scienfific laborafory

 of the University of California LCS ALAMOS, NEW MEXICO 87544
 \title{MCN: A Neutron Monte Carlo Code
}
 \title{
MCN: A Neutron Monte Carlo Code
}

MCN: A Neutron Monie Carlo Code

by
E. D. Cashwell
J. R. Neergaard
W. M. Taylor
G. D. Turner

NOTICE

This report was prepared of an acceunt of work sponsored by the Unisiad Stafes Government. Nelther the United States nor the United States Atomic Enerry Commiation, nor any of thetr empioyees, nor asy of Commision, contractors, subcontractors, or theis employees, their contractors, subconuractor, of od, or amumes any
makas any warranty, express or implied, or makas any warranty, exprisis or for the accuracy, coisnpietonate or usofulnes of any information, spperatus, product or proctes diecloced, or represints that its wee would not infriage privatoly owned zights.

MCN: A NEUTRON MONTE GARLO CODE

by
E. D. Ceshwell, J. A. Neargeard, W. M. Taylor, and G. D. 'Jurner

Abstract

The general purpose Monte Carlo meution code MCN is dascribed in detail so help the user sit up and run his own problems. The oode treats gencrit thres-dimensional geometric configuretions of materiels, and an use poinf cross-section date in elther the Liespmore (LLL) or the Aldarmaston (AWRE) format.

Opticnal stenderd variance reduction techniques are built into the code. Source information may be incorted in complets fenerelity, although certain Itundard sources are included.

Neutron therrialization is treated by a free-gas model. In this treatment, light nuedsi me asuumel to huve a Maxcreilian velocity distribersion with spoticlly dependent tarnperatures that may deo vary with tirse.

Standerd outasut includiss curientes and fuxes acros ertitrary surfaces in the protiem, surryin fuxes in denimnatod cofls, fures at eech of a set of point detectors in space, and the number of perticfes ceptured in a cell as a function of eneity and time.

A sample problem is described and mitup, and the complote computer lisxing of a trial run is given.

1. Introduction

The general Monte Carlo neutron code MCN is written in FORTRAN IV. This program treats an asbitrary three-dimensional configuration of materials in geometric cells bounded by first-and second-degree surfaces, and sume special fourth-degree surfaces.

The cross-sectional information nesessary to treat the interactions of neulions with matter may be included in the code in great detail. The cose can deaf with element cross sections from the nuclear data compilations of the Lawrence Livermore Laboratery (LLL), as well as those of Aldermaston (AWRE), a! the uxers' discretion. The cross sections used in the program are usuatly read
from the library presently maintained on the disk of the MANIAC at the Los Alamos Scientfic Laboratory (LASL).

The code includes standard variance reduction techniques, which are optional and are described in this report. Also, the present code treats the thermalization of mestrons by the freegas model. In this iremtment, when considering elatite collisions between neutrons and light atoms, the latter are assumed to be in a Maxwell distribution with some thermal temperature that may be a function of time.

A number of usefut quantithes are inciuded mstandard output, such as currents and nuxes across arbitiony surfaces in the problem, average fluxes in designated cells.
fluxes at each of a set of point detectors in space, and the number of captures in a cell as a function of energy and time.

A great deal of effort has gone into making this code as general and as versatile as possible, while at the same time keeping it simple to use. It is the latest of a series of general Monte Carlo neutron codes that began with a program written by Johnston. ${ }^{\text {. }}$ The mechanics of setting up and running a problem are discussed below drawing heavily on an interno! memorandum by Taylor; ${ }^{2}$ a manual for another of our family of codes. In addition to these references, a general introduction to the type of calculation considered here is found in Ref. 3.

The units used in MCN are as follows.

1. Lengths in centimeters.
2. Timties in shakes ($1 \sigma^{-8} \mathrm{sec}$).
3. Energies in MeV.
4. Atomic densities in units of 10^{20} atoms $/ \mathrm{cm}^{3}$.
5. Cross sections in barns $\left(1 \sigma^{24} \mathrm{~cm}^{2}\right)$.

II. Geometry

The code will handle any number (limited only by the storage capabilities of the computer) of geometric cells bounded by first- and second-degree surfaces, as well as some fourth-degree surfaces. The subdivision of the physical system into cells is not necessarily governed by the different material regions occurring, but may take into consideration the problems of sampling as well as the restrictions necessary to specify a unique geometry. For the latter, suppose that $f(x, y, z)=0$ is the equation of a surface in the problem. For an arbitrary space point $\left(x_{0}, y_{0}, z_{0}\right)$, the sign of the quantity $f\left(x_{0}, y_{0}, z_{0}\right)$ is defined as the sense of the point (x_{0}, y_{0}, z_{0}) with respect to the surface $f(x, y, z)=0$. It is clear that points in space are divided into two disjoint sets-those with positive sense with respect to the surface, and those with negative sense (we ignore the points on the surface, which have zero sense). Further, one must always write the equation $f(x, y, z)=0$ in the same way if $f\left(x_{0}, y_{0}, z_{0}\right)$ is to be uniquely defined since $-f(x, y, z)=0$ is also a perfectly acceptable way to represent the surface. If our equations are always written in the same manner, we require, in specifying the geometry of a problem, that all points in a cell must have the same sense with respect to a boundiag surface, and this must be true for each bounding surface of the cell. Graphically, this means that all points are on the same "side" cf a bounding surface, which rules out a cell such as depicted in Fig. 1 where c and d are reentrant surfaces. One way to remedy this situation, and there are clearly others, is to introduce surface f and make two cellis out of one.

Fig. 1.

Further, it is essential that the description of the geometry of a cell be such as to eliminate any ambiguities as to which region of space is meant. That is, a particle entering a ce!! should be able to uniquely determine which cell it is in from the senses of the bounding surfaces. This eliminates a geometry such as shown in Fig. 2. Suppose the figure is rotationally symmetric about the y-axis. A particle entering cell (2) from the inner spherical region might think it was entering cell (1) because a test of the senses of its coordinates would satisfy the description of cell (1) as well as that of cell (2). In such cases, we introduce an "ambiguity surface" such as e, the plane $y=0$. An ambiguity surface need not be a bounding surface of a cell, but of course it may be, and frequently is, the bounding surface of some cell other than the one in question. However, the surface must be listed among those in the problem. Referring to cells (1) and (2) in Fig. 2, we augment the description of each by listing its sense relative to surface e , as well as that of each of its regular bounding surfaces. A particle in cell (1) cannot have the same sense relative to e as does a particle in cell (2).

Fig. 2.

III. Cross Sections

Since in MCN we treat the various reactions precisely as they are described in the LLL and the UK compilations, we do not discuss the details of these reactions. The user may obtain listings of the cross sections, as well as a description of the various processes treated, in these cross section libraries. MCN uses the data directly from these compilations with no editing and with no changes apart from erivial modifications such as listing probabilities on our tape, instead oí cross sections, to speed up the calculation. The cross sections are read into the problem in as much detail as is provided, and the program uses linear interpolation between the points given. This applies to the angular data, where we also interpolate between the angular distributions given at two distinct energies to obtain the scattering angle from an elastic or inelastic collision. If no angular data are provided for an inelastic collision, we assume the scattering is isotropic in the system of coordinates in which the energy is given. Similarly, when outcoming energy distributions from a reaction are given for a set of discrete incoming energies, we linearly interpolate between distributions to obtain the resulting energy of the neutron.

Cur aim has been to use the data provided in this code with no introduction of significant altyrations or processing of the data by us.

[V. Estimation of Errors

Let us assume that, in a Monte Carlo calculation, the independent sampie values $x_{1}, x_{2}, \ldots x_{N}$ are drawn from a population with a probability distribution that may be unknown. Consequently, even the mean $E(x)$ and the variance $\sigma^{2}(x)$ may have to be approximated by their sample values. Certainly this is the case for most of the qua lities of interest scored in the present code.

We define the sample mean

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

and the sample variance of x

$$
\begin{aligned}
\sigma^{2}(x) & =\frac{1}{N-1}\left[\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right] \\
& =\frac{N}{N-1}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\bar{x}^{2}\right]
\end{aligned}
$$

or

$$
\bar{\sigma}^{2}(x)=\frac{N}{N-1}\left[\overline{x^{2}}-\bar{x}^{2}\right]
$$

where N represents the total sample drawn from the population. For example, in our neutron transport calculations, N represents the number of neutrons started from the source and x_{i} represents the total contribution to x from the $i^{t h}$ starting particle. This latter definition of x_{i} is important, for in using various methods of importance sampling and even in treating physical processes such as fission or ($n-2 n$) reactions leading to the creation of neutrons, the $i^{\text {th }}$ particle and its offspring may contribute many times to a category or value x .

We are interested in estimating the zrror of the sample mean $\overline{\mathrm{x}}$. It is well-known that if one draws a sample of size N from a population with true mean $\mathrm{E}(\mathrm{x})$ and variance σ^{2}, then with

$$
\begin{aligned}
& \bar{x}=\frac{1}{N} \cdot \sum_{i=1}^{N} x_{i}, \\
& E(\bar{x})=E(x) \quad, \\
& \text { Variance }(\bar{x})=\frac{\sigma^{2}}{N} .
\end{aligned}
$$

Conscquently, we have for our estimate of the variance of the sample mean

$$
\frac{\bar{\sigma}^{2}(x)}{N}=\frac{1}{N-1}\left[\overline{x^{2}}-\bar{x}^{2}\right]
$$

Because \mathbf{N} is usually sufficiently large that the error is negligible in replacing $\mathbf{N - 1}$ by N , the code uses the following formula for the standard deviation of the sample mean.

$$
\sqrt{\frac{\bar{\sigma}^{2}(x)}{N}} \equiv \bar{\sigma}(\bar{x})=\sqrt{\frac{\overline{x^{2}}-\bar{x}^{2}}{N}},
$$

Where $\bar{\sigma}(\bar{x})$ refers to the standard deviation of the sample mean, $\overline{\mathrm{x}}$.

In applying this result to the sample values obtained by Monte Carlo, one uses the Central Limit Theorem from statistics, which may be stated in the form
$\lim _{n \rightarrow \infty} \operatorname{Prob}\left[E(x)+\alpha \frac{\sigma}{N^{1 / 2}}<\bar{x}\right.$
$\left.\quad<E(x)+\beta \frac{\sigma}{N^{1 / 2}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{B} e^{-\frac{t^{2}}{2}} d t$.

In terms of our sample variance, we restate this result in the following approximate form for large N .

$$
\begin{aligned}
& \text { Prob }[\alpha \bar{\sigma}(\bar{x})<\bar{x}-E(x)<\beta \bar{\sigma}(\bar{x})] \\
& \simeq \frac{1}{\sqrt{2} \pi} \int_{\alpha}^{\beta} e^{-\frac{t^{2}}{2}} d t
\end{aligned}
$$

In this form, results from Monte Carlo calculations are readily interpreted from tables of the normal distribution function.

In the present code, we give the errors in the form $\bar{\sigma}(\overline{\mathrm{x}}) / \mathrm{x}$, that is, we give the relative error corresponding to one standard deviation of the mean. This may be interpreted by using the Central Limit Theorem to mean that there is a 68.3% chance that the error is no larger than the value listed.

V. Sampling Techniques

Frequently, in Mionte Carlo calculations, straight analogue sampling leads to prohibitively long running times to determine some quantity of interest with acceptable accuracy. Consequently, one tries to improve the efficiency of Monte Carlo sampling techniques. We call a class of schemes to alter or bias the probability density function, so as to sample more effectively the important particles, importance sampling. The basic idea may be demonstrated by considering the evaluation of the following simple one-dimensional integral.

$$
F=\int_{a}^{b} f(x) p(x) d x
$$

where $p(x)$ is a pobability density function, \int_{a}^{b} $\mathrm{p}(\mathrm{x}) \mathrm{d} \mathrm{x}=1$. In straight analogue sampling, one would choose points x_{1}, \ldots, x_{N} from the density function $p(x)$ and form the mean value f.

$$
\overline{\mathrm{f}}=\frac{1}{\mathrm{~N}} \sum_{i=1}^{N} \mathrm{f}(\mathrm{x})
$$

This yields the Monte Carlo value for the integral. The variance of the random variable $f(x), \sigma^{2}$, is given by

$$
\sigma^{2}=\int_{a}^{b}[f(x)-F]^{2} p(x) d x=E\left(f^{2}\right)-F^{2}
$$

Now suppose we sample from the density function $\widetilde{p}(x)$ instead of from $p(x)$. For each point x_{i} selected from $\widetilde{\mathrm{P}}(x)$, we give it the weight $w\left(x_{i}\right)=p\left(x_{i}\right) / \widetilde{p}\left(x_{j}\right)$, and score the contribution of particle x_{i} as $w\left(x_{i}\right) f\left(x_{i}\right)$. The expected score is given by

$$
\begin{aligned}
& \int_{a}^{b} w(x) f(x) \tilde{p}(x) d x \\
& =\int_{a}^{b} f(x) p(x) d x
\end{aligned}
$$

so that the mean value is again F. However, the variance of the variable $w(x) f(x)$ is given by

$$
\int_{a}^{b}[w(x) f(x)-F]^{2} \tilde{p}(x) d x
$$

and is not usually the same as the variance in $f(x)$ when we sample from $p(x)$. Hence, it may be possible timough judicious choice of $\widehat{p}(x)$ to decrease the variance in a caiculation (while leaving the mean uncinanged, of course). The decrease of variance is usually the primary reason for altering the probability density function, although one may do so in case the density $p(x)$ is difficult to sample.

In solving the Boltzmann transport equation, as we do with this program, it is possible to show that if the various density functions entering the equation are altered in just the right way, then the sampling procedure has zero variance. The solution of the adjoint transport equation must be known and it is not possible to achieve a zero variance scheme in a practical case, but it is useful in helping to find better sampling techniques.
A. Particle Splitting with Russian Roulette. Each cell in the problem is assigned an importance, a number which should be proportional to the average value ihtat neutrons in the cell have for the quantity being scored. When a neutron of weight 1 passes from a cell of lower importance I to one of higher importance l^{\prime}, the particle is split into identical particles of lower weight according to the following recipe. $\mathrm{I}^{\prime} \mathrm{I}^{\prime} / \mathrm{I}$ is an integer n , the particle is split into n identical particles, each of weight $1 / n=I / I^{\prime}$. If $I / / I$ is not an integer, let $n=\left[1^{\prime} / I\right]$, where [$\left.x\right]$ stands for the largest integer in x . Now the particle is split into $\mathrm{n}+1$ identical particles, each of weight $1 /(n+1)$. On the other hand, if a neutron passes from a region of higher importance 1 to one of lower importance I^{\prime}, so that $I^{\prime} / I<1$, then the particle is killed with probability
$1-I^{\prime} / I$, and followed further with probability I^{\prime} / I and weight $\mathrm{I} / \mathrm{I}^{\prime}$.

This technique is perhaps the simplest and most reliable of all the variance reducing techniques used in general geometry codes. It can lead to substantial savings in machine time when used judiciously. Generally, in a dcep penetration problem, one should arrange the splitting boundaries so as to keep the number of particles traveling in the desired direction more or less constant, that is, approximately equal to the number of particles started from the source.
B. Path Length Stretching. In a deep penetration problem such as frequently occurs in neutron shielding calculations, those particles that suffer relatively few collisions are apt to be the most important, although there are fewer of them. In such a case, it may be helpful to choose the distance to the next collision from a distribution in which the total cross section has been decreased, always correcting for the longer path lengths by altering the statistical weights of the particles involved.

On the other hand, it can also occur that one is interested in studying some collision process in a relatively thin material so that most of the particles traverse the region of interest with few, if any, collisions. In this case, it may prove advantageous to choose the distance to the next collision in such a region from an exponential distribution in which the total cross section has been increased.

To expedite treatment of the problems mentioned above, MCN provides for a function $q(a)$ of each cell a to be defined as a positive or negative integer. The total macroscopic cross section in the cell a is then taken to te $\sigma^{\prime}=\tau^{\mathrm{q}(a)} \sigma$ insofar as neutron transport through that cell is concerned. If a neutron escapes from the cell and travels a distance x in so doing (the distance x determined by using the fictitious cross-section σ^{\prime}), the neutron weight is multiplied by $\mathrm{e}^{-(\sigma-\sigma) x}$. However, if a particle has a collision in the cell after traveling a distance x, the seutron weight is multiplied by $\sigma / \sigma^{\prime} \mathrm{e}^{-(\sigma-\sigma) x}$.

A word of caution: Although this technique can and has been used successfuliy to reduce variances in a variety of problems, unrestricted and excessive use of this device may do more harm than good. It is certainly neither as safe nor as foolproof to use as particle splitting with Russian roulette.
C. Statistical Estimation of Flux at a Point. Consider the problem of computing the neutron flux at a designated set of detector poinis in space. A standard way of treating this problem is to use statistical estimation at each collision point, that is, to compute the probability of the neutron scattering at just the correct angle to hit a unit area normal to the line joining the collision point and the detector point, and, moreover, to reach the detector with no further collisions.

Suppose we are following a neutron that has a collision and scatters at an angle θ about the line of flight
of the neutron. If $\nu=\cos \theta$, let $\mathrm{p}(\nu) \mathrm{d} \nu$ be the probability of scattering between ν and $\nu+\mathrm{d} \nu$. The probability of scattering so as to hit a unit area at a distance r from the collision point along the new direction is, given by

$$
p(v) d v \cdot \frac{\left(\frac{1}{r^{2}}\right)}{(2 \pi d v)}=\frac{p(v)}{\left(2 \pi r^{2}\right)}
$$

For isctropic scattering in the laboratory system, $p(\nu)=1 / 2$ so that the above expression reduces to $1 /\left(4 \pi r^{2}\right)$, as it should. The probability of the neutron reaching the detector with no further collisions is given by $\mathrm{e}^{-\sigma r}$, where σ is the macroscopic total cross section at the new scattered energy of the particle.

To compute the probabilities above, one must use the information in the code to determine the scattering probabilities and the new particle energy for each of the scattering processes treated. For example, in the case of elastic scattering, the angular scattering probabilities are stored in the center-of-mass system of coordinates, whereas $\nu=\cos \theta$ is the anyle of scattering in the iaboratory system. However, we have the well-known relations

where A is the ratio of the mass of the target atom to that of the neutron, and

$$
E^{\prime}=\mathrm{E}\left(\frac{1+r}{2}+\frac{1-r}{2} \mu\right)
$$

where E is the incoming neutron energy, E^{\prime} is the energy of the scattered particle, and $r=(A-1)^{2} /(A+1)^{2}$. Making use of these formulas, we may compute $\mathrm{p}(\nu)=\mathrm{p}[\mu(\nu)] \mathrm{d} \mu / \mathrm{d} \nu$. Knowing ν from the oosition of a detector point, we niay compute $\mu(\nu)$, hence determine $p(\nu)$ and the outcoming energy of the scattered neutron.

In treating the various inelastic processes, one must allow for scattering and energy distributions given in either the laboratory or the center-of-mass systems. In the first casc, the evaluation of $p(\nu)$ is simple, but in the second case, one must use the appropriate formulas linking the incoming laboratory energy of the neutron, the outgoing laboratory energy, the outgoing energy in the center-of-mass system, the scattering angle in the center-of-mass system, and the scattering angle in the laboratory system. We shall not give these formulas, but they are readily derived from considerations of the collision process.

When the detector point is outside the scattering region, this method of calculating flux is in general quite reliable. However, when collisions can occur arbitrarily
close to the detector, the variance of the flux can become infinite. Several methods have been devised to counteract this situation. ${ }^{4,5} \mathrm{MCN}$ contains only the simple device of computing an average contribution for collisions in a spherical n ighborhood of the detecto:. To be more precise, if one assumes that the flux is isotropic and uniform in a spherical region sumrounding the point, one can easily derive the expression

$$
\frac{2 p(v)\left(1-e^{-\sigma r}\right)}{\frac{4}{3} \pi r_{0}^{3} \cdot \sigma}
$$

for the average contribution to the flux at the detector for particles colliding in the spherical region, where $\mathrm{p}(\nu)$ and σ are defined as above, and r_{o} is the radius of the sphere about the point. Using this expression does not cure all difficulties arising in the computation of flux at a point, but it can help to prevent the rare collision, very close to the detector, from seriously perturbing the calculation. The choice of r_{0} may require some experimentation, because the sphere should be large enough to enclose a reasonable number of collisions, but not so large that the assumptions are violated. For a typical problem, r_{0} may be chosen as a fraction of a mean free path, but $i t$ is most important that one should obtain a good sample in the vicinity of the point detector. Otherwise, either the estimate of the flux will be too low or the occasional collision in the vicinity of the detector will carry too much weight, leading to large variances in the result.

A scheme which may often be used to advantage when the detector is embedded in the scattering medium has been suggested by Everett. ${ }^{6}$ Suppose the point detector is enclosed by a finite set of spheres of decreasing radii, $r_{1} r_{2}, \ldots r_{n}$ (n is in general a small positive integer). It is simple to obtain the estimate of the flux outside of the sphere of radius r_{1} (call it F_{1}), then the estimate outside of $r_{2}\left(F_{2}\right)$, and so on until we obtain the estimate of the flux outside of the sphere of radius $r_{n}\left(F_{n}\right)$. Plotting F_{i} vs r_{i} leads to an extrapolated value for the flux at the point. Because no information is obtained from collision points inside r_{n}, it is important that r_{n} not be so large that exirapolation is risky, yet not be so small that a collision point close to the boundary of the $\mathrm{n}^{\text {th }}$ sphere can cause a large perturbation in the estimate. One can best gauge the size of the spheres to be used from analysis of the physical problem and experimentation. The latter is particularly nelpful in the choice of r_{n}. Again, if the detector is not in a fairly accessible region, so that the occasional collison close by is very important, then biasing is called for to increase the number of particles in the vicinity of the detector. With poor sampling in the neighborhood of the point, no scheme is reliable.

Standard tallies Definitions of some of the terms used to specify the output of MCN are given.

1. Currents Across Surfaces. By the current across a surface in a given direction we mean simply the number of particles crossing the surface in that direction as a function of timie, energy, and angle with the normal to the surface. The code will yield the number crossing in each of the two directions of crossing for any subset of the boundary surfaces in the problem, and will tally the number of neutrons crossing in a common set of time, energy, and angle bins. The two directions of crossing are designated by (- to +) and (+ to -). The symbol (- to +) means that the particles cross the surface from a cell that has negative sense with respect to that surface into a cell that has positive sense with respect to that surface. The symbol (+ to -) is interpreted similarly, obviously referring to crossing in the opposice direction. In the problem printout, we use the more descriptive term "number of neutrons crossing" instead' of "current" to avoid confusion.
2. Flux at a Surfoce. By fix we mean track length per unit volume ner init time. In printing out the flux across a boundary surface in the problem, we give the flux integrated over the entire surface, as well as over time and energy intervals. Hence, the average flux over the surface for the time and energy bins may be obtained by dividing by the surface area. In the sampling process, whenever a neutron of weight W crosses the surface in any direction, we compute μ, the cosine of the angle the line of flight of the particle makes with the normal to the surface, form the quantity $W /|\mu|$, and dump it into the appropriate time and energy bin for the flux.
3. Flux Tally in Cells. Frequently, in computing reactions, it is convenient to tally the average flux in a cell as a function of time and erargy. Here we actually compute the total track length of the particles in the cell and divide by the volume of the cell. This method of computing average flux takes account of the geometric shape of the cell, and it can yield an accurate value of the flux in thin regions where few collisions take place.
4. Capture Tally in Cells. This is a straightforward collection of the number of particles captured in a designated set of cells of the problem. The information is classified into time and energy bins.
5. Flux Tally at Points. We described this calculation in Sec. V. C. The flux is computed as a function of time and energy at a prescribed set of points in space.

In any of the tallies described above, beside each quantity printed there appears the estimated error in that quantity. As described in our discussion of errors in Monte Carlo calculations, we print the relative error obtained by dividing $\bar{\sigma}(\overline{\mathrm{x}})$ by $\overline{\mathrm{x}}$. $\overline{\mathrm{x}}$ refers to the mean quantity tallied, and $\bar{\sigma}(\bar{x})$ refers to the sample standard deviation in $\overrightarrow{\mathbf{x}}$.

It is implicit in the definition of \bar{x}, but we emphasize the fact that all tallied quantities described above are normed by the number of particles starting from the source. That is, all answers are given "per starting neutron."

V. Execution o. Monte Cario Neutron Programs

A. Initiation. The initiating program MCNI is employed in the first stage of the Monte Carlo solution. This program reads the problem deck, which is a description of the physical system and desired tallies, processes this information, and produces a data flle needed by the running program MCN .

The problem deck coisists of cards grouped as follows:

Problem ID card
Cell cards
Blank card
Surface cards
Biank card
Data cards
Blanik card

The format of these cards is defined below.
The data file written by MCNI has the following structure:

Fixed data, such as geoinetry and tally controls (record \#1)

Cross sections required by this problem (record \#2)

Tally record (initial) (record \#3)
If the option to store certain cross sections in Extended Core Storage (ECS) on the CDC-6600 or in the Large Core Memory (LCM) on the CDC-7600 is taken, an additional record of this data is written following the (fast core) cross-section record.

During its processing cycle, MCNI also prints out the card images of the problem deck, error messages if any, and other information pertinent to the problem initiation.
B. Running. The second stage, and succeeding stages if necessary, comprise the actual Monte Carlo calculation. This is executed by MCN, the running program. Input to MCN consists of the data file produced by the initiating program MCNI and a single data card, the run
card. The run card contains the following problem parameters.

Problem time cut-off in shakes
Weight cut-off
Job time in minutes
NDP, printout cycle (tally printout occurs every NDP histories)

NDM, tally record write cycle
Tally record number (specifying tally record to begin this run with)

NPP, terminal history number (calculation stops after NPP histories)

The format of this card is defined by the FORTRAN statement FORMAT(3E10,4110).

After reading the run card, MCN reads the fixed data and cross-section data from the data file. The specified tally record is then found and the calculation proceeds. (When the calculation is just beginning, only the initial tally record written by MCNI exists.) Shortly before the job time is to expire, MCN writes the latest tally record at the end of the data ile. The Monte Carlo calculation is continued by stages, if desired, by executing MCN and reading the last tally record in the data file at each stage. As the calculation continues, the data file expands to accommodate the latest tally records.
C. File Manipulation. MCNI finds the needed cross sections by reading from a file called CODETP. The data file produced by MCNI is written to a file called RUNTP, which in turn is read by MCN. In practice, CODETP is a fixed magnetic tape consisting of three files; (1) MCN and its subroutines, (2) MCNI and its subroutine, and (3) neutron crosis sections for all nuclides ofi interest. RUNTP is a scratch magnetic tape of two files; (1) a copy of the first file on the CODETP, namely, MCN and its subroutines, and (2) the data file.

The procedure used when initiating a calculation begins with mounting the CODETP and a scratch tape as RUNTP. The first file of the CODETP is copied over to the RUNTP. The second file of the CODETP, MCNI and subroutine, is then loaded and executed. At this point, the cross-section file is in position to be read. After writing the data file to RUNTP, MCNI rewinds RUNTP. Once the running stage is begun, the first file of RUNTP, a copy of MCN and subroutines, is loaded and executed. The data file is then in position to be read by MCN. To continue a calculation, only RUNTP is needed. The usual practice in a job initiating a calculation is to proceed into the running stage immediately after MCNI has finished, without first checking the initiation printout for errors. A brief run here by MCN costs little and often reveals errors,
especially because the orderly completion of the initiation does not guarantee that he problem deck is correct.

Appendix A provides listings of "initiate and run" and "continue run" cortrol card decks used within the operating systems for LASL'S CDC-6600 and CDC-7600 computers.
D. Card Format. Cell cards, surface cards, and data cards all conform to the same format. Columns i-5 are reserved for the name (or number) associated with the card, if any. The name (or number) field can appear anywhere in columns 1-5. Blanks in these columns indicate a continuation of the data from the last named card. columns $6-72$ are for data entry associated with the name. With some exceptions on cell cards, separation \}etween data entries is by one or more blank columns. In general, data entries may be integers or real numbers, inasmuch as the program makes the appropriate conversion. Al! items are read from the data field with a FORTRAN E20 formizt.

Two features of the FLOCO II loader have been incorporaied into the code to facilitate card preparation.

1. nR: Repeat the last entiy before this statement n times.
2. kI: Insert k linear interpelates between the entries immediately precoding and following this state.

These features apply to both integer and floating point quantities and may be used wherever applicable.
E. Problem ID Card. Any ID card may be used for problem identification; colurnns I-80 are read. This card must be included even if it is a blank.
F. Cell Cards. The number of the cell is in columns 1-5. Columns 6.72 will contain, in the following order,

1. The cell material number,
2. The cell material atomic density, and
3. A complete list consisting of the number of a surface bounding the cell followed by the numbers of those cells on the other side of the surface which could be entered by a neutron leaving the given cell; a second surface, if it exists, followed by the cells on the other side into which a particle may escape, etc., running through all bounding surfaces of the cell.

The numbers of the surfaces bounding a cell are signed quantities, the sign being determined by the sense any point within the cell has with respect to the surface. If the sense is positive, the sign should be omitted. The list consisting of the surface number followed by the number of the cells on the other side is a list in the sense that each entry except the last must be followed immediately be a comma. The absence of the comma indicates that another bounding surface follows with its attendant cells on the other side. Blanks may be used optionally to further separate list entrics. Ambiguity surfaces are treated as bounding surfaces having no cells on the other side. In this case, omit the comma following the number.

If a cell is a void, this may be indicated by entering a cell material number of 0 and omirting the density entry.
G. Surface Cards. The number of the surface appears in columns $1-5$. MCN provides that any surface appearing in the problem may be a reflecting surface. To designate a reflecting surface, the space on the surface card immediately preceding the surface number should contain an asterisk. A neutron hitting such a surface finds itself specularly reflected and the calculation continues. Columns 6-72 contain, in the following order,

1. An alphabetic mnemonic indicating the surface type, and
2. The surface coefficients in proper order.

We list here the surface types, their mnemonics, and the order of entry of the surface coefficients.

Mnemonic	Type (Equation)
P	$\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$
PX	$\mathrm{x} \quad-\mathrm{D}=0$
PY	y $\quad-\mathrm{D}=0$
PZ	$z-D=0$
S \downarrow	$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{R}=0$
S	$(x-\bar{x})^{2}+(y-\bar{y})^{2}+(z-\bar{z})^{2}-R^{2}=0$
SX	$(x-\bar{x})^{2}+y^{2}+z^{2}-R^{2}=0$

Coefficients in Order of Entry

$$
R
$$

$$
\begin{gathered}
\overline{\mathrm{x}}, \overline{\mathrm{y}}, \stackrel{\rightharpoonup}{\mathrm{z}}, \mathrm{R} \\
\overline{\mathrm{x}}, \mathrm{R}
\end{gathered}
$$

Mnemonic	Type (Equation)	Coefficients in Order of Entry
SY	$\mathrm{x}^{2}+(y-\bar{y})^{2}+z^{2}-\mathrm{R}^{2}=0$	\bar{y}, R
SZ	$\mathrm{x}^{2}+\mathrm{y}^{2}+(z-\bar{z})^{2}-\mathrm{R}^{2}=0$	\bar{z}, R
C/X	$(y-\bar{y})^{2}+(z-\bar{z})^{2}-R^{2}=0$	$\overline{\mathbf{y}}, \bar{z}, \mathrm{R}$
C/Y	$(\mathrm{x}-\overline{\mathrm{x}})^{2}+(\mathrm{z}-\overline{\mathrm{z}})^{2}-\mathrm{R}^{2}=0$	$\overline{\mathbf{x}}, \bar{z}, \mathrm{R}$
C/Z	$(x-\bar{x})^{2}+(y-\bar{y})^{2} \quad-R^{2}=0$	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \mathrm{R}$
CX	$\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{R}^{2}=0$	R
CY	$\mathrm{x}^{2}+\mathrm{z}^{2}-\mathrm{R}^{2}=0$	R
CZ	$\mathrm{x}^{2}+\mathrm{y}^{2} \quad-\mathrm{R}^{2}=0$	R
K/X	$-\mathrm{t}^{2}(\mathrm{x}-\overline{\mathrm{x}})^{2}+(\mathrm{y}-\overline{\mathrm{y}})^{2}+(\mathrm{z}-\bar{z})^{2}=0$	$\bar{x}, \bar{y}, \bar{z}, t^{2}$
K/Y	$(x-\bar{x})^{2}-t^{2}(y-\bar{y})^{2}+(z-\bar{z})^{2}=0$	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}}, \mathrm{t}^{2}$
K/Z	$(x-\bar{x})^{2}+(y-\bar{y})^{2}-t^{2}(z-\bar{z})^{2}=0$	$\bar{x}, \bar{y}, \bar{z}, t^{2}$
KX	$-t^{2}(x-\bar{x})^{2}+y^{2}+z^{2}=0$	$\overline{\mathrm{x}}, \mathrm{t}^{2}$
KY	$x^{2}-t^{2}(y-\vec{y})^{2}+z^{2}=0$	\bar{y}, t^{2}
KZ	$x^{2}+y^{2}-t^{2}(z-\bar{z})^{2}=0$	\bar{z}, t^{2}
SQ	$A(x-\bar{x})^{2}+B(y-\bar{y})^{2}+C(z-\bar{z})^{2}$	A, B, C, D, E,
	$+2 D(x-\bar{x})+2 E(y-\bar{y})$	F, G, $\overline{\mathrm{x}}, \overline{\mathrm{Y}}, \overline{\mathrm{z}}$
	$+2 F(z-\bar{z})+G=0$	
GQ	$\mathrm{Ax}^{2}+\mathrm{By}^{2}+\mathrm{Cz}^{2}+\mathrm{Dxy}+\mathrm{Eyz}$	A, B, C, D, E, F, G
	$+\mathrm{Fzx}+\mathrm{Gx}+\mathrm{Hy}+\mathrm{Jz}+\mathrm{K}=0$	
QD	$(y-\bar{y})^{2} / b^{2}+(z-\bar{z})^{2} / c^{2}=1^{*}$	$\overline{\mathrm{y}}, \overline{\mathrm{z}}, \mathrm{b}, \mathrm{c}$

*In this case, the equation shown is that of the ellipse in the $y z$-plane which generates the fourth-degree surface actually used in the code by the process of revolving the ellipse about the y-axis. The resulting elliptic torus has the equation
$\left(x^{2}+z^{2}+\rho y^{2}-2 \rho \bar{y} y+B_{0}\right)^{2}=A_{0}\left(x^{2}+z^{2}\right)$,
where

$$
\begin{aligned}
\rho & =c^{2} / b^{2} \\
B_{0} & =\bar{z}^{2}-c^{2}+\rho \bar{y}^{2} \\
A_{0} & =4 \bar{z}^{2} .
\end{aligned}
$$

Recazse the torus is completely defined by the ellipse, we specify only the simpler equation in setting up the geometry.
H. Data cards. All data cards are distinguished by the ajphabetic first character of the name. Data cards break down into the following six categories. If a data card contains all zeros, it may be omitted.

1. Cell Specification Cards. The names associated with the cell specification cards are $10, \mathrm{Y} 6, \mathrm{Y} 7$. R1, .., Rn. These cards continue the specification of
quantities by cell. The entries on the $10, Y 6$, and $\mathrm{R} 1, \ldots, \mathrm{Rn}$ cards must correspond to the order in which the cell cards are placed in the deck. There are no ordering restrictions on either cell or surface cards; thus, the $\mathrm{n}^{\text {th }}$ entry on an 10 card must be that value assigned to the cell occupying the $n^{\text {th }}$ position among the cell card entries.

The usage is as follows.
10: Cell importance.
Y6: $q(a)$, where $2{ }^{q(a)} a^{\text {tot }}$ is the fictitious cross section used in cell a to compute distance to the next collision.

R0: A sequence of times $t_{1}, t_{2}, \ldots, t_{n}$ at which the cell thermal energies are given.

R1: Cell thermal energies at the $1^{\text {st }}$ time t_{1}.
-

Rn : Cell thermal energies at the $\mathrm{n}^{\text {th }}$ time, t_{n}.
Importances are cell constants independent of the energy of the neutron, thus necessitating only one entry per cell.

The cell thermal treatment requires an appropriate thermal "cut in" energy for the problem (see DO card). All neutrons above this energy are treated as scattered from stationary nuclei. At neutron energies below this cut-in, and for scattering ruclei not belonging to one of a select group of light atoms, the elastic scattering event is treated as scattering from a sta ionary nucleus isotropically in the laboratory system with no energy loss. The select group of light nuclei, which always includes hydrogen and deuterium if present in the problem, are considered to be in thermal motion, having a Maxwellian distribution of velocities determined by the cell thermal energy. Scattering on these nuclei now includes the effect of the thermal motion. This treatment of thermalization of neutrons is of ten described as using the free-gas model.

The cell thermal energies can further be specified as a function of time. The thermal energies as a function of cell (each cell has its own thermal energy) are given at a discrete set of times t_{1}, \ldots, t_{n}. The first time, t_{1}, is written as the first entry on the R0 card; the second time, \mathfrak{t}_{2}, becomes the second entry on the R0 card, etc., through the n values of the time. The thermal energies at time t_{1} are listed, cell by cell, on the R1 card; the corresponding cell thermal energies at time t_{2} are listed on the R2 card, etc. A linear interpolation is used to determine the cell thermal energies at times between two entries. Time values occurring before t_{1}, or after t_{n}, use the thermal energies at the nearest time entry. Because thermal energy entries are required only for those cells whose material composition includes one of the select group of light elements treated by the free-gas model, all other cell entries can be set to zero.

Note. Here we use kT to denote the thermal energy of a cell rather than the more correct $3 / 2 \mathrm{kT}$. Of course, our units of energy are MeV .
2. Source Cards. The names associated with the source cards are $\mathrm{Sn}, \mathrm{UO}, \mathrm{VO}$, and WO. All or some of these cards may be used with a particular source. (More details
about the source subroutines are given in Appendix B.) The usage is as follows.

Sn : The particular source used may be specified by n . One may build up a tibrary of sources each of which is denoted by a subscript, n ; at present $1 \leqslant n \leqslant 8$.

U0: Source tack fractions (described below).
V0: Cumulative probabilities that the energy of a source particle is less than the corresponding energy entry in WO.

W0: A table of energies of source particles.
VO and W0 together give the distribution function of the energy spectrum. A random number, ξ, on the range $(0, i)$ yields a unique starting energy by linear interpolation from this energy distribution function. The source may be arbitrary in MCN provided that it gives a complete description of the starting neutron's initial parameters. Usually this amounts to a specification of the position, direction, time, energy, weight, the number of the cell started from, and/or the number of the surface started on. Any or all of these quantities may be completely determinate or sampled from some distribution. The entries on the Sn card are generally associated with the weight, cell name, and/or surface name.

The first entry on the W0 card should be the minimum neutron energy from the source, followed by the energy entries in order of increasing magnitude through the maximum allowable energy. As mentioned above, the entries on the V0 card are the cumulative probabilities that a source neutron has an energy less than or equal to the corresponding entry on the W0 card. In this case, the first entry on the V0 card must always be 0 and the last entry must be 1 . However, if the source probability distribution is derived from data giving the number of neutrons started in each energy group, this data can be entered directly onto the V0 card. The first entry is again 0 , followed by the input for each energy group up through the highest energy group. The code will process these entries to form the corresponding probability distribution. The code distinguishes between the two modes of entry on the V0 card by examining the last entry. If this is 1 , it assumes that a cumulative probability distribution was read in; otherwise, it processes the data to form the distribution.

The entries on the U0 card are used to bias the energy distribution of the source. We call these entries track fractions. Track fraction is the fraction of neutron histories (regardless of the weights attached to these histories), or "tracks" started in a given energy interval. For example, we may stari more tracks at high energies in a shielding problem, correcting the distribution by altering the weights assigned to these tracks. In this way we should always start the correct amount of weight in each
energy interval. The first entry on the UO card must be a 0 . This is followed by an entry proportional to the number of tracks to be started in the lowest energy group, the entries continuing in the sume way, ane for each energy group, through the highest group defined for the source. But when one is biasing the source by asing a U0 card. then the entries on the Vocard must also be proportional to the aumber of particles from the actuli source in the corresponding energy groups. (Note: A cumulative probability distribution on the $V 0$ card is not uxed when the U0 card is used.) The code normalizes tive entrite on the U0 and VO cards, divides the fraction of actual source particles in an energy bin by the frection of tracks started (the "fictitious source") in that bin to obsain the might assigned to particles in that energy group, puts the appropriate weights so obtained in the proper locations in the UO block, and finally stores a cumulative probability disiribution for the fictitious source (ehe distritution of tracks) in the VO block in the correct storage locations.

In a similar way, it is sometimes helpful to bins the directions of the emerging source particiss. For example, one might send more particles or tracks in a given direc. tion than would normally emit from the source in that direction. Again, the directional distribution is corrected by altering the weights of the emerging particles so as to always send the correct amount of weight in eny given direction. Sizable reductions in variance may result from energy and directional biasing of the source.

The Sn card may be used for entering source data not listed on the UO, VO, and WO cards, such as dimensions related to the source, or quantities selated to dires. tional biasing, or any other parameter values such as starting weight, cell, energy , position, and direction of the source particles. (Appendix B gives some standard sources included in the code, as well as the general source routine.)
3. LCard. The L card is an optional card that gives the names of probiem nuclides whose cross sections are to be stored in ECS (or LCM). Total cross sections and corresponding energies for all nuclides in the problem reside in fast core. The rest of the crosesection information can ive stored in ECS and brought into fast core when needed. A judicious selection of nuclides of lesser importance in a problem for ECS cross-section storage can save considerable fast core storage. This procedure coasts very little in execution time because the transfer rate between ECS and fast core is so high. A table giving cross-sestion storage allocation between fast core and ECS is pristed by MCNI at the end of initiation.
4. Function Carda. The function cards refer to the various tallying functions that the code can perform. The names associated with these cards are $\mathrm{Fn}, \mathrm{En}, \mathrm{Tn}, \mathrm{Cn}$, and P4. The usage is as follows.

Current tally: $\mathrm{n}=1$. The code tallies currents across any designated subset of the bounding
surfaces in the problem in each of the two directions of croudng. Eenide each printed number appeara the reintive errot in that quastity.

Requires F1, E1, Tl, and Cl cards.
F1: Tally wafece numbeti. The entries tre the numbers of the mufaces scross which cumenta are to be allied. There are no orderting sequirements on the surfice number eaticies.

El: Tally energiss. The upper bounds of the energy bins must be entered in the ordes of inarosing mapritude.

TI: Tally times. The upper bounds of the time bins must be entered in the order of increatins magnitude.

C1: Tally cosmes. The inguine limits we defined with respect to the armali to the surfuce at the neutron point of entry. The casd mitries are tiven as lower bounds of the cosine biat where the order of entry sitits with the angle noterest the notmal and contiruss around to the angent plane. Thus, to tally currents mintin the armulat limits 0 to $30^{\circ}, 30$ to 60°, and 60 to 90° with respect to the normal, the entries on the Cl card woudd be $0.8660,0.5,0$.

Fiux tilly serom surfoes: $n=2$. The oode tallies fiuxes across any detignted subsel of the bounding surfaces in the problem as function of time and energy, and in addition lista the corresponding errors in the thuaes.

Requites F2, E2, and T2 cards.
F2: Tally surftee numbers. The entries wre the numbers of the surfeces scross which furues are to be tallied. There are no ordering reguitements on surface number entries.

E2: Tally energies. The energies must be entered in the order of increasing mapnilude exactly as in El above.

T2: Tally times. The tinnes must be entered in the order of increasing magnitude exactly as in T] above.

Fluc tally in celto: $n=4$. The track kenth per unit volume, of average flux, is tallied in any specified subset of cells in the probtem as a fusction of time and energy. The corresponding errors are given.

Requires F4, E4, T4, and P4 cards.

F4: Cell tally numbets. The entries ate the list of cells in which the flux is to be batied. There are no ordeting requireneans on the cell number enties.

E4: Tally energies. The uppet hounds of the enetgy bins must be entered tia the ordet of in. creasing magnifude.

T4: Tally tiones. The thetect bounds of the time bifas musf be entered in the ofeder of incteasing thagnitude.

P4: Cell volumes. The volunes of the cells listed of the Fif catd ate enteted in the satme ofder.

Flus andy at points: $n=5$. The code fallies the fux al a dexigated set of points in space as a function of enetry and titite and prints thes quatititics alonf with their statistical cators

Requiresp5, ES, and T5 catds.
FS: Tally coordinates for exch poinf detector. The entaies are sets of ordered quadruples (x, y, z. R_{Q}), one quatruple for each detector point, where (x, y, z) designates the location of the point in space, and \mathbb{R}_{n} is the adius of a fictionous sphere with center at (x, y, x) (see the description of thas tallies at points in Ser. V. Sanpling Techniques). For each collision occurting inside this fetitions sphete, an aretage contitbution is tallied at the detector point.

15: Tally energies. The uppet bounds of the cneqy bins must be entered it the order of in. creasing magnitude.

T5: Tally times. The uppef bounds of the lithe bins must be entered in the ofder of ineteasing magnitude.

Capture tand in cells: $n=6$. The code tallies the namber of neutons capiured in a designated subset of cells in the problem as a function of energy and titic. and prinis these quantities along with their statistical ertors.

Requires $F 6, E 6$, and T6 cards.
F6: Cell tally numbers. The ertries are the unordered list of cells in which the number of neutons saptured is to be found as a function of enesgy and lime.

E6: Tally enetgies. The energies nusi be entered in the otder of increasing magniersde just as in the above cases.

T6: Tally times. The times musi be entered in the order of incerasing magnitude just as in the above tallies.

The capture tally is easily modified to record some other quantity, such as fission or one of the other reations, as a function of energy and tine.
5. DO Card. The DO card has three entries ordeted as follows.

1. Thastral Einergy Cut-in. All netiroms hoving an cnergy less that this ralue ate tiven the themat treatthent by uxing the free-gas mode (see $\mathbf{t} 0$ and Rn catds). The themal cutia is usually asigned 2 value that is a factot of 10 peater than the maximum thermal enery in any cell of the problem. If thetmal energies ate mol used, this entry in set to 0 .
2. Enery Cut-Off. This is the kowest energy value of interest ia the problem. If thermazenergies are used (RA catds), this entry should be seto.
3. Maximum Energy of the Problem. This entry should be at least as large as the enetgy of any praticte in the problem.

If thermal enetrices ate not used in the probtem. the code will read in crass sections to cover only the energy range defined by 2 and 3 ubove: that is beiween $t_{\text {min }}$ and Fmax for the probletn. The prostath for eliminating cross sections not pertinent to the probletn is called SNif? if themal efergies ate used in the preblem. SNiP is inopera. tive.
6. Material Carda. The names associated with material cotds are Mn; n will be the number associated with a material and should appeat on the appropriate cell catds, that is, on a cell card whenever that cell coniains that material. The crosssection ape contains the cross sections of a list of elemention nuclides whith themselves ate identified by a number, both on the tape and in ntiking tap the compotition of a material.

The entries on the maietial catd showld consisi of the identifying number of a constituent ekmeat followed by the atomic fuction of that element, the number of a second constituent ciement followed by its atomic fraction. etic., running through all the elements needed to define the material.

Whefe problems are fun using a lisi of standard matetials, the appropsiate material information is left in the code with each material then having a faxed identifying number. These material numbers are entered on the appropriate cell cards of the prablem.

Exaraple: To help the seader use the present Monte Carlo progratn, we work out in detail a sample problem in Appendix C. The desctiptive matesial above will be more
easily assimilated if the prescribed steps are followed in setting up the problem. Further, a complete pnit of the problem output is displayed

REFERENCES

1. R. Johnston, "A General Monte Carlo Neutronics Code," Los Alamos Sciendific Laboratory zeport LAMS-2854 (1963).
2. W. M. Jaylor, intermal mernorandum (December, 1968).
3. E. D. Cashwell and C. J. Everett, A Pracrical Manual on the Monte Carlo Method for Rindom Walk Problems, (Pergamon Press, Inc., New York, 1959); also, published as Los Alamos Scientific Laboratory report LA-2120 (1957).
4. M. H. Kalos, "On the Estimation of Flux at a Point by Monte Cario," Nuci. Sci. Engr. 16111 (1963).
5. H. A. Steinberg and M. H. Kalos, "Bounded Estimators for Flux at a Point in Monte Cario," Nucl. Sci. Engr. 44, 406 (1971).
6. C. . Everett, private communication (1970).

APPENDIX A

CONiROL CARD DECKS

a. "Compile source, initiate, and run" deck for LASL's CDC-6600	Run card
	6789 card
19 Bcard	
COMMENT. COMPILE SQURCE, INITIATE, AND RUN PROBLEM	When one of the standard sources is ised, the following deck suffices to "initiate and run."
ASSICN MT, CODETP(PLE, tape no., SHB)	B J9B Card
ASSIGN MT, RUNTF(NLB,SHB)	CQMMENT. INITIATE AND RUN PRめBLEM
RUN(SX,B=RUNTP) CDMPILE SQURCE	ASSIGN MT,CQDETP(PLB,tape no.,SHB)
COPYBF(CODETP,RUNTP)	ASSIGN MT, RUNTP(NLB, ${ }^{\text {, }}$ SHB $)$
COPYGF(CDDETP MCNI)	COP\BF(CODETP,RUNTP)
MCNI.	C@PYBF(C@DETP,MCNI)
RELTAPE(CDDETP)	MCNI.
CQPYBF(RUNTPMCN)	RELTAPE(CQDETP)
MCN.	CゆPYBF(RUNTP, MCN)
789 card	MCN.
Source subroutine deck (including COMMON)	789 card
789 card	Problem deck
Problern deck	789 card
789 card	Run card
	6789 card

"Continue run" deck for LASL's CDC-6600
COMMENT. C@NTINUE RUN
ASSIGN MT,RUNTP(NLB.tape no.,SHB)
CØPYBF(RUNTPMCN)
MCN.

789 card

Run card

6789 card
b. "Compile source, initiate, and run" deck for LASL's CDC. 7600.
\$. COMPILE SOURCE, INITIATE, AND RUN PROBLEM
\$CREATE(FS=CDDETP,CL=U,PREMT=CRQS tape no.)
\$RUN(C=SX.B=RUNTP) CØMPILE S \emptyset URCE
$\$ C$ QPYF $(1=\mathrm{C} \emptyset \mathrm{DETP}, \varnothing=$ RUNTP $)$
\$SETQ(KEY=KKTP)
\$SETQ
\$LDG $\emptyset(I=C \emptyset D E T P)$ INITIATE
\$1F(FALSE=RUN)
\$DMPX.
\$STゆP.
\$LABEL(RUN)
\$SETQ(KEY=KKTP)
\$SETQ.
\$LDGD(I=RUNTP) RUN
\$IF(FALSE=TAPE)

SDMPX.

SLABEL(TAPE)
SAFSREL(RF=RUNTP,ADISP=TAPE)
SFM.

Source subroutine deck (including COMMON)
SFM.

Problem deck
Run card
SEJ.
As in the case of the corresponding CDC-6600 deck, the above deck can be converted to "initiate and run" with a standard source by simply removing the SRUN control card and the source subroutine deck with its \$FM terminator.
"Continue run" deck for LASL’s CDC-7600
§. CDNTINUE RUN.
SCREATE(FS=RUNTP,CL=U,PREMT=CROS tape no.)
SSETQ(KEY=KKTP)
SSETQ.
\$LDG $(1=$ RLNTP $)$
\$IF(FALSE=TAPE)
\$DMPX.
\$LABEL(TAPE)
\$AFSREL(FS=RUNTP,ADISP=STAPE,POSMT=same tape no. as in \$CREATE)
\$FM.

Run card
\$EJ.

APPENDIX B

SOURCE SURROUTTINES

I. Standard Sources

The general nature of the geometry of many Monte Carlo problems has sorie bearing upon conventions established for source routines. Although we make no attempt to be exhaustive, we include some frequently occurring sources. Suppose the source is at the center of, in, or on the surface of a spherical cell; in the sources below, this cell is assumed centered at ($0,0,0$), the origin of the coordinate system. Also, ail point sources are assumed to be at $(0,0,0)$. When we speak of a birsed source below, we mean that the angular distribution is biased in the sense that more neutrons aire started in the positive y direction than in the negative, always correcting for the bias ty altering the weights of the starting particies. In general, we start more neutrons in the hemisphere symmetric about the +y direction than in the henisphere symmetric about the $-y$ direction, with the correct angular distribution in each hemisphere.

Occasionally it is desirable to bias the energy distribution of the source, to emphasize the effects of certain energy groups. This is effected by modifying the source probability distribution and the particle weighting by means of the track fractions. (See Suurce Cards, Sec. V1.H.2.) A source having this capability is referred to below as a weighted source.

To use the following sources without modification, the cell containing the source should be cell number 1 and, if the bounding surface of cell 1 is a sphere, it should be surface number 1 . The entries on the Sn card will be designated in order of their entry as SRC(1), SRC(2), ... , SRC(N). If cell 1 is a spherical region, by setting SRC(4) = radius of sphere as in source SI below, the code will not compute the distance to the boundary traveled by source particles. However, if $\operatorname{SRC}(4)=0$, the code will compute the distances to all boundary surfaces of ceil 1 , selecting that surface corresponding to the smallest positive distance as the surface crossed if the particle reaches the boundary before collision. For example, if cell I is not a spherical region, one should set $\operatorname{SRC}(4)=0$.

Source Routines.

SI: A biased point source.
Requires VO ard WO cards.
SRC(1) $=$ fraction of neutrons directed in +y direction.

SRC(2) = weight of a neutron directed in ty direction.

SRC(3) = weight of a neutron directed in -y direction.
$\operatorname{SRC}(4)=$ radius of cell I, if cell l is a spherical region
$\operatorname{SRC}(4)=0$, otherwise.

S2: A weighted, biased point soutice.
Required UO and VO, and WO cards.
(Eniries on Sn card same as in source S1.)
\$3: A biased, cosine distribution relative to the outward normal of a sphere (surface 1).

Requires VO and WO cards.
(Entries on Sn card same as in source S1, except that $\operatorname{SRC}(4)=$ radius of surface 1 . Particles are started in cell 2).

S4: A weighted, biased, cosine distribution relative to the outward normal of a sphere (surface 1).

Requires U0, VO, and WO cards.
(Entries on Sn card same as in source S 3).

S5: An isotropic point source.
Requires V0 and WO cards.
$\operatorname{SRC}(1)=0$.
$\operatorname{SRC}(2)=0$.
$\operatorname{SRC}(3)=0$.
SRC(4) defined as in : 1.

S6: A weighted, isotropic point source.
Requires U0. V0. and W0 cards.
(Entries on Sa card same as in S5.)
source point. Then DEL must be set equal to the distance from the source point to the other intersection point. For example, if JA is a sphere and the source is on the surface directed inward, $D E L=-2(X \cdot U+Y \cdot V+Z \cdot W)$.

IA The program name of the cell containing the source neutron, or, in the case of a surface source, the cell which will oe entered by the neution.

II. General Source Subroutine

When the source cannot be represented by one of the standard sources described above, it is necessary to write a FORTRAiv subroutine headed by a SUBROUTINE SOURCE card and a COMMON deck provided by LASL Group TD-6. Neutron parameters discussed below must be assigned initial values within this subroutine. In conjunction with the source subroutine there is an $\mathbf{S 7}$ or S 8 card in the problem deck.

III. Neutron Parameters

X x-coordinate of neutron's position.
Y y-coordinate of neutron's position.
Z e-coordinate of neutron's posidion.
U x-axis direction cosine of neutron's direction.
V y-axis direction cosine of neutron's direction.
W z-axis direction cosine of neutron's difection.

At the point of the call of source subioutine, MCN has already sampled and assigned U, V, and W from an isotropic distribution. Unless the source distribution is anisotropic, the parameters U, V, and W need not be assigned.

DEL A special quantity used by MCN in computing distances to surfaces bounding a cell to determine which surface is intersected by the neutron's flight path. If DEL is set to zero, distances to all surfaces are computed; this is generally the value used when the source neutron is within a cell. When the source is on surface JA, DEL must in general be set to -1.0 to a\%id inadvertent selection by the program of surface JA as the nearest bounding surface. There are two exceptions to these rules. If the distance from the source point to bounding surface JA is constant, as for a point source at the center of a sphere, then DEL should be set equal to that distance, thus obviating this computation by MCN. The other exception occurs when the source is on a second-degree surface JA and the neutron flight path intersects JA at another point besides the

JA The program name of the surface in question when DEL has been set to a nonzero value. When DEL is zero, JA should be set to 1 .

TME Neutron's time in shakes (1) shake $=10^{-8} \mathrm{sec}$).
WT Neutron's weight (generally 1.0).
ERG Neutron's energy in MeV .

IV. S7 or S8 Card

An $\mathbf{S 7}$ or $\mathbf{S 8}$ card in the problem deck signals the code that subroutine SOURCE is to be called for source neutron parameters. The $\mathrm{S8}$ card is used only in the following special situation. If a point detector calculation is being made, and neutrons are emitted from the source anisotropically, then MCN needs to know the probability density PSC of emitting directly towards the detector. The S8 card causes a call to a subroutine SRCDX that must be provided along with SOURCE and which must assign a value to PSC. The quantity PSC is used to calculate the contribution of the source neutron directly to a detector. If the $\mathbf{S 8}$ card is not used in a detector calculation, MCN assumes that the source emission is isotropic and sets PSC equal to 0.5 .

Up to eight values may be punched on an $S 7$ or $S 8$ card. These values are stored in order in the array SRC(I), $1=1,2, \ldots, 8$, and are available to subroutine SOURCE via COMMON.

V. Random-Number Generators

Sampling from distributions for source energies, times, etc., may be accomplished as needed by the use of the random-number genetators FRN(KRN) and FRNS(KRN), which are loaded as function subprograms into core with MCN. Each use of FRN(KRN) will give the next random number $\xi(0<\xi<1.0$, uniformly distributed) in the sequence. The use of FRNS(KRN) in a statement gives a random number on the range ($-1.0,1.0$) (in effect, FRNS(KRN) $=2 .{ }^{*} \mathrm{FKN}(\mathrm{KRN})$ - 1.). If more than one random number is required in a FORTRAN statement, a little finesse is called for because the compiler notices identical functions and then uses the function only once. For example, the expression

AMAXI(FRN(KRN), FRN(Naixij) will not do since it results in the same random number buing used for both arguments of AMAX1. Some preliminary assignment
statement such as $R N=F R N(K R N)$ preceding AMAXI(RN,FRN(KRN)) is successful.

APPENDIX C

SAMPLE PROBLEM

In order to illustrate the stepu in setting up a typical problem, as well as to portray some of the standard output features, consider the geometrical configuration of Fig. C-1. Figure C-2 shows how this problem might be zoned to prepare it for MCN.

We shall specify the various input and output functions and proceed to set up and make a sample run of the problem. (See Tables C.I through C.VV.) This problem is used merely to instruct and is not necessarily meant to represent a physical problem. In a practical probiem, one
might proceed differently and with more regard to the physics of the situation in zoning the problem, in specifying some of the inpur functions, and particularly in the choice of the output functions available to the user.
A. Source. The source, with energy distribution listed in Table C-I, is uniformly distributed in volume throughout cell 1 (Fig. C-2), and isotropic in direction. Because we are tallying mainly along the positive y direction, we decided to bias the directional distribution, serding three-fourths of the particles isotropically with positive v (v is the y-direction cosine) and one-fourth of the

Fig. C-1.
Sample problem for the MCN code.

Fig. C-2.
Sample problem zoned for input to MCN.

TABLE C-I

SOURCE

Group	Energy (MeV)	
	Fractions in Group	
1	0.0001	
2	0.001	0
3	0.01	0.01
4	0.1	0.03
5	0.5	0.06
6	1.0	0.20
7	5.0	0.30
8	10.0	0.20
9	14.0	0.15
		0.05

(The energy listed is the upper bound of the energy group.)
particles isotropically with negative \vee, correcting the weights of the source particles so that one-half of the weight has positive v and one-half has negative v.

If the problem has a time cutoff of 100 shakes, suppose we ask for the following information.
B. Currents. Tally currents across surfaces 10,11 , and 14 for
$\begin{gathered}\text { energies: } \\ (\mathrm{MeV})\end{gathered} \underset{(0.0 .01,}{0.01-1.0,} 1.0-5.0,5.0-14.0$
times: $\quad \mathbf{0 - 1 0 0}$ (shakes)
angles: $\quad 1.0-0.8,0.8-0.6,0.6-0.4,0.4-0.2,0.2-0$ (values are for the cosine of the angle with the normal to the surface).
C. Flux Across Surfaces. Tally the flux across surface 17 for
energies: 0.0.01, 0.01-1.0, 1.0-5.0, $5.0-14.0(\mathrm{MeV})$
times: $\quad 0.20,20-40,40-60,60-80,80-100$ (3hakes).
D. Flux in a Cell. Tally the average flux in cell 3 for energies: 0.0.1, 0.1-0.5, 0.5-1.0, 1.0-5.0, $5.0-14.0(\mathrm{MeV})$
times: $\quad 0-10,10-20,20-40,40-100$ (shakes).
E. Flux at a Point. Fally the flux at the point (0, 10,25) for
energies: 0.0.01, 0.01-1.0, 1.0-5.0, $5.0-14.0(\mathrm{MeV})$
times: $\quad 20,20-40,40-100$ (shakes).
F. Capture in a Cell. Tally the number of particles captured in cells 4 and 5 for
energies: $0.0 .001,0.001-0.1,0.1-1.0$, $1.0-14.0(\mathrm{MeV})$
times: 0-1心, 10-20, 20-40, 40-100 (shakes).

TABLE C-II
CELL QUANTITIES

Cell	Importance	Thermals (MeV)		
		$\begin{gathered} t \leqslant 70 \\ \text { shakes } \end{gathered}$	$\begin{aligned} & t=40 \\ & \text { shakes } \end{aligned}$	$t \leqslant 60$ shakes
1	1.0	0.00001	0.00005	0.0001
2	1.0	0	0	0
3	2.0	0	0	0
4	2.0	0.00001	0.00005	0.0001
5	1.0	0.00001	0.00005	0.0001
6	4.0	0	0	0
7	4.0	0	0	0
8	8.0	0	0	0
9	8.0	0	0	0
10	16.0	0	0	0
11	8.0	0	0	0
12	32.0	0	0	0
13	16.0	0	0	0
14	32.0	0	0	0
15	1.0	0.00001	0.00005	0.0001
16	1.0	0	0	0
17	1.0	0.00001	0.00005	0.0001
18	1.0	0	0	0
19	1.0	0	0	0
20	1.0	0.000001	0.00001	0.00001
21	1.0	0.000001	0.00001	0.00001
22	4.0	0.000001	0.00001	0.00001
23	4.0	0.000001	U.00001	0.00001
24	8.0	0.000001	0.00001	0.00001
25	8.0	0.000001	0.00001	0.00001
26	1.0	0	0	0
27	1.0	0	0	0
28	2.0	0	0	0
29	2.0	0	0	0
30	4.0	0	0	0
31	1.0	0	0	0
32	0	0	0	0

TABLE C-IEI
MATERIAL DENSITIES

Atomic Density

(atoms $/ \mathrm{cm}^{3}$)
0.0603
0.0463
0.123
0.00926
0.1173
0.0847

Surrvititig semert

，$E T(12), C R T(12), T H O!2), A H D(2)$.

$\stackrel{5}{c}$
UHJFOMmLV HISINIUNTED IN VULUME IN SPECIFIEO SPAFRICAR CELL．
C STANTIAG OIHECIIUR ISOTROPIC，HUT GIASED IN MOSITIVE VODIAECTION．
ENERGY JISTNINUTIUN．
Sf camo ntwuinfo in palialem deck．
SRCIIICRLL NUMAER．
SHLCCIENAIIUS WF CELE IN CM
MEUTHONS GMOSE STARTINO DIAECTIDN HAS
posilityt v ．
UIMENSION ESKC！Q！，PESRCIP1

UISIANCE FMUM URIGIN SAMPLED FHDM THE INTERVAL（D．SRCIZII
OISIMIHUTEI ACCNHDING TO TAE DISTANCE GUAED．
SAMHLE UNIFONMLV FHOM DUINTS INSIDE THE UNIT CIRCLE．
10

HIFは！．GT．J． 60 To 10

THE COSIAE UF THE VOLAH AMGLE OF TME STARTING POENT，

（FiPRNIENA）AGT．gNC（3）！an TO 30

veans（v）
wevestsmcis
MCII
JA＝1
0とした
HAF HN（KRN）
00 2V 102．0
If IA．C：PESNC（：））BO TO 25

HE IUNA \quad SE INEGIVE imsRC（3）OF TKE TIME．
30 vaeabsiv；
－1 $=0.5 / 14 .-54(3)$
Gu in is
ENU
sUg Phogran lengin
000161
FUNCTION ASSIGNMENTS


```
    43 .0603 1,1, 1020,4,5,3
    44 :123 2, 2, -7,4 -3,0
    40.1173 2.7 -15.4,3.15
    *1:0463 3,4.3-5,7-1.4
    :3.0803 4,0,15,1N -6,i% -7,4
    4 :0003 5.E 7.7 =n.21 -H.ll
    41,04H3 -5.111M,H-4.12
```



```
    43:0803 -5,13,10.14-11:32
    43.0603 5.15 10.1N -6.21 -15,7
```



```
    46,1173 6.14 14,32-12,26 -10,21
    :1173 6,10, 14,20-12,27 -15,22
    :1173 0,7 19,21 -12,24-7,23
    b,1173 6,4 7,22 -12,20-A,?4
```



```
    -1173 8,15 4,74 -1<,30 -11,32,
    .0n+7 12.21 18,20 -13,31 =15,28
    :0447 12.<2 15,27 -13,31 -7,24
    :0047 122.23 7,26 -13,31, 44,30
    13,26,27,2*,29,30 14,32-14,32,-11,32
    13,26,27,25,29,30,14,32, -14,32-11,32
    3.0
    5.0
    So 10.0
    cy 0.3333333333
    cr 10.
    CY 11:
    PY 150
    PY 20.
    Mr 250.
    #y 30:
    cr 314.
    Cr cr 150
    cr 20.
pry
MY =12:
py -18.0
1.E=3 0 14.0
1.1.2.2.1.4.4. H. 0, 16. 3. 32. 16. 32. 1. OR 4. 4. B= 0.
1. 1. 2.2.4.1.0
13.0.75
20.40.00.
10.E-6 OO 10.E-6 1R O UR 1O-E-6 O 10.EEA OO IOEOC 5R O OR
```



```
101314
.01 1. 5. 14.
100.
H -6 04 . 2 O
17
-01 1. b. 14.
20.40.60. B0. 100.
.1 .5 1.0 5.014.0
i0.'20. +0. 10v.
245.52
0.010.23.0.0 10.0
20. 40. log.
* 5 % 1.0 
10. 20. 40. 100.
2215 .4244 2214 .0736
2036 1:
2035 1:
11 :5 3000 -5
3006 15
```

32 CFL S						10 stapaces		
PROOH NAME	PAOHL mame	matental	Hensfiy	1mPOAImact	AStC mut	Pnogr mame	noosl mamt	
1	1	4	9． 2 AnOE－03	$1.00000=00$	1．00008－00	1	1	
2	3	－3	A．0300F－02	1．00008 000	1．00006 0.05	1	2	
3	3	4	1．230Ct－0i	2．0000FF00	1．00008．09	3	3	
4	＋	$4{ }_{4}$	$1.17306-01$	2．0004E－00	1．0000t－00	＋	a	
5	3	40	$1.17306=01$	1．00045．00	1．0000F＊0才	5	\pm	
8	\bigcirc	61	$4.9 . j 00 F-02$	－．0000F．00	1．00006－00	4	＊	
7	7	43	A．Ulvol 002	4.0000 t 00	1．0000E－63	1	$\overline{7}$	
8	－	－1	－biodi－07	（．0000F－00	1．0000t－00	d	0	
－	v	43	＊．070uf 0 ar	4．0000E－60	1．00008 0.30	－	－	
10	10	1	$4.6700 \mathrm{c}=02$	1．t00uf－01	1．0000E－t0	10	10	
il	11	4］	6．0300E－n2	4．00002 000	1．0000f－00	11	11	
12	12	4	$1.2300 E-81$	3.30608001	1．0000F－03	12	12	
13	13	43	$6.03008=02$	1－8000E－el	1．C000E 000	13	13	
18	14	43	$4.0300 \mathrm{E}=02$	3．20046001	1.00004000	16	14	
15	15	46	$9.2600 E=03$	1．0004F－00	1，0000E－00	15	15	
16	10	－3	A．0．300E－02	1．00005．00	1．00001－54	14	16	
11	17	－ 5	－．2hUOFFOS	1．0000f 000	1．0000E＊00	17	17	
18	10	43	6－0．30Ck－02	1．00006．00	1．0000E＊00	10	14	EtrLETHE＊
10	14	43	$6.039 \mathrm{LE}-02$	1．000uc．00	1．0c00E－00			
<0	20	46	1．：536E40	1．0000f．00	1．0000E－00			
21	21	40	1．1730E0）	1．0000t－00	1．0000E－50			
22	22	46	1．1730E－01	－．0000E－00	1．0000E－00			
23	23	－6	1．1730E－61	－．00002．00	1－0COOE 20			
2.	24	46	1．1730E－01	－ 0000 E 00	1．0000E＊00			
25	25	－6	1．1730E－01	B．0000E000	1．0009E＊CO			
26	26	42	$3 \cdot+700 E=02$	1．0000E008	1．0000E＊00			
27	27	42	$0.4100 E-02$	1．0000EP00	1．0000E＊00			
28	2＊	42	B．4TODECO2	2－00JUE＊00	1．0000E000			
$2{ }^{6}$	24	42	A． $6.700 \mathrm{E}-02$	2．0000E＊06	1．000 OE 000			
30	30	42	8．6700E－02	4．0000E－00	1．0080E＊00			
31	31	0	0.	$1.0000 \mathrm{E} * 00$	1．0300E000			
32	32	0	0.	0.	1．0000E－C0			

FOnmula 2 －＊neutmuns chossing sumface					
SUHFACE	10 11	$1 *$			
ENEHUY	1．0000E－42	1．600UE－00	5．0000E．00	1．0000E－01	
TIME	1．0000E．02				
cosine	8.000 こと－01	$6.0000 \mathrm{E}-01$	－．0000E－01	2．0000E－61 O．	0.
Fownula 2 －Flux intfgalieu nuth surfare					
SURFACE	17				
ENERGY	$1.7000 t-6 ?$	1．000UE－00	3．00006000	1．4000E001	
TIME	$2.0000 t-01$	4.0000 COL	6．00100E $=01$	＊．0000E＊R1 1.00	1．0000E002
FOHmula ${ }^{\text {a }}$－PATH LENGTM／VULUAE					
cell	3				
ENERGY	1．0000E－U1	3．0000E－01	1－0000E＊00	5．0codE 00 ： 0	：03000E001
T1 ME	1．0000E．U1	$2.0006 E 01$	－．00008．01	1．0000E 02	
volume	2．0552E＊U2				
formula s－e Flidx al oetectoh					
	DETECTIM	${ }^{\prime}$	\checkmark	$\boldsymbol{2}$	NEICumornoco
	1 O	0.	1．0000E－01	2．3000E－01	01 0．
ENEAGY	1．00110E－U2	$1.0000 \mathrm{E} * 00$	3．00008．00	1．4000E＊01	
TIME	$2 . C O D O E * 1$	4.0000 E 00 L	1．0000t－02		
FOmmula 6 －－Captuhts					
CELL TIME	$1.0000 \mathrm{E} \cdot{ }^{3}$	2．000ut．01	4．0000Ee01	1．0000E02	
E＊EMGY	1．00008－03	1．0000E－01	1．0000E．00	1．4000E＊01	

T1me（no）	2.0000 E 01	－． 0000 － 01	6．0000E－01
CELL	H1	Q2	N 3
1	1．00001－03	3．0000E－03	1．0000E004
2	0.	0.	0.
3	0.	0.	0.
－	1．00008－03	$5.0000 \mathrm{E}-05$	1.00008 .00
5	1．00006 0 05	5．0000E－05	$1.0000 \mathrm{E} \times 04$
6	0.	＊＊	0.
I	0.	0.	0.
－	0	0.	0.
－	0.	0.	0.
10	0.	0.	0.
11	0.	0.	0.
12	$0 \cdot$	0.	0.
13	0.	0.	0.
14	0.	0.	0.
15	1－0000［－03	5．0030E－03	1．0000E－04
16	0.	0.	0.
17	1．00une0s	5．0000E－0゙5	1．0000E＊UL
10	0.	0.0	$0: 00$
19	0.	0.	0.
20	1．0000E 06	1．0000t－05	1．0000E＊OS
21	1．004 OE－06	1．0000E－05	1．0000tE05
22	1．0000E－06	$1.0000 \mathrm{E}=0 \mathrm{~S}$	1．0000E－05
23	1．0000E ${ }^{\circ}$	1．0000E－05	1－0000t－0s
24	$1.0000 \mathrm{E}^{2}-04$	1．6000E－05	1．0900E－0S
25	1．0000E－0s	1．0000E－05	1．0000E0S
26	0.	0.	$0 .$
21	$0 \cdot$	0.	0.
20	0.	0.	0.
24	$0 \cdot$	0.	0.
10	$0 \cdot$	$0 \cdot$	0 。
31	$0 \cdot$	0.	0 －
32	0.	0.	0.

sounce wo.	11me curosi 1.0000 002	wezent cutorp i - 0 810 E-fe	nuw TIME 	$\begin{aligned} & \text { Wh3nt ercle } \\ & 25089 \end{aligned}$	$\begin{aligned} & \text { oun crcle } \\ & 23000 \end{aligned}$	Oume wo	CuTOFP crele

SAMPLE PAOBLEM

cosint $\quad 6.0000 \mathrm{~L}=\mathrm{ui} \quad 4.00 \mathrm{u} 0 \mathrm{E}=01$

5.0000E•00
1.04000E•01
000E-01 2.0000E-01

ENEAGY	In	$\begin{aligned} & \text { SUAFACE } \\ & \text { ERHOH } \end{aligned}$
1.0000E-02	V.50Y23F-63	.40il4
1.00uJE.00	2.19404F-04	.23740
S.0U00E-00	3. 5014 Pt-05	-6472A
1. Authofiect	6.70070F-06	-994m?
EMLngy	- 10 -	$\begin{aligned} & \text { SUAFACE } \\ & \text { ERHOH } \end{aligned}$
1.0.0130E-02	2.11043E-0*	.99982
1.0UDOE -00	$7.1501 \mathrm{ME}=0{ }^{\text {\% }}$.994nz
5. U000E-00	4.130385 .04	. 70hel 7
1.4000E-01	0 。	0.10000

10	ERKOR
2.1766te05	. 57715
-.169yeE-0S).4111\%
1, e4, 3 EE05	- 57731
0.	0.00000
1* - $10 .^{0 .}$	- ELe $^{\text {ERHOR }}$
0.	0.00000
0.	0.00000
0.	0.00000
0.	0.00000

enemgy	- 10	SuAF ACE HEL E ERUOR
1.0000E-02	-.74031E-ns	- + +14*
1.0U00E*UO	6. 14310E~TS	- .32211
$5.0000 \mathrm{E} \cdot 02$		5 . 57424
1.4U00E-01	0.	0.00000
		Supf ice
ENEAGY	- 10 -	HES. ERMOH
1.0U00E-02	0.	0.00000
1.0000E000	0.	0.00000
5.0UOOE - 00	0.	0.00000
1.0000E-01	0.	0.00000

capiuhes

Eneruy 0	. CELI. 1.	$1.0000 \mathrm{f}-03$ HELAYIVE	CELL	Relative
1145	-	tqhug	5	ERROH
1.0U00E-0!	7.14.Jh2F-05	5.04317	-.15080E -05	.06389
2.0U00E.01	1. 25507 EOH	4.03909	1.43EUSE-04	.054.86
$4.0000 \mathrm{P} \cdot \mathrm{D}$)	2.bucile 04	- .035e9	2.0710UE-04	.05172
1.0000E.02	6.10419E-04	4.03401	7.21740i=04	.04661
ENEHGY 1	1.0000E-03 1.0000F-01			
11 me	-	Eacor		EMHOR
1.0U00t-0i		5.03074	5.31591E-13	.04237
2.0000E-01	2.57366F. 0 h	(6).15204	2.26383E-0n	. 17365
4.0000E.01	$9.721535-08$	8 . 39414	$5.05435 E \cdot 07$. 36423
1.0000E-02	$4 \cdot 481 / 4 E-04$	0 H .05227	0.	0.00000
ENERGY 1.0000E-01 1.0000F*00	1.0000E-01 1.0000f*00			
	CtLL	heilati ve	CELL	aElative
PIme	4	EAHOR	5	ERHOR
1.0V00E-01	3.47044E 05	5 .0306n	4.43344E-05	. 04616
$2.0000 \mathrm{E}+01$	0 .	0.00000	0.	0.00000
4.00006001	0.	0.00040	0.	0.00000
1.0000E*02	0.	0.00000	0.	0.00060
Emerioy 1	1.0000E-0U 2.40U0F-01			
	CELL	helative	CELL	nelative
TIME	4	ERAOR	5	ERROR
1.0000E*01	1.73172E-04	4.17608	2.53899E*04	. 30486
2.0000 E 01	0.	0.00000	0.	0.00000
$4.0400 \mathrm{E}-01$	0.	0.00000	0 。	0.00000
1.0000E-02	0 .	0.00010	8.	0.80000

DATH LEMBTH/VOLUNE

NUMRFP OF NEUTRONS CHOSSING SURFGCE

TIME	0.	$1.0000 \mathrm{E}+02$
COSINF	$1.0000 \mathrm{O}-0$	$8.0000 \mathrm{E}=01$

CORTNE A.0000E-71 H.DOODE-01

FNF PGY	Tn	$\begin{aligned} & \text { SUAF ACE } \\ & \text { FRROR } \end{aligned}$	10.10	REL. ERROR
1.000nE-02	2.77449E-74	. 1 A 755	1.48791E-05	-31907
1.0000E00	6.5:004F-0.4	. 18605	9.67136E-05	-13529
3.0000E-On	1.40214E-04	. 10259	1.98193E-05	. 23009
1.400 E-61	-. 5-624F-0.	. 2 \#223	4.18363E-06	.50010
FNF DGY	- IT)	Subface f ARTA	14. 10	PEL, EARTR
$1.0000 \mathrm{E}=02$	1.14566E-ก3	. 23351	0.	0.00010
1.0000E*00	3.955日1E-03	-12973	0.	0.00000
S.0007E 0 OO	3.2.1782E-03	-157n9	0.	0.00000
1.60005001	2. $27965 \mathrm{E}=0.3$. 20650	0.	0.00000

T0	$\begin{aligned} & \text { SURF ACE } \\ & \text { ERROR } \end{aligned}$	12. $10=$	WEL. EARDR
4.47369E04	+15315	0.	0.00000
6.11854E-04	. 12390	0.	0.00000
4.97057E=04	.19785	0.	0.00000
1.34757E-04	. 40370	0.	0.00000

TO	$\begin{aligned} & \text { SUR } \\ & \text { ERGOR } \end{aligned}$
1.76038E00	.63524
1.16432E-04	.33807
3.02462E-05	. 26445
4.78868E=05	.76560

11

FLUX INTEGRATED DVER SURFACE

TIME 0	2.0000E.01	
	SURFACE	pelative
FNERGY	17	EAROR
$1.0000 \mathrm{E}-02$	$28.39392 F=03$. 21229
1.0000E.00	6 5.ctizaE-02	-188590
5.0000E400		.10444
1.4000E001	1 1.46145E-02	.11717
ITme 2	2.0000E01 *.	- 0000E*01
	SURFACE	pelative
ENFPGY	17	ERAOR
1.0000E-02	$21.004355-02$.26045
1.0000E 000	0 0.	0.00000
5.00nOEPOn	0 0.	0.00000
1.4000E01	10.	0.00000
TIME	4.0000 E 08 (6.	6.0000E*01
	SUPFACE	RElative
F NERSY	17	ERPOR
1.0000E-02	$24.77182 E-03$. 18832
1.0000E-00	0 0.	0.00090
S.C000E4On	0 O.	0.00000
1.4000E-01	10.	0.00000
TIME 6	6.0000E*01 8.0	8.0000E.01
	SURFACE	aELATIVE
fnergy	17	ERPOR
1.0000E-02	$25.23446 E-03$.43527
J.0000E*00	0 0.	0.00000
5.0000E*00	0 0.	0.00000
1.4000E*01	10.	0.00000
TIME B.	B.0000E*01 1.	1.0000E* 02
	SURFACE	aElative
ENF RGY	17	ERROP
$1.00008-02$	2 3.835S9E-03	.20722
1.0000 E 00	0 O.	0.00000
S.0000E*00	0 0.	0.00000
1.4000E*01	10.	0.00000

CAPTURES

THE FOLLOWING IS A CODY TF DAYFILE JOSIFE UD TO TIME 16.35 .44

14.43.44	SHITA 00	ChOS 1.3A 71/09,27 MACH. 14 TADE SY7tion 32
15.43.4.	31, 10	
15.43.4.4	Fintr	- JOH NAMEPTIJNHMPIFE,GATE 71/10/0!
15.43.4M	- CCL	
13.43.64	Flusmir	
18.43.48	DFMARK	
15.43.4H	StMTR	
15.43.4A	Bumid	-FILF SET INV OPFNED.PUFFER LENGTH $=00010100$.
14.43.4N	Stjm9	-FIIF SFT Johin closidiehuffer Lengin ecoobeloo.
15,43.6H		- FILE SFY Statisiais
15.43.4H		Dfalss orites PDStitions DISM ROS DISK wRS
15.43.4.9		00000nn? 000000000000000002000000001000000000
15.43.44		- L*AEDOCODOOIO2,DEVICE=0z
15.43.4.4	${ }^{-} \mathrm{CCH}$	B. rontinue mun ano copy output to tape.
15.43.4	-CP	
15.43.49	${ }^{-C+}$	STFTOIKFYEKKTPI
15.43.49	- CCH	St To.
15.43.49	- CRP	SLCTOC (latintid
15.47.49	*UMTA	
15.63.49	\$9MTR	pollour stauteo
14.43.40	s8mp	H0, LOUT DONF
15.4H.70	* 105 ns	
14.73.44		RnLlim Stanteo
14.23.6t	P8418	aOLlin imane
14.77. 50	sumio	
16.30 .32	\%amta	Polloir ctaried
16.30 .13	89mia	holl
16.37.16	\$ $\mathrm{HMTA}^{\text {/ }}$	amllin started
16.32.11	8RMif	Hollitin dine
16.35.42	HJJGEL	-f N
16.35.42	SUMTA	
16.35.42	\$נMTA	-FiLe SFt luage closenibuffer lengit oooosilon.
16.34 .42		- Filf SEt stattstics
16.35.42		- Qfags malies positions oisk mos disk was
16.35,42		000000000000000003 000000001 00000000000000000*
16,35,42		- LeAx0000147115*LEVICEs02
16,35.43	${ }^{-C C P}$	\$[FIFALSEATAPE)
16.35.43	-CCP	\$LAHELITAPE,
16.35 .43	-CP	
16,35,43	sumpr	-FILE SET RUNTP CLDSEDiguFFer LENGTH LOO32100\%
16.35.43		-FILE SET STATISTICS
16.75.43		- Rfans urites positions oisk hos oisk wrs
16.35.43		000000033000000002000000002000000007000000002
18.35.43		- LaAC0000143743iUEVICEE03
16.35,44	- CCO°	SCOPYTE,
16.35 .44	FluSmof	. Dayfile flusmer. 10 Disk - 10 16.35.44

