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PHYSICAL REVIEW A 89, 052706 (2014)

Born-Oppenheimer study of two-component few-particle systems under
one-dimensional confinement

N. P. Mehta*

Department of Physics and Astronomy, Trinity University, San Antonio, Texas 78212-7200, USA
(Received 14 January 2014; revised manuscript received 20 April 2014; published 13 May 2014)

The energy spectrum, atom-dimer scattering length, and atom-trimer scattering length for systems of three and
four ultracold atoms with δ-function interactions in one dimension are presented as a function of the relative mass
ratio of the interacting atoms. The Born-Oppenheimer approach is used to treat three-body (“HHL”) systems of
one light and two heavy atoms, as well as four-body (“HHHL”) systems of one light and three heavy atoms.
Zero-range interactions of arbitrary strength are assumed between different atoms, but the heavy atoms are
assumed to be noninteracting among themselves. Fermionic and bosonic heavy atoms with both positive and
negative parity are considered.

DOI: 10.1103/PhysRevA.89.052706 PACS number(s): 34.50.Cx, 37.10.Jk

I. INTRODUCTION

Cold-atom experiments now have the ability to simul-
taneously control the atom-atom scattering length and the
trapping geometry. Quantum gases with essentially zero-range
interactions in one-dimensional (1D) trap geometries have
been realized [1–6]. At the same time, the variety of atomic
species that have been trapped and cooled, including all of
the alkali metals, continues to grow, ranging in mass from
hydrogen [7] to radium [8]. Moreover, quantum degenerate
mixtures of atoms have been the subject of several experiments
related to, for example, the creation of a gas of degenerate
polar molecules [9], the observation of heteronuclear Efimov
states [10], and the realization of mixtures of alkali atoms with
alkaline-earth-like atoms [11].

These recent experimental advances were preceded by a
large body of literature on the few- and many-body physics of
strongly interacting 1D systems [12–17]. More recent theory
work includes the calculation of the three-boson hyperradial
potential curves [18–20], three-body recombination rates and
threshold laws [21], and benchmark quality hyperspherical
calculations of three-boson binding energies and scattering
amplitudes [22]. The three-body problem for unequal masses
has been studied in free space [23] and in an optical lattice [24].

Of particular relevance to the present study is the mass-
dependent calculation of atom-dimer (2+1) scattering lengths
and three-body binding energies performed in [23]. The calcu-
lations of [23] incorporate all of the adiabatic hyperspherical
potential curves necessary for numerical convergence. Here,
instead of the (in principle) exact adiabatic hyperspherical
representation [25], we use the Born-Oppenheimer approach.
For the three-body calculations presented here, the accuracy
of the Born-Oppenheimer factorization is studied by direct
comparison to the results of [23], and that comparison gives
some quantitative insight to the accuracy of the four-body
calculations that follow.

It should also be noted that the HHHL system for spin-
polarized heavy fermions in three dimensions (3D) has been
studied by Castin et al. [26]. They found that for heavy
fermions with J� = 1+ symmetry, an infinite set of four-body
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states appears in the mass range 13.384 < mH/mL < 13.607.
Castin et al. argue that these states have Efimov character;
however, there seems to be some debate in the literature.
Other authors [27] have argued these are truly new states with
properties distinct from Efimov states. The authors of [27]
consider particles interacting with attractive 1/r2 interactions,
basing their model on a Born-Oppenheimer calculation of the
potential energy surface governing the heavy-particle dynam-
ics. Better establishing the accuracy of the Born-Oppenheimer
approximation for short-range potentials could potentially play
a role in the interpretation of these calculations.

The Born-Oppenheimer approach has been successfully
applied to cold-atom systems in optical lattices to study
crystalline phases in Fermi mixtures [28]. The authors of [28]
note that the large mass ratios needed to observe these
crystalline phases can be achieved with small filling factors
by tuning the effective mass for the heavy particles. We note
that such a scheme could potentially be used to observe the
tetramer states predicted in this work.

In this paper, we consider 1D systems of three and four
particles in which one particle is “light” (of mass mL = βmH

with 0 < β < 1) in comparison to the remaining “heavy”
(mass mH ) particles. We restrict our attention to cases of
noninteracting heavy particles (aHH → ∞). Here, aHH is the
1D heavy-heavy scattering length. We denote the 1D heavy-
light scattering length simply by a. For cylindrical harmonic
traps in which only the lowest transverse mode is significantly
populated, the 1D scattering length may be expressed in terms
of the 3D s-wave scattering length a3D and the transverse
oscillator length a⊥ by the Olshanii formula [29,30]:

a = − a2
⊥

2a3D

(
1 − C

a3D

a⊥

)
, (1)

where C ≈ 1.4603. Equation (1) incorporates the effect of
virtual transitions to excited transverse modes. When a⊥ =
Ca3D, Eq. (1) predicts a “confinement induced resonance”
(CIR), and the 1D scattering length vanishes.

The degree to which the renormalization of the 1D atom-
atom scattering length by Eq. (1) accounts for the quasi-1D
nature of the confinement in few-body calculations is not a
trivial question [31–33]. Fully quasi-1D few-body calculations
are complicated by the fact that cylindrical confinement breaks
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spherical symmetry, and the total angular momentum of the
three- or four-body system is not a good quantum number. In
this paper, we proceed under the assumption that meaningful
few-body observables may be calculated with purely 1D δ-
function interactions, renormalized according to Eq. (1).

This paper is organized as follows. In Sec. II, we calculate
the Born-Oppenheimer potential curve describing the effective
heavy-heavy interaction as mediated by the light particle. The
HHL bound-state spectrum and the H-HL scattering length
is calculated as a function of the heavy-light mass ratio. The
accuracy of the Born-Oppenheimer approximation is studied
by comparison to the high-accuracy calculation of [23].

In Sec. III, we calculate the two-dimensional potential-
energy surface describing the heavy-particle dynamics in the
HHHL system. The adiabatic wave function describing the
light particle is governed by a one-dimensional Schrödinger
equation with three δ functions. We choose coordinates such
that for a given permutation of heavy particles, the ordering of
the δ functions along the light-particle coordinate is fixed.
The resulting energy surface is then used in a calculation
of the three-body adiabatic hyperradial potential curves for
the heavy particles. From those potential curves, the HHHL
binding energies and H-HHL scattering lengths are calculated.

II. THREE-BODY (HHL) PROBLEM

Let particles 1 and 2 have mass m1 = m2 = mH and
particle 3 have mass mL = βmH . Throughout this paper,
we set � = 1. For a zero-range heavy-light interaction of
the form Vij = gδ(xi − xj ), the 1D H-L scattering length is
a = −1/(μHLg), and assuming a > 0, the heavy-light binding
energy is B2 = μHLg2/2 = 1/(2μHLa2). For particle positions
{x1,x2,x3}, we introduce the following unitless mass-scaled
Jacobi coordinates (see Fig. 3):

x = 1

a

√
μ12

μ3b

(x2 − x1), (2)

y = 1

a

√
μ12,3

μ3b

(
m1x1 + m2x2

m1 + m2
− x3

)
. (3)

Here, μ12 = mH/2, μ12,3 = mH [2β/(2 + β)], and μ3b =√
μ12μ12,3 are reduced masses. The heavy-light reduced

mass is μHL = mH [β/(1 + β)]. It is convenient to scale the
Hamiltonian by the heavy-light binding energy:

B2 = 1

mHa2

β + 1

2β
, (4)

so that all energies are measured in units of B2. The
Schrödinger equation then reads

− 1

2μ3

(
∂2

∂x2
+ ∂2

∂y2

)
�(x,y) + g3[λδ(2x0) + δ(y + x0)

+ δ(y − x0)]�(x,y) = E�(x,y). (5)

The parameter λ is the ratio of the heavy-heavy coupling
to the heavy-light coupling. In this work, only λ → 0 and
λ → ∞ are considered. The notational cost of scaling by
B2 is contained in the definition of the following unitless

parameters:

μ3 = 1 + β

2
√

β(2 + β)
, (6)

g3 = −2
√

2

(
β

2 + β

)1/4

, (7)

x0 = x

√
β

2 + β
. (8)

We now assume the wave function may be approximated by
the Born-Oppenheimer product:

�(x,y) = �(x; y)ψ(x), (9)

where �(x; y) is a solution to the fixed-x equation,[ −1

2μ3

∂2

∂y2
+ g3[δ(y + x0) + δ(y − x0)]

]
�(x; y)

= u(x)�(x; y), (10)

and u(x) < 0 is the Born-Oppenheimer potential in units of
the H-L binding energy. Note that the solutions �(x; y) and
the potential curve u(x) are independent of λ. Inserting Eq. (9)
into Eq. (5) and making use of Eq. (10) yields( −1

2μ3

∂2

∂x2
+ g3λδ(2x0) + u(x) + Q̃(x)

2μ3

)
ψ(x) = Eψ(x),

(11)

where

Q̃(x) =
〈
∂�

∂x

∣∣∣∣∂�

∂x

〉
y

. (12)

It is understood that the integration in the matrix element Q̃(x)
is carried out over the y coordinate only, while the adiabatic
coordinate x is held fixed.

A. Solution to the adiabatic equation

Equation (10) is symmetric with respect to the operation
y → −y, and so the eigenstates �(x; y) must be even or odd
under that operation. The elementary solutions that vanish as
|y| → ∞ are conveniently written for positive y as

�(x; y) =
{
A sinh(κy) + B cosh(κy), if 0 � y � x0,

D e−κy, if x0 � y,

(13)

where κ(x) = √−2μ3u(x). For the even solution, A = 0,
while for the odd solution, B = 0. Matching the wave
functions, and imposing the derivative discontinuity across
the δ function at y = x0 leads to the following transcendental
equation for the eigenvalue κ:

κ

g3μ3
+ 1 = (−1)P+1e−2κx0 . (14)

Here, P = 0 corresponds to the (even) solution for which
∂�
∂y

|y=0 = 0, and P = 1 corresponds to the (odd) solution
for which �|y=0 = 0. Borrowing language from molecular
physics, one can view the P = 0 solution as belonging to the
“bonding” orbital, and the P = 1 solution to the “antibonding”
orbital.
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FIG. 1. (Color online) Graph (a) shows the bosonic hyperradial potential curves describing the heavy-particle dynamics in the HHHL
system, while graph (b) shows the corresponding Born-Oppenheimer potential curves for the HHL system. Graphs (c) and (d) show similar
curves, except for fermions. All graphs are for β−1 = 22.08, appropriate for Li-Cs mixtures. The dashed-red lines indicate bound states.

The potential curves resulting from the x-dependent so-
lution to Eq. (14) for β−1 = 22.08 (for Li-Cs mixtures) are
shown in Figs. 1(b) and 1(d). The potential curves shown in
these two graphs are identical because Eq. (5) is independent
of the heavy-particle symmetry. Any apparent differences
are due to the energy scales on the graph. The bound-state
structure, however, is dependent on the heavy symmetry
through the boundary condition placed on ψ(x) at x = 0.
Note that the λ = ∞ solutions to Eq. (11) for heavy bosons
are identical to those for noninteracting heavy fermions.
The boundary condition ψ(0) = 0 is applied for fermionic
heavy atoms as well as fermionized bosonic atoms, leading
to the correspondence first recognized in Ref. [34]. For small
heavy-atom separations, there is no P = 1 negative-energy
solution to Eq. (14), and the light particle is lost to the
continuum where the excited-state potential terminates at the
zero-energy threshold.

The atom-dimer scattering length and the HHL spectrum
are to a very good approximation determined solely by
the potential curve corresponding to the P = 0 solution to
Eq. (14), so we shall restrict our immediate focus to that
solution. When the heavy atoms are far apart, |y − x0| � |x0|,
Eq. (5) behaves as though there is a single δ function of
modified strength at the origin. The solutions to Eq. (14)
when x0 → ∞ underestimate the correct threshold energy by
β/(2 + β):

lim
|x|→∞

u(x) = −1 − β

2 + β
. (15)

This result is not unexpected, since we have so far neglected
the positive-definite contribution Q̃(x)/(2μ3) to the heavy-
particle kinetic energy. It is known that neglecting this

“diagonal correction”—which we call the “extreme adiabatic
approximation” (EAA)—yields a lower bound EEAA to the
N -body bound-state energy. Including the diagonal correction,
but neglecting any couplings between Born-Oppenheimer
curves—an approximation we call the “uncoupled adiabatic
approximation” (UAA)—yields an upper bound EUAA to the
correct energy [35–38]. We find for this problem that the trend
in these inequalities EEAA < E < EUAA is already present
in the threshold values of the adiabatic potential itself. In
other words, we find that in the limit |x| → ∞, u(x) < −1 <

u(x) + Q̃(x)/(2μ3). In the next section, we explicitly calculate
Q̃(x).

B. Diagonal correction Q̃/(2μ3)

Using the solutions Eq. (13) (with A = 0) along with the
normalization Eq. (16), we explicitly calculate the integral
involved in the nonadiabatic correction Eq. (12). Taking A= 0
in Eq. (13), continuity of the wave function immediately
yields D = B cosh(κx0)/e−κx0 . The remaining normalization
constant, B, depends on the H-H separation distance both
explicitly and implicitly through the eigenvalue κ:

B(x) = 2
√

κ√
2x0κ + e2x0κ + 1

. (16)

Derivatives of the eigenvalue κ(x) are replaced by expressions
involving κ itself by differentiating Eq. (14) with respect to x

and solving for κ ′. We find that the nonadiabatic correction
Q̃(x) can be expressed as a rational polynomial in the

052706-3



N. P. MEHTA PHYSICAL REVIEW A 89, 052706 (2014)

separation distance x:

Q̃(x) = β

3(2 + β)(−2hx0 + 2κx0 + 1)4

[
3h2 + x0(−12h3

+ 24h2κ − 36hκ2 + 24κ3) + x3
0 (−16h3κ2

+ 48h2κ3 − 48hκ4 + 16κ5) + x2
0 (12h4 − 48h3κ

+ 108h2κ2 − 120hκ3 + 48κ4) + x4
0 (−16h4κ2

+ 64h3κ3 − 96h2κ4 + 64hκ5 − 16κ6)
]
, (17)

where we have defined the constant h = μ3g3. Evaluating
Eq. (17) at the asymptotic value of the potential Eq. (15)
gives Q̃/2μ3 → [β/(2 + β)] + [β/(2 + β)]2, and including
Q̃/(2μ3) in Eq. (11) yields the correct threshold energy to
order ( β

2+β
)2:

lim
|x|→∞

[
u(x) + Q̃

2μ3

]
= −1 +

(
β

2 + β

)2

. (18)

In other words, for small β, the error in the threshold
energy vanishes linearly without the diagonal correction, but
quadratically when it is included. Interestingly, for the equal
mass case (β = 1), the UAA gives the correct threshold
energy to within 11%. This may seem a somewhat surprising
result since the Born-Oppenheimer factorization is typically
expected to fail catastrophically in this limit; however, other
authors [39] have found the Born-Oppenheimer approach to
work surprisingly well for short-range s-wave interactions in
3D for a wide variety of mass ratios. It seems that the present
1D calculation shares similar good fortune.

C. Numerical results for the HHL system

Here, we compare the present Born-Oppenheimer calcu-
lation for the HHL system to the high-accuracy calculations
of [23]. Binding energies and scattering solutions are calcu-
lated in the UAA.

For the scattering calculation, u(x) and Q̃(x) are calculated
to 15 digits on a uniform grid, and the Numerov method is used
to propagate the solution out from x = 0 to some xmax. The
attractive well in u(x) widens as the mass ratio β−1 increases.
An xmax ∼ 40 is sufficient for β−1 � 10, but must be increased
to xmax ∼ 120 for β−1 ∼ 250. For a Numerov step size s,
each integration step in the Numerov method can introduce
an error of order s5. For Ns total steps, an upper bound to the
asymptotic values of the wave function of order Nss

5 = xmaxs
4

is maintained less than 10−10. The asymptotic wave function
is matched to

ψ(x) →
{

cos(kx) − tan(δ) sin(kx) bosons,

sin(kx) + tan(δ) cos(kx) fermions.
(19)

The atom-dimer scattering length is then extracted from the
effective range expansion as

1

aAD
= lim

kAD→0

{
kAD tan δ bosons,
−kAD cot δ fermions. (20)

Here, kAD = √
2μ23,1Erel, while k = √

2μ3Erel. The mass
ratios in Table I (discussed below) are obtained by a bisection
root-finding algorithm (either on 1/aAD or on aAD) to six-digit
precision. The number of digits reported here represents the

TABLE I. Values of the mass ratio β−1 = mH /mL for which the
atom-dimer scattering length is infinite (aAD → ∞, corresponding
to the appearance of the nth trimer state), or zero (aAD → 0), are
tabulated both in the case of noninteracting bosonic H atoms (λ → 0)
and fermionic H atoms (λ → ∞). Results are compared to Ref. [23].
An asterisk (*) denotes an exact result.

λ = 0 λ = 0
β−1|aAD→0 β−1|aAD→∞

n This work Ref. [23] This work Ref. [23]

1
2 1.357 0.971 3.255 2.86954
3 9.747 9.365 12.336 11.9510
4 23.333 22.951 26.602 26.218
5 42.142 41.762 46.055 45.673
6 66.168 65.791 70.695 70.317
7 95.404 95.032 100.523 100.151
8 129.845 129.477 135.539 135.170
9 169.488 169.120 175.742 175.374
10 214.331 213.964 221.133 220.765

λ = ∞ λ = ∞
β−1|aAD→0 β−1|aAD→∞

n This work Ref. [23] This work Ref. [23]

1 0∗ 1.170 1∗

2 5.499 5.2107 7.694 7.3791
3 16.456 16.1197 19.373 19.0289
4 32.650 32.298 36.235 35.879
5 54.067 53.709 58.283 57.923
6 80.697 80.339 85.518 85.159
7 112.535 112.179 117.940 117.583
8 149.577 149.222 155.550 155.193
9 191.820 191.463 198.347 197.989
10 239.262 238.904 246.331 245.973

precision of our calculation. The accuracy is best estimated by
comparing to the calculations of [23].

Bound-state calculations are performed variationally by
expanding ψ(x) in a basis of b-splines, and solving the
resulting generalized eigenvalue problem. We have verified
that the results are well converged with respect to the number
of grid points used to interpolate the potential u(x), as well as
the number and placement of b-splines.

In Fig. 2(a), we show the three-body spectrum as a function
of β−1/2 (recall β = mL/mH ). The mass ratios at which a new
state appears, marked by the red crosses for λ = 0 and red dots
for λ = ∞, trace out a curve governed by the β dependence
of the threshold Eq. (18). In the hyperspherical calculation
of [23], the threshold is reproduced exactly, and all dots and
crosses appear at E2/B2 = −1.

Figure 2(b) shows tan−1 (aAD/a)/π as a function of β−1/2.
Again, the red dots and crosses denote the mass ratios at which
a new state appears and the atom-dimer scattering length
aAD → ∞. The blue stars indicate aAD → 0. In a manner
similar to [23], we tabulate these particular values of the mass
ratio in Table I. Note that the Born-Oppenheimer calculation
consistently overestimates the critical mass ratios β−1 by
approximately 0.3–0.4. The overestimate is understood, at
least qualitatively, by noting that the UAA produces an upper
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FIG. 2. (Color online) Graph (a) shows the energy spectrum for
the three-body (HHL) system as a function β−1/2. Graph (b) shows
tan−1 (aAD/a)/π , where aAD is the atom-dimer scattering length. For
both graphs, the solid-black curves denote noninteracting bosonic H
particles. The dashed-blue curves denote noninteracting fermionic
particles, or equivalently, fermionized H particles with λ → ∞. Red
crosses and dots, for bosons and fermions, respectively, indicate the
appearance of a new bound state and |aAD| → ∞. Blue stars indicate
aAD → 0.

bound to the binding energy, and the trend in the spectrum
is for deeper binding as β−1 increases. The percentage error
in the critical values of β−1 decreases monotonically, as one
might expect.

The β = 1 HHL ground state for λ = 0 bosons was found
in Ref. [23] to be (in units of B2) E3 = −2.087 719, very
close to the value E3 = −2.087 54 found much earlier in
Ref. [40]. Here, we find that the EAA produces a lower bound
of E3,EAA = −2.4227, approximately 16% deeper than the
correct value. The UAA underbinds by about 11%, giving
the upper bound E3,UAA = −1.8561. It is interesting that the
error in the UAA calculation is almost entirely accounted for
by the overestimate of the atom-dimer threshold energy. In
fact, scaling by the threshold energy Eq. (18), one obtains
E3,UAA/Ethresh = −2.0879, overbinding by only 0.01%.

Kartavtsev and Malykh [41] found that universal (non-
Efimov) fermionic states in 3D exist for mass ratios β−1 �
8.17. Pricoupenko and Pedri [42] found similar states in 2D
for β−1 � 3.33. Levinsen and Parish [43] established that these
states are continuously connected as confinement is increased.
It is interesting to speculate whether the fermionic state that
appears in 1D at β−1 = 1 (β−1 ≈ 1.170 in our calculation)
is continuously connected to these universal trimer states in
higher dimensions.

III. FOUR-BODY (HHHL) PROBLEM

Let us now turn to the calculation of four-body observables.
The basic three-step recipe for this calculation is as follows.

1
3

2

x

y
1

2

x

1
3

2

x

y

4

z

1
3

2

x

y

(a) (b)

FIG. 3. Schematic diagram of the Jacobi coordinates for (a) the
three-body problem and (b) the four-body problem are shown. The
heavy particles are contained in the shaded regions.

First, the Born-Oppenheimer method is used to calculate the
2D potential-energy surface for the heavy particles in the
extreme adiabatic approximation (EAA). Next, this potential-
energy surface is inserted into a calculation of the hyperradial
adiabatic potential curves and couplings. Finally, the resulting
set of coupled hyperradial equations is solved for the bound-
states and atom-trimer scattering length. The entire procedure
is then repeated for different values of β. If a sufficiently large
number of hyperradial curves and couplings are included in
the final step, then the accuracy of the calculation is limited
almost entirely by the EAA made in the first step.

A. Adiabatic equations

For all four-body (HHHL) calculations that follow, we
choose particles 1, 2, and 3 to have mass m1 = m2 = m3 =
mH and particle 4 to have mass m4 = βmH . The solution
to the adiabatic equation is most easily carried out using the
“K-type” Jacobi coordinates shown in Fig. 3(b), with unitless
mass-scaled coordinates defined as

x = 1

a

√
μ12

μ4b

(x1 − x2),

y = 1

a

√
μ12,3

μ4b

(
m1x1 + m2x2

m1 + m2
− x3

)
, (21)

z = 1

a

√
μ123,4

μ4b

(
m1x1 + m2x2 + m3x3

m1 + m2 + m3
− x4

)
.

Here, μ4b = (μ12μ12,3μ123,4)1/3 is the four-body reduced
mass. Again, we rescale the Schrödinger equation by the
heavy-light binding energy B2. The full four-body Schrödinger
equation then reads

−1

2μ4
∇2�(ρ,φ,z) +

[
g4

3∑
i=1

δ(z − zi)

+ λg4

3∑
i<j

δ(αρ| sin(φ − φij )|)
⎤
⎦ �(ρ,φ,z)

= E�(ρ,φ,z), (22)

where α = √
6[(3 + β)/β]1/6, φ12 = π/2, and φ23 = −φ13 =

π/6. Again, rescaling by B2 introduces the following unitless
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parameters:

μ4 = β + 1

2β2/3(3 + β)1/3
, (23)

g4 = −2
√

3

(
β

3 + β

)1/3

, (24)

zi =
√

2β

3 + β
ρ sin(φ − φi), (25)

where φ1 = −4π/3, φ2 = 0, and φ3 = −2π/3. The particular
choice of Jacobi coordinates Eq. (21) has the advantage that
the separation distances x12, x13, and x23 are all independent
of the z coordinate. The heavy-particle dynamics is restricted
to the x-y plane, and the light particle can be integrated out
by solving an equation in the z coordinate only, with fixed
x and y. The transformation to hyperspherical coordinates is
accomplished by expressing x, y, and z in terms of the usual
spherical polar coordinates R, θ , and φ. The heavy-particle
subsector is then described by x = ρ cos φ and y = ρ sin φ,
where ρ =

√
x2 + y2 is the projection of R onto the x-y plane:

ρ = R sin θ and z = R cos θ .
Clearly, fixing x and y is equivalent to fixing ρ and φ. We

make the Born-Oppenheimer factorization:

� = �(ρ,φ; z)ψ(ρ,φ), (26)

where the adiabatic equation for the Born-Oppenheimer
surface is(

−1

2μ4

∂2

∂z2
+ g4

3∑
i=1

δ(z − zi)

)
�(ρ,φ; z) = U (ρ,φ)�(ρ,φ; z).

(27)

The heavy-particle eigenstates now live on the potential-
energy surface U (ρ,φ), and satisfy (in the EAA)

−1

2μ4

(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2

)
ψ(ρ,φ)

+
⎡
⎣U (ρ,φ) + λg4

3∑
i<j

δ(αρ| sin(φ − φij )|)
⎤
⎦ψ(ρ,φ)

= EEAAψ(ρ,φ). (28)

Finally, we describe ψ(ρ,φ) as a sum over adiabatic channel
functions:

ψ(ρ,φ) =
∞∑

n=0

ρ−1/2fn(ρ)χn(ρ; φ), (29)

where χn(ρ; φ) satisfy the fixed-ρ equation:

−1

2μ4ρ2

∂2χn

∂φ2
+ U (ρ,φ)χn + λg4

3∑
i<j

δ(αρ| sin(φ − φij )|)χn

= Un(ρ)χn. (30)

Because we only consider λ = 0 and λ → ∞, the δ functions
in Eq. (30) result in simple boundary conditions at φ = π/6.
For arbitrary λ, one would need to account for the λ-dependent
derivative discontinuity at φ = π/6. Inserting the expansion
Eq. (29) into Eq. (28) results in a set of coupled equations in

ρ, which are conveniently written in matrix form as

−1

2μ4

(
1

∂2

∂ρ2
+ Q(ρ) + 2P(ρ)

∂

∂ρ

)
�f (ρ) + Ueff(ρ) �f (ρ)

= EEAA �f (ρ). (31)

Here, Ueff is a diagonal matrix with elements Un(ρ) −
1/8μ4ρ

2, Pmn(ρ) = 〈χm| ∂χn

∂ρ
〉φ , and Qmn(ρ) = 〈χm| ∂2χn

∂ρ2 〉φ .
When P and Q are included in the solution to Eq. (31),
and enough channels are retained for numerical convergence,
the accuracy of the four-body energy is (in principle) limited
only by the omission of first and second derivative couplings,
〈�m| �∇�n〉z and 〈�m|∇2�n〉z, that arise from generalizing
Eq. (26) to include a sum: � = ∑

n �nψn. Such a generaliza-
tion is not possible for our model without the introduction of a
confining potential because Eq. (27) admits only one solution
that vanishes as |z| → ∞.

Identical particle symmetry of the heavy particles allows
one to restrict the domain of the four-body wave function to
the region 0 < φ < π/6. Thus, for a given permutation of
heavy particles, the locus of points describing the coalescence
of a heavy particle and a light particle—i.e., when z is equal
to zi—remain ordered z1 < z2 < z3 along the z coordinate.
Because the ordering is independent of ρ and φ, the solution
to Eq. (27) for all ρ and all φ ∈ [0,π/6] is straightforward.

The boundary condition on χ (ρ; φ) at φ = 0 is determined
by a combination of the parity operator, �̂φ → φ + π ,
and the 1-2 permutation operator, P̂12φ → π − φ, by
the rule: P̂12�̂φ → −φ. Considering positive parity, the
boundary conditions on χ (ρ; φ) for noninteracting bosons are
∂χ

∂φ
|φ=0 = ∂χ

∂φ
|φ=π/6 = 0, while for noninteracting fermions,

χ |φ=0 = χ |φ=π/6 = 0. For negative parity noninteracting
bosons, we impose χ |φ=0 = ∂χ

∂φ
|φ=π/6 = 0, while for negative

parity noninteracting fermions, ∂χ

∂φ
|φ=0 = χ |φ=π/6 = 0. Note

that the boundary conditions for noninteracting fermions of
positive parity are equivalent to those for bosons of negative
parity, but λ → ∞.

B. Numerical solutions for the HHHL system

In the Appendix, we calculate the transcendental equation
for the eigenvalue of a 1D Schrödinger equation with three
δ functions of arbitrary strength and arbitrary placement.
The resulting Eq. (A3) is applied to the Eq. (27) by letting
ga = gb = gc = 2μ4g4, κ2 = −2μ4U (ρ,φ) > 0, and a = z1,
b = z2, and c = z3.

Figure 4 shows the potential-energy surface for the particu-
lar mass ratio β−1 = 22.08 appropriate for an atomic mixture
of Li-Cs. Potential surfaces like this one are calculated by
solving Eq. (A3) on a nonlinear grid with typically 200 × 400
points in the (ρ,φ) plane. The points are distributed so that
more grid points are concentrated in the vicinity of the well
at ρ = 0 and the valley near φ = π/6. Particular care must be
taken to describe the valley near φ = π/6 accurately at large ρ,
or else the numerical solution to the fixed-ρ adiabatic equation
does not reproduce the correct threshold behavior in any of the
atom-trimer channels. This is because the fixed-ρ solutions
as ρ → ∞ should approach the HHL bound-state energies
from the spectrum in Fig. 2 with the correct ρ dependence. In
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FIG. 4. Born-Oppenheimer surface for the HHHL system is
shown. U (ρ,φ) is in units of B2 and ρ is in units of a.

particular, at large ρ we find that Q00(ρ)/2μ4 → −1/8μ4ρ
2,

and exactly cancels the +1/8μ4ρ
2 in the U0,eff . That is, the

effective potential with the diagonal correction approaches a
constant, and describes a two-body channel to which Eqs. (19)
and (20) may be applied with the replacements ψ → f ,
kAD → kAT = √

2μ234,1Erel, aAD → aAT, and x → ρ, along
with the boundary condition f (0) = 0.

Figures 1(a) and 1(c) show the hyperradial potential curves
Un(ρ) obtained by solving the fixed-ρ Eq. (30) using the
potential-energy surface shown in Fig. 4. Note that, at large ρ,
the lowest potential curves converge to the appropriate HHL
bound-state energy shown as red dashed lines in Figs. 1(b)
and 1(d), as appropriate for an atom-trimer channel. The red
dashed lines in Figs. 1(a) and 1(c) indicate HHHL bound
states obtained by solving Eq. (31) with 10 coupled channels.
Typically, calculations with only the lowest channel (but
including the diagonal correction) give bound-state energies
converged to four or five digits. The error incurred by
ignoring excited hyperradial potential curves is expected to
be negligible compared to making the EAA in the calculation
of the surface U (ρ,φ).

In Figs. 5 and 6, we show the spectrum and atom-trimer
scattering lengths of the HHHL system with noninteracting
bosonic and fermionic heavy atoms, respectively. We show
both positive (B+, F+), and negative (B−, F−) parity cases
for each identical particle symmetry. The HHL ground-state
energies for each symmetry from Fig. 2(a) are replotted here
as dashed-red curves. Again, mass ratios at which a new
tetramer state appears (and |aAT| → ∞) are marked by red
crosses, while zeros of aAT are indicated by blue stars. The
particular numerical values for the coordinates (β−1/2,E/B2)
are also marked. As the mass-ratio β−1 increases, four-body
bound states enter at lower energies than one would expect
from the three-body calculation (i.e., the dashed-red curve).
This discrepancy in the threshold energy is attributed to
the fact that the EAA underestimates the potential surface
in Fig. 4 by neglecting the positive nonadiabatic correction
−〈�|∇2�〉z/2μ4, while the corresponding correction is in-
cluded at the three-body level in Fig. 2.

While we perform a multichannel calculation of the spec-
trum, we find that it is sufficient to use a simple single-channel
calculation for aAT. Indeed, comparing the critical mass ratios
for which aAT → ∞, and a tetramer state lies at threshold, we

FIG. 5. (Color online) Graphs (B+)(a) and (B−)(a) show the
HHHL spectrum for bosonic heavy particles of positive and negative
parity, respectively. The red crosses indicate the appearance of a
new HHHL bound state and aAT → ∞. The red dashed curve is
the lowest (solid line) bosonic HHL bound state from Fig. 2(a).
Graphs (B+)(b) and (B−)(b) show the arctangent of the atom-trimer
scattering length for bosonic heavy particles of positive and negative
parity, respectively. The blue stars indicate aAT → 0. The specific
ordinates of the crosses and stars are labeled.

find good agreement between the two calculations. This can be
readily observed by comparing the positions of the red crosses
in graphs (a) and (b) of Fig. 5, and similarly in Fig. 6.

At β = 1, we find that noninteracting bosons of positive
parity admit an HHHL bound state with E4,EAA ≈ −3.55. The
second tetramer state appears at β−1 ≈ 4.88, and the third
at β−1 ≈ 40.3. For Li-Cs mixtures, one might expect two
universal tetramer states. Negative-parity bosons are less likely
to bind than those with positive parity. The first tetramer state
appears at β−1 ≈ 25.4, and the second at β−1 ≈ 66.7.

For fermionic particles, negative-parity tetramers are more
likely to bind than those with positive parity. The precise
value of the critical mass ratio is difficult to pin down within
the Born-Oppenheimer approximation at these small mass
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FIG. 6. (Color online) Graphs (F+)(a) and (F−)(a) show the
HHHL spectrum for fermionic heavy particles of positive and
negative parity, respectively. The red crosses indicate the appearance
of a new HHHL bound state and aAT → ∞. The red dashed curve
is the lowest (solid line) fermionic HHL bound state from Fig. 2(a).
Graphs (F+)(b) and (F−)(b) show the arctangent of the atom-trimer
scattering length for fermionic heavy particles of positive and negative
parity, respectively. The blue stars indicate aAT → 0. The specific
ordinates of the crosses and stars are labeled.

ratios. The difficulty is magnified because even in the UAA
three-body calculations of Sec. II, the trimer state doesn’t
appear until β−1 ≈ 1.17. Because the four-body calculation
doesn’t include the positive nonadiabatic correction to the
potential-energy surface shown in Fig. 4, one expects the
tetramer bound state to appear below the atom-trimer threshold
prematurely. In the four-body calculation, the energy of the
atom-trimer threshold itself increases slightly with β−1/2, and
the tetramer energy tracks along with it until about β−1 ≈ 2.6.
The increasing threshold energy is undoubtedly an artifact
of the approximation at the four-body level since it is absent in
the more accurate three-body calculations. We can nonetheless
estimate the critical mass ratio as β−1 ≈ 2.0 ± 0.6, indicated
by a red circle in Fig. 6(F−)(a). The second negative-parity
fermionic state appears at β−1 = 19.4.

In 3D, Blume [44] found that a universal tetramer exists
for fermionic particles above a mass ratio of β−1 ≈ 9.5. In
2D, Levinsen and Parish [43] found a critical mass ratio of
β−1 ≈ 5.0. It is interesting to speculate whether these states are
continuously connected to each other, and to the universal state
that appears in these calculations at β−1 ≈ 2.0 for negative-
parity fermions.

IV. SUMMARY AND OUTLOOK

We have calculated three-body and four-body spectra, as
well as the atom-dimer and atom-trimer scattering lengths for
two-component systems with one light particle, as a function of
the mass ratio. Heavy particles are assumed to be noninteract-
ing, and the four-particle system is assumed to be in free space.
Both bosonic and fermionic heavy particles are treated. For
the HHL system, the Born-Oppenheimer method gives good
quantitative agreement with the hyperspherical calculations
of [23]. For the HHHL system, the potential-energy surface
governing the heavy-particle dynamics is calculated in the
“extreme adiabatic approximation.” That surface is then used
to calculate hyperradial potential curves and couplings. The
values for the resulting atom-trimer thresholds converge to
the appropriate three-body bound-state energies, lending some
confidence to the HHHL calculation.

Let us now discuss possible extensions of this work. Note
that we have scaled away the only length scale, a, that appears
in our model. There are two immediate generalizations that
expand the parameter space considerably.

First, there is the generalization to arbitrary H-H interac-
tions, which introduces the H-H scattering length aHH . Such
an extension was already treated at the three-body level in
Ref. [23], but no such four-body calculations have appeared
in the literature. In a hyperspherical calculation, the additional
derivative discontinuity in the angular wave function is treated
analytically, and the hyperradial potential curves are calculated
as the solution to a single transcendental equation [21,23].
The HHHL Born-Oppenheimer calculation for bosons can be
extended to arbitrary λ by choosing a b-spline basis set that
satisfies the boundary condition,

lim
ε→0

1

χ

∂χ

∂φ

∣∣∣∣
π/6−ε

= ρλ(1 + β)√
2β

(
β

3 + β

)5/6

. (32)

With this generalization, one can smoothly transition between
the energies shown in Figs. 5 and 6, passing from noninteract-
ing bosons to the fermionized limit.

The bound-state calculation can be extended by the intro-
duction of a harmonic trapping potential, which separates into
relative and center-of-mass parts under the transformation to
Jacobi coordinates. This extension would establish a connec-
tion with several papers that have appeared recently, treating
equal-mass two-component systems [45–47]. The addition of
a trapping potential would introduce excited potential-energy
surfaces and the possibility of interesting physics beyond the
Born-Oppenheimer approximation.

Here, we have only considered the “3+1” branch (i.e., the
HHHL system) of the few-component problem. It may be that
other branches can be treated by similar methods. For example,
for the 2+2 (HHLL) problem, integrating out the light atoms
would result in a 1D heavy-heavy potential, but the adiabatic
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equation is a 2D partial differential equation, instead of a 1D
equation like Eq. (27).

Finally, it is worth emphasizing that ultimately a fully 3D
solution to the few-body problem with finite-range interactions
is needed in order to understand the physics of quasi-1D
systems. A hyperspherical solution to the few-body problem
in quasi-1D for finite-range interactions remains a significant
challenge, although recent advances in the correlated Gaussian
hyperspherical method [48] may make these calculations
possible.
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APPENDIX: TRIPLE δ-FUNCTION PROBLEM

Here, we give the solution for the eigenvalue to the
following Schrödinger equation:[

− ∂2

∂z2
+ gaδ(z − a) + gbδ(z − b) + gcδ(z − c)

]
�(z)

= −κ2�(z). (A1)

We assume that the positions of the δ functions are ordered as
a < b < c, but no other assumptions regarding their placement
are made. In particular, the Hamiltonian is not assumed to
commute with the parity operator. The (unnormalized) solution
satisfying the asymptotic boundary condition, �(|z| → ∞) =
0, is elementary:

�(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�I = Aeκz, z < a,

�II = B e−κz + C eκz, a < z < b,

�III = D e−κz + E eκz, b < z < c,

�IV = F e−κz, c < z.

(A2)

Matching the solutions and enforcing the derivative disconti-
nuities at z = a, z = b, and z = c yields, after considerable
algebra,

gagc(gb − 2κ)e2κ(a+b) − gagb(gc + 2κ)e2κ(a+c)

+ (ga + 2κ)(gb + 2κ)(gc + 2κ)e2κ(b+c)

− gbgce
4bκ (ga + 2κ) = 0. (A3)

For the special case of a quadrupolar potential (a = −c, b = 0,
and ga = gc = −gb/2), Eq. (A3) reduces to the result found
recently by Patil [49].
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