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Abstract 
 
Dominance relationships are an important aspect of the social organization of many 

species. Male dominance often results in successful territory defense and/or access to 

potential mates, and thus is a central component in establishing social rank. In this 

study, I used mathematical models to consider social interactions of the green anole 

lizard (Anolis carolinensis) in both territorial and hierarchical contexts. I then identified 

the behavioral and morphological traits associated with dominance in this species.  

    I first analyzed a series of ranking algorithms to evaluate their effectiveness as a 

novel approach to quantifying animal social status. I found that all eight systems 

considered in this analysis successfully reflected dominance relationships in the green 

anole; however, no one system consistently predicted ranks using the measured traits. 

Therefore ranking systems are a viable method of analyzing social hierarchies in anoles, 

yet multiple systems are required to effectively model these dominance relationships.  

    I then performed three empirical studies using the eight ranking systems from the 

previous analysis. In the first study, I performed a tournament of arena trials using pairs 

of 18 male lizards to identify the traits most closely related to male social status in a 

dominance hierarchy. These arena trials stimulated aggressive interactions, often 

resulting in a clearly dominant male. I used the resulting win/loss/tie information in the 

ranking algorithms to rank the individuals. My results showed that behavioral displays 

and relative head length were the most predictive of rank in the majority of ranking 

systems. In my next study, I measured morphological traits, aggressive behavior, 

territory size, and female overlap (a proxy of territory quality) in 24 green anoles in 

Palmetto State Park, Gonzales, Texas, to determine how these traits were related to 

territory size and/or quality in a natural population. Results from this study indicated 

that body size and head length were important predictors of territory size, and head 

length was the only significant predictor of territory quality. Finally, I sought to 
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validate my results by directly comparing male rank to territory size. In two replicate 

studies with 10 male lizards each, I first used a series of arena trials to determine 

individuals’ ranks. I then placed the 10 males into an enclosure with 10 females and 

measured the sizes of male territories over one week. Although I hypothesized that 

higher ranked males would have larger territories, I found no correlation between rank 

and territory size.  

    Overall, these results suggest that head length is an important component of all 

aspects of dominance (rank, territory size, and territory quality) in the green anole. 

Head size is closely related to bite force in anoles and is an honest predictor of fighting 

ability in this species. This study demonstrates that combining animal-based studies 

with mathematical models is an effective method of analyzing vertebrate social 

dynamics. 
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Chapter One: Overall Introduction 

 

 

 
 

Conflict arises in animal populations when individuals compete for the same limited 

resources, such as food, mates, and shelters. Physical confrontations between individuals 

are energetically expensive and dangerous (Clutton-Brock et al. 1979), thus animals in 

many species have devised social behaviors to allocate valuable resources without 

fighting. One such system relies on the formation of dominance hierarchies, where higher 

quality individuals in a population are given priority access to resources by their lower 

quality conspecifics (Kaufmann 1983). The criteria determining these dominance 

relationships vary widely, although they are usually related (directly or indirectly) to 

displays that showcase an animal’s health (e.g., beak color signals both dominance and 

immune function in birds, Murphy et al. 2009, Kelly et al. 2012), size (e.g., pitch of call 

signals body size in frogs, Ryan 1985), fighting ability (e.g., ritualized displays signal 

aggression in anoles, Greenberg and Nobel 1944), or physiological preparedness to fight 

(e.g., baseline testosterone in birds, Pham et al. 2014). Another system of resource 

allocation is territorial defense, where individuals protect areas from intruders and thus 

claim exclusive rights to the resources within (Maher and Lott 1995). In this system, 

superior competitors have access to the territories that contain the highest quantity 

and/or quality of resources.  

Traditionally, hierarchical and territorial methods of social organization have been 

treated as mutually exclusive. However, this may be an oversimplification. Both 
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establishing dominance and protecting a territory involve allocating resources depending 

on quality or social status, and display and fighting behaviors are critical in developing 

both types of relationships. In this study, I sought to determine the nature of the 

relationship between these two modes of social organization. Are territorial and 

hierarchical methods of organization indeed completely distinct systems, established by 

different behaviors and favoring different traits? Or are they interrelated, where more 

dominant animals have larger territories or control areas with more valuable resources?  

In this thesis, I approached this problem using the green anole lizard (Anolis 

carolinensis) as a model organism (Figure 1.1). This is an ideal species for this 

investigation, as when anoles are maintained at high population densities they will forgo 

their natural territoriality and establish dominance hierarchies. My study had three 

primary goals, through which I aimed to clarify the nature of the relationship between 

territoriality and hierarchical modes of social organization:  

1. To establish a mathematical method of ranking a given population of anoles 

according to territory size, territory quality, and the ability to win aggressive 

interactions (aggressive ability). 

2. To determine the morphological and/or behavioral traits most closely associated 

to aggressive ability and territory size/quality. 

3. To directly compare individuals’ ranks in a dominance hierarchy and their 

territory size. 

To accomplish the first goal, I drew parallels between lizard dominance interactions 

and sports tournaments, for both arenas contain paired competitions and result in wins, 

losses, or ties. By placing the aggressive behaviors in this context, I was able to use a 

wide variety of pre-existing sports ranking algorithms (e.g., Bradley and Terry 1952, 

Massey 1997, Callaghan et al. 2007) to rank the lizards based on their dominance 

interactions However, each ranking system emphasizes different statistics about the 

tournaments, games, or competitors, and each uses different mathematical techniques to 
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build the ranks. Additionally, all of these algorithms were developed for disciplines other 

than animal behavior. Thus to identify the systems that would be the most successful at 

predicting dominance relationships among anoles, I performed an analysis of the 

underlying mathematical theory of each system to understand the advantages and 

disadvantages associated with applying them to this system (Chapter 2).  

As a second project, I quantified territory size, territory quality, and dominance 

behavior of natural and lab-maintained populations of Anolis carolinensis. I then used 

ranking algorithms (described above) and compared the model outcomes to results of 

behavioral interactions of the lizards. I was thus able to identify traits that best 

predicted social status (Chapter 3). Finally, I calculated the dominance rank of a 

captive population of green anoles and then allowed them to establish territories inside 

an artificial enclosure. This allowed me to test whether an animal’s territory size is 

positively related to its hierarchy rank (Chapter 3).  

The combination of animal-based studies with a novel mathematical approach 

provides new insights into both the development of social organization patterns in 

vertebrates and the mathematical field of ranking. Ranking algorithms are a powerful 

tool in exploring animal social dynamics, for they provide a nuanced method of 

quantifying animal behavior patterns in a population-level context. Although ranking 

algorithms have not been used to model dominance interactions in the past, the success 

of these systems in this project demonstrates the exciting possibilities they hold for 

increasing our understanding of the development, maintenance, and ecological context of 

animal social interactions.   
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Figure 1.1: Two adult male green anoles (Anolis carolinensis) engaged in an agonistic 

interaction. 



Chapter Two: The Application of Ranking Algorithms

to Vertebrate Social Dynamics

1 Introduction

1.1 General Overview

The overall goal of this project is to explore dominance relationships in the green anole

(Anolis carolinensis). In this species, dominance can be measured in two distinct manners.

Green anoles are highly territorial, and territory size and quality (i.e., the number of females

residing on a given male territory, Ruby 1984) are measures of social status in wild popu-

lations. However, when maintained at high population densities in captivity, these lizards

will instead organize themselves using a linear dominance hierarchy based on fighting ability

(Stamps 1977). To compare these different metrics of social status, we created systems to

rank males in a population according to each measure. Both territory size and quality can

be directly measured in the field, and males can be linearly ranked from those with the

largest territories and highest female overlap to those with the least. However, quantifying

fighting ability is a more complex endeavor. Many different physical and behavioral traits

are involved during agonistic interactions, and the processes through which dominance hier-

archies are created are still largely unknown. Therefore we explored a novel mathematical

framework for ranking animals based on their performance in paired aggressive interactions.

Anole male-male agonistic encounters consist of a series of ritual displays that may even-
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tually escalate to lock-jawed fights (Greenberg and Nobel 1944). These displays begin with

extensions of the colorful throat fan called the dewlap and pushup displays, followed by the

development of dark spots behind the eyes (eye spots) and a dorsal crest. Competitors then

begin circling each other in the face-off position (Figure 2.1), and will flatten themselves

dorsal-ventrally to appear larger and more intimidating. If neither backs down, the aggres-

sors circle closer and closer until they lock jaws, after which they will attempt to throw each

other off the perch.

To experimentally measure fighting behavior, we conducted three tournaments of paired

aggressive interactions between populations of adult male green anoles. In each agonistic

interaction, an individual was declared the winner if it took exclusive control of the provided

perch (a clear sign of dominance in this arboreal species, Perry et al. 2004), or if the other

individual showed submissive behavior such as running away or attempting to hide. The

trial was labeled a tie if competitors did not interact, no resolution was reached in the

designated time (10 mins), or if the males attempted to lock jaws. Although a lock-jawed

fight would eventually result in a clear winner, we separated individuals before they could

fight to prevent injury.

At the end of each tournament, we had a win-loss-tie record for each anole, similar to

the record generated in a series of games between sports teams. We decided to treat our

collection of lizard interactions as sports tournaments, which then provided a large number of

existing sports ranking algorithms (i.e., Page et al. 1999 , Callaghan et al. 2007, Colley n.d.)

with which to rank the animals. Generally, a ranking algorithm is an analytical method for

determining the relative order of a group of objects given information about how these objects

compare to each other. Although the overall goal is always to determine which of these

objects is the “best”, there is a large amount of variation in the approaches different ranking

systems take. Because animal behavior is a relatively novel application of these systems,

we were initially unsure which algorithms would produce the most accurate rankings of

green anole populations. We thus explored a number of unique ranking algorithms, carefully
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analyzing the theory underlying each rank to assess their applicability to our system. We then

evaluated the effectiveness of each ranking system using the results of the anole tournament

to identify the ranks that most successfully reflected dominance in the green anole.

In the following sections, we describe each of the ranking systems used, including their

backgrounds, implementations, and limitations. We will then conclude by returning to the

original animal behavior problem by analyzing the applications of these tools to vertebrate

social dynamics.

1.2 Mathematical Framework for a Ranking

For the remainder of this thesis, we will discuss all of the ranking systems in the context of

a tournament, for in applications these methods are often used in sports (e.g., Colley n.d.,

Keener 1993, Massey 1977). The objects being ranked will be called teams, the interactions

between them will be denoted to as matches or games, and the collection of all the interac-

tions is a tournament. Note that many of the ranking methods are also used in applications

outside of sports, but maintaining a consistent system of nomenclature increases the clarity

of the arguments presented and makes it easier to compare ranking systems.

We will now establish the mathematical framework of a generic ranking algorithm. Con-

sider a collection of n teams {t1, t2, . . . , tn} competing in a tournament T . Within T , each

team ti plays several games where the outcomes can be a win, loss, or a tie based on its

ability ri in relation to its opponent’s ability. We interpret ri as the team’s rating, or how

good it is when compared to the other teams in the tournament. We say ti is rated higher

than tj if ri > rj. We call r = (r1, r2, . . . , rn) the rating vector of the tournament. We can

then order the elements of r to generate the ranking of the tournament, where the team ti

with the largest ri value is ranked 1st, the team with the next highest is ranked 2nd, and so

on down to rank nth. Although there is a clear distinction between the rating and ranking of

a team, they both provide similar information about the team’s standing in the tournament

and we will use the terms interchangeably for the remainder of the thesis.
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1.3 Ranking Systems

When considering a fixed tournament, there are many ways to define a ranking system to

estimate the ranking vector r. We implemented eight ranking systems that each interpret

this value in a different way.

The first method is the Win Percent method, the simplest ranking algorithm considered.

In this system, the rank ri of a team is a ratio between the number of wins and losses.

Our next two systems can be grouped together as the Linear Algebra ranking algorithms,

for they estimate r by solving a system of linear equations. The Colley method is a mod-

ification of the Win Percent that makes the ranking of each team dependent not just on

its wins or losses, but also on the relative ability (i.e., ri) of the teams it competed against

(Colley n.d.). Conversely, the Massey method predicts r based the scores of each game in

the tournament using the method of least squares estimation (Massey 1997).

The fourth ranking system considered is the Bradley-Terry method, a method of pair

comparisons (Bradley and Terry 1952, Agresti 1990). In this system, we interpret r to

determine the probability of a specific outcome of a match.

The next set of algorithms, collectively called the Markov methods, uses a different

approach. In these methods, we view the initial tournament as a network, where each team

is a node and each game is represented as a directed edge between the nodes involved. This

then allows us to consider the tournament as a Markov process and the rating vector as the

steady-state solution r, if it exists. We explored four different Markov ranks: the Keener,

Biased Voter, PageRank, and Oracle methods. The Keener method finds an ideal weight

function for each edge that incorporates the scores of each match (Keener 1993). The Biased

Voter method incorporates self-loops as a method of directing the flow of information between

two edges towards the winner of the match (Callaghan et al. 2007). The PageRank ranking

system is the algorithm that drives the Google search engine, and uses a novel method of

ensuring that any network will have a steady-state solution (Page et al. 1999). Finally, the

Oracle ranking algorithm is a newly developed system that incorporates an additional node
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into the network to prevent the rank inflation of low-winning teams with unexpected wins

against highly rated teams (Balreira et al. in press).

2 Win Percent Method

We will begin our discussion of ranking systems with the simplest system in our repertoire,

the Win Percent method. In this system, a team’s relative ability is interpreted as how often

they win. For a given team ti who won wi times and lost `i times, their win percentage

ranking ri is given by

ri =
wi

wi + `i
. (1)

In tournaments with ties, we modify the algorithm to become

ri =
wi + 1

2
qi

wi + `i + qi
, (2)

where qi is the number of games team ti tied. This method is useful in its simplicity, for it re-

quires minimal computations and no additional statistics. However, the Win Percent method

has several limitations, for it weighs all wins and losses equally and does not differentiate

between the skills of the teams beat or the amount by which they were beat.

3 Colley Method

The Colley method is a ranking system developed by Wesley Colley to address some of the

limitations of the Win Percent method (Colley n.d.). Colley’s idea was that, rather than

treating all wins and losses as the same, teams should instead get more credit for beating

better teams. Thus he developed a method that expands the simple win-loss ratio into

a system of linear equations. His method is currently used as one of the six methods to

generate the BCS Rankings in Division 1 college football.
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Consider a tournament T of n teams. As described above, the rank ri of team ti calculated

by the Win Percent method is given by (1). While this system works well in tournaments

with many games played, in situations where teams have not played or have only played few

games, the Win Percent method is not effective. For example, consider a situation where

teams ti and tj only played one game. Then the winner has a rank of 1 and the loser has a

rank of 0. This claim that the winner is infinitely better than the loser is a little extreme.

To buffer these situations, Colley proposed that the ranking equation be modified to

ri =
wi + 1

wi + `i + 2
(3)

so that teams that have not played yet will have a default rank of 1
2
. We can rewrite this as

ri(2 + ni) = wi + 1, (4)

where ni is the total number of games played by ti. Now, let us take a step back and consider

the number of games won in a different way. We can write this term as

wi =
wi − `i

2
+
ni
2

(5)

which equals

wi =
wi − `i

2
+

ni∑ 1

2
. (6)

Now, we notice that if we did not know anything about any of the teams, we would say that

each team had a fifty percent chance of winning any given match, or that they would each

have a rank of 1
2
. So if team ti only played random, unknown teams, we could think about

the final summation in (6) as the sum of the ranks of each opponent. But ti is not going

against unknown teams. In fact, we know that the rank of any given opponent tj is given

by rj. Therefore we can say
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ni∑ 1

2
≈
∑
j∈Oi

rj, (7)

where Oi is the set of opponents team ti played against. We can then combine (4), (6), and

(7) to get

ri(2 + ni) ≈
wi − `i

2
+
∑
j∈Oi

rj + 1. (8)

If we assume equality, this equation can then be rearranged to give

ri(2 + ni)−
∑
j∈Oi

rj =
wi − `i

2
+ 1. (9)

We can repeat this procedure for each team in the tournament, providing n equations and

n unknowns (r1, r2, . . . , rn). We can rewrite this system of equations in matrix form to yield

the equation Cr = b, where r is the ranking vector, C is an n× n matrix with entries

cij =

 2 + ni i = j

−gij i 6= j
(10)

(where gij is the number of games played between teams ti and tj), and b is a vector of

length n such that its coordinates are

bi = 1 +
1

2
(wi − `i). (11)

Then the Colley method finds the exact solution of this matrix system to solve for r.

We note that the Colley method does not have an intuitive modification for integrating

ties. Ties will be included in the gtot term as games played, but will not increase the bi term.

This serves as an important limitation in applications that include frequent ties.
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4 Massey Method

Like the Colley method, the Massey ranking system also uses a system of linear equations to

find the ranking vector of a tournament (Massey 1997). However, while the Colley system

emphasizes the skills of the teams beaten, the Massey method instead utilizes the scores of

the matches. This system is also used by the BCS. The ranking system we present here is

the original method developed by Massey for his undergraduate honors thesis at Bluefield

College.

Recall that the Colley system solves the matrix equation Cr = b, where C is a matrix

built using the number of games played and b is a vector containing information about each

team’s win and loss record. Similarly, the Massey system solves the system Mr = s. Using

the same notation as above, here M is an n× n matrix constructed such that

mij =


ni i = j, 1 ≤ i ≤ n

−gij i 6= j, 1 ≤ i ≤ n

1 i = n

(12)

and s is a vector of length n where

si =

 (Points scored against ti) - (Points scored by ti) 1 ≤ i ≤ n

0 i = n.
(13)

The Massey system estimates the difference ri − rj to be equal to the expected value of the

points scored against ti minus the points scored by ti. It then defines the ranking vector r

to be the least-squares solution to Mr = s.
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5 Bradley-Terry

The Bradley-Terry ranking system takes a completely different approach than any of the

other algorithms considered, for it is based on paired comparisons (Bradley and Terry 1952,

Agresti 1990). The idea here is that while it is hard to identify the “best” competitor in a

large group, it is easy to pinpoint the better object when only considering two things. For

example, suppose you were given a selection of 20 cookies and asked to determine the best

one. But you love chocolate chip, and snickerdoodle, and peanut butter - how are you ever

going to definitely pick your favorite? However, if if asked whether you prefer macaroons

to chocolate chips, or snickerdoodles to shortbreads, this becomes a much more manageable

problem. Similarly, the Bradley-Terry system compares pairs of teams in a tournament,

looking for the relationship between each pair to find the overall ranking.

Specifically, the Bradley-Terry system seeks to calculate the probability one team will

beat another. They first establish an overall rating vector r. They then define the probability

team ti beats tj, denoted πij, as

πij =
ri

ri + rj
(14)

and estimate πij using iterative maximum-likelihood methods (for a complete description of

the method used, see Huang et al. 2006).

Just as not every Markov network has a steady-state solution, not every tournament

contains enough paired comparisons to generate a Bradley-Terry rank. One condition abso-

lutely necessary for this ranking to work is that given any partition of the teams into two

non-empty subsets, some team in one set must defeat at least one team in the other set. As

reported in Ford 1957, this condition is analogous to having a strongly connected network

(see description in Section 6 below).

There are a variety of different customizations of the Bradley-Terry method. One inter-

esting alteration introduces the idea of home team advantage, where the team playing on

their home field is assumed to have an increased probability of winning. This algorithm is
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given as

πij =


θri

θri + rj
if team ti is at home

ri
ri + θrj

if team tj is at home
(15)

where θ > 0 represents the strength of the home field advantage/disadvantage (Huang et

al. 2006). We note that θ is an unknown parameter that has to be estimated. Another

modification of the Bradley-Terry system is the use of scores, where

πij ≈
sij

sij + sji
(16)

and sij is the number of points scored by team ti against team tj (Keener 1993). Hence,

rij
rij + rji

≈ sij
sij + sji

. (17)

We note that under this system we will increase the likelihood that the tournament is con-

nected and hence that the Bradley-Terry method will provide a meaningful rating vector.

6 Theory of Markov Ranking Systems

6.1 Introduction to Markov Methods

Markov methods build ranks by first representing a tournament as a network. Each node

represents a team and edges between nodes represent matches (Figure 2.2). From this

directed graph, the tournament can then be viewed as Markov process, a stochastic process

in which the system alternates between states in a memory-less fashion. The ranking vector

is thus the steady-state solution of this process, if it exists. For complete details on the

general theory of Markov processes, we refer to Olofsson and Andersson (2012). In the

following sections we will describe the theory as it relates to the application in this project.

The steady-state solution of a Markov process is often described in terms of a random
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walker. Consider a network with n nodes {N1, . . . , Nn} connected by a series of edges.

Imagine placing a walker at node Ni with instructions to move through the network by

following the directed edges. To leave his initial node, he will have a finite number of edges

pointing away from his node from which to choose (Figure 2.3, time step 1). Every edge is

associated with a transitional probability that influences the likelihood he will choose that

path. Each Markov ranking system assigns these transitional probabilities differently; some

assign all edges the same weight, while others assign probabilities using specific statistics

or functions. When the random walker chooses an edge using to these probabilities, he will

follow it to another node, where he is then faced with a similar choice of edges with which to

leave that node (Figure 2.3, time step 2). If he were to continue to move around the network

in this fashion for as long as he could, keeping track of the nodes on which he spends time,

the proportional amount of time he spends on each node may converge. The values to which

these relative proportions converge is called the steady state solution to the Markov process.

In Markov ranking algorithms, the steady state solution is interpreted as the rank of the

network, with higher values (i.e., nodes that the walker spent more time on) corresponding

to higher ranked teams. To ensure that the Markov process associated with the network

will have this steady-state solution, the network must have specific properties that will be

described in the following sections.

6.2 Linear Algebra Preliminaries

Although Markov ranking systems are easy to visualize, they are computationally complex

and rely on a wide variety of linear algebra properties to function. Before we describe the

actual algorithms used to calculate these ranks, we first must review the definitions and

matrix properties that form their foundations. For complete details, see Horn and Johnson

(1990).

Let A be an n × n matrix with real entries. If there exists a vector x ∈ Rn such that

Ax = λx and x 6= 0, we define λ as the eigenvalue of A associated with the eigenvector x.
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Another important concept associated with the matrix is the characteristic polynomial

of A, defined as

PA(t) = det(A− tI), (18)

where I is the identity matrix. We observe that the eigenvalues and characteristic polynomial

of a matrix share a close relationship, for if λ is a root of PA, then λ is an eigenvalue of A.

Indeed, we have the following proposition.

Proposition 1. Let A be an n × n matrix with the characteristic polynomial PA(t). We

claim that the following statements are equivalent:

1. The value λ ∈ C is an eigenvalue of A.

2. The determinant of the matrix (A− λI) equals zero.

3. The value λ ∈ C is a root of PA(t)

Proof. First, we claim that if λ is an eigenvalue, then det(A− λI) = 0. Consider Av = λv.

Through algebraic manipulation, we get (A− λI)v = 0. By definition, λ is an eigenvalue of

A if and only if Av = λv has a non-zero solution. Thus (A− λI)v = 0 also has a non-zero

solution, so the matrix A− λI is non-invertible. Because this matrix is not invertible, it has

a determinant of 0, that is, det(A− λI) = 0.

Next, we claim that if λ ∈ σ(A), then λ is a root of PA(t). Suppose that λ ∈ σ(A), and

consider PA(λ). By definition,

PA(λ) = det(A− λI).

Since λ ∈ σ(A), by the previous proof we have det(A− λI) = 0. So

PA(λ) = 0,

which implies λ is a root of PA(t). Finally, we note that by definition, det(A − λI) = 0

indicates that λ is a root of PA(t). Therefore the three statements are equivalent. �
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Furthermore, we call the collection of all eigenvalues the spectrum of A, denoted σ(A).

Given a λ, we can also define the eigenspace of λ, denoted Vλ(A), to be

Vλ(A) = {v, Av = λv} (19)

We note that Vλ(A) is a subspace for all λ ∈ C, and that it is non-trivial exactly when

λ ∈ σ(A). Finally, we denote the spectral radius of A as the magnitude of the largest

eigenvalue,

ρ(A) = max{|λ|, λ ∈ σ(A)} (20)

Now that we have these basic definitions to work with, we turn our attention to a special

type of matrix fundamental for Markov ranking systems, the column stochastic matrix. A

matrix is called column stochastic if all its elements are non-negative and its columns each

sum to one. These matrices have the property of always having an eigenvalue of 1, which

we will see is important in the following sections. To prove this statement, we must first

consider the following lemma, where AT denotes the transpose of A.

Lemma 1. For a matrix A, σ(A) = σ(AT ), that is, the spectrum of a matrix and its transpose

are the same.

Proof. Let λ ∈ σ(AT ), and consider det(AT − λI). We have

det(AT − λI) = det(AT − λIT )

= det((A− λI)T )

Now, since we can expand the determinant of a matrix about any row or column, it follows

that for any square matrix B, detB = detBT . Thus

det(AT − λI) = det(A− λI).

By our definition of characteristic polynomials, this implies
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PA(t) = PAT (t)

Finally, by the Fundamental Theorem of Algebra, a polynomial is uniquely defined by its

set of roots over C. Therefore because A and AT have the same characteristic polynomials,

by Proposition 1 they have the same spectrum. �

We now can find at least one eigenvalue of a column stochastic matrix. Indeed, we have

the following.

Proposition 2. Every column stochastic matrix has an eigenvalue of 1

Proof. Let A = (aij) be an n × n column-stochastic matrix. Then for all i ∈ {1, . . . , n},
n∑
k=1

aik = 1 . Next, let e = (1 1 . . . 1) and consider

ATe =



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann





1

1

...

1


=



a11 + a12 + . . .+ a1n

a21 + a22 + . . .+ a2n
...

an1 + an2 + . . .+ a1nn


=



1

1

...

1


= e.

Thus ATe = e, so 1 is an eigenvalue of AT . By Lemma 1, we know that AT has the same

eigenvalues as A, so 1 is also an eigenvalue of A. �

In fact, if a matrix is column stochastic, than it also has a spectral radius of 1.

Proposition 3. If A is a column stochastic matrix, then ρ(A) = 1.

Proof. By Proposition 2, 1 ∈ σ(A). Now, assume that there exists another eigenvalue

λ ∈ σ(A) such that |λ| > 1. Pick v such that ATv = λv. Then consider the ith coordinate

of ATv

(ATv)i =
n∑
j=1

aijvj ≤ vmax

n∑
j=1

aij,where vmax is the largest coordinate of v
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Now, since A is column-stochastic,
n∑
j=1

aij = 1, which implies

(ATv)i ≤ vmax.

However, if we look at the ith coordinate λv, we see

|(λv)i| = |λvi| > |vi|.

Thus when i is the index corresponding to the max coordinate, than

(ATv)max = |(λv)max| > vmax.

This is a contradiction, so ρ(A) = 1. �

Finally, given an n × n matrix A, we say λ1 ∈ σ(A) is the dominant eigenvalue if

|λ1| > |λ| for all λ ∈ σ(A). The eigenvectors corresponding to λ1 are called dominant

eigenvectors of A. In the next section, we will see how these two definitions combine with

the previous two propositions to make Markov ranking systems function.

6.3 Calculating Markov Ranks

Recall that we may view a given tournament as a directed graph and then perform a Markov

process on this network. This allows us to calculate the steady-state solution of the network,

which we interpret as the rank. In practice, Markov ranking systems first convert the net-

works into column stochastic matrices, and then use the specific properties of these objects

described in the previous section to determine the steady-state solution.

We begin by defining the incidence matrix associated with the network. This ma-

trix describes the locations and directions of connections between nodes, representing the

opponents each team has won/lost against. First, assume the tournament T has n teams
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t1, t2, . . . , tn. The incidence matrix A is constructed as follows

aij =


1 if ti has beaten tj

0.5 if ti and tj tied

0 else.

(21)

We remark that technically speaking, the incidence matrix associated with a network

should only contain entries of zero or one, however, since we are working in an sport setting

where paired comparisons can result in a tie, we shall allow entries of the incidence matrix

to be 0.5.

For example, consider the network in Figure 2.4 representing an example tournament

between teams t1, t2, t3, and t4. The associated incidence matrix is given by:

A =



t1 t2 t3 t4

t1 0 1/2 0 1

t2 1/2 0 1/2 1

t3 1 1/2 0 0

t4 0 0 1 0


.

The incidence matrix thus contains the win-loss-tie information from the tournament

as a matrix. However, the more information a system can include, the more accurately it

will construct a ranking. Many Markov ranking systems weight edges within the network to

incorporate additional information about games, indicating not just who won or lost but how

strongly that victory reflects the relative ability of each team. Each ranking system utilizes

a different method to assign these values; for example, the Keener method uses the score of

each game to generate edge weight. In tournaments where teams play the same opponents

more than once, weights are often given by the number of games each team won or lost. To

incorporate the additional information contained in these weights, it is necessary to modify

the incidence matrix. We construct this new weighted incidence matrix , denoted by A∗,
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as

a∗ij = wij, (22)

where wij is the weight of the edge from tj to ti. We note that for the remainder of our

discussion, all of the edges will have non-negative weights. With the completion of the

weighted incidence matrix, we have succeeded in converting all of the information in the

network into numerical form.

In general, we call a network strongly connected if there is a finite path from a given

node to any other node in the network. A priori, this is not trivial to check. Fortunately,

we have the following analytical tool to determine if a network is strongly connected.

Proposition 4. Let M be a directed network with n nodes, and let A be the incidence

matrix of M . Define the vector v1
0 = (1 0 0 . . . 0), and generalize this form so that vα0 =

(0 0 . . . 1 . . . 0), where 1 is in the αth position. Now for all k < n, recursively define

vαk = sign
(
vαk−1 + Avαk−1

)
,

where sign : R→ R such that

sign(x) =

 1 if x > 0

0 if x ≤ 0.

We claim that there exists k0 ≤ n such that vk0 = vk0+1. Furthermore, if this vk0 = e for

all α ∈ {1, . . . , n}, then the network M is strongly connected.

Before we prove this proposition, we will walk through an example to demonstrate how

the system works. Recall that the goal of this process is to determine if there is a finite path

between each node. To begin, we note that if there exists a path from node Nj to node Ni,

then the (ij)th element of the incidence matrix (built without ties) will be equal to 1. Now,
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consider the network in Figure 2.1. This network has the incidence matrix

A =



0 0 1 0

1 0 0 1

0 1 0 0

1 0 1 0


.

Let v0 = (1 0 . . . 0)T . We can think of this vector as a walker starting at node N1. First,

let us consider the matrix Av0.

Av0 =



0 0 1 0

1 0 0 1

0 1 0 0

1 0 1 0





1

0

0

0


=



0(1) + 0(0) + 1(0) + 0(0)

1(1) + 0(0) + 0(0) + 1(0)

0(1) + 1(0) + 0(0) + 0(0)

1(1) + 0(0) + 1(0) + 0(0)


=



0

1

0

1


.

We notice that a21 = a41 = 1, so there is a path from node N1 to both N2 and N4. Thus the

coordinates in Av0 that are greater than 0 reflect the nodes that can be reached in one step

from the starting node, given by v0. Now, consider the sum v0 + Av0

v0 + Av0 =



1

0

0

0


+



0 0 1 0

1 0 0 1

0 1 0 0

1 0 1 0





1

0

0

0


=



1

0

0

0


+



0

1

0

1


=



1

1

0

1


.

Now, we notice that in one or fewer steps (zero is a possible number of steps), the walker is

able to come into contact with three nodes - the node he started on (N1), and the nodes he

can reach from the starting node in one step (N2, N4). Also, each of these nodes can only be

reached in exactly one way (N1, N1 → N2, N1 → N3). Therefore the sum v0 + Av0 reflects

the nodes that can be reached in one or fewer steps, and how many different ways there are
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to reach each node. Next, consider v1

v1 = sign





1

0

0

0


+



0 0 1 0

1 0 0 1

0 1 0 0

1 0 1 0





1

0

0

0




= sign





1

1

0

1




=



1

1

0

1


.

Recall that the sign function takes each coordinate of the vector vi and changes it to a 1 if

v1 > 0 and to a zero if v1 ≤ 0 . So v1 represents the nodes that can be reached from the

starting node in zero or one steps. We utilize the sign function here to make the process

computationally easier, for it reduces the analysis to the manipulation of 1’s and 0’s and

does not remove any important information.

We repeat the above process to find v2. In this iteration, v0 is replaced by v1, so in this

round we can think of starting random walkers at nodes N1, N2, and N4 and telling them to

each move one time step. Here, we find that v2 = (1 1 1 1) = e. Thus if the random walker

starts at node N1, he can reach every other node in the network in two or fewer steps.

At this point, our initial intuition is to claim the network is strongly connected, as we

have demonstrated that there is a way to reach to every node in the network. However,

in a directed graph, the choice of starting node matters. For example, consider a different

network L with two nodes, `1 and `2, and one edge that points to `2. Then if we start at `1

(v0 = (1 0)T ), we find that in one step or less we can reach every other node in the network,

for

v1 = sign


 1

0

+

 0 0

1 0


 1

0


 = sign


 1

0

+

 0

1


 =

 1

1

 = e.

However, if we start at node `2, there is no way to reach `1. Thus this network is not strongly

connected.

Therefore for directed graphs, we need to prove that if we were to start on any given
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Ni, we could reach every other nodes in the network in a finite number of steps. That is,

for each starting node, there must exist some k ∈ N such that vk = e. To check this, we

simply change the v0. For example, to test the results of starting on node N2, we begin

with v0 = (0 1 0 0)T , and compute v1,v2, etc.. In our example, we find that starting on N2,

v3 = e; starting on N3, v2 = e; and starting on N4, v3 = e. Thus this network is strongly

connected.

We now return to the proof.

Proof. To begin, we claim that if (Avα0 )i > 0, then there exists a path of length one between

node Nα and node Ni. First, we observe that

(Avα0 )i =
n∑
j=1

aij(v
α
0 )j.

Because all (avα0 )i ≥ 0, the only way for the above sum to be positive is for aij and (Avα0 )j

to be greater than zero for some j. The only element of vα0 that is positive is in position α,

and the only positive elements in the αth column of A will be the elements corresponding

to nodes connecting to node Nα. Thus if (Avα0 )i > 0, there exists a path from node Nα to

node Ni. Now, we notice that vα0 + Avα0 will equal a vector with positive elements in the

positions corresponding to the nodes that can be reached in zero steps (the starting node)

as well as those that can be reached in one step. Additionally, applying the sign function

to this vector will preserve the signs of the elements but reduce them all to zeros or ones.

Thus the vector vα1 represents the nodes that can be reached from node Nα in one or fewer

steps. By repeating a similar analysis, we can see that the vector vαk represents the nodes

that can be reached from node Nα in k or fewer steps. If there exists a k such that vαk = e,

then every element can be reached from the starting node Nα. If this condition holds for

every α ∈ {1, 2, . . . , n}, then every node can be reached from each possible starting vector,

and the network M is strongly connected. �

Say M is strongly connected. While this tells us something informative about our net-
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work, we do not know anything about the effects of connectivity on the weighted incidence

matrix we just compiled. Therefore we introduce another important concept, the irreducible

matrix. We say a matrix is irreducible if there is no permutation that transforms it into a

block matrix of the form

 A11 A12

0 A22

 .

As Keener (1993) demonstrated, this is equivalent to saying that for any two numbers i

and j, there is an integer p ≥ 0 and a sequence of integers k1, k2, . . . , kp such that the

product aik1ak1k2 · · · akpj 6= 0 . If a network is strongly connected, it is always irreducible, as

demonstrated by the following proposition.

Proposition 5. Let M be a strongly connected network. Then the resulting weighted inci-

dence matrix A∗ is irreducible.

Proof. Pick two nodes Ni, Nj ∈ M . Because M is strongly connected, there is a finite path

between Ni and Nj. List the elements in this path in the order they must be taken to get

from Ni to Nj:

Ni, Nk1 , Nk2 , . . . , Nkp , Nj,

where k1, k2, . . . , kp are natural numbers less than n. Now, consider nodes Ni and Nk1 .

Because there is a path between these two nodes, we know that a∗ik1 > 0. Similarly, a∗k1k2 > 0,

a∗k2k3 > 0, . . . , a∗kpkj > 0. Thus

a∗ik1a
∗
k1k2
· · · a∗kpkj > 0.

So A∗ is irreducible. �

Next, we calculate the transitional probability matrix P , defined such that
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pij =
a∗ij
n∑
k=1

a∗kj

(23)

provided the denominator is nonzero.

Recall from the Random Walker discussion that a transitional probability pij is the

probability that, given multiple choices of edges with which to leave node ni, the walker will

choose to use the one connecting node Ni to Nj.

For Markov methods to generate a successful ranking for a tournament, P must be

column-stochastic (i.e., all columns must sum to 1). In matrices where
n∑
k=1

a∗kj > 0 for all

k < n, this condition is trivially true. However, in matrices with a column of all zeroes, which

correspond to nodes with no outgoing edges (called dangling nodes), the resulting matrix P

will not be column-stochastic. In these cases, there will be no steady-state solution associated

to this matrix. Many Markov systems incorporate methods to remove these situations, as

we will see in the following sections.

Now, consider the matrix P . This represents the transitional probabilities associated with

moving between nodes. Alternatively, we can also think of these values as the proportion

of a team’s importance that it transfers to each other team. That is, given a node Ni with

rating ri, it will then transfer pjiri of its rank to node Nj. So we can think of the rank of a

given node as:

ri = pi1r1 + pi2r2 + . . .+ pinrn. (24)

As we compute the equations for all of the ranks, we get the following system of n

equations and n unknowns:

r1 = p11r1 + p12r2 + . . .+ p1nrn

r2 = p21r1 + p22r2 + . . .+ p2nrn
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...

rn = pn1r1 + pn2r2 + . . .+ pnnrn.

This can be written in matrix form



r1

r2
...

rn


=



p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
...

pn1 pn2 . . . pnn





r1

r2
...

rn


(25)

and simplifies to r = Pr, where r is an n × 1 vector representing the rating of each node.

Notice that r is the eigenvector associated with the eigenvalue 1. Although the equation

looks simple, solving for r becomes a highly non-trivial problem if P has many eigenvalues

associated with 1.

6.4 Solving r = Pr for the Ranking Vector

Given the complexity of finding eigenvalues and eigenvectors of matrices, we shall devote

this section to show that in our application, when the matrix is column stochastic and under

some nice conditions, we can indeed solve this problem.

To begin, we note that by Propositions 2 and 3, because P is column stochastic, 1 is an

eigenvalue of P and P has a spectral radius of 1. However, if 1 is a repeating eigenvalue,

there will be multiple linearly independent eigenvectors associated to 1. A foundational

assumption of any ranking algorithm is that there exists an inherent hierarchy within a set

of teams; that is, there is only one correct ranking that accurately represents the relationship

between these teams. Fortunately, the Perron-Frobenius Theorem provides conditions

under which 1 is associated with a unique eigenvector.

Theorem 1 (Perron-Frobenius). If the matrix A has non-negative stochastic entries and the

associated network is strongly connected, then there exists an eigenvector r with non-negative
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entries corresponding to a positive eigenvalue λ. Furthermore, if the matrix is irreducible,

the eigenvector r has strictly positive entries, is unique and simple, and the corresponding

eigenvalue is the largest eigenvalue of A in absolute value.

Remark 1. We note that if A is not stochastic, then by a dilation of the space, i.e., division

by the spectral radius, the matrix will become column stochastic. Such alternations will not

change the algebraic properties of the matrix, therefore the Perron-Frobenius Theorem will

still hold for non-stochastic matrices as well. For a full proof, see Keener (1993).

It is worth spending some time proving the Perron-Frobenius Theorem, for it is the

critical result that drives the functionality of Markov ranking systems. We begin by proving

a few lemmas.

Lemma 2. The product of column stochastic matrices is column-stochastic.

Proof. Let A,B be n× n column stochastic matrices. Then each entry in AB is given by

(ab)ij =
n∑
`=1

ai`b`j

and the sum of column k of AB is

n∑
i=1

n∑
`=1

ai`b`k =
n∑
`=1

n∑
i=1

ai`b`k

=
n∑
`=1

b`k

n∑
i=1

ai`

=
n∑
`=1

b`k(1)

= 1,

where the last two equalities are satisfied because A and B are column stochastic. Hence

AB is column stochastic. �

Lemma 3. If M is positive and column stochastic, then any eigenvector in V1(M) has all

positive or all negative components.

35



We will proceed by contradiction. First, recall that by the Triangle Inequality, |
∑

i Yi| <∑
i |Yi| when the signs of Yi are mixed. Suppose x ∈ Vi(M) contains elements of mixed signs.

Since x is an eigenvector of M , we know that x = Mx, thus xi =
n∑
j=1

Mijxj. Since xj are of

mixed signs and Mij > 0 for all i, j , we know that Mijxj are of mixed signs as well. By the

Triangle Inequality, we have

|xi| =

∣∣∣∣∣
n∑
j=1

Mijxj

∣∣∣∣∣ <
n∑
j=1

|Mijxj| =
n∑
j=1

Mij|xj|.

Now consider the sum of xi over all i ∈ {1, 2, . . . , n}.

n∑
i=1

|xi| <
n∑
i=1

n∑
j=1

Mij|xj| =
n∑
j=1

(
n∑
i=1

Mij

)
|xij|.

Since M is column stochastic,
n∑
i=1

Mij = 1, and we find

n∑
i=1

|xi| <
n∑
j=1

|xj|,

a contradiction. �

Lemma 4. Let v and w be linearly independent vectors in Rm, where m ≥ 2. Then for

some values s and t that are not both zero, the vector x = sv + tw has both positive and

negative components.

Proof. First, we note that because v and w are linearly independent, neither v nor w are

0. Now let d =
∑
i

vi. If d = 0, then v must contain elements of mixed sign, thus for s = 1

and t = 0, x = v and x has mixed signs. Now, suppose d 6= 0, and let t = 1 and

s = −

∑
i

wi

d
.
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Then ∑
i

xi =
∑
i

svi +
∑
i

twi

=
∑
i

vi
d

(∑
j

−wj

)
+
∑
i

wi

=

∑
i

vi∑
i

vi

(∑
j

−wj

)
+
∑
i

wi, because d =
∑
i

vi

= −
∑
i

wi +
∑
i

wi

= 0.

Since v and w are independent, x 6= 0, thus x contains mixed elements. �

With these tools established, we will prove the Perron-Frobenius Theorem.

Proof. Let A be an n × n matrix that is column stochastic and has non-negative entries.

Additionally, let the network associated to A be strongly connected. First, we note that if

there exists an edge connecting Nj to Ni, aij > 0. Now, we claim that (ap)ij > 0 if and

only if node Ni can be reached from node Nj in exactly p steps. To begin, let (ap)ij > 0.

Then there exists some set of integers k1, k2, . . . , kp−1 such that aik1ak1k2 · · · akp−1j > 0. Since

each element a`m = 0 or 1, we must have aik1 = ak1k2 = . . . = akp−1j = 1. Thus there is a

path from Nj to Nkp−1 , a path from Nkp−1 to Nkp−2 , . . . , and a path from Nk1 to Ni. So a

path exists from Nj to Ni and it has exactly p steps. Now, suppose there exists a path from

nodes Nj to Ni with p steps. List the sequence of nodes in the path: Nj, Nkp−1 , . . . , Nk1 , Ni.

Because there are edges connecting every element next to each other in this sequence, we

know aik1 = ak1k2 = . . . = akp−1j = 1, thus the product formed by these terms will be

positive. Now, consider (ap)ij, which can be represented as a sum of products of elements of

A. The product aik1ak1k2 · · · akp−1j is in this sum. Because all aij are positive, the total sum

will be greater than or equal to its components, thus

(ap)ij ≥ aik1ak1k2 · · · akp−1 > 0.
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Thus (ap)ij > 0 implies that there is a path between nodes Ni and Nj of length p.

Next, we claim that (i+a+a2+. . .+ap)ij is positive if and only if there is a path from node

Nj to node Ni that is p or fewer steps long. To begin, let (i+a+a2 + . . .+ap)ij > 0. Because

all elements aij are positive, this implies that there exists at least one k ∈ {0, 1, . . . , p} such

that (ak)ij > 0. By the previous claim, this implies that there is a path from Ni to Nj that

is exactly k steps long. Now, suppose there is a path from Nj to Ni that is k steps long,

where k is an integer such that 0 ≤ k ≤ p. Then, by the previous proof, (ak)ij > 0. Since

all elements of aij are positive, (i+ a+ a2 + . . .+ ap)ij ≥ (ak)ij > 0.

We now claim that because A is strongly connected, I +A+A2 + . . .+An−1 is positive.

Because A is strongly connected, there exists a finite path between any two nodes. Pick

two nodes Ni and Nj and suppose that the path between them is k steps long. By the

previous proof, this means that (i + a + a2 + . . . + an−1)ij > 0. Thus for all `,m < n,

(i+ a+ a2 + . . .+ an−1)`m > 0 , so I + A+ A2 + . . .+ An−1 is positive.

Now, let us use this sum to build a new matrix B, where B = 1
n
(I+A+A2 + . . .+An−1).

We notice that B is both positive and column stochastic. Indeed, n is positive and by

the previous proof I + A + A2 + . . . + An−1 is positive as well, so B is positive. Next, we

note that the identity matrix I is trivially column stochastic, and A is column stochastic

by assumption. By Lemma 2, we know that the product of column stochastic matrices is

column stochastic, thus A2, A3, . . . , An−1 are also column-stochastic. Now, consider the sum

of column k of B. This equals:

1

n

n∑
j=1

(ijk + ajk + a2jk + . . .+ anjk) =
1

n

(
n∑
j=1

ijk +
n∑
j=1

ajk +
n∑
j=1

(a2)jk + . . .+
n∑
j=1

(an)jk

)
= 1

n
(1 + 1 + 1 + . . .+ 1),

= 1
n
(n)

= 1

since I, A,A2, . . . , An−1 are column stochastic. Thus the sum of column k in B is 1, thus B
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is column stochastic. By Proposition 2, because both A and B are column stochastic, 1 is

an eigenvalue of both matrices. Additionally, by Proposition 3, 1 is the spectral radius of

both A and B. For the remainder of the proof, we will discuss the eigenspace associated to

the eigenvalue 1.

Next, we claim that because B is both positive and column stochastic, dim(V1(B)) = 1.

We will proceed by contradiction. Suppose there are two linearly independent eigenvectors

v and w in the subspace V1(B). For any s, t ∈ R (both not zero), the nonzero vector

x = sv + tw ∈ V1(B) and, by Lemma 3, x has components that are either all positive or all

negative. But by Lemma 4, there exists some s and t such that x contains both positive and

negative components, a contradiction. Thus V1(B) cannot contain two linearly independent

vectors, so dim(V1(B)) = 1.

We will now use this information to draw conclusions about the eigenspace of A with

respect to 1. We claim that V1(A) ⊆ V1(B). To begin, let x ∈ V1(A)). Then Ax = 1x = x.

Now, we note that AAx = Ax, which then implies that A2x = x. Similarly, AA2x = Ax

implies that A3x = x. It is straightforward to see that x = Ax = A2x = . . . = An−1x, thus

Ix + Ax + A2x + . . .+ An−1x = nx.

Therefore

1

n
(I + A+ A2 + . . .+ An−1)x = x,

which means

Bx = x.

Since 1 is an eigenvalue of B, this then implies that x ∈ V1(B), thus V1(A) ⊆ V1(B).

Finally, we claim that dim(V1(A)) = 1. Indeed, since V1(A) ⊆ V1(B), dim(V1(A)) ≤

dim(V1(B)). By a previous result, we know that dim(V1(B)) = 1, thus dimV1(A)) = 0 or 1.

We note that since 1 is an eigenvalue of A, V1(A) contains at least one non-zero eigen-

value, thus dim(V1(A)) 6= 0. Therefore dim(V1(A)) = 1, that is, A has a single eigenvector
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associated with its dominant eigenvalue. �

We are now ready to solve r = Pr. In applications, computing eigenvectors is often

difficult. Fortunately, there is a powerful method to efficiently approximate the dominant

eigenvector called the Power Method, as stated below.

Theorem 2 (The Power Method). Let A be an n×n matrix with real entries and eigenvalues

λ1, . . . , λn ordered so that

|λ1| > |λ2| ≥ . . . ≥ |λn|.

Also, let x0 6= 0 be the starting vector. Then the iteratively defined vector

xk = Axk−1 = Akx0

converges to the the dominant eigenvector of A.

Remark 2. We note that if x0 is orthogonal to Vλ1 , then α1 = 0 and the Power Method

will not generate a correct dominant eigenvalue. However the probability of choosing such a

vector is 0, thus we can effectively operate the Power Method with a random vector.

Proof. First, assume A is diagonalizable. Then A has a basis y that contains all of the

eigenvalues of A, therefore the vector x0 can be expanded along these eigenvectors such that

x0 = α1y1 + . . .+ αnyn

with α1 6= 0. Thus

Akx = xk =
n∑
j=1

λkjαjyj.

We can factor out a constant and slightly expand this expression to get

xk = λk1

(
α1y1 +

n∑
j=2

(
λj
λ1

)k
αjyj

)
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Now, because |λ1| > |λj| for all j,

(
λj
λ1

)k
→ 0 as k increases. Thus for large k,

(
1

α1λk1

)
xk = y1.

Thus up to an error term

(
1

α1λk1

)
, Akx approximates the eigenvector associated with the

dominant eigenvalue. We note here that this result also holds if A is not diagonalizable,

however this proof is outside the scope of this project. (Proof adapted from Kincaid and

Chyeney 2002). �

7 Markov Ranking Systems

Now that we understand how generic Markov ranks are calculated, we will move into a

discussion of the four specific Markov ranking systems we used in our analysis: the Keener,

Biased Voter, PageRank, and Oracle algorithms.

7.1 Keener

Our first Markov ranking system is a system developed by James Keener as a novel applica-

tion of the Perron-Frobenius Theorem (Keener 1993). Like Massey, Keener’s system ranks

each team based on the scores of matches within a tournament. Although this system is not

used by any major sports ranking organization, it has been shown to be highly successful in

ranking NFL football tournaments (Keener 1993).

The Keener method functions similarly to the generic Markov systems we have seen,

however it employs a unique system of weighting each game. Let Sij be the amount of

points team ti scored against team tj. The most intuitive method of assigning weights using

these scores is

a∗ij =
Sij

Sij + Sji
. (26)
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Here, each edge is weighted by the proportional amount of points that team scored in com-

parison the total number of points scored in the match. However, consider a game with a

score of 1-0. This would assign the winner a weight of 1 and the loser a weight of 0, effectively

weighting the winner infinitely higher than the loser. However, in low-scoring sports such as

hockey or soccer, a score of 1-0 could reflect a highly defensive game in which both teams

were fairly evenly matched. To remedy this problem, we could instead make the weight equal

to

a∗ij =
Sij + 1

Sij + Sji+ 2
. (27)

Here, as we saw in the Colley method section, teams start with a rank of 1/2 and move

up/down from there. Unfortunately, under this formula, teams could artificially boost their

ranks by driving up scores. Not only would this encourage poor sportsmanship, it would

also decrease the accuracy of the ranks.

Keener proposed the weight

a∗ij = h

(
Sij + 1

Sij + Sji+ 2

)
, (28)

where h is the function such that

h(x) =
1

2
+

1

2
sign

(
x− 1

2

)√
|2x− 1|. (29)

The function h was chosen for several reasons. First, h
(
1
2

)
= 1

2
, thus all teams start with a

default weight of 1/2. Additionally, the slope of h decrease as the winner’s score increases

and the loser’s score decreases, as shown in Figure 2.5. Thus the weight is not inflated by

high-scoring games.

Notice that this scoring metric provides information about both winning and losing teams,

thus in this system each match is represented by two edges: one from the winner to the loser,

a∗ij, and one from the loser to the winner, a∗ji. Finally, using the weighted incidence matrix,
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the Keener ranking system builds the Transitional Probabilities matrix and uses the power

method to solve r = Pr. This system does not automatically ensure a strongly connected

network, so the user must check the network using method described in Proposition 4 to

ensure that the conditions of the Perron-Frobenius Theorem are met before computing this

rank. Observe that using scores, one is more likely to obtain a network without dangling

nodes as generally teams do score points even in a loss.

7.2 Biased Voter

In the Markov ranking system we have seen the interaction between two teams is character-

ized by one edge, where the loser points to the winner. The Biased Voter ranking system

takes a different approach, for each match is instead represented by four edges: one from the

loser to the winner, one from the winner to the loser, one from the loser to itself, and one

from the winner to itself. Each edge is then weighted using a fixed probability. This system

was originally developed by Callaghan et. al as a network-based approach to ranking college

football games (Callaghan et al. 2007).

To visualize the Biased Voter ranking system, consider a network containing nodes Ni

and Nj where Ni beat Nj. Now picture a random walker starting at node Ni. He is faced

with a choice: he can either move to node Nj, or he can stay on Ni. Movement away from

the starting node still corresponds to a loss of importance, thus arrows pointing towards the

winners have higher weights than those pointing towards the losers. The walker will stay on

Ni (the winner) with a probability of p, where p ∈ [0.5, 1], and will move to Nj (the loser)

with a probability of 1− p. Conversely, he would move from Nj to Ni with a probability of

p and would stay on Nj with a probability of 1− p (Figure 2.6).

To calculate the ranking in a tournament using the Biased Voter ranking algorithm, we

begin by building the weighted incidence matrix. In this system, if team i beats team j,

then a∗ij = p and a∗ji = 1−p. Because every node is also connected to itself, we also calculate
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a∗ii for every team i as:

a∗ii =
n∑
k=1

1− a∗ki. (30)

The transitional probability matrix is calculated in the same manner as in the previously

described Markov Methods. Note that as long as every team has played at least one game,

then the network will not contain any dangling nodes and the transitional probability matrix

will be column stochastic. However, as with the Keener method, the Biased Voter system

does not provide a method of ensuring that the network is strongly connected and must be

checked before proceeding.

7.3 The PageRank Algorithm

The PageRank algorithm is perhaps the most well-known Markov ranking system, made

famous for its efficiency in web-based search engines. It was originally developed by Google

founders Larry Page and Sergey Brin as a method of ranking websites for use in the Google

search engine (Page et al. 1999), but the algorithm is now used in a wide variety of applica-

tions from sports to informatics.

When developing the ranking system, Page and Brin were faced with the challenge of

ranking web sites based on the likelihood a page contains information relevant to the searcher.

While their competitors simply scanned the page for keywords, they instead sought a method

to evaluate not just if the page contained the searched phrase, but if the page exhibited the

maximum amount of relevant information. Their innovation came from deciding to rank a

page by the other pages it is linked to. Credible pages with large amounts of easily accessible

information are often linked to by smaller sites for use as references or additional sources

of information. It turns out, ranking a website based on how many sites link to it, and

in turn how many sites are connected to these links, etc. is a fast and efficient method of

determining the importance of a site.

The PageRank algorithm they developed to interpret this idea is a Markov based ranking
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method with a novel modification to ensure that any network will satisfy the conditions of

the Perron-Frobenius Theorem. We begin by interpreting our initial data set as a directed

graph, and constructing the weighted incidence matrix from this network as described in the

previous section. Each edge is assigned a weight of 1, thus the transitional probabilities for

the network become:

pij =
1

n∑
k=1

a∗kj

. (31)

Of course, one must ensure that the denominator of pij does not equal 0. If a node has

any outgoing edges, the corresponding column will contain at least one element greater than

zero. Because by definition the weighted incidence matrix only contains positive elements,

this means that the corresponding column sum will not equal zero. However, there can exist

nodes with no edges pointing away from it, either from undefeated teams or from websites

with no exterior links. To deal with these dangling nodes, we replace all the elements in

a column of all zeroes with 1/n. This ensures that all the transitional probabilities can be

calculated and that the resulting transitional probability matrix is column stochastic.

However, even after such modifications, we still must ensure that the network is strongly

connected. This is especially important when considering networks of websites, where each

site contains relatively few links when compared to the total number of websites on the world

wide web. To ensure that the matrix is strongly-connected, we first choose α ∈ (0, 1) and

let e be a n× 1 vector (1 1 . . . 1)T . We then define the new Google matrix Gα.

Gα = αP + (1− α)

(
1

n

)
eeT (32)
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which, in matrix form, expands to

Gα = α



p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
...

pn1 pn2 . . . pnn


+ (1− α)



1/n 1/n . . . 1/n

1/n 1/n . . . 1/n

...
...

...

1/n 1/n . . . 1/n


. (33)

Heuristically, one can view α as the probability that the random walker will move around

the network according to the transitional probability matrix and 1 − α as the probability

he will move according to the teleportation matrix, or the matrix T = (1/n)eeT (Figure

2.7). Notice that T is column-stochastic, as each element in a given column is 1/n and there

are n elements per column. If the walker moves according to T , he has an equal probability

of moving to any node on the graph.

Now, because Gα is a convex combination of the column stochastic matrices P and T ,

Gα is also column-stochastic, as shown below.

Proposition 6. The convex combination of column stochastic matrices is column stochastic.

Proof. Let A and B be column stochastic n×n matrices, and let V be a convex combination

of these matrices. Then there exists a t ≥ 0 such that

V = tA+ (1− t)B.

Now, for each column k ∈ n, we have

n∑
j=1

vjk =
n∑
j=1

(tajk + (1− t)bjk)

= t
n∑
j=1

ajk + (1− t)
n∑
j=1

bjk.
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Since A and B are column stochastic, for all i ∈ n,
n∑
j=1

aji = 1 and
n∑
j=1

bji = 1. Thus

n∑
j=1

vjk = t(1) + (1− t)(1),

which simplifies to
n∑
j=1

vjk = 1

Thus V is column stochastic. �

Finally, we note that Gα is also strongly connected, for the convex combination with

the teleportation matrix creates connections between every node in the resulting network.

Therefore Gα fulfills all the criteria of the Perron-Frobenius Theorem, and we can use the

Power Method to solve the matrix equation r = Gαr for the dominant eigenvector.

7.4 The Oracle Ranking System

Although the general Markov ranking system is a powerful tool, it experiences an inherent

limitation when applied to sports games. Consider the network in Figure 2.8. In the unmod-

ified Markov system, all of the importance flowing through N1 will also go to N4, inflating

its rank and ranking team t1 first and team t4 second. This represents a situation in which

t1 beats every other team and t4 loses to every other team, yet t4 somehow managed a spec-

tacular win against t1. Intuitively, we know that despite their miraculous win, t1 should still

be ranked reasonably low, for they lost four times more than they won. Thus this system

creates a ranking that does not appear to accurately represent the abilities of the teams.

The Oracle ranking system is a newly-developed system that was specifically developed

to address this issue. The Oracle ranking system has been successful in foresight predictions

of regular-season NFL tournaments (Balreira et al. in press), and current work is seeking to

apply it to other professional sports as well.

To implement the Oracle ranking algorithm, we begin by building a network from the
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tournament and assigning each edge a weight of 1. We now introduce the Oracle as a new

node. From every node Ni, there is an edge pointing to the Oracle with a weight of ui. Also,

from the Oracle, there is an edge to every node Ni of weight di (Figure 2.9). These ui and

di weights are defined by the user, and can be a constant, a game statistic (i.e., score, shots

on the goal, etc.), the number of wins of a given team, or anything else the user defines as

being important in establishing the rank of a tournament. Note that all of these weights

must be greater than 0. The new weighted incidence matrix becomes:

A∗ =



a∗11 a∗12 . . . a∗1n u1

a∗21 a∗22 . . . a∗2n u2
...

...
...

...

a∗n1 a∗n2 . . . a∗nn un

d1 d2 . . . dn 0


. (34)

We now calculate the transitional probabilities by dividing each element by the sum of its

column, and use these to build the transitional probability matrix. Note that there are

no dangling nodes, for every node has at least one edge pointing from it to the Oracle.

Consequently, there are no columns of all zeroes and each column sums to one, so P is

column-stochastic. This matrix is strongly connected as well, for from any node Ni, there

is at least one path to any other node Nj that is two steps long: Ni to the Oracle, and the

Oracle to the Nj. Thus the conditions of the Perron-Frobenius Theorem are met, and we

can calculate the ranking matrix r by solving the equation r = Pr using the Power Method.

Observe that the obtained rating vector had dimension n + 1, due to the addition of the

Oracle node. Hence, we must only consider the first n entries as our ratings. If needed, we

can also scale r so all of the first n entries add up to one.
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8 Applying Ranking Systems to Anole Dominance In-

teractions

After learning the theory behind the eight ranking systems described above, we then set

out to test the effectiveness of these algorithms in analyzing dominance behaviors in the

green anole (Anolis carolinensis). In the summer of 2013, we built a tournament of paired

aggressive interactions, called arena trials, between 18 adult male green anoles (denoted

Tournament 1, or simply T1). A year later, we conducted two more tournaments of 10 males

each to validate the results of the first experiment, denoted by tournaments T2 and T3,

respectively. By comparing the ranks generated from these tournaments to lizard character-

istics related to dominance, we could then identify the ranks that most accurately reflected

social status within anole populations.

Because each of these ranking systems uses different statistics and mathematical ap-

proaches to build their ranks, we predicted that some ranks would be consistently more or

less reflective of anole social interactions than others. Specifically, we predicted that the

Colley method would be the least successful ranking system due to its inability to effec-

tively incorporate ties. Arena trials limit the amount of time competitors have to establish

dominance relationships, thus there were often situations in which the winner could not be

identified by the end of the trial. However, these ties still reflect important information

about the relative abilities of the lizards involved, and must be incorporated into a ranking

system for the resulting rank to be accurate. Conversely, we expected the Oracle to be the

most effective ranking system, for it has a high degree of customizability and can incorporate

a maximal amount of information when building the ranks.

The tournament schedules were each designed to have a diameter of two; that is, for any

two lizards i and j, one of the following holds: either lizard i played lizard j, or lizard i

played another lizard who also played lizard j. Every male competed once a day for six days

in the first tournament and once a day for five days in the second and third tournament. In
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each arena trial, we placed the two males to compete in opposite ends of a mesh cage and

allowed them to acclimate under opaque containers for ten minutes. A wooden perch was

placed between the animals in accordance with standard arena trial procedures in anoles

(Tokarz 1985), for anoles are arboreal and male position on the perch is directly related to

dominance in this genus. We then lifted the containers and allowed the animals to interact

for ten minutes. We recorded the the number of pushup displays and dewlap extensions

performed, as well as the latency to eyespot development, the time of the first display, and

the number of trials an individual developed a dorsal crest. We declared an individual the

winner if it monopolized the perch or if its competitor showed clear submissive behavior,

such as running away or hiding. Alternatively, we called the trial a tie if the individuals

did not interact, did not reach a resolution in the time allowed, or if they attempted to lock

jaws. Finally, we recorded the time to resolution for each individual i as

(Time to Resolution)i =


time lizard i established dominance, if lizard i won the trial

time the individuals attempted to bite each other

600, if the trial ended in a tie or lizard i lost.

(For a more thorough description of these arena trials, see Chapter 3, Section 2.1)

At the end of each tournament, we used this win/loss/tie information to calculate the

ranks of the competitors using each of the focal ranking algorithms. For the Win Percent,

Colley, Bradley-Terry, Keener, and PageRank algorithms, we used the standard parameters

described above. For the Biased Voter ranks, we chose p = 0.75. However, calculating

the Massey and Oracle ranks required more information. Recall that the Oracle algorithm

contains two sets of customizable weights, the up and the down weights. Oracle ranks that

incorporate score are among the most successful Oracle systems in foresight predictions of

NFL games (Balreira et al. in press), thus we chose to make the up weight equal to a metric

of score. We then made the down weights a reflection of the number of interactions each

team won, so for a given lizard i, di = wi + 1, where wi is the number of arena trials team i
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won. (Note that the addition of 1 was to ensure that the down weight is positive for every

individual). The Massey system is also largely based on score. Lizard fights do not inherently

contain a scoring metric that quantifies how much more dominant one competitor is than

another as basketball or soccer do, so we had to create one to calculate these two ranks. We

initially tried to interpret score as some behavioral metric (e.g., number of dewlap extensions,

number of pushup displays), however we could not find a value that was consistently higher

in winners than in losers. Thus we instead chose to interpret score in terms of the time

to resolution, or the number of seconds into the encounter that the individual definitively

established dominance. Therefore we defined the score of an arena trial as

Score =
600− (Time to Resolution)

100
+ 1, (35)

where again the added 1 was to ensure a positive score.

This was a particularly useful scoring system because it distinguished between the dif-

ferent types of ties. Recall that attempting to bite, not interacting, and failing to establish

dominance within the ten minute time span were all recorded as ties and in effect treated

as equivalent in all of the previous ranking systems. However, an individual that attempts

to lock jaws with its opponent is clearly significantly more aggressive than one who allows

another male in its space without challenge. Therefore each of these ties reflect different in-

formation about the aggressive abilities of the participants. Fortunately, our scoring system

weights these ties differently. When we separated individuals attempting to bite each other,

we ended the trial and recorded the time, so these individuals always had a score greater

than 1. Conversely, individuals who were closely matched or did not interact had a score

equal to 1. Additionally, using this metric the winner’s score is always larger than the losers,

with additional weight going to individuals who won more quickly, i.e., were significantly

more dominance than their opponent.

Once we calculated each of the eight ranks, we then used multilinear regression to com-
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pare each ranking to six morphological traits (body length, mass, head length, head width,

dewlap length, and tail length) and two behavioral traits (cresting behavior and a principle

component that combined the rate of pushup displays and dewlap extensions, the time of

eyespot development, and the time of the first display, see Chapter 3 Section 2). We chose

this specific set of traits because they have each been linked to dominance in the anole liter-

ature (e.g., Perry et al. 2004, Tokarz 1985, Vanhooydonck et al. 2005), although the relative

importance of each trait in anole dominance interactions is still under investigation (for a

full description of these traits, see Chapter 3, Section 2.1). For each rank, we performed

a series of multilinear regressions testing all possible combinations of one to eight traits to

identify the traits most closely related to that particular hierarchy. We then compared the

traits that predicted each of the ranks to identify the traits that serve as the most important

criteria of dominance in these populations.

Not only did this analysis identify the traits most predictive of overall social status (see

Chapter 3), but it also produced an adjusted R2 value for each ranking system. I interpreted

this value as a measure of the success of the ranks, where methods with higher R2 values

were more reflective of the dominance relationships in this species. In this way, we were able

to determine the ranks that performed the best in this animal behavior context.

9 Tournament Results

In the first tournament with 18 lizards, half of the 64 total aggressive interactions resulted

in ties. In the second tournament (n = 10), 16 out of 25 trials had a clear winner and 9

ended in a tie, while of the 25 trials in the the final tournament (n = 10), there were 15 clear

wins and 10 ties. Thus the ability of each ranking method to incorporate and interpret ties

is going to have an impact on the effectiveness of the systems.

Within each tournament, the rankings were highly correlated (Table 2.3), but there re-

mained variation in each individual’s ranks (Tables 2.1 and 2.2). Not surprisingly, there
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was also variation in the R2 values generated in the linear regression analyses of these ranks

(min = 0.40,max = 0.97, see Table 2.4). All of the ranking systems were significant reflec-

tions of the dominance traits in Tournaments 1 and 2, however only two (the Keener and

PageRank algorithms) were related to the traits in Tournament 3.

When the ranks were ordered from most effective (highest adjusted R2 value) to least

effective (lowest adjusted R2 value) in each of the three tournaments, there was no clear

pattern between the best and the worst ranks (Table 3.5). The Oracle and Biased Voter

methods were the only ranking systems not found in the bottom three ranks, and the Massey

was the only system not found in the top three ranks. This implies that, while there is no

ranking algorithm that works the best in all anole populations, the Oracle and Biased Voter

systems are the most consistently reliable ranking methods and the Massey system is the

most consistently unreliable system.

10 Discussion

The overall goals of this project were to determine if ranking algorithms are applicable to

animal social dynamics, and to identify the ranks best suited for this context. We found that

ranking algorithms were indeed successful measures of fighting ability in green anoles (Anolis

carolinensis), however no one algorithm was the most successful model in every tournament.

Markov methods provide a high degree of customization and created successful rankings

in all three tournaments, implying that they are particularly well suited for animal social

behavior studies. The Massey system was the most consistently unsuccessful ranking, most

likely do the choice of scoring system used. All of the other ranking systems worked well in

some tournaments but not in others, implying that multiple ranks are needed to accurately

interpret dominance relationships in anole populations.

In two of the three tournaments analyzed, including the one with the largest sample

size, the ranks modeled dominance interactions within the green anole populations very
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successfully. The Biased Voter ranking system explained 97% of the variation in the traits

related to dominance in the T2, and the Oracle system explained 79% of this variation in T1.

Indeed, even in the third tournament, where most of the results were not significantly related

to the measured traits, the Keener ranking system explained almost 60% of the observed

variation in trait measures. This suggests that ranking systems are indeed a useful method

with which to measure animal social hierarchies.

While we found that ranking systems in general successfully reflected the observed social

dynamics, individual ranking systems experienced a wide range of success in measuring these

dynamics. No method was consistently the most successful or least successful, for most of

the ranks performed well in some tournaments and not in others. This, in addition to the

variation observed between the ranks, implies that it is wise to consider multiple ranking

algorithms when analyzing animal behavior. In fact, by comparing the traits emphasized by

the ranks that work the best/worst for a given population, this could highlight important

characteristics of the interactions that drove the formation of the relationships.

In our study populations, we found that the Biased Voter and Oracle systems were the

algorithms that consistently provided successful quantifications of dominance hierarchies for

the green anole. Additionally, the Keener and PageRank methods were the only two methods

to significantly reflect the dominance relationships of Tournament 3. It is intuitively favor-

able to impose network-based ranking systems onto groups of animals, for natural vertebrate

populations are often modeled as social networks, in which individuals form nodes and in-

teractions with conspecifics become edges. Indeed, understanding the underlying structure,

connectivity, and temporal variation of these networks is a thriving area of research (Wey et

al. 2008). Therefore modeling the flow of dominance through a population by treating it like

a Markov system is a natural extension of the current work in animal social dynamics. Addi-

tionally, it is exciting that these models in particular were successful due to their high degree

of customizability. Our specifications of the Oracle rank were highly successful, particularly

in the first tournament, implying that including carefully chosen statistics into the ranks can
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increase the effectiveness of the ranking. This suggests that testing scoring metrics specific to

the species or population being investigated may lead to the development of Markov ranking

systems that very accurately represent the social dynamics of the population.

The only system to consistently perform poorly in our three populations was the Massey

ranking algorithm. This is a system that was designed very specifically for football ranks, so

it could be that this ranking system simply inherently does not work in an animal behavior

context. The choice of the h function or the heavy reliance on score, which is not well defined

in animal interactions, may not be appropriate in this arena. However, this lack of success

could also be due to the scoring metric that we chose in this analysis. Testing different

definitions of score could identify the aspects of dominance interactions that the Massey

system interprets the best and result in a more successful rank.

All of the other systems performed well in some tournaments and poorly in others, so

we cannot draw any strong conclusions to their effectiveness in modeling anole dominance

hierarchies. However, we can make educated predictions as to the animal social systems in

which each system will perform successfully. To begin, consider the Win Percent rank, which

did reasonably well in all of the tournaments. If investigators do not wish to use advanced

ranking systems to address their inquiries, it appears that they can still generate successful

rankings and answer their questions using this simple and reliable method. Next, we still

maintain that the Colley method is not a wise choice in modeling dominance relationships.

Although it did well in tournaments T1 and T2, this method’s general inability to handle ties

and low degree of customizability make it an illogical choice when identifying ranking systems

to use in a dominance context. However, given enough time, pairs of anoles will almost always

establish a dominant-submissive relationship, so there will be a low incidence of ties in field

studies or long-term laboratory experiments. The Colley system may be a reasonable choice

of ranking system in these situations. Next, when considering the Bradley-Terry model,

we note that this system requires a large number of paired comparisons to generate an

accurate rank. In fact, in sports applications the Bradley-Terry system is often limited to
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Major League Baseball and National Basketball Association tournaments, for sports such

as football simply do not play enough games to work in this system. In both field and

laboratory experiments, the number of interactions that can be observed is often limited,

either by the investigator’s ability to find the organism or by the money, time, and equipment

available. Therefore the Bradley-Terry model may generally not be an ideal ranking system

for animal behavior endeavors. However, the modification of the Bradley-Terry system that

uses a metric of score decreases the number of comparisons needed to generate a rank, so

this metric may be useful in some behavioral contexts.

Overall, we found that ranking algorithms successfully reflected the dominance relation-

ships observed in populations of green anoles. This indicates that behavior is an exciting

new application for ranking algorithms, one which will hopefully provide new insights into

how animal social dynamics function.
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Table 2.1: The ranks generated by each of the eight ranking systems for a tournament of

aggressive interactions between 18 adult male Anolis carolinensis (Tournament 1).

Lizard Win Percent Colley Massey Bradley-Terry Keener Biased Voter PageRank Oracle

1 3 4 4 6 8 6 7 5

2 4 2 1 3 2 1 1 2

3 10 5 2 4 6 4 6 6

4 11 11 17 11 15 11 14 12

5 15 16 9 17 17 17 16 16

6 7 10 12 13 14 16 13 10

7 18 18 18 18 18 18 18 18

8 17 17 10 15 16 15 17 17

9 5 9 3 8 1 5 2 4

10 1 1 6 1 5 2 5 1

11 13 15 13 14 12 12 15 14

12 8 7 14 9 9 10 9 9

13 9 8 5 7 4 7 4 8

14 14 12 16 10 7 9 8 11

15 6 3 7 2 3 3 3 3

16 16 14 15 16 10 14 12 15

17 2 6 8 5 11 8 10 7

18 12 13 11 12 13 13 11 13
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Table 2.2: The ranks generated by each of the eight ranking systems for two tournaments

(n = 10 each) of aggressive interactions between adult male green anoles Anolis carolinensis

(Tournaments 2 and 3, repectively).

Lizard Win Percent Colley Massey Bradley-Tery Keener Biased Voter PageRank Oracle

1 7 8 8 7 8 7 7 7

2 6 6 7 8 7 8 6 6

3 7 7 6 6 4 6 3 8

4 4 4 4 4 5 4 5 4

5 1 1 1 1 1 1 2 1

6 2 3 2 3 3 3 4 2

7 10 10 9 10 9 9 10 10

8 2 2 3 2 2 2 1 3

9 9 9 10 9 10 10 9 9

10 4 5 5 5 6 5 8 5

1 4 4 4 4 3 4 2 4

2 7 7 5 5 7 7 7 7

3 2 3 2 3 2 3 3 3

4 2 2 3 2 1 2 1 2

5 4 5 6 6 6 5 5 5

6 6 6 7 7 4 6 4 6

7 9 10 9 10 9 10 8 10

8 9 9 8 9 8 9 10 9

9 1 1 1 1 5 1 6 1

10 7 8 10 8 10 8 9 8
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Table 2.3: Pearson correlation values comparing the ranks generated by the 8 different

ranking systems. All correlations had p < 0.01.

Win Percent Colley Massey Bradley-Terry Keener Biased Voter PageRank Oracle

Win Percent 1 0.90 0.64 0.85 0.64 0.76 0.72 0.91

Colley 1.00 0.68 0.96 0.77 0.90 0.84 0.96

Massey 1.00 0.70 0.68 0.73 0.73 0.74

Bradley-Terry 1.00 0.81 0.95 0.86 0.95

Keener 1.00 0.90 0.97 0.86

Biased Voter 1.00 0.92 0.94

PageRank 1.00 0.91

Oracle 1.00

61



Table 2.4: The adjusted R2 values generated when each ranking system was compared to

optimal combinations of morphological and behavioral characteristics that reflect dominance

in the green anole (Anolis carolinensis) using linear regression. In this analysis, *** indicates

p values < 0.001, ** indicates p values < 0.01, and * indicates p values < 0.05.

Tournament

Ranking System 1 2 3

Win Percent 0.724*** 0.844** 0.528

Colley 0.753*** 0.931** 0.473

Massey 0.490* 0.870** 0.399

Bradley-Terry 0.495* 0.941*** 0.452

Keener 0.411* 0.857** 0.590*

Biased Voter 0.563** 0.971*** 0.504

PageRank 0.655** 0.832** 0.518*

Oracle 0.796*** 0.861*** 0.534
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Table 2.5: The ranking systems ordered by adjusted R2 value for each tournament. These

R2 values (Table 2.4) were generated by comparing each ranking system to a series of be-

havioral and morphological traits using linear regression.

Tournament 1 Tournament 2 Tournament 3

Oracle Biased Voter Keener

Colley Bradley Terry Page Rank

Win Percent Colley Oracle

PageRank Massey Win Percent

Biased Voter Oracle Biased Voter

Bradley Terry Keener Colley

Massey Win Percent Bradley Terry

Keener PageRank Massey
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12 Figure Legends

Figure 2.1: Two male green anoles (Anolis carolinensis) in an aggressive interaction. Both

individuals are flattened dorsal-ventrally and have developed crests and dark eyespots. They

are in the face off position, where they align their bodies parallel to each other so that they

can circle their opponent. Photograph courtesy of Michele Johnson.

Figure 2.2: An example tournament of six games between four teams, t1, t2, t3, and t4.

(A) The outcome of each game (B) The network representation of the tournament, where

arrows point from the loser to the winner.

Figure 2.3: Picture a random walker positioned on node N1 (time step 1). From this node,

he could use three different edges to move to another node, each associated with a different

transitional probability (p21, p61, and p31). Suppose he chooses the edge with transitional

probability p12 and moves to node N2. From this node, he now has a choice of two edges

with which to move, each with their own transitional probabilities (time step 2). The walker

will continue to move around the network in this fashion.

Figure 2.4: A network interpretation of an example tournament of six games between four

teams. Edges each represent a match and point from the loser to the winner. Double-headed

arrows represent ties. (Note: This network is different than the one in Figure 2.2.)

Figure 2.5: Plot of Keener’s weight function h(x)(solid line) and the identity function

(dashed line). We note that winner’s scores will be those above h(x) = 0.5 and loser’s scores

will be scores below h(x) = 0.5, with higher-scoring games representing the values closer to

both 0 and 1. Figure obtained from Keener (1993).
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Figure 2.6: A representation of the network generated by the Biased Voter system from a

single match between two teams, where t1 (corresponding to node N1) beat t2 (corresponding

to node N2. Note that all edges pointing to the winner have a weight of p, and all those

pointing towards the loser have a weight of 1− p, where p ∈ (0.5, 1).

Figure 2.7: A representation of the network generated by the PageRank system for a

tournament between four teams, specifically highlighting the options the random walker po-

sitioned at node t1 has to move. The solid arrows represent each match, where the arrow

points from the loser to the winner. The random walker will use these arrows α proportion

of the time, where α ∈ (0, 1). The dashed arrows represent the teleportation matrix, where

the walker can move to any node in the network. He will use these arrows 1− α proportion

of the time.

Figure 2.8: A network representing a tournament in which an otherwise winless team, n4,

beats and otherwise undefeated team, n1.

Figure 2.9: A representation of the network generated by the Oracle ranking system. Notice

that the network is constructed in the same fashion as general Markov methods, however it

also includes an additional node, the Oracle.
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Chapter Three:  An Exploration of the 

Relationship between Dominance and 

Territoriality in the Green Anole 

 

 

1 Introduction 

1.1 Dominance Structures of Animal Populations 

Within many animal populations, conspecifics compete for valuable resources such as 

food, mates, and shelter. This intraspecific competition is often costly, particularly 

when it results in physical altercations. Fights between individuals require a large 

investment of energy from both winners and losers (Neat et al. 1998), and can result 

in injury or death. For example, nearly 6% of breeding males in a given population of 

red deer (Cervus elaphus) are permanently injured each year in male-male contests 

(Clutton-Brock et al. 1979).  To avoid such expensive confrontations, many animals 

form dominance relationships within a population as a method of partitioning 

resources. This is a common form of social organization, observed in a broad range of 

taxa that includes fish (salmon: Nakano 1994), birds (tits: Lahti et al. 1994), 

mammals (elephants: Archie et al. 2006), and insects (ants: Monnin and Peeters 

1999). In a system of dominance relationships, individuals use their relative rank in a 

population’s hierarchy to determine the outcomes of interactions, where lower-ranked 
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individuals are expected to defer to higher-ranked ones in subsequent contest 

situations (Kaufmann 1983). This is beneficial to both parties. Dominant animals are 

given priority access to resources (Kaufmann 1983) and often experience higher 

reproductive success (Dewsbury 1982, Frank et al. 1995), and although submissive 

individuals are denied these obvious fitness benefits, they avoid the energetic costs of 

fighting and probably losing contests, allowing them to conserve energy for more 

potentially rewarding situations (Renison et al. 2002).   

Dominant-submissive relationships are formed in a variety of ways. Many animals 

use displays to convey information about their physical fitness and fighting ability to 

their opponent without having to physically engage them. Different taxa use different 

types of displays. Coloration and ornamentation are common visual cues in birds 

(e.g., feather colors, Rohwer 1974, Senar 2006; beak color, Murphy et al. 2009), 

mammals (e.g., primate fur color, Bradley and Mundy 2008; antlers, Bowyer 1986), 

and reptiles (e.g., throat color, Thompson and Moor 1991).  Bright colors, 

particularly those related to carotenoid concentrations, are often honest signals of an 

individual’s health and/or quality (Pérex-Rodríguez and Viñuela 2008, Cook et al. 

2013), and thus can be used as agonistic signals to also indicate fighting ability 

(Pryke et. 2001, Senar 2006).  Other animals, such as amphibians and some 

primates, use auditory cues, evaluating their opponents based on their call volume, 

complexity, pitch, or frequency. For example, in many frogs, the pitch of aggressive 

calls is related to body size, and larger and stronger males give deeper calls (Ryan 

1985). Behavioral displays are also important, for they allow individuals to display 

their ornamentation, weapons, and size to maximize their effects. However, when 

individuals are closely matched in ability or are equally invested in the defended 

resource, displays may not be enough to determine the dominance relationship 

between two individuals. Instead, closely matched individuals must fight to establish 

their social status. 

Dominant-submissive dynamics are a widely-observed phenomenon, and there are 

many types of social organizations that include these relationships. Kaufmann (1983) 
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distinguishes between two broad types of dominance: absolute and relative. Absolute 

dominance is characterized by linear relationships among individuals that are 

independent of space and time. That is, if one animal is dominant over another, it 

will continue to be so regardless of where or when the animals interact in the future. 

This type of behavior is often observed in animals that live in social groups, 

particularly social mammals like hyenas (Frank 1986) and bighorn rams (Hass and 

Jenni 1991). In contrast, relative dominance exists in populations in which the 

dominance relationships are predictably reversible in certain situations (Kaufmann 

1983). The most obvious example of this is territorial animals, where on its own 

territory an animal is much more likely to win dominance interactions (Evans 1936, 

Johnsson et al. 1999) than it is on other individuals’ territories. Territorial animals 

presumably only know their dominance relationships to their neighbors, and do not 

have information on relative fighting ability of individuals they have not yet 

encountered, as is observed in systems with absolute dominance. Another example of 

relative dominance is found in social primates, which can have highly complex 

ranking systems. In these systems, an individual will win more social interactions 

when in the presence of a high-status family member than it would when their 

relatives are not present (Kawai 1958). These populations thus incorporate social 

information such as kin relationships into the ranking system. 

 

1.2 Animal Territoriality 

In this thesis, I expand upon the idea of relative social hierarchies by analyzing the 

dominance behavior of a territorial species. Although territorial behavior has been 

studied since its initial observation in the 1920’s (Howard 1920), there is no one 

standard definition of territoriality. How this term is used and the behavioral and 

ecological factors associated with it vary widely, often depending on the taxa being 

studied. There are three main definitions, as reviewed by Maher and Lott (1995). In 

the first, a territory is defined as a fixed area (Brown and Orians 1970) that the 
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owner protects from competitors. In most species, animals only defend against 

members of their same sex (Maher 2004, Pierro et al. 2008), allowing intraspecific 

overlap of territories for mating purposes. Often these challenges are limited to 

behavioral displays (Ficken 1962, Price et al. 1990) and self-advertisement (Wolff et 

al. 2002), although if the intruder does not back down they may escalate to fights. 

The second definition describes a territory as an area over which an animal has 

exclusive use. The threshold value of home range overlap permissible for an area to 

be considered a territory varies greatly by species. In this definition, all that matters 

is that the owner has exclusive use of the space, without regards to how it obtained 

this use (Pitelka 1959). The final definition of territory is characterized by site-

specific dominance, in which an individual has priority access to a set of resources in 

a specific space (Kaufmann 1983). Many scientists also combine these definitions, 

requiring two or even three of the criteria for an area of home range to be considered 

a territory. For example, Brown and Orians (1970) required an individual’s defense of 

an area to lead to its exclusive use of that area before it can be called a territory. 

Still others see territoriality as a continuum, with exclusive, defended territories on 

one end of the spectrum and overlapping, undefended home ranges on the other 

(Maher and Lott 1995). 

Territoriality has evolved in a wide variety of species, for there are many different 

situations in which this method of resource allocation is selectively advantageous. For 

example, territoriality often exists in populations that contain feasibly defensible 

resources that limit population growth (Brown 1969). This is an economic model, in 

which we assume that the energetic costs of establishing and defending a territory 

are outweighed by the fitness benefits of having exclusive access to the resources 

within this territory. For a resource to be economically defensible, it must satisfy two 

criteria. First, it must be predictable, for there is a large amount of risk associated 

with defending a resource that may or may not be there later (Orians 1961). Second, 

it must also be unevenly distributed to justify the cost of defense (Magnunson 1962). 

The limiting resources worth defending can generally be categorized as food, habitat 
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features, mates, and refuges/home sites. The distribution, availability, and 

importance of each of these resources vary across habitats; thus they can each affect 

different species in a variety of ways. Territoriality can also evolve as a response to 

population density. Maher and Lott (2000) proposed a U-shaped curve to explain 

this relationship. They claim that territoriality is not advantageous in populations 

with either low or high densities, for at low densities there are simply no conspecifics 

to defend against and at extremely high densities large intruder pressure makes it 

energetically unfeasible to keep competitors out. Thus they argue that it is only in 

populations between these two extremes that territoriality exists. Indeed, when 

anisopteran dragonflies (Aeschna cyanea) live at relatively high densities, males 

exhibit territoriality, while at lower densities males are nomadic (Poethke and Kaiser 

1987). Additional factors such as predation pressure (Candolin and Voigt 2001) and 

energy availability (Ewald and Carpenter 1978) have also been related to territorial 

behavior. 

 

1.3 Dominance Behavior and Territoriality of Anolis 

Lizards 

One of the major goals of this thesis was to explore the relationship between 

territoriality and dominance behavior in anole lizards (genus Anolis). With over 400 

species, this is one of the largest genera of vertebrates (Losos 2009). Generally, these 

lizards are relatively small (body length < 135mm, Case 1978), arboreal, and 

insectivorous. Males and females are sexually dimorphic, where males are usually 

larger and heavier than females (Jenssen et al. 1995). Males (and to a lesser degree, 

females) have a brightly colored throat fan called a dewlap that they use in both 

sexual and aggressive displays. Anoles are particularly well-suited for the present 

study due to their system of social organization. Generally, both males and females 

are territorial. However, in particularly dense populations (most notably those in 
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sustained in captivity), some species of this genus will switch to a linear dominance 

hierarchy system (Stamps 1977). Thus the same lizards may experience populations 

organized according to both territorial and dominance systems, making it possible to 

do comparative studies between the two systems.  

Within the genus Anolis, territory is generally defined as maintaining a defended 

area (Stamps 1977). With the exception of three species (A. agassizi, A. 

tropidolepsis, and A. taylori), all anole species are territorial under this definition 

(Losos 2009). There is a large amount of variation in territory sizes (Schoener and 

Schoener 1982) and degrees to which conspecific territories overlap (Losos 2009, 

Johnson et al. 2010), although the amount of overlap is similar within a habitat 

(Johnson et al. 2010). Males typically defend all of the area they occupy, thus 

territory and home range size are roughly equivalent in anoles (Stamps 1977).  

In many anole species, both males and females are territorial (Stamps 1973, 

Jenssen 1970), although males usually have larger territories than females (Schoener 

and Schoener 1982). The primary purpose of male territoriality in this genus is mate 

acquisition (Stamps 1977, Losos 2009) for males with more females on their territory 

exhibit higher reproductive success (Ruby 1984) and male territory size is often 

larger than necessary for food acquisition (Andrews 1971, Schoener and Schoener 

1982). Generally, males defend their territory against perceived competitors, and are 

often intolerant of conspecific males intruding on their territory. However, small 

juvenile males may occupy the territory of established adult males, either because 

they are mistaken for females (Trivers 1976) or because the territory holder does not 

view them as a threat. These covert males generally try to remain inconspicuous and 

rarely display (Fleishman 1988, Orrell and Jenssen 2003). Males do not defend 

against females and rarely show them aggression (Stamps 1977), while females will 

challenge all intruding conspecifics of similar size, including other females and both 

territory-holding and juvenile males (Losos 2009). Female territory defense revolves 

around protecting food supplies and includes dewlap extensions and/or push-up 

displays, although they rarely escalate to fights (Jenssen et al. 2000). This defense is 
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also only effective over short distances when compared to males and does not include 

assertion displays. 

Most anoles show similar patterns of territory defense, despite minor variations 

between species (Losos 2009). There are two broad categories of anole territory 

defense: assertion displays and responses to challengers. Assertion displays are 

spontaneous displays, usually head-bobs, push-ups and dewlap extensions, given by 

an animal as it moves through its territory to declare the owner's presence and to 

warn any competitors that may be watching (Carpenter 1967, Jenssen 1977). These 

displays are highly stereotyped, species-specific, and heritable (Jenssen 1977). During 

the breeding season, males generally have high rates of such displays, sometimes 

devoting the majority of their time to them (Losos 2009). But when a competitor is 

not deterred by advertising displays and instead challenges the territory holder, the 

lizards will engage in a series of aggressive displays of increasing intensity (Greenberg 

and Noble 1944). They begin by performing head-bobs, push-ups, and dewlap 

extensions (which are also used in courtship). Some species also perform additional 

agonistic displays; for example, male green anoles (Anolis caroliensis) will also 

develop dark spots behind their eyes (called eyespots) and erect a dorsal crest to 

signal aggression. If neither backs down, the opponents flatten themselves dorsal-

ventrally to appear larger and more intimidating (Greenberg and Noble 1944) and 

begin circling each other in the ``face off" position. They will circle closer and closer 

until they lock jaws, after which they each attempt to throw their opponent off of 

the perch. Lock jawed fights are relatively rare in the wild, as the majority of 

aggressive interactions between male anoles are resolved without the use of physical 

contact (Lailvaux et al. 2004).  As in most species, most anoles win the majority of 

encounters on their own territory (Evans 1936).  

A variety of experimental techniques have been used to study dominance 

relationships and the traits that determine them in anoles. The most common is the 

use of arena trials (e.g., Lailvaux et al. 2004). These staged confrontations involve 

placing two anoles into a cage and observing the outcome of the subsequent 
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aggressive interaction. By observing the behavior, morphology, and physical abilities 

of the competitors, experimenters can determine the individual qualities that 

determine which lizards will win or lose. Another approach is to maintain captive 

groups of anoles at high population densities and observe the resulting dominance 

hierarchy that forms (e.g., Stamps 1984). In such situations the lizards use their 

display and fighting abilities to establish their social rank, then distribute food and 

mating opportunities throughout the population accordingly. This gives 

experimenters a continuum of dominant-submissive relationships that can be used to 

identify the traits most closely related to social status. Still more scientists use field 

studies, observing the natural dominance interactions associated with territory 

defense and attempting to distinguish between characteristics of the winners and 

losers (e.g., Schoener and Schoener 1982). 

Although there is still no definitive consensus on which traits predict social 

dominance in anoles, patterns are emerging from the results of dominance studies. 

Morphological traits directly related to fighting ability, such as body size (Tokarz 

1985, Losos 2009) and head size (which is related to bite force, Perry et al. 2004, 

Henningsen and Irschick 2012), are often identified as important predictors of 

dominance interactions. Additionally, performance-based traits such as locomotor 

ability (Perry et al. 2004) and jumping velocity (Lailvaux et al. 2004) are often 

heightened in more dominant animals. The importance of signals such as dewlap 

morphology and tail length are still poorly understood, although dewlap length is 

related to bite force in some Anolis species (Vanhooydonck et al. 2005) and tail 

length is a status signal in other iguanids (Fox et al. 1990). In green anoles, rapid 

eyespot development is one of the most reliable visual signals in predicting winners of 

agonistic encounters. Eyespot darkening is directly related to the aggression-inducing 

hormone seratraline (Larson and Summers 2001), thus individuals that develop 

eyespots more rapidly are more likely to win aggressive interactions. However, none 

of these traits have proven to be predictive in every instance, indicating that there is 

still more to learn about dominance signaling in anoles. 



 83 

 

1.4 Goals of Current Study 

In this study, I investigated the relationship between dominance and territorial 

behavior in the green anole. Dominance and territoriality have traditionally been 

treated as mutually exclusive methods of social organization, yet as described above, 

both of these systems are present within green anole populations. Although both 

types of organization have been extensively studied in this system, the two have 

never been directly compared. Both are methods of allocating resources based on 

some kind of rank (i.e., absolute vs relative), yet these ranks are established and the 

relationships stabilized in very different manners. Do these two means of organizing 

the population utilize different types of information about competitors while arriving 

at the same outcomes? Or do the systems favor individuals with different traits, thus 

creating completely independent ranks? In this thesis, I designed three studies to 

address these questions. 

First, I sought to determine the traits that predict dominance in the green anole. 

To this end, I conducted a series of arena trials using 18 adult male green anoles and 

used a collection of ranking algorithms to rank each individual based on its resulting 

win-loss-tie record. I then performed a series of multilinear regressions to compare 

these ranks to various morphological and behavioral traits to determine the traits 

that best predicted dominance. In the second study, I conducted a parallel 

investigation in a natural setting to determine the traits that best predicted territory 

size and the extent of male overlap with female territories. I marked 24 adult male 

green anoles within a 1000 m2 study plot in Palmetto State Park, Gonzales, Texas 

and performed behavioral observations on these individuals over the next three 

weeks. I then used a set of multilinear regressions to determine which morphological 

and behavioral variables were associated with the two measures of territorial success 

(size and female overlap). Finally, I designed an experiment to directly compare 

territory size and dominance. In each of two replicate trials, I ran ten adult male 
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green anoles through an arena trial tournament and ranked them as in the first 

experiment. I then placed these males into an artificial enclosure, measured the sizes 

of the territories the males established over the next week, and compared these 

measures to the males' ranks. Overall, I predicted that the same traits would predict 

territory size, overlap with female territories, and dominance in green anoles. I also 

expected these measures to be related at least in part to body size, which is generally 

associated to both dominance and territorial success in anoles (Losos 2009). 

Additionally, I predicted that these measures would be complementary, thus highly-

ranked lizards in the dominance trials would in turn establish larger territories in the 

enclosure. 

 

 

2 Materials and Methods 

2.1 Study 1: Arena Trial Tournament 

2.1.1 Collecting and Housing Lizards 

Twenty adult male green anoles (Anolis carolinensis) were caught by hand or noose 

in and around San Antonio in summer 2012. Seventeen of the lizards were caught in 

early June and had their body size and mass measured at three day intervals for 

forty days as a part of a different experiment. The remaining three lizards were 

captured at the end of July, however there was no significant difference between any 

morphological or behavioral traits between the two groups (results not shown). All 

lizards were housed at Trinity University following standard procedures (Sanger et 

al. 2008).  In brief, each lizard was individually housed in a standard rodent cage of 

dimensions 20 x 21 x 27 cm, with each cage containing a wooden perch and a small 

lemon grass plant (Cymbopogon spp.) to maintain the humidity within the cage. I 

covered the floor of each cage with cage carpet (r’zilla), and heated cages using a full 
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spectrum UV and heat lamp (Flunker’s Sun Spot) on a 12:12 light cycle to maintain 

the temperature and humidity between 25.4-38°C and 37-80%, respectively. I misted 

lizards daily and fed them two crickets every other day. Cages were separated by 

wooden dividers to prevent the lizards from visually interacting with each other 

before the trials. 

 

2.1.2 Arena Trials 

I designed a tournament of paired arena trials to allow each lizard to compete in one 

trial each day for six consecutive days. The resulting tournament network had a 

diameter of two, thus at the end of the six days every lizard i had either played 

lizard j or had played another lizard who played lizard j. I randomly assigned the 20 

male lizards identification numbers between 1 and 20 and marked each individual 

with permanent marker, indicating numbers on their sides to allow identification 

during the arena trials.  

Before each trial, I placed the two lizards under opaque plastic containers (5 x 10 

x 7 cm) positioned on opposite sides of a mesh cage (63 x 39 x 37 cm).  I positioned 

a single wooden perch between the two containers following standard procedures for 

anole dominance trials (Garland et al. 1990, Perry et al. 2004), for anoles are 

arboreal and being higher on a perch than an opponent signals dominance. After a 10 

min acclimation period, we lifted the containers and the 10 min trial began. Two 

experimenters observed the lizards (with each experimenter recording information for 

a single lizard) from behind a blind 5 m away from the cage. Experimenters recorded 

the number of pushups and dewlap extensions performed, the time at which an 

eyespot developed, whether a crest appeared, the latency until the first dewlap or 

pushup display, and the time at which the lizard climbed onto the perch. After each 

trial, the experimenters determined the winner (i.e., the more dominant animal, 

described below) and recorded the time the individual definitively established 

dominance (time to resolution). In most cases, this was the time the dominant lizard 
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took the perch. I determined the lizard to be the winner if it monopolized the perch, 

was higher on the perch than the other lizard at the end of the trial, or if the other 

lizard clearly showed submissive behavior, such as running away or attempting to 

hide. If the lizards were at the same height on the perch at the end of the trial, did 

not interact, or attempted to lock jaws, I called the trial a tie. When the lizards tried 

to lock jaws, the trial was immediately stopped and the lizards separated. In the 

event of a tie, the length of the trial was recorded as the time to resolution, while for 

trials with locked jaws, the time to biting was used as the time to resolution. After 

the trials each day, I returned the anoles to their cages and gave them food and 

water. Over the course of the tournament, two anoles died of natural causes, thus 

results from the trials in which they participated were not included in the ranking 

analysis. 

 

2.1.3 Morphological Measurements 

After the arena trial tournament was completed, I performed morphological 

measurements for each lizard. Snout-vent length (SVL) was measured from the vent 

to the tip of the snout to the nearest mm using a plastic ruler. Head length, head 

width, and dewlap length were all measured to the nearest 0.01 mm using digital 

calipers. Head length was measured as the distance from behind the ear opening to 

the tip of the snout. Head width was defined as the length of the widest part of the 

skull, measured at the anterior base of the cranium. Dewlap length was measured 

from the insertion point of the second ceratobranchial cartilage (the cartilage that 

lines the exterior of the extended dewlap) in the lower jaw to the distal end of the 

cartilage at the abdomen. The mass of each lizard was also measured with a 10 g 

Pesola scale to the nearest 0.1 g. Finally, tail length was measured from the vent to 

the tip of the tail to the nearest mm using a plastic ruler. 
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2.1.4 Calculating the Rankings 

I calculated ranks based on the win-loss-tie information from the arena trial 

tournament using the programs MATLAB R2012a (2012) and R (R Development 

Core Team 2011, Turner and Firth 2012). I used eight different ranking systems: 

Win Percent, PageRank, Oracle, Keener, Biased Voter, Colley, Massey, and Bradley-

Terry. While most of the ranks were calculated using standard parameters, the 

Oracle and Biased Voter systems required user-defined parameters. The Oracle 

system was calculated using an up weight of time to resolution and a down weight of 

the number of wins plus one (to make the value always positive), and the Biased 

Voter was calculated using p = 0.75. (For a detailed explanation of the theory and 

calculation of these ranks, see Chapter 2 of this thesis.)   

 

2.1.5 Data Analysis 

I used multilinear regression to determine the morphological and behavioral 

characteristics that best predicted individuals’ rank in multiple ranking systems. 

Because of the relatively large number of variables considered (11), and the relatively 

small number of lizards in the study (18), I used a series of Principal Component 

Analysis (PCA) in the program SPSS 21.0 (2012) to reduce the number of variables. 

The PCA included four correlated measures of behavioral data (rate of dewlap 

extensions, rate of pushup displays, time to eyespot development, and time of first 

display). Because it was not correlated to the other four behavioral measures,  the 

percentage of time an individual crested (crest) was included in our subsequent 

analyses on its own. The PCA produced one PC with an eigenvalue greater than one. 

This PC, called Behavior PC, loaded highly for all four of these behavioral variables 

(Table 3.1), and described 73% of the variation in the behavioral data. Additionally, 

because morphological variables were associated with overall body size, I conducted a 

regression with head length, head width, and mass against SVL. Standardized 

residuals from each regression were used in subsequent analyses. Dewlap length and 
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tail length did not correlate to SVL, and were thus included in the analysis without 

transformation. 

In this analysis, I tested for a linear relationship between the morphological 

and/or behavioral measurements and rank. Thus I performed a series of linear 

regressions in R comparing the different ranks to eight variables: SVL, relative head 

length, relative head width, relative mass, dewlap length, tail length, behavioral PC, 

and crest. For each ranking system, I performed linear regressions using all 

combinations of 1-7 variables to determine the combination of variables that 

maximized R2, the proportion of variance in ranking explained by behavior and 

morphology. For this analysis, I used adjusted R2 values, which correct for the 

artificial inflation in R2 caused by increasing the number of variables in a regression.  

I then compared the best models of each separate ranking system to determine which 

variables appeared most frequently. The variables that appear in the best models for 

multiple ranking systems are most likely to be important in determining lizard 

dominance in the arena trials. 

 

2.2 Study 2: Territory Size and Quality in the Wild 

2.2.1 Behavioral Observations 

To determine the territory sizes and behavioral profiles of a natural population of 

male green anoles, I established a plot of roughly 50 m x 50 m in Palmetto State 

Park, Gonzales, Texas in a seasonal swamp dominated mainly by dwarf palmettos 

(Sabal minor). Between May 29 and June 12, 2013, I caught 73 adult green anoles 

(33 males, 40 females) in the plot. Upon capture, each lizard had a bead tag with a 

unique color sewn into the muscles at the base of its tail using surgical wire (Fisher 

and Muth 1989). I then measured the SVL, mass, head length, head width, tail 

length, and dewlap length of all captured males as described above, and released the 

lizard at its site of capture. Females were bead-tagged and released at the site of 
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capture, without measuring morphological traits. After tagging an individual, I 

waited a minimum of 24 h before conducting behavioral observations on that lizard. 

Over the course of the three weeks, I performed 5-30 min focal behavioral 

observations (average = 24.2 min) on the tagged males between the hours of 900 and 

1700. During focal observations, I particularly focused on dewlap extensions and 

pushup displays, as well as any interactions with other lizards. I waited a minimum 

of 2 h after watching a lizard before performing another observation on that 

individual, up to a maximum of 3 h of observation per lizard. At the end of the data 

collection, all lizards with a combined total of at least 2 h of observation and those 

that were observed at least four times were included in the data analysis.  

 

2.2.2 Territory Measurements 

To estimate the territory location of each lizard (including both males and females), I 

established reference points throughout the study plot. Each time a tagged lizard was 

sighted, its location was determined by measuring (to the nearest cm) the distance 

from the lizard’s perch location to the closest reference point using measuring tape. I 

then measured the angle from north between the two points to the nearest degree 

using a compass. When I performed a behavioral observation of a lizard, I measured 

up to three perches utilized by the lizard during the observation. Males included in 

the analysis had a minimum of nine locations recorded (min = 9, max = 51, average 

= 24.9). Because one goal of this study was to estimate the number of females 

interacting with each male rather than to accurately measure female territory sizes, 

we used all females with at least one observation in analyses of female overlap.  

I then calculated each male’s territory size by first converting the location data 

into Cartesian (x,y) coordinates using basic trigonometry principles. I used these 

coordinates in the adehabitatHR package in R (Calenge 2006) to compute the 

minimum convex polygon (MCP), or total area, for each lizard. To further analyze 

male territory dynamics, I then designed code in R to calculate exclusive male 
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territory size using the vertices of the minimum convex polygon obtained in the 

previous analysis (exclusive area; code provided in Appendix A).  

I also calculated the number of females living within each male’s home range as a 

measure of territory quality. To achieve this, I first created polygons that 

represented the locations of each female territory. I performed MCP analysis on all 

females with more than five territory observations (the minimum needed for MCP 

estimation) to identify the vertices of polygons encompassing 95% of the territory 

observations. If a female had three or four observations, I used the polygon created 

by these points as its territory estimate. For those females with only one or two 

observations, I added ±0.05 to the observed point to generate enough points to 

create a polygon. I then created a code in R to count the number of female polygons 

that overlapped each male territory estimate (Appendix B).  

  

2.2.3 Data Analysis 

To identify the variables most predictive of territory size and female overlap in male 

green anoles, I performed a series of linear regressions with territory size or female 

overlap as the dependent variable and combinations of morphological and behavioral 

measures as independent variables. I first determined the relative sizes of mass, head 

length, and head height using regressions against SVL, as described above. Using the 

same linear regression procedure described above, I then determined the relationship 

between two measures of territory size (total area and exclusive area) and seven 

variables: relative head width, relative head length, relative mass, SVL, tail length, 

dewlap length, and overall display rate (the total combined rate of dewlap extensions 

and pushups). Finally, I used a Pearson correlation test to determine the relationship 

between the size of a male’s territory and the number of females that occurred within 

it. All analyses were performed using R. 
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2.3 Study 3: Enclosure Study with Arena Trial 

Tournament 

2.3.1 Collecting and Housing Lizards 

To determine the relationship between an individual’s social rank and its territory 

size, I conducted two enclosure studies with 10 males in each study. Thirty adult 

green anoles (20 males, 10 females) were caught on the campus of Trinity University 

in June 2013. For approximately three weeks, these lizards were housed at Trinity 

University as described above. Arena trials began after the lizards had been in 

captivity for approximately one week. 

 

2.3.2 Arena Trials 

For each enclosure study, 10 male anoles were run through a tournament of arena 

trials, as described above. Again, these tournaments were designed so that each 

lizard i either played lizard j or it played another individual who played lizard j. The 

same 8 ranks were calculated in MATLAB and R based on the tournament’s 

resulting win-loss-tie information. Additionally, we repeated the data analysis from 

the first arena trial tournament for each arena trial tournament in this study to 

validate the results of the first study. However, due to the small sample size of 10 

individuals in each round, we limited the maximum number of predictive variables to 

three in the linear regression analyses.  

 

2.3.3 Enclosure 

After the completion of the arena trials, lizards were placed in an artificial enclosure 

and allowed to establish territories to permit a comparison between an individual’s 

social rank and its territory size. The territory enclosure was a 15 x15 x 5 ft 
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structure built using 1’ PVC pipe (Figure 3.1a), where all PVC joints of the frame 

were glued to add additional stability. The structure was enclosed using translucent 

screen door mesh (Costdot Mesh Fiberglass, Milpitas, California USA) along the 

perimeter and opaque screed door mesh (Phifer Black Pet Screen, Tuscaloosa, 

Alabama USA) on the roof. Seems were either sewn together with fishing line or 

stapled, and were reinforced on both the interior and exterior using duct tape. To 

prevent lizards from escaping under the mesh along the perimeter, bricks were 

stacked along the bottom of the mesh and covered with topsoil and mulch. Twenty-

two potted plants of varying size and species were placed in clusters around the 

interior of the enclosure to provide habitat (Figure 3.1b). A brick structure 

approximately 3 x 3 x 0.5 ft was built in the middle of the enclosure to provide 

lizards with additional shelter and shade (Figure 1b). Ten adult female anoles were 

introduced to the enclosure to make the social dynamics of the enclosure more 

natural for the males. No territory data were recorded for the females, and they were 

not given permanent identification tags.  The same females were used for both of the 

two enclosure trials 

For each of the two enclosure studies, the 10 males used in the arena trial 

tournament were placed in the enclosure. Immediately before introducing the lizards 

to the enclosure, each male was given a unique bead tag as described above. I then 

released all 10 males and 10 females in the center of the enclosure simultaneously. 

Beginning the next day, I collected male territory measurements three times a day 

(900, 1300, and 1800) by recording each lizard’s position on a map of the enclosure, 

drawn to scale. Data were collected for one week. Lizard territories were generally in 

flux over the first two days, thus I only used the last five days of data to calculate 

territory size. In the enclosure, lizards were misted daily and fed roughly two crickets 

every other day.  

We used the five days of territory measurements to calculate each lizard’s total 

and exclusive area as described above. To determine the relationship between the 

two measures of territory size in the enclosure and the ranks calculated in the arena 
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trial tournament, we performed a series of Spearman correlation tests comparing 

each of the 8 ranks to total area and exclusive area. Due to the small sample size, 

Spearman correlation tests were more appropriate here because they do not assume a 

linear relationship between variables as Pearson correlations do. I also performed 

linear regressions comparing total and exclusive territory size to the same seven 

variables used in Study 2 for each set of enclosure territories to validate the results of 

the second study. As above, I limited the maximum number of predictive variables to 

three. 

 

3 Results 

3.1 Study 1: Arena Trial Tournament 

All eight ranking systems were predicted by at least one of the two measures of 

behavior (behavior PC or crest; Table 3.2). In fact, the most successful trait 

combinations of all eight ranks included the behavior PC variable and six ranks 

included cresting behavior. Additionally, seven of the systems were predicted by 

some measure of head size, either relative head length or relative head width (Table 

3.2). No other trait was predictive of more than half of the ranks, and body size 

(either relative mass or SVL) was not significant in any ranking system. Thus 

aggressive behavior and head size are the traits that are most closely related to 

aggressive ability in this tournament of anoles.  

 

3.2 Study 2: Territory Size and Quality in the Wild 

There was a high degree of territory overlap in male Anolis carolinensis territories (n 

= 24), with 79.2% of males overlapping at least three other male territories, 33.3% 

overlapping at least five neighboring territories, and 8.33% overlapping at least seven 
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other territories (Figure 3.2). All males overlapped at least one female (min = 1, max 

= 10, average = 5.2). Total male territory size was correlated with the number of 

female territories overlapped (r = 0.69, p = 0.00017), however exclusive territory size 

was not (r = 0.32, p = 0.13). Thus, generally, males with larger overall territories 

overlapped more female home ranges. 

Total male territory size was positively associated with SVL, dewlap length, and 

relative head length (R2 = 0.26, p = 0.031, Table 3.3).  Exclusive territory size was 

also predicted by a measure of body size (relative mass) and head size (relative head 

width), however this result was not significant (R2 = 0.099, p = 0.13).  The number 

of females overlapped was significantly predicted by relative head length (R2 = 0.29, 

p = 0.0038). Therefore in contrast to the results from the arena trial tournament in 

Study 1, in this population, body size, head size, and dewlap length (but not 

aggressive behavior) were the traits most closely related to territory size, and head 

size was most related to territory quality (i.e., female overlap). 

 

3.3 Study 3: Enclosure Study with Arena Trial 

Tournament 

The territories of males in both rounds of the enclosure study were mapped using 

minimum convex polygons (MCP; Rose 1982; Round 1: Figure 3.3A, Round 2: Figure 

3.3B). When territory estimates were compared to the results of the arena trial 

tournaments, there was no clear relationship between an individual’s rank and its 

territory size (Table 3.4). There were no significant relationships between any of the 

ranking systems and either total or exclusive territory size in Round 1(all p > 0.05), 

and in Round 2 the only significant relationship was between the Oracle rank and 

exclusive territory size (r = -0.71, p = 0.023). Round 2 also contained two marginally 

significant correlations between rank and exclusive territory size (Win Percent: r = -

0.56, p = 0.090; Massey: r = -0.56, p = 0.093). Thus in Round 2, lizards with larger 
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Oracle, Win Percent, and Massey ranks (i.e., less dominant lizards) had smaller 

exclusive territories. Although more dominant lizards did not necessarily have larger 

territories (as was originally predicted), they did exclusively control larger areas. 

In the linear regressions using the Round 1 arena trial tournament results, the 

behavior PC, crest, and relative mass terms were predictive of the highest number of 

ranks, and the regressions were significant for all eight ranks (all p < 0.01, Table 3.5). 

Conversely, in the second round, SVL and relative mass were the most predictive 

traits, although six of the regressions were not significant. The two ranks with 

significant results (PageRank: p = 0.041, Keener: p = 0.040) were best predicted by 

SVL, dewlap length, and head length. 

The final linear regression analysis examined the relationship between animal’s 

territory sizes established in the enclosure and various morphological and behavioral 

traits (Table 3.5). In the first round, total territory size was significantly predicted 

by relative mass, SVL, and total display rate (p = 0.0008). Exclusive territory size 

was most closely associated with tail length, dewlap length, and total display rate in 

this round, however this regression was not significant (p = 0.13). In Round 2, the 

best regression for total territory size included the relative mass and dewlap length 

terms (p = 0.0032; Table 3.5), while those for exclusive territory size included SVL 

(p = 0.0008; Table 3.5).  

Finally, I compared the body sizes of the males in both rounds of the enclosure 

study (Study 3) to those in the population in Study 1 (arena trial, Table 3.6). The 

range of SVL observed in Round 1 (Study 3) of the enclosure studies and relative 

masses observed in Study 1 were lower than those in either of the two other 

populations. Additionally, the standard deviations of both SVL and relative mass in 

the Study 1 males were lower than those in Round 1 and Round 2 (Study 3). 
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4 Discussion 

The overall goal of this study was to determine the relationship between rank in a 

dominance hierarchy and territoriality. I originally hypothesized that rank and 

territorial success to be complementary, thus lizards of higher rank would have larger 

total territory sizes, larger exclusive areas of territory, and territories that overlapped 

more females. I also anticipated that the morphological traits that were related to 

success in territoriality would predict all three measures of social status (rank, 

territory size, and female overlap), and that all three measures would be related to 

body size.  I found that head length, a visual signal associated with bite force 

(Vahooydonck et al. 2005), was the only trait to be predictive of territory size, 

female overlap, and social rank.  Other traits, such as body size and dewlap length, 

were predictive of both territory size and rank, however rank and territory size were 

not correlated, indicating that these relationships are maintained through different 

mechanisms.   

4.1 Predictors of social rank 

This study suggests that the traits most closely related to social rank are body size, 

aggressive behavior, head size, and dewlap size. The notion that larger males often 

win aggressive interactions is well documented in anoles (Stamps 1984, Tokarz 1985, 

Losos 2009), however these results indicate that the system is more nuanced. 

Although snout-vent length (SVL) and body mass were highly predictive of rank in 

both enclosure studies, neither was included in the best regressions in the first arena 

trial study. I suggest that body size only appeared in the two enclosure populations 

due to differences in variance in SVL and mass observed in each population. In the 

first round of the enclosure study, when the standard deviation in SVL was 33% 

higher than it was in the first arena trial population, SVL was predictive of rank. 

Similarly, in the second round of the enclosure study, the variance in relative mass 

was four times higher than it was in first arena trial population, and relative mass 
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was predictive of rank. This suggests that anoles first consider their opponents based 

on body size. If the opponents are roughly the same size, as was observed in the first 

arena trial population, the males then use aggressive behavior as a primary criteria 

for determining dominance. Indeed, aggressive behavior is a logical next choice, for 

male green anoles that form eyespots more quickly (Larson and Summers 2001) and 

perform more displays are more likely to attack. If, however, there is a significant 

disparity between competitor’s body sizes, the larger individual will win. This has 

been recorded in individual arena trial results, for many studies have found that 

significantly larger males often win arena trials (e.g., Tokarz 1985).  However, the 

effect of body size discrepancies on dominance behavior has never been recorded at 

the population level. 

This transition from body size to aggressive behavior as the primary determinant 

of dominance could result in interesting patterns in anole populations over the course 

of the breeding season. At the beginning of the breeding season, the population 

consists of adults and young males (i.e., last year’s juveniles), thus there will be 

many different body sizes observed in the population. However, younger lizards grow 

more quickly than their older counterparts (Shine and Charnov 1992), so this 

variation will decrease across the season. Therefore we would expect social rank at 

the beginning of the season to be determined by body size, while at the end of the 

season it is more likely predicted by aggressive behavior.  This potential shift in the 

criteria of dominance within the population is similar to the age-specific forced 

polymorphism proposed by Lailvaux et al. (2004). They observed two different 

morphs among adult male green anoles (lightweight and heavyweight) that select for 

different traits within two distinct ranges of body size. They did not discuss how 

these light- and heavyweight morphs interact, or their effect on the dominance 

structure of the population as a whole. Further studies of temporal variation in 

dominance behavior of anoles could reveal more about the development and 

maintenance of these morphs and their function within the population. 
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Another trait to consistently reflect social rank in the arena trial experiments was 

head size. Lizards with wider, longer, and/or taller heads are able to generate more 

force when they bite in agonistic interactions (Herrel et al. 2001, Huyghe et al 2005). 

As such, both bite force (Perry et al. 2004, Henningsen and Irschick 2012) and head 

size (Perry et al. 2004) are often identified as important predictors of dominance in 

anoles. Anole fights consist of “locking jaws,” where the two individuals bite each 

other’s jaws and attempt to throw their opponents off their perch.  Biting harder will 

cause more damage to the opponent, increasing the individual’s chance of winning 

the altercation (Husak et al. 2006). In this study, two different measures of head size 

were identified as important, relative head length and relative head width. Head 

width is often cited as being the important biomechanical driver of bite force in 

anoles (Vahooydonck et al. 2005), for a wider head increases the force the lizard can 

generate as it clamps down (Herrel et al. 2001). However, in fights anoles align their 

bodies horizontally, thus they are only able to see the length of their opponent’s head 

rather than its width. Head length and width are highly correlated in the present 

study (r = 0.625, p = 0.0056), thus head length may be the visual signal associated 

with bite force while head width is the actual mechanism that drives its role in 

fighting ability. 

The final trait related to rank in the arena trial tournaments was dewlap size. 

Dewlaps are an important visual signal in anoles and are part of a wide variety of 

signals to competitors, potential mates, and predators. Yet the function of dewlap 

displays in agonistic interactions is still largely unknown. Studies have found that 

dewlap size positively correlates to bite force in some Anolis species (Hennignsen and 

Irschick 2012); however these results are not consistent among all species 

(Vanhooydonck et al. 2005). Additionally, experimentally reducing dewlap size or 

extension rate does not change the outcomes of paired agonistic interactions (Tokarz 

et al. 2003, Hennignsen and Irschick 2012). In the present study, dewlap length was 

only significant in one round (Round 2) of the enclosure study. This implies that it 
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either is only relevant to dominance interactions in specific situations, or it appeared 

by chance. The Round 2 animals did not have a greater range or standard deviation 

in dewlap sizes than the other two populations, indicating that the relationship 

between dewlap size and rank in this population was not driven by increased 

variation of the trait as was observed with body size.  

 

4.2 Predictors of Territory Size 

In this study, I measured three different metrics of territorial success: total territory 

size, exclusive territory size, and the number of female territories overlapped. I 

expected these measures to provide different information about territory acquisition 

and quality in anoles. Total territory size corresponds to the size of the area defended 

by the individual, and thus is the traditional definition of territory in anoles (Stamps 

1977). However, I reasoned that this may not be the best metric of social status in 

anoles, as there may be variations in territory quality or individuals’ defensive 

abilities that convey fitness benefits as well. Thus I also calculated exclusive territory 

size, or the area that an individual successfully protected from conspecifics. I 

hypothesized that this measure would be more closely related to rank than total 

territory size, for it would highlight animals with more successful territorial defense. 

Additionally, I measured the number of female territories overlapped by each male 

territory as a measure of male territory quality, for access to females directly relates 

to reproductive success in anoles (Ruby 1984).  

In line with my predictions, total territory size was predicted by a similar set of 

traits as social rank, for body size, head length, and dewlap length were related to 

territory size in both Study 2 and Study 3. However, female overlap was only 

predicted by head length. Therefore although total territory size and female overlap 

are closely related (above results, Johnson et al. 2010), the discrepancy between 

predictive variables indicates that they are not equivalent measures of territorial 
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success. Exclusive territory size was only successfully predicted by the measured 

traits in Round 2 of the enclosure study, where it was related to body size. 

Body size was the variable most consistently related to both total and exclusive 

territory size. Although the direct correlation between body size and territory size 

has been observed in interspecific comparisons between Anolis species (Losos 2009) 

and in other taxa including birds (Butchart et al. 1999) and fish (Keeley 2000), it 

has mixed support when viewed within an anole species (Schoener and Schoener 

1982). Larger individuals will have greater energetic demands than smaller 

individuals, so this relationship may simply be due to the increased food supply 

offered by a more expansive territory. However, as male territory size in anoles is 

almost always larger than required for caloric needs (Andrews 1971, Schoener and 

Schoener 1982), this explanation alone is unlikely. Another potential justification 

relates anoles’ size to their age. Iguanids experience indeterminate growth, so a 

lizard’s size is closely related to its age (Shine and Charnov 1992). Larger individuals 

in anole populations will be older than smaller individuals, indicating that they have 

had more time to accumulate territory or have more experience establishing and 

defending territories than their younger conspecifics. This has been observed in the 

coot Fulica atra, where individuals that are older than their neighbors hold larger 

territories (Cavé et al. 1989).  

Although the relationships between body size and both energetic demands and 

age are plausible explanations for the direct connection between body size and 

territory size, the most intuitive explanation is that larger lizards are more dominant 

and thus are able to establish and defend larger territories. Indeed, in the arena trial 

experiments, size was an important component of social dominance. However, the 

results of Study 3 indicate that social rank and total territory size are not necessarily 

related. This could mean one of three things. It could be that interactions between 

conspecifics are not the major factors limiting territory expansions in the green anole. 

There is evidence to indicate food availability affects optimal territory size and shape 

in other taxa, for animals will often decrease their territory size in response to 



 101 

increased food abundance (Adams 2001). However, other studies suggest that this 

may in fact be an indirect consequence of the increased conspecific overlap caused by 

the resource boom (Myers et al. 1979). Another possible explanation for this 

disparity between total territory size and social rank is that more dominant animals 

may not necessarily seek larger territories. As I have previously discussed, the 

number of females overlapped is the most useful predictor of territory quality in 

anoles. Female territory size and location are primarily dependent on food 

availability and nesting sites (Jenssen et al. 2001), so females are likely to clump 

around resource-rich locations. Therefore it is conceivable that males that hold such 

territories will have high densities of females in a relatively small area, while males 

that do not hold resource rich areas expand their territories to overlap more females.  

Finally, the lack of correlation between rank and territory size could be an artifact of 

the study itself.  The lizards may have experienced stress from their captivity that 

prevented them from behaving normally, or they may have experienced constraints 

in space, density, habitat type, solar radiation, etc. that caused them to not establish 

territories in an optimal manner.  Although I took care to set up this experiment in 

the most natural manner possible, behavioral results of captive animals must always 

be interpreted cautiously.   

While the Study 3 results suggested that social rank was not correlated to total 

territory size, they did potentially identify a weak relationship between exclusive 

territory size and rank. All three ranks with significant or marginally significant 

correlation values indicated that more dominant animals have higher exclusive 

territories, following the pattern I originally predicted. This relationship, in addition 

to the result that both exclusive territory size and rank were predicted by body size, 

suggest that larger, more dominant animals are better able to defend an exclusive 

territory from intruders.  Frequency of aggressive behavior observed in laboratory 

arena trials are closely related to the amount of assertion displays performed in the 

wild (Perry et al. 2004), thus the aggressive males identified in the ranking analysis 

likely perform more warning displays during territory defense and are more likely to 
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defeat challengers in agonistic interactions. While this makes intuitive sense, it was 

only observed in one of the three study populations. Thus more study is needed to 

confirm the nature of this relationship. Additionally, exclusive territory size was not 

related to the number of females overlapped (i.e., territory quality) in the field study, 

so this successful defense did not guarantee increased territory quality in this study.  

Both dewlap size and head length were the other traits related to territory size in 

this study. In the frequent assertion displays performed by green anoles in territory 

defense, dewlap displays are an important mechanism for attracting conspecifics’ 

attention. The bright red dewlap contrasts highly against the greens and browns of 

their forested habitat and thus makes it easier to see the displaying anole from 

farther away. Since larger dewlaps will be easier to see from a distance, perhaps they 

decrease the intruder pressure experienced by the individual and result in an 

increased territory size. Indeed, both lark bunting (Calamospiza melanocorys) and 

collared flycatcher (Ficedula albicollis) individuals with larger colored patches on 

their wings have fewer territorial intruders than birds with smaller ornaments 

(Chaine and Lyon 2008, Hegyi et al. 2008). This indicates that ornamentation does 

in fact play a role in maintaining territory size in other species. Similarly, head 

length is also a trait that can be seen from a distance and from a wide variety of 

angles. As previously discussed, I believe that head length is the visual signal 

associated with bite force, so individuals with larger heads are theoretically less likely 

to be challenged by conspecifics. This would allow them to expand their territories, 

resulting in larger total territory sizes.  

 Finally, female overlap, the third metric of territorial success, was only predicted 

by head length. Head length was an important predictor of dominance in populations 

with both high and low variance in body size, thus this study suggests that it is one 

of the best predictors of dominance. The observed relationship between head size and 

female overlap (the most important measure of territory quality in anoles) indicates 

that more dominant animals do indeed have higher quality territory, as would be 

expected. An alternative explanation could be that females preferentially choose to 
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live in territories held by males with larger heads due to their presumed elevated 

fighting ability. However, female mate choice is strongly disputed in lizards, with 

most studies indicating that food availability is more important to female territory 

locations than the males that reside there (reviewed in Tokarz (1995)).  

 

4.3 Summary 

Overall, the results of this study suggest that dominance trials of green anoles in the 

lab do indeed reflect aspects of the natural interactions of this territorial species, and 

that there is a relationship between rank in a linear hierarchy and territoriality.  I 

found that social rank, territory size, and territory quality were all predicted by the 

same trait (head size), and that rank and exclusive territory size were weakly 

correlated. Thus more dominant individuals do indeed reside on higher quality 

territories and more successfully defend their home ranges from intruders. The 

complimentary results observed between these lab and field studies suggest that both 

venues provide valuable information about natural dominance interactions in anoles. 

However, the complex nature of most of the relationships observed imply that 

multivariate analyses are needed when investigating dominance in the wild, for many 

behaviors are context-specific or only make sense when viewed in a larger ecological 

context. Additionally, the sometimes contradictory results obtained from different 

populations within this study further emphasize the necessity for replication in 

animal behavior experiments to completely understand the nuances within these 

complex social arenas.  
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Table 3.1: Component matrix for the principle component analysis performed on four 

correlated behavioral variables measured in a tournament of green anoles (Anolis 

carolinensis). 

 

 

 

 

 

 

 

 

  

Variable Loading Coefficient 

Dewlaps per min 0.911 

Pushups per min 0.907 

Time to first display -0.848 

Time to eyespot development -0.754 

Eigenvalue 2.94 

% Variation Explained 73.5 
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Table 3.2: Morphological and behavioral traits that best predict rank in a 

tournament of paired aggressive interactions between male green anoles (Anolis 

carolinensis).  

 

  

Ranking 

Systems 

Variable 
Adjusted 

R2 SVL 
Relative 

Mass 

Tail 

Length 

Dewlap 

Length 

Relative  

Head Length 

Relative 

Head Width 

Behavior 

PC 
Crest 

Win %     ●  ● ● 0.724*** 

Colley     ●  ● ● 0.753*** 

Massey   ● ●  ● ●  0.490* 

Bradley -Terry   ● ●  ● ●  0.495* 

PageRank   ● ● ●  ● ● 0.655** 

Oracle     ●  ● ● 0.796*** 

Biased Voter    ● ●  ● ● 0.563** 

Keener   ●    ● ● 0.411* 

***Indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. 
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Table 3.3: Morphological and behavioral traits that best predicted three territory 

metrics of 24 adult male green anoles (Anolis carolinensis).  

 

Territory 

Metric 

Variable 
Adjusted 

R2 
SVL 

Relative 

Mass 

Dewlap 

Length 

Tail 

Length 

Relative 

Head Length 

Relative 

Head Width 

Total Display 

Rate 

Total ●  ●  ●   0.255* 

Exclusive  ●    ●  0.099 

Female Overlap     ●   0.291* 

***Indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. 
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Table 3.4: Spearman correlation values comparing the rank and territory sizes of two 

replicate populations of green anoles (Anolis carolinensis). Each group was run 

through a series of paired aggressive interactions and ranked using eight ranking 

algorithms. These anoles were then placed in a 15 x 15 x 5ft enclosure, and the 

territories they established over the next week were measured. Total area represents 

the overall size of the individual’s home range, while exclusive area represents the 

amount of territory an individual occupied that did not overlap any conspecifics’ 

territories. 

 

Ranking 

Systems 

Spearman Correlation Values 

Round 1 Round 2 

Total Exclusive Total Exclusive 

Win % -0.567 -0.204 0.356 -0.563† 

Colley -0.236 -0.214 0.345 -0.541 

Massey -0.297 -0.202 0.248 -0.559† 

Bradley-Terry -0.188 -0.092 0.430 -0.413 

PageRank -0.394 -0.166 0.261 -0.255 

Oracle -0.200 -0.117 0.297 -0.705* 

Biased Voter -0.200 -0.166 0.345 -0.541 

Keener -0.406 -0.252 0.224 0.401 

* Indicates p < 0.05, and † indicates p < 0.1. 
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Table 3.5: The morphological and behavioral traits that best predicted both rank and 

territory size of two replicate populations (Round 1: ●, Round 2: □) of 10 adult male 

green anoles (Anolis carolinensis). The eight ranks were calculated using the win-loss-

tie results of a tournament of paired interactions, and the territory sizes measured 

after placing the anoles into a 15 x 15 x 5 ft for one week. In the Ranking System 

analysis (Study 1), the Behavior term refers to the behavior PC, while in the 

Territory Metric analysis (Study 2) it is the overall display rate (the total rate of 

dewlap and pushup displays). 

 

 

 

 

 

  

 

Variable Adjusted R2 

SVL Relative 

Mass 

Tail 

Length 

Dewlap 

Length 

Relative 

Head Length 

Relative 

Head Width 

Behavior Crest Round 1 

(●) 

Round 2 

(□) 

Ranking System 

Win % □ ●,□ □    ● ● 0.844** 0.528 

Colley □ ●,□ □    ● ● 0.931** 0.473 

Massey □ ●,□  □   ● ● 0.870** 0.399 

Bradley-Terry  ●     ●,□ ● 0.941*** 0.452 

PageRank ●,□  ● □   ●  0.832** 0.518* 

Oracle □ □ □    ● ● 0.861*** 0.534 

Biased Voter □ ●,□ □    ● ● 0.971*** 0.504 

Keener □ ●  ●,□ □  ●  0.857** 0.590* 

           

Territory Metric 

Total ● ●,□  □   ● --- 0.892*** 0.750** 

Exclusive □  ● ●   ● --- 0.381 0.743*** 

           

***Indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. 
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Table 3.6: A comparison between the body sizes of the populations of adult male 

green anoles (Anolis carolinensis) used in Study 1 and Study 3. Recall that relative 

mass measures are the residuals of a regression between mass and SVL, and thus do 

not have units.  By construction, the average relative mass for each population is 

equal to zero. 

 

 

 

 

 

 

 

 

 

 

 

  

  Study 1 Study 3 

   Round 1 Round 2 

SVL Average (mm) 62.6 65.6 65.1 

 Range (mm) 13.7 10.0 14.5 

 Standard Deviation 3.50 3.47 4.18 

     

Relative Mass Range 2.04 4.41 6.30 

 Standard Deviation 0.54 1.26 2.07 
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6 Figure Legends 

Figure 3.1: I constructed an artificial habitat enclosure using PVC pipe and mesh 

(A). Twenty Anolis carolinensis at a time (10 males, 10 females) were placed in the 

enclosure and allowed to establish territories. A brick structure and plants were 

included in the enclosure to provide habitat structure (B). 

 

Figure 3.2: The territories of 24 male Anolis carolinensis living in Palmetto State 

Park, Gonzales, Texas were mapped using minimum convex polygons between May 

29 and June 12, 2013. Each polygon represents the territory of a different lizard. 

 

Figure 3.3: Two populations of 10 male green anoles (Anolis carolinensis) were placed 

in a 15 x 15 x 5 ft enclosure and their territories were mapped using minimum 

convex polygon estimates. Each polygon represents the territory of a different lizard. 

Panel A represents the male territories from the first round of the enclosure study, 

while Panel B represents those from the second round.   
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Figure 3.1  

  

A 

B 

A 

B 
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Figure 3.2 
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Figure 3.3 
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6   Appendix A: Exclusive Area Code 

The following code was written in R (version 2.14.1) to calculate the area each male 

occupied exclusively, and to generate territory graphics (Figures 3.2 and 3.3). Initial 

input files were labeled “M1xx.txt”, and contained the XY coordinates of all sightings 

of individual with the two-digit ID number xx. The file was formatted: 

 Closest Reference Point | ID Number | X coordinate | Y coordinate 

Note that the data in the first two columns are not used in this code.  

This code uses the adehabitatHR (Calenge 2006), plyr (Wickham 2011), splancs 

(Rowlingson and Diggle 2013), and gpclib (Peng et al. 2012) packages. Each of the 

functions I created and their inputs are described below. Note that I distinguish 

between the Main Functions, which generate the output I then used in my analysis, 

and the Accessory Functions, which perform functions that allow the Main Functions 

to work. The “GraphingPolygons” function generated Figures 3.2 and 3.3, and the 

output of the “I_E_Formula” function was used as the exclusive territory measures in 

the above analysis. This “I_E_Formula” function is based on the inclusion-exclusion 

formula from probabilistic theory, which is used to compute the union of multiple 

overlapping sets.  

There are three pieces of user-defined information that must be changed before 

the code will work for a new data set: the highest ID number used in the analysis 

(m), the path to the directory in use (Folder), and the desired name of the output 

file generated by the “I_E_Formula” function (FinalFile). 

 

*Remark: The “Mine” function is modified from the “mcp” function in the 

adehabitatHR package. Because I truncated the code for the “mcp” function to only 

include the attributes I needed in this study, the “Mine”  function generates an 

output file of the correct MCP vertices, however it no longer functions correctly as 

the “mcp” function. Thus an error appears when the function is used in isolation. I 
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emphasize that this error does not affect the portion of the output used in this study, 

and does not detract from the validity of these results.   

 

 

##=============================================================## 

##=============================================================## 

##=========       Calculating Exclusive Area                ==========## 

##=============================================================## 

##=============================================================## 

##== Goal: To use the polygon coordinates given by a MCP output to calculate the        

##==           area of a lizard’s territory that the lizard exclusively inhabits, as well  

##==           as to graphically depict the lizard’s territory.         

##== 

##== Main Functions 

##== Polygon_Coords(): Outputs a text file “PolygonMxx.txt” for each individual that  

##==                 contains the vertices of the minimum convex polygon  

##==                 representing that lizard’s territory 

##== GraphingPolygons(): Graphs MCP polygon of all individuals in one plot; note that 

##==                  code contains multiple options to color the polygons; also  

##==                  note that the plot size has to be defined manually through 

##==                  the x0 and y0 variables 

##== I_E_Formula(): Returns a matrix containing the exclusive territory measures of  

##==              each individual  

##== 

##== Accessory Functions                  

##== Mine(table,name): Function I created by modifying the MCP function from the  

##==      adehabitatHR package; inputs are the “M1xx.txt” file and desired output file 

##==       name. The output file contains the coordinates of the vertices of the 

##==       MCP representing the individual’s territory  

##== ListOfPolygons(): Generates a list of all “PolygonMxx.txt” files in directory     

##== Polygon(n): Gives the polygon for individual (n) in a format the gpclib package can   

##==         use to calculate areas 

##== InPolygonSet(n): Determines if the polygon file of individual (n) is in the directory 

##== NIntersects(n): Calculates the number of territories the territory of individual (n) 

##==             overlaps 

##== TwoU2(n): Calculates the area of all intersections of lizard (n) and 1 other lizard    

##== ThreeU2(n): Calculates the area of all intersections of lizard (n) and 2 others      

##== FourU2(n): Calculates the area of all intersections of lizard (n) and 3 others       

##== FiveU2(n): Calculates the area of all intersections of lizard (n) and 4 others       

##==    (No lizards had 5 intersections or more)                            

##=============================================================## 

##== Created by: Jordan Bush                                                          Date: 09/05/2013  ==## 

##=============================================================## 

##=============================================================## 

 
library(adehabitatHR) 

library(plyr) 

library(splancs) 

library(gpclib) 
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### Things for user to change: 

 m=33 #Highest ID number, re-index to make them all in order 

 Folder = "C:\\Users\\Jordan\\Documents\\Research 2013\\Field Work\\Territory R Stuff Final" 

 FinalFile = "C:\\Users\\Jordan\\Documents\\Research 2013\\Field Work\\Territory R Stuff 

FINAL\\Excl_Territories.txt" 

### 

  

Location = paste(c(Folder, "\\"), collapse="") 

 

Mine <- function (xy, percent = 95, unin = c("m", "km"), unout = c("ha",  

  "km2", "m2"), name)  

{ 

  if (!inherits(xy, "SpatialPoints"))  

    stop("xy should be of class SpatialPoints") 

  if (ncol(coordinates(xy)) > 2)  

    stop("xy should be defined in two dimensions") 

  pfs <- proj4string(xy) 

  if (length(percent) > 1)  

    stop("only one value is required for percent") 

  if (percent > 100) { 

    warning("The MCP is estimated using all relocations (percent>100)") 

    percent <- 100 

  } 

  unin <- match.arg(unin) 

  unout <- match.arg(unout) 

  if (inherits(xy, "SpatialPointsDataFrame")) { 

    if (ncol(xy) != 1) { 

      warning("xy should contain only one column (the id of the animals), id ignored") 

      id <- factor(rep("a", nrow(as.data.frame(xy)))) 

    } 

    else { 

      id <- as.data.frame(xy)[, 1] 

    } 

  } 

  else { 

    id <- factor(rep("a", nrow(as.data.frame(xy)))) 

  } 

  if (percent > 100) { 

    warning("The MCP is estimated using all relocations (percent>100)") 

    percent <- 100 

  } 

  if (min(table(id)) < 5)  

    stop("At least 5 relocations are required to fit an home range") 

  id <- factor(id) 

  xy <- as.data.frame(coordinates(xy)) 

  r <- split(xy, id) 

  est.cdg <- function(xy) apply(xy, 2, mean) 

  cdg <- lapply(r, est.cdg) 

  levid <- levels(id) 

  res <- SpatialPolygons(lapply(1:length(r), function(i) { 

    k <- levid[i] 

    df.t <- r[[levid[i]]] 

    cdg.t <- cdg[[levid[i]]] 

    dist.cdg <- function(xyt) { 

      d <- sqrt(((xyt[1] - cdg.t[1])^2) + ((xyt[2] - cdg.t[2])^2)) 

      return(d) 

    } 

    di <- apply(df.t, 1, dist.cdg) 
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    key <- c(1:length(di)) 

    acons <- key[di <= quantile(di, percent/100)] 

    xy.t <- df.t[acons, ] 

    coords.t <- chull(xy.t[, 1], xy.t[, 2]) 

    xy.bord <- xy.t[coords.t, ] 

    xy.bord <- rbind(xy.bord[nrow(xy.bord), ], xy.bord) 

  #print(xy.bord) 

 write.table(xy.bord, name, sep="\t") 

    #cat("DONE\n") 

  #so <- Polygons(list(Polygon(as.matrix(xy.bord))), k) 

    #return(xy.bord) 

  })) } 

 

ListOfLizards<-function() 

{ 

 LizardList = c() 

 FileList = list.files(Folder) 

 for(i in 0:m){ 

  if(i < 10) Name = paste(c("M10", i, ".txt"), collapse="") 

  if (i >= 10) Name = paste(c("M1", i, ".txt"), collapse="") 

  for(j in 1:length(FileList)){ 

   File = as.character(FileList[j]) 

   if(File == Name) LizardList = c(LizardList, Name)}} 

 return(LizardList) 

} 

 

Polygon_Coords<-function() 

{ 

 dataTables = c() 

 for(i in 0:m){ 

  if(i < 10) Name = paste(c("M10", i, ".txt"), collapse="") 

  if (i >= 10) Name = paste(c("M1", i, ".txt"), collapse="") 

  dataTables = c(dataTables, Name)} 

 for(i in 0:m){ 

  if(length(grep(as.character(dataTables[i+1]), ListOfLizards())) > 0){ 

   Lizard = read.table(as.character(dataTables[i+1])) 

   Lizard = data.frame(Lizard[,3],Lizard[,4]) 

   Lizard = SpatialPoints(Lizard) 

   clu = clusthr(Lizard) 

   safef = failwith(NULL, Mine, quiet=TRUE) 

   name = c("Polygon", as.character(dataTables[i+1])) 

   name = paste(name, collapse="") 

   #cat(as.character(dataTables[i+1]), name, "\n") 

   DocName = paste(c(Location,name), collapse="") 

   LizardMCP = safef(Lizard, name=DocName)}} 

} 

 

ListOfPolygons<-function() 

{ 

 LizardList = c() 

 FileList = list.files(Folder) 

 for(i in 0:m){ 

  if(i < 10) Name = paste(c("PolygonM10", i, ".txt"), collapse="") 

  if (i >= 10) Name = paste(c("PolygonM1", i, ".txt"), collapse="") 

  for(j in 1:length(FileList)){ 

   File = as.character(FileList[j]) 

   if(File == Name) LizardList = c(LizardList, Name)}} 

 return(LizardList) 

} 
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GraphingPolygons<-function() 

{ 

 x0=c(20, -15) 

 y0=c(20, -5) 

 plot(x0,y0) 

 

 dataTables = c() 

 for(i in 0:m){ 

  if(i < 10) Name = paste(c("PolygonM10", i, ".txt"), collapse="") 

  if (i >= 10) Name = paste(c("PolygonM1", i, ".txt"), collapse="") 

  dataTables = c(dataTables, Name)} 

 

 Colors = as.list(c(rainbow(length(dataTables)))) 

 #Colors = as.list(c(heat.colors(m))) 

 #Colors = as.list(c(terrain.colors(m))) 

 #Colors = as.list(c(topo.colors(m))) 

 

 LizardName = c() 

 for(i in 0:m){ 

  if(i < 10) Name = paste(c("M10", i), collapse="") 

  if (i >= 10) Name = paste(c("M1", i), collapse="") 

  LizardName = c(LizardName, Name)} 

 

 for(i in 1:m){ 

  if(length(grep(as.character(dataTables[i]), ListOfPolygons())) > 0){  

   print(as.character(dataTables[i])) 

   LizName = as.character(dataTables[i]) 

   Data=read.table(as.character(LizName), header=TRUE) 

   x=Data[,1] 

   y=Data[,2] 

   #polygon(x, y, border="black") 

   polygon(x, y, border=as.character(Colors[i]))}} 

} 

 

 

Polygon<-function(n) 

{ 

 if(n < 10) Name = paste(c("PolygonM10", n, ".txt"), collapse="") 

 if (n >= 10) Name = paste(c("PolygonM1", n, ".txt"), collapse="") 

 if(length(grep(as.character(Name), ListOfPolygons())) > 0){ 

  Data = read.table(as.character(Name), header=TRUE) 

  x = Data[,1] 

  y = Data[,2] 

  m = cbind(x, y) 

  p = as(m, "gpc.poly")} 

 else p=0 

 return(p)  

} 

 

InPolygonSet <- function(n) 

{ 

 if(n < 10) Name = paste(c("PolygonM10", n, ".txt"), collapse="") 

 if (n >= 10) Name = paste(c("PolygonM1", n, ".txt"), collapse="") 

 if(length(grep(as.character(Name), ListOfPolygons())) > 0) return(TRUE) 

 else return(FALSE) 

} 

 

NIntersects <-function(n) 

{ 

 IntersectingPolygons = c() 
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 if(InPolygonSet(n) == TRUE){ 

  Poly1 = Polygon(n) 

  for(a in 0:m){ 

   if(InPolygonSet(a) == TRUE){ 

    Poly2 = Polygon(a) 

    if(area.poly(intersect(Poly1, Poly2)) > 0) IntersectingPolygons = 

c(IntersectingPolygons, a)}} 

  return(IntersectingPolygons)} 

 else return(0) 

} 

 

 

TwoU2 <-function(n) 

{ 

 if(InPolygonSet(n) == TRUE){ 

  intList = NIntersects(n) 

  Sum = 0 

  for(b in intList) {if(b != n) Sum = Sum + area.poly(intersect(Polygon(n), Polygon(b)))} 

  return(Sum)} 

 else return("n Not In Data Set") 

} 

 

ThreeU2 <-function(n) 

{ 

 if(InPolygonSet(n) == TRUE){ 

  intList = NIntersects(n) 

  Sum = 0 

  #print(intList) 

  for(b in intList){ 

   for(a in intList){ 

    if((a < b) && (a != n) && (b != n)){ 

     Inter = intersect(Polygon(a), Polygon(b)) 

     Sum = Sum + area.poly(intersect(Polygon(n), Inter))}}} 

  return(Sum)} 

 else return("n Not In Data Set") 

} 

 

FourU2 <-function(n) 

{ 

 if(InPolygonSet(n) == TRUE){ 

  intList = NIntersects(n) 

  Sum = 0 

  #print(intList) 

  for(b in intList){ 

   for(a in intList){ 

    for(c in intList){ 

     if((a < b) && (b < c) && (a != n) && (b != n) && (c != n)) 

{ 

      #cat(a, b, c, "\n") 

      Inter1 = intersect(Polygon(a), Polygon(b)) 

      Inter2 = intersect(Polygon(c), Polygon(n)) 

      Sum = Sum + area.poly(intersect(Inter1, Inter2)) 

     }}}} 

  return(Sum)} 

 else return("n Not In Data Set") 

} 

 

FiveU2 <-function(n) 

{ 

 if(InPolygonSet(n) == TRUE){ 
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  intList = NIntersects(n) 

  Sum = 0 

  #print(intList) 

  for(b in intList){ 

   for(a in intList){ 

    for(c in intList){ 

     for(d in intList){ 

      if((a < b) && (b < c) &&(c < d) && (a != n) && (b != n) 

&& (c != n) && (d != n)){ 

       #cat(a, b, c, d, "\n") 

       Inter1 = intersect(Polygon(a), Polygon(b)) 

       Inter2 = intersect(Polygon(c), Polygon(n)) 

       Inter3 = intersect(Inter1, Polygon(d)) 

       Sum = Sum + area.poly(intersect(Inter2, Inter3)) 

      }}}}} 

  return(Sum)} 

 else return("n Not In Data Set") 

} 

 

I_E_Formula<-function()  

{ 

 m_new = length(ListOfPolygons()) 

 TotalAreaCol = c() 

 ExclAreaCol = c() 

 for(n in 0:m){ 

  if(InPolygonSet(n) == TRUE){ 

   Area = area.poly(Polygon(n)) - TwoU2(n) + ThreeU2(n) - FourU2(n) + FiveU2(n) 

   ExclAreaCol = c(ExclAreaCol, round(Area, 3)) 

   TotalAreaCol = c(TotalAreaCol, round(area.poly(Polygon(n)), 3)) 

   #E_n = paste("E", n, collapse="") 

   #ExclAreaCol = c(ExclAreaCol, E_n) 

   #A_n = paste("A", n, collapse="") 

   #TotalAreaCol = c(TotalAreaCol, A_n)}} 

 print(TotalAreaCol) 

 print(ExclAreaCol) 

 Matrix = matrix(c(TotalAreaCol, ExclAreaCol), ncol=2) 

 colnames(Matrix) = c("Total Area", "Exclusive Area") 

 rownames(Matrix) = c(ListOfLizards()) 

 write.table(Matrix,FinalFile, sep="\t") 

 return(Matrix) 

} 
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8 Appendix B: Female Overlap Code 

The following code was written in R (version 2.14.1) to calculate the number of 

female territories overlapped by each male territory to provide a measure territory 

quality. Each male and female in the analysis had individual files containing the 

coordinates of the vertices of the minimum convex polygon representing their 

territory. Files for male anoles were named “PolygonM1xx.txt”, where xx represents 

the two digit identification number of the animal. Female files were named 

“PolygonF1xx.txt.” These files were formatted in the following manner: 

“Vertex Number” | X coordinate | Y coordinate 

Note that to generate a polygon, this code requires a minimum of three vertices per 

individual.  As described in the body of this chapter, for lizards with less than three 

vertices, I added ±0.05 to the existing coordinates to create additional vertices. 

The code uses the plyr (Wickham 2011), splancs (Rowlingson and Diggle 2013), 

and gpclib (Peng et al. 2012) packages. The purpose and required inputs of each 

function I created is detailed below. The output of the “MaleAndFemaleInt” function 

was used as the female overlap term in the above analysis. 

There are four pieces of user-defined data that must be inputted for the code to 

work with new data: the number of male territories in the analysis (mM), the 

number of female territories in the analysis (mF), the directory the data files are in 

(Folder), and the name of the final output file created by the “MaleAndFemaleInt” 

function (FemInt_FileName). 

 

##================================================================## 

##================================================================## 

##====                        Male and Female Territory Intersections                        ====## 

##================================================================## 

##================================================================## 

##== Purpose: Calculates the number of females whos territories overlap each male territory                    

##==                      

##== Functions:                    

##==  ListOfLizardsM(): Creates a list of all male lizard names                   

##==  ListOfLizardsF(): Creates a list of all female lizard names                     
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##==  InPolygonSetM(n): Determines if the given number n corresponds to a male polygon                                          

##==  InPolygonSetF(n): Determines if the given number n corresponds to a female polygon                                           

##==  PolygonM(n): Turns the Polygon text file of male n into a form the plyr package       

##==              can read                                       

##==  PolygonM(n): Turns the Polygon text file of female n into a form the plyr package     

##==              can read                                       

##==  NIntersects(n): Returns the number of females that male n's territory intersects  

##==  MaleAndFemaleInt(): Returns a table of the number of females each male intersects      

##==                                                                   

##== Packages Required: plyr, splancs, gpclib                 

##==                                                                    

##================================================================## 

##== Code By: Jordan Bush                           Date: 3/10/2014 ==## 

##================================================================## 

##================================================================## 

 
library(plyr) 

library(splancs) 

library(gpclib) 

 

 

### User Defined Information: 

mM = 33 #Highest ID number of Males 

mF = 40 #Highest ID number of Females 

Folder = "C:\\Users\\Jordan\\Documents\\Research 2013\\Field Work\\Territory R Stuff FINAL" 

FemInt_FileName = "C:\\Users\\Jordan\\Documents\\Research 2013\\Field Work\\Territory R Stuff 

FINAL\\NumFemaleInt.txt" 

 

 

ListOfPolygonsM<-function(){ 

 LizardList = c() 

 FileList = list.files(Folder) 

 for(i in 0:mM){ 

  if(i < 10) Name = paste(c("PolygonM10", i, ".txt"), collapse="") 

  if (i >= 10) Name = paste(c("PolygonM1", i, ".txt"), collapse="") 

  for(j in 1:length(FileList)){ 

   File = as.character(FileList[j]) 

   if(File == Name) LizardList = c(LizardList, Name)}} 

 return(LizardList)} 

 

ListOfPolygonsF<-function(){ 

 LizardList = c() 

 FileList = list.files(Folder) 

 for(i in 0:mF){ 

  if(i < 10) Name = paste(c("PolygonF10", i, ".txt"), collapse="") 

  if (i >= 10) Name = paste(c("PolygonF1", i, ".txt"), collapse="") 

  for(j in 1:length(FileList)){ 

   File = as.character(FileList[j]) 

   if(File == Name) LizardList = c(LizardList, Name)}} 

 return(LizardList)} 

 

InPolygonSetM <- function(n){ 

 if(n < 10) Name = paste(c("PolygonM10", n, ".txt"), collapse="") 

 if (n >= 10) Name = paste(c("PolygonM1", n, ".txt"), collapse="") 

 if(length(grep(as.character(Name), ListOfPolygonsM())) > 0) return(TRUE) 

 else return(FALSE)} 

 

InPolygonSetF <- function(n){ 

 if(n < 10) Name = paste(c("PolygonF10", n, ".txt"), collapse="") 



 132 

 if (n >= 10) Name = paste(c("PolygonF1", n, ".txt"), collapse="") 

 if(length(grep(as.character(Name), ListOfPolygonsF())) > 0) return(TRUE) 

 else return(FALSE)} 

 

PolygonM<-function(n){ 

 if(n < 10) Name = paste(c("PolygonM10", n, ".txt"), collapse="") 

 if (n >= 10) Name = paste(c("PolygonM1", n, ".txt"), collapse="") 

 if(length(grep(as.character(Name), ListOfPolygonsM())) > 0){ 

  Data = read.table(as.character(Name), header=TRUE) 

  x = Data[,1] 

  y = Data[,2] 

  m = cbind(x, y) 

  p = as(m, "gpc.poly")} 

 else p=0 

 return(p)} 

 

PolygonF<-function(n){ 

 if(n < 10) Name = paste(c("PolygonF10", n, ".txt"), collapse="") 

 if (n >= 10) Name = paste(c("PolygonF1", n, ".txt"), collapse="") 

 if(length(grep(as.character(Name), ListOfPolygonsF())) > 0){ 

  Data = read.table(as.character(Name), header=TRUE) 

  x = Data[,1] 

  y = Data[,2] 

  m = cbind(x, y) 

  p = as(m, "gpc.poly")} 

 else p=0 

 return(p)} 

 

NIntersects<-function(n){ 

 IntersectingPolygons = 0 

 if(InPolygonSetM(n) == TRUE){ 

  Poly1 = PolygonM(n) 

  for(a in 0:mF){ 

   if(InPolygonSetF(a) == TRUE){ 

    Poly2 = PolygonF(a) 

    if(area.poly(intersect(Poly1, Poly2)) > 0) IntersectingPolygons = 

IntersectingPolygons + 1}} 

  return(IntersectingPolygons)} 

 else return(0)} 

 

MaleAndFemaleInt<-function(){ 

 Matrix = matrix(ncol=1, nrow=length(ListOfPolygonsM())) 

 rownames(Matrix) = c(ListOfPolygonsM()) 

 index = 1 

 for(i in 0:mM){ 

  if(InPolygonSetM(i) == TRUE){ 

   Matrix[index,] = NIntersects(i) 

   index = index + 1}} 

 write.table(Matrix, FemInt_FileName, sep="\t") 

 return(Matrix)} 
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