

38



J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 172001 Topical Review

Therefore, accuracy is reduced. These basis functions are
usually unphysical, so it is convenient to eliminate them. To
do this, we evaluate | 〈S(A)|S(A)〉 |/ max(| 〈Pi(A)|Pi(A)〉 |).
If this is a small number, then the accuracy of the matrix
elements is reduced. So, in general, we introduce a tolerance
of the order of 10−3 to determine whether to keep or discard
the basis functions.

D.2. Evaluation of unsymmetrized basis functions

For convenience, we introduce the following simplified
notation:

〈x1, . . . ,xN |A〉 = exp
(− 1

2xT · A · x
)
. (D.9)

As a simple example, consider the overlap matrix element

〈A|B〉 =
∫

dx1 . . . dxN exp

(
−1

2
xT · (A + B) · x

)
.

(D.10)

Since the matrix A + B is real and symmetric, there exists
a set of eigenvectors y = {y1, . . . ,yN } with eigenvalues
{β1, . . . , βN } that diagonalize the matrix. In this set of
coordinates, equation (D.10) takes the simple form

〈A|B〉 = (4π)N
∫ ∞

0
dy1y

2
1 e−β1y

2
1 /2 . . .

∫ ∞

0
dyNy2

N e−βN y2
N /2

=
(

(2π)N

det(A + B)

)3/2

. (D.11)

Here, we used the product β1 ·β2 . . . βN = det(A + B). These
basic steps can be followed to evaluate the remaining matrix
elements.

To evaluate the kinetic energy, we use the following
property:

〈A| − h̄2

2m
∇2

xi
|B〉 = h̄2

2m
〈∇xi

A|∇xi
B〉 . (D.12)

This property can be simply proven by applying an integration
by parts. Also, it simplifies the matrix element evaluation and
provides an expression which is symmetric in A and B. Then,
the matrix element takes the form

〈A| − h̄2

2m

N∑
i

∇2
xi

|B〉 = h̄2

2m
3 Tr((A + B)−1A.B) 〈A|B〉 .

(D.13)

Another important matrix element, which is similar to equation
(D.13), is

〈A|xT Cx|B〉 = h̄2

2m
3 Tr((A + B)−1C) 〈A|B〉 . (D.14)

Here, C is an arbitrary matrix. This matrix element is used
to calculate the trapping potential energy. In such case,
C = mω2I/2, where I is the identity matrix.

Finally, we calculate the matrix element for a two-body
central force:

〈A|V (ri − rj )|B〉 =
∫

d3rV (r) 〈A|δ(bT
ijx − r

)|B〉
= Gcij

[V ] 〈A|B〉 , (D.15)

where ri − rj = bT
ijx, c1

ij = bT
ij (A + B)−1bij , and Gc[V ] is

the Gaussian transform of the potential

Gc[V ] =
( c

2π

)3/2
∫

d3rV (r) e−cr2/2. (D.16)

These matrix elements are enough to describe few-body
systems.

D.3. Jacobi vectors and CG matrices

Here we present the construction of the matrices that
characterize the basis functions in terms of the widths dij .
In the following, r = {r1, . . . , rN } correspond to Cartesian
coordinates, while ρ = {ρ1, . . . ,ρN−1} correspond to mass-
scaled Jacobi coordinates. First, consider the basis function
with the centre of mass included:

|A〉 = �0(RCM) exp

⎛
⎝−

∑
j�i

(r1 − r2)
2

2d2
ij

⎞
⎠

= exp

(
−1

2
rT · A · r

)
. (D.17)

In the equal-mass case for N particles, it is more convenient to
simply use Cartesian coordinates. The ground-state–centre-
of-mass wavefunction of particles in a harmonic trap takes,
conveniently, a Gaussian form �0(RCM) = e−NR2

CM/2a2
ho . Thus,

�0(RCM) can be written as �0(RCM) = e−rT ·MCM · r/2, where
MCM is the centre-of-mass matrix whose matrix elements
are MCM

kl = 1
/(

Na2
ho

)
for all k and l. Then, for each

interparticle distance rij , there exists a matrix M(ij) so that
r2
ij = rT ·M(ij) · r. The matrix elements of the M(ij) matrices

are M
(ij)

ii = M
(ij)

jj = 1, M
(ij)

ij = M
(ij)

ji = −1; the rest are zero,
yielding

A = MCM +
∑
j�i

1

d2
ij

M(ij). (D.18)

In some cases, it is important to include the centre-of-mass
motion. For example, this allows one to extract single-particle
observables such as density profiles.

If the centre of mass is not included, then equation (D.18)
can be written as

A =
∑
j>i

1

d2
ij

M(ij). (D.19)

Next, we present the mass-scaled Jacobi vectors (see
figure 1) and the corresponding form of the matrices M(ij).

Using the H-tree Jacobi coordinates defined in
equation (C.1), the interparticle separation distances can be
written as

r1 − r2 = ρ1/d1, (D.20)

r1 − r3 =
√

μ3

μ

(
ρ3 +

μ1d3

m1d1
ρ1 − μ2d3

m3d2
ρ2

)
, (D.21)

r1 − r4 =
√

μ3

μ

(
ρ3 +

μ1d3

m1d1
ρ1 +

μ2d3

m4d2
ρ2

)
, (D.22)

r2 − r3 =
√

μ3

μ

(
ρ3 − μ1d3

m2d1
ρ1 +

μ2d3

m3d2
ρ2

)
, (D.23)
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r2 − r4 =
√

μ3

μ

(
ρ3 − μ1d3

m2d1
ρ1 +

μ2d3

m4d2
ρ2

)
, (D.24)

r3 − r4 = ρ2/d2. (D.25)

For both the N = 3 and N = 4 systems, the interparticle
distances can be written in terms of the Jacobi vectors:

ri − rj =
∑

k

c
(ij)

k ρk. (D.26)

Now we can write the matrices M(ij) in these Jacobi vectors
that describe an interparticle distance. The matrix elements of
these matrices are simply M

(ij)

kl = c
(ij)

k c
(ij)

l .

D.4. Selection of the basis set

There are different strategies for selecting a basis set. If the
numbers of dimensions of the system we are studying is not
that large, then we can try to generate a large basis set that
is complete enough to describe several eigenstates at different
interaction strengths.

The Gaussian widths dij are selected randomly and cover
a range of values from d0 to the trap length aho. Specifically,
the dij are selected randomly using a Gaussian distribution of
range 1 and then scaled to three different distances: d0, an
intermediate distance

√
d0aho, and aho. These three distances

are fixed once the interparticle potential range d0 is fixed.
The basis set selection depends on the correlation we want

to describe. So the selection process changes depending on
whether the particles are bosons or fermions. For fermions,
when there is no trimer formation, basis functions with more
than two particles close together are not important.

For example, the algorithm for the selection of the basis
functions for a two-component four-fermion system divides
the basis into three parts: the first subbasis generates dij , which
are all of the order of aho; they are useful for describing weakly
interacting states. The second subbasis generates two dij of
the order of d0 or

√
d0aho and the rest of the order of aho; they

are useful to describe dimer–dimer states. The third subbasis
has one dij of the order of d0 or

√
d0aho and the rest of the

order of aho. They are useful to describe dimer–two-free-atom
states.

D.5. Controlling linear dependence

A large basis set is usually needed to describe several
eigenstates in a wide range of interactions. Since the basis
set is overcomplete and the basis functions are chosen semi-
randomly, the resulting basis can have linear dependence
problems. In our implementation, we eliminate the linear
dependence by reducing the size of the basis set.

To do this, we first diagonalize the overlap matrix and then
eliminate the eigenstates with negative or low eigenvalues. The
remaining eigenstates form an orthonormal basis set. Finally,
we transform the Hamiltonian to the new orthonormal basis
set.

The threshold for the elimination can be selected
automatically taking into account the lowest eigenvalue. If
the lowest eigenvalue O1 is small and positive, the tolerance

can be selected as, for example, 103O1. If O1 is negative and
the magnitude is large, then the basis set has a lot of linear
dependence, and it is more convenient to change the initial
basis set.

D.6. Stochastical variational method

The SVM has been developed in the context of nuclear
physics to solve few-body problems [106–108]. It allows
a systematical improvement of the basis set. A detailed
discussion of the implementation of the SVM will not be
presented here but can be found in [111, 112]. In the following,
we present the main concepts of the SVM.

The SVM is based on the variational nature of the
spectrum obtained by a basis set expansion. Consider a basis
set of size D with eigenvalues {ε1, . . . , εD}; if we add a new
basis function, then the new eigenvalues {λ1, . . . , λD+1} obey
λ1 � ε1 � λ2 . . . εD � λD+1. Here, we assume that both
sets of eigenvalues are arranged in increasing order. Thus, by
adding a new basis, all the D eigenvalues should decrease or
remain the same. Therefore, the lower the new eigenvalues,
the better the improvement of the basis set. Thus, we can
test the utility of the added basis function by considering the
improvement in the eigenvalues.

In most cases, we are not interested in improving the
complete spectrum. To select which states or energies we
want to improve, we can construct an appropriate minimization
function. This function would depend only on the energies we
want to improve and is minimized by the SVM.

In order to optimize the basis set, the SVM utilizes a trial
and error procedure. Starting from an initial basis set of size D,
several basis functions are selected stochastically and added,
one at a time, to the basis set. For each D +1 basis set, the new
eigenvalues are evaluated. The basis function that produces
the best improvement of the selected energies is kept while
the remaining basis functions are discarded. The initial basis
function is then increased by 1 and the trial and error procedure
is repeated.

If this procedure is continued indefinitely, the size of
the basis set has become large and the calculations become
forbiddingly slow. Therefore, it is convenient to increase the
basis up to a reasonable size and then continue the optimization
process without increasing the basis size. This optimization
can be carried out by a refinement process. Instead of adding
a new basis function, we test the importance of the basis
functions of the basis set. The trial and error procedure is
then applied to each of the functions of the basis set.

For the SVM procedure to be efficient, the evaluation
of both the matrix elements and the eigenvalues need to be
fast and accurate. It is particularly important to obtain very
accurate matrix elements because the improvement due to a
single basis function is usually very small and can only be
evaluated reliably if the matrix element is very accurate. The
matrix element evaluation in the CG and CGHS is both fast
and accurate making these methods particularly suitable for
SVM optimization.

Also the evaluation of the eigenvalues can be significantly
speeded up in the trial and error procedure. The basis functions
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Figure E1. (a) A schematic of the channels involved in the
dimer–dimer relaxation process is shown. The dimer–dimer
potential (red curve) goes through an infinite number of crossings
with deeply bound states (green dashed curves). (b) The hyperradial
behaviour of the outgoing wavefunction is shown.

are added or replaced one by one which allow us to reduce the
evaluation of the eigenvalues to a root finding procedure. This
root finding procedure is much faster than any diagonalization
procedure.

The SVM automatically takes care of the selection of the
basis function. Also, it tries to avoid linear dependence in
the basis set by constraining the normalized overlap between
any two basis functions, i.e. O12/

√
O11O22, to be below

some tolerance Omax. The tolerance Omax is usually selected
between 0.95 and 0.99. For example, the size of the basis set of
N = 3 and 4 can be increased up to 700 and 8000, respectively,
without introducing significant linear dependence.

Appendix E. Dimer–dimer relaxation rates

In this appendix, we present the derivation of the dimer–dimer
relaxation rate used in section 6.5. This process occurs when
the two dimers collide causing at least one of the dimers to relax
to a deeply bound state, FF ′. The difference of the binding
energies is then released as kinetic energy. This process can
be viewed in the hyperspherical picture as an infinite series
of very closely spaced crossings between the dimer–dimer
channel and channels consisting of a deeply bound dimer and
two free particles. This near continuum of crossings is shown
schematically in figure E1(a).

Using Fermi’s golden rule between the initial dimer–
dimer state and the final states gives

V dd
rel ∝

∑
λ

|〈�dd (R;�) |V (R,�)| �λ (R,�)〉|2 , (E.1)

where �dd (R;�) is the dimer–dimer wavefunction, V (R,�)

is the interaction potential and �k is the λth deeply bound
dimer state. We assume that the dimer–dimer wavefunction is
approximated by

�dd (R;�) ≈ Fdd(R)�dd (R;�) , (E.2)

where �dd (R;�) is the dimer–dimer hyperangular channel
function and Fdd(R) is the hyperradial wavefunction resulting
from the single channel approximation. We further assume
that the outgoing deeply bound dimer wavefunction can be
written as

�k(R,�) ≈ ψ(r12)θλ(�r34, �r12,34) (E.3)

where ψ (r12) is the wavefunction for an s-wave deeply bound
dimer and θλ

(�r34, �r12,34
)

is the free space behaviour of the
resulting three-particle system.

Examining one of the terms from the sum in equation
(E.1) with a single two-body interaction gives

V
dd(λ)

rel ∝
∣∣∣∣
∫

Fdd(R)�dd(R;�)V23(r23)

×ψ(r12)θλ(�r34, �r12,34)dR d�

∣∣∣∣
2

, (E.4)

where V
dd(λ)

rel is the contribution to the relaxation rate by the
λth term in equation (E.1). The first thing to notice in this is
that the factor V23 (r23) ψ (r12) is non-zero only when particles
1, 2, and 3 are in close proximity, and when particles 1, 2, and
3 are in close proximity the remaining degrees of freedom are
simplified as well:

�r34 ≈ C�r12,34. (E.5)

This means that the wavefunction θ(�r34, �r12,34) can be rewritten
as

θλ(�r34, �r12,34) ≈ Gλ(R)fλ(�), (E.6)

where Gλ and fλ are the hyperradial and hyperangular
behaviour associated with the λth outgoing channel. A
further simplification can be made by realizing that fλ (�)

must be independent of � when particles 1, 2, and 3 are in
close proximity because the total wavefunction must have
zero spatial angular momentum. Rewriting (E.4) with these
simplifications yields

V
dd(λ)

rel ∝
∣∣∣∣
∫

Fdd(R)Gk(R)

∫
�dd(R;�)V23(r23)

×ψ(r12) d� dR

∣∣∣∣
2

. (E.7)

The hyperangular integral is approximated by the probability
that three particles are close to each other in the dimer–dimer
channel function.

An example of Gλ is shown in figure E1(b). Away from
the classical turning point Gλ oscillates very rapidly. This fast
oscillation will generally cancel out meaning that the main
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contribution to the hyperradial integral is from the region near
the classical turning point Rλ. Putting all this together yields

V dd
rel ∝

∑
λ

|Fdd (Rλ)|2
Rλ

F (Rλ) , (E.8)

where F (Rλ) is the probability that three particles are in close
proximity in the dimer–dimer channel function. The final step
in this derivation is to turn the sum over λ into an integral over
Rλ:

V dd
rel ∝

∫
ρ (Rλ)

|Fdd (Rλ)|2
Rλ

F (Rλ) dRλ (E.9)

where ρ (Rλ) is the, nearly constant, density of states. This
is possible due to the near-continuum nature of the outgoing
states. By inserting the WKB approximation wavefunction for
Fdd(R), the result of equation (69) is obtained, i.e.

V dd
rel ∝

∫
ρ(R)

PWKB (Rλ)

κ(R)R
F(R) dR. (E.10)
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