
Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

5-9-2005

Computing Isodose Curves for Radiotherapy
Treatment Plans
Ryan Acosta
Trinity University

Follow this and additional works at: http://digitalcommons.trinity.edu/compsci_honors

Part of the Computer Sciences Commons

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,
please contact jcostanz@trinity.edu.

Recommended Citation
Acosta, Ryan, "Computing Isodose Curves for Radiotherapy Treatment Plans" (2005). Computer Science Honors Theses. 8.
http://digitalcommons.trinity.edu/compsci_honors/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trinity University

https://core.ac.uk/display/216383741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors/8?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Computing Isodose Curves for Radiotherapy Treatment Plans

Ryan Acosta

A departmental senior thesis submitted to the

Department of Computer Science at Trinity University

in partial fulfillment of the requirements for Graduation.

April 11, 2005

Thesis Advisor Department Chair

Associate Vice President

for

Academic Affairs

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License. To view a copy

of this license, visit <http://creativecommons.org/licenses/by-nc-nd/2.0/>or send a letter to Creative Commons,

559 Nathan Abbott Way, Stanford, California 94305, USA.

Computing Isodose Curves for Radiotherapy

Treatment Plans

Ryan Acosta

Abstract

Radiation therapy increasingly means Intensity Modulated Radiation Ther-

apy (IMRT) and with it a trend towards inverse treatment planning. The met-

rics of a treatment consist of important conformality indices such as the Ian

Paddick Conformality Index (IPCI), Dose Volume Histograms (DVH), as well

as the conformance isodose lines. This final metric, which offers spatial infor-

mation of radiation dose that the others do not, shows the results of simulating

the treatment plan on the CAT scan images. A physician is able to examine

this image and ascertain which portions of the anatomy are the recipients of

different levels of radiation dose.

Computing isodose curves is no simple task, especially when the set of CAT

scan images becomes large. Our approach is to first interpolate a surface over a

finite mesh of scalar data representing the dose distribution in that plane, then

find the set of points which constitute that isodose level by using a variation on

a an approach called the Hit-and-Run algorithm. We examine the behavior of

our algorithm in dealing with sample radiotherapy plans as well as constructed

examples to determine the effectiveness of this approach.

Computing Isodose Curves for

Radiotherapy Treatment Plans

Ryan Acosta

April 11, 2005

Acknowledgments

I want to thank Dr. Allen Holder for introducing me to “the cancer problem”

which allowed me to uncover this interesting aspect of that problem. His help

with generating ideas to try as well as his knowledge of the LATEX typesetting

system have proved invaluable. I would also like to express my gratitude to Dr.

Maurice Eggen for allowing me to do this project and helping to ensure I got

the things I needed to turn in done on time.

Contents

1 Introduction 1

1.1 Radiation Therapy . 1

1.2 Treatment Planning and Optimization 4

1.3 Treatment Evaluation . 5

2 Curve and Surface Fitting 10

2.1 Cubic Splines . 11

2.1.1 A Cubic Spline Example 15

2.2 B-Splines . 16

2.2.1 Bézier Curves . 17

2.2.2 B-Splines in the Plane . 19

2.3 B-Spline Surfaces . 21

2.3.1 Computing B-spline Surfaces 23

2.3.2 A B-spline Surface Example 25

3 The Hit and Run Algorithm 27

3.1 Newton’s Method . 28

4 Computing the Isodose Curves 31

4.1 Newton’s Method . 31

CONTENTS

4.2 Domain Check . 33

4.3 Example Cancer Treatment . 34

4.4 Drawbacks of the Method . 36

4.5 Conclusions . 40

A BSplines.c 45

B Vector2.h 51

C Vector2.cpp 53

D hitandrun.cpp 55

List of Figures

1.1 IMRT Radiation Therapy [1] . 3

1.2 Dose Volume Histogram [2] . 7

1.3 Isodose curves [12] . 9

2.1 Mechanical Spline from the 1700s [7] 11

2.2 Cubic Spline plotted with actual function 17

2.3 B-spline patch with its control points 23

2.4 Control points and resulting B-Spline surface 26

3.1 Newton’s Method for three iterations [10] 29

4.1 CAT Scan . 35

4.2 Treatment plan with 50% isodose curve 36

4.3 B-spline surface example for a saddle point 37

4.4 f(x, y) = cosx · sin y . 38

4.5 Sampling 100 Points . 39

4.6 Sampling 200 Points . 40

4.7 Sampling 500 Points . 41

4.8 Sampling 1000 Points . 42

Chapter 1

Introduction

Cancer is a disease, or group of diseases, characterized by uncontrolled cell di-

vision. It is possible for this uncontrolled proliferation of cells to extend beyond

their original tissue and invade other parts of the body and organs and in doing

so become life threatening. While the idea that cancer is a deadly disease is

a generalization of all types of cancer, it has been the leading cause of death

in the United States since 2002 [11], and in the United Kingdom since the late

1990s [3]. Because of its obvious effect on human life, there has been much

research into both the disease processes as well as treatments for the disease.

1.1 Radiation Therapy

Radiation therapy is one of the three main approaches to providing treatment

for cancer patients. The three primary methodologies are: radiation therapy,

chemotherapy, and surgery. The choice of therapy depends on the type and lo-

cation of the tumor, as well as the stage of the disease. Our focus is on radiation

therapy and how to improve the effectiveness of treatments. Because there are

numerous technologies, there are many different possibilities of treatment. This

1

1.1. RADIATION THERAPY 2

fact leads us to the different techniques that medical physicists use to design a

treatment. Because there are varying approaches and different patient desires,

the sense of optimal is not fixed. Moreover, there are certain metrics commonly

used to evaluate a treatment and assess whether or not it should be used on an

actual patient. One such metric, with which we are mainly concerned, is the

conformance of “isodose” lines to the tumor within the patient’s anatomy. Iso-

dose lines show the contour of the radiation levels in the anatomy and provide

spatial information about the deposition of radiation. In turn, these curves help

physicians to evaluate potential treatments.

There are two methods of treating cancer that use radiation. The first is

called brachytherapy and involves surgically implanting radioactive pellets into

the tumor. This type of treatment is often used to treat prostate cancer because

the arrangement of critical structures in this region makes it difficult to use the

second type of therapy, external beam therapy, and avoid causing damage to

those organs. The second method of radiation therapy uses an external radiation

source and forms a beam that is aimed at the patient according to a specified

plan, which combines different beams to deliver a uniform dose to the tumor.

Radiation therapy’s approach takes advantage of what is called a therapeutic

advantage. When a patient is treated with radiation, the beam causes DNA

damage to cells. Healthy cells repair themselves over time, but cancerous cells

are not capable of repairing themselves. This means that it is possible to deliver

enough radiation so that the healthy cells recover (in about 24 hours) yet the

cancerous cells accumulate the damage. This is referred to as the fractionation

of a treatment and patients often receive a small dose of radiation each day

for several weeks in order to exploit the therapeutic advantage afforded by the

cellular repair. Sometimes great effort is made to ensure that the patient receives

the radiation from the same position each day. In some cases involving tumors

2

1.1. RADIATION THERAPY 3

in the brain, this even requires inserting screws into the patient’s skull to ensure

the treatment is delivered as planned.

Figure 1.1: IMRT Radiation Therapy [1]

A common form of external beam radiation therapy is known as Intensity

Modulated Radiation Therapy (IMRT). The radiation beam is formed by ac-

celerating photons that creates a high-energy, ionizing particle beam, which is

focused on a patient by a gantry. The gantry head includes a device called a col-

limator that has a number of tungsten leaves, which can move back and forth in

order to effectively shape the beam. Controlling the shape in turn controls how

we deposit radiation from that angle. The gantry head moves in a great circle

on a single axis of rotation about a couch that the patient lies on, which has a

rotation of 180 degrees. The combination of these two rotations allows medical

physicists to treat from almost any angle on a sphere around the patient. The

system is designed so that from each combination of couch and gantry angles,

3

1.2. TREATMENT PLANNING AND OPTIMIZATION 4

the radiation beam is focused on a point called the isocenter. Generally the

isocenter is placed in the tumor so that all angles are focused on the tumor.

Because of the rotation of the system, the tumor appears differently depending

on where the gantry is located. This is called the beams-eye-view and the col-

limator adjusts to the appropriate setting for each gantry angle. Additionally,

because the beams from each angle work together on the overall treatment, it

may be necessary to “turn off” parts of the beam from a certain angle because

that section of the tumor receives enough dose from the other gantry angles.

This allows the physician to ensure that healthy tissue absorbs no more radia-

tion than is absolutely necessary. In combination, the rotation of the couch and

gantry, coupled with our ability to shape the beam, gives us a great measure of

flexibility when designing treatments.

1.2 Treatment Planning and Optimization

There are two paradigms to designing a radiotherapy treatment. The first is

known as forward planning. In forward planning a physicist or dosimetrist

(a dosimetrist is a certified professional who designs radiotherapy treatment

plans) selects angles and exposure times for each angle and lets the computer

calculate the amount of radiation that would be deposited in the anatomy. If

this results in an acceptable treatment, they are finished, but often they adjust

and readjust the treatment and simulate again. In this way, forward planning is

a trial-and-error method and depends heavily on the planner’s knowledge and

experience. The second approach is called inverse planning. In this method,

the physicist chooses the gantry angles and sets limits on absorbed dose. The

computer then calculates a set of exposure times for those angles that satisfies

the “prescription”. Inverse planning relies on optimization models to efficiently

find an optimal treatment.

4

1.3. TREATMENT EVALUATION 5

There are a variety of optimization models in existence, but they all operate

with the same goal: attempt to satisfy the “prescription” in the best way possi-

ble. Some models use volumetric constraints, meaning that a certain percentage

of the tumor volume must receive a given lower bound of radiation and that a

volumetric percentage of the critical structures must receive less than some up-

per bound. Other models attempt to maximize the difference of the dose to the

tumor and the dose to the critical structures. Additionally, optimization models

can be linear or nonlinear (most often quadratic) and different models describe

an optimal treatment differently.

The optimization model that we use, because of our familiarity with it, is

described in Holder and Salter [9]. The specifics of this model are not important;

it is more valuable to understand the general idea of how the model works. Based

on the “prescription” that the dosimetrist or physicist gives us there are ideal

treatments that satisfy all the physician’s requests perfectly. However, in the

real world the geometry of the system usually produces obstacles so that an

ideal treatment is not possible. In this case, we sacrifice some aspect of an ideal

treatment to approach reality. This model is called elastic because we allow

the bounds to stretch yet tend to the requested limits. In effect, we minimize

the deviation from an ideal treatment by measuring how far the bounds of the

prescription must be moved to attain a possible treatment.

1.3 Treatment Evaluation

In the summer of 2004, on a grant from the National Cancer Institute, the

author worked on a team to develop a software system to compute optimal

radiotherapy treatments. This software was challenged with choosing gantry

angles. In order to evaluate treatments, we used the three common metrics in the

field. One manner was Ian Paddick Conformality Indices (IPCI), which measure

5

1.3. TREATMENT EVALUATION 6

the ratio of volume within a certain isolevel compared with the total volume of

the corresponding structure. An isolevel is a region that receives at least a

certain level T of radiation (notice that if T1 ≤ T2 then isolevelT1 ⊆ isolevelT2).

The Over Treatment Ratio (OTR) is a measure of how much volume is within

a certain isolevel that is not part of the target volume (or tumor). The Under

Treatment Ratio (UTR) measures how much of the target volume is within an

isolevel compared to the total volume of that isolevel. IPCI is a combination of

the two such that

OTRT =
|TV ∩ IVT |

|IVT |
,

UTRT =
|TV ∩ IVT |

|TV |
, and

IPCIT = OTR × UTR =
(|TV ∩ IVT |)

2

|TV | × |IVT |
, where

TV = volume represented by the tumor, and

IVT = volume inside the isodose level T .

Loosely speaking, these conformality indices represent how well we “colored

within the lines.” A perfect treatment has an OTR and UTR value of 1, and

consequently an IPCI value of 1. While the terminology may seem mislead-

ing, OTR is really a measure of how little volume is over-treated and UTR

is a measure of exactly how much of the tumor receives the radiation level of

isolevel T . Using this metric, we have a way to quantitatively choose between

treatments. Some optimization models use these conformality indices as their

objective function, and the model attempts to maximize the IPCI. One such

model is described by Cheek, Holder, Salter, and Fuss [5].

The second metric commonly used is a graph called a Dose Volume His-

togram (DVH), which plots the amount of radiation deposited against the vol-

ume of tissue that receives that dose. Figure 1.2 shows an example of a DVH for

6

1.3. TREATMENT EVALUATION 7

Figure 1.2: Dose Volume Histogram [2]

a treatment plan where the left breast holds the tumor. We easily see that the

yellow line that represents the target volume has nearly 100% of its volume re-

ceiving 50 Gy of radiation. We also see that the critical structures in the region

on average receive between 5 and 10 Gy, with less than 5% of any structures

volume receiving 25 Gy. This example shows the kind of separation that an

optimal treatment attempts to achieve. We desire the target’s curve to achieve

the upper right corner of the chart while we simultaneously attempt to push all

other curves to the bottom axes. This allows us to easily determine if any part

of a treatment is problematic by visual inspection; however, this metric does

not indicate where the problem is. For instance, if the curve representing the

normal tissue has a small section of the line that passes the upper bound in the

prescription, then there may be a “hot spot” in the anatomy that is receiving

too much radiation (more radiation than the tumor); however, we cannot pin-

7

1.3. TREATMENT EVALUATION 8

point the location of the hot spot. Additionally, we cannot know immediately

if that volume that passes the upper bound is a contiguous region, and we only

classify the volume as a hot spot if it is contiguous. So we may not even have

a problem.

Earlier we mentioned that some optimization models use volumetric dose

constraints to describe the prescription. Dose Volume Histograms show how

this kind of constraint can be useful. Essentially, a dosimetrist can look at a

DVH and find the places in the graph to change and thereby effectively adjust

the dose-volume constraints.

An isodose curve is the third metric commonly used to assess a treatment

plan. An isodose curve is simply a curve drawn on a CAT Scan that shows a

level of radiation. In essence, a series of isodose curves shows the contour of

the deposited radiation within the anatomy. This tool allows the physicist to

observe whether or not radiation “leaks out” of the target or, likewise, if there

is a section of the target that does not receive the prescribed dose. Figure 1.2

shows an example of how isodose curves show the deposition of radiation.

In examining Figure 1.3, the PTV stands for Prescribed Target Volume,

which is the tumor (shown in blue), and we see that the 100% isodose line,

which is the target dose level for this prescription, does not include the PTV

and hence the PTV is under irradiated. It is immediately clear that this metric

provides the spatial information not found in the other metrics. In some sense

this gives us a visible presentation of what a treatment means to the patient’s

anatomy, and we see how a treatment attempts to cope with the geometry of

the anatomy.

Our approach for computing isodose curves is to first interpolate a smooth

surface over the data using a B-spline surface and then to find the level curve

corresponding to an isolevel by using the hit-and-run algorithm, which ensures

8

1.3. TREATMENT EVALUATION 9

Figure 1.3: Isodose curves [12]

that we uniformly sample the isodose curve [4] (if the isoregion is convex, oth-

erwise practical application still tells us that hit-and-run performs well). Com-

putationally, we process each image separately and use parallel techniques to

compute the isodose curves for each CAT Scan.

9

Chapter 2

Curve and Surface Fitting

The input data is the deposited data on a regular grid of sampled dose points, to

which an interpolating surface is fit. We first consider methods for interpolating

curves to data in the plane and then look at the similar methods used for

interpolating surfaces in three dimensions.

The term spline, in a mathematical sense, is a piecewise polynomial func-

tion that is typically of a simple form that has smooth properties, which make

it ideal for modeling arbitrary functions in computer graphics. The term spline,

in a general sense, has been around much longer than this mathematical defi-

nition. The first mention of a spline occurs in 1752 and refers to a tool used in

shipbuilding [7]. In this case a spline is a piece of wood that is bent with the

use of metal weights that allows for the drawing of a smooth curve. Another

type of tool used for this same purpose is called a French curve and consists of

pieces of conics and spirals. Curves can be drawn by tracing appropriate parts

of the French curve to piecewise construct the curve. The splines we think of

today combine these two ideas in that we attempt to draw a smooth piecewise

curve that passes through or near specified data points.

10

2.1. CUBIC SPLINES 11

Figure 2.1: Mechanical Spline from the 1700s [7]

2.1 Cubic Splines

For the purposes of interpolating data, there are a variety of methods. A naive

approach is to simply “connect the dots” with a piece-wise linear interpolation.

However, data is seldom linear, and higher order polynomials are typically more

appropriate. Lagrangian Polynomials and Divided Differences construct the

unique polynomial of degree n that passes through n + 1 data points, but here

again how can we be sure that a single polynomial of a high degree (n) correctly

interpolates the data? We use splines which consist of pieces of lower degree

polynomials glued together to interpolate data in such a way that we do not

induce extreme behavior in the curve. For the purpose of completeness we

introduce cubic splines and show, through their derivation, how we construct

a smooth curve that passes through our data points yet maintains the data

trend beyond our data set. Our development follows the one found in [8], and

interested readers should consult a standard Numerical Analysis text for further

details. A cubic spline is a piecewise function consisting of n − 1 third-order

polynomials that match not only on the data points, but also agree in slope and

curvature (first and second derivatives) where the splines meet. In this way our

interpolating curve is smooth through all the points and what’s more, should

be more accurate than a simple exact fit polynomial.

11

2.1. CUBIC SPLINES 12

The cubic spline function is of the form

g(x) = gi(x) if x ∈ [xi, xi+1], for i = 0, 1, . . . , n − 1,

where each gi(x) has the equation

gi(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di.

We desire

gi(xi) = yi, i = 0, 1, . . . , n − 2; (2.1)

gi(xi+1) = gi+1(xi+1), i = 0, 1, . . . , n − 2; (2.2)

g′i(xi+1) = g′i+1(xi+1), i = 0, 1, . . . , n − 2; (2.3)

g′′i (xi+1) = g′′i+1(xi+1), i = 0, 1, . . . , n − 2. (2.4)

From Eq. (2.1) we see that di = yi, i = 0, 1, . . . , n − 1.

Now, looking at Eq. (2.2)

yi+1 = ai(xi+1 − xi)
3 + bi(xi+1 − xi)

2 + ci(xi+1 − xi) + yi.

If we let hi = xi+1 − xi, we write

yi+1 = aih
3
i + bih

2
i + cihi = yi, i = 0, 1, . . . , n − 1.

Because yi+1 = gi(xi+1), we differentiate to find

g′i(x) = 3aih
2
i + 2bihi + ci i = 0, 1, . . . , n − 1;

g′′i (x) = 6aihi + 2bi i = 0, 1, . . . , n − 1.

Notice that the second derivative is linear in hi; we want to try to write the

other equations in terms of the second derivative.

12

2.1. CUBIC SPLINES 13

Let Si(xi) = g′′i (xi), for i = 0, 1, . . . , n − 1, and Sn = g′′n−1(xn). Then,

Si(xi) = 6ai(xi − xi) + 2bi = 2bi, and

Si(xi+1) = 6aihi + 2bi.

So,

bi =
Si

2

ai =
Si+1 − Si

6hi

.

Substituting these and solving for ci, we have that

yi+1 =

(

Si+1 − Si

6hi

)

h3
i +

Si

2
h2

i + cihi + yi and

ci =
yi+1 − yi

hi

−
2hiSi + hiSi+1

6
.

We ensure that the slopes of the cubics that join at points (xi, yi) are the same,

y′

i = 3ai(xi − xi)
2 + 2bi(xi − xi) + ci = ci.

Noticing that in the previous interval we had

y′

i = 3ai−1(xi − xi−1)
2 + 2bi−1(xi − xi−1) + ci−1

= 3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1.

13

2.1. CUBIC SPLINES 14

We find upon substituting for ai, bi, ci and di that

y′

i =
yi+1 − yi

hi

−
2hiSi + hiSi+1

6

= 3

(

Si − Si−1

6hi−1

)

h2
i−1 + 2

(

Si−1

2

)

hi−1 +
yi − yi−1

hi−1

−
2hi−1Si−1 + hi−1Si

6

=

(

Si − Si−1

2

)

h2
i−1 + Si−1hi−1 +

yi − yi−1

hi−1

−
2hi−1Si−1 + hi−1Si

6
.

We simplify this equation, and obtain

6

(

yi+1 − yi

hi

−
yi − yi−1

hi−1

)

= hi−1Si−1 + (2hi + 2hi−1)Si + hiSi+1,

and because (yi+1 − yi)/hi is the formula for the divided difference, which we

notate as f [xi, xi+1], we rewrite our equation as

6(f [xi, xi+1] − f [xi−1, xi]) = hi−1Si−1 + (2hi + 2hi−1)Si + hiSi+1.

This last equation applies at each internal point (i = 1, 2, . . . , n − 1) and

gives us n−1 equations and n+1 unknown Si values. To obtain n+1 equations

we set S0 and Sn equal to 0, which makes the end cubics flatten out near their

respective endpoints. This technique leads to a natural spline.

We solve the system of equations whose matrix form is

2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .

hn−2 2(hn−2 + hn−1)

S1

S2

S3

...

Sn−1

14

2.1. CUBIC SPLINES 15

= 6

f [x1, x2] − f [x0, x1]

f [x2, x3] − f [x1, x2]

f [x3, x4] − f [x2, x3]

...

f [xn−1, xn] − f [xn−2, xn−1]

.

After solving this system and obtaining the Si values, we find the coefficients

for the cubic corresponding to each interval and thereby compute our curve.

ai =
Si+1 − Si

6hi

;

bi =
Si

2
;

ci =
yi+1 − yi

hi

−
2hiSi + hiSi+1

6
;

di = yi.

2.1.1 A Cubic Spline Example

Let us consider the following example in which we are asked to fit a cubic

spline to the data in Table 2.1. These data points come from the function

f(x) = sin x − xe−x, which allows us to examine how well a cubic spline can

approximate a function that is not a polynomial. The matrix representation of

x y
0.350000 0.096257
3.200000 -0.188813
4.410000 -1.008232
5.560000 -0.683175
7.100000 0.723111

Table 2.1: Sample Data

15

2.2. B-SPLINES 16

the problem is

2(2.85 + 1.21) 1.21

1.21 2(1.21 + 1.15) 1.15

1.15 2(1.15 + 1.54)

S1

S2

S3

= 6

−0.5772814

0.959864

0.630514

.

We find that S0 = 0, S1 = −0.70167, S2 = 1.84669, S3 = 0.30844, and S4 = 0.

The coefficients for each of the cubics are in Table 2.2.

i a b c d
0 -0.0410 0 0.2333 0.096257
1 0.3510 -0.3508 -0.7666 -0.188813
2 -0.2229 0.9233 -0.4844 -1.008232
3 -0.0334 0.1542 0.7548 -0.683175

Table 2.2: Spline Coefficients

Figure 2.2 shows the actual function f(x) = sin(x) − xe−x plotted on the

same graph as the cubic spline. The true function is in green, and the spline is

in blue. Notice that with only 5 points we get an accurate fit. We also note that

our spline is more accurate near the data points. If we look at x = −50, we have

no guarantee that our spline approximates f(x) well although we postulate the

behavior of f(x) based on the trend of the data.

2.2 B-Splines

The definition of a cubic spline requires that the spline fits the data exactly, yet

still retain smoothness. A B-spline does not necessarily pass through the data,

but has the desirable property that it is contained entirely within the convex

hull determined by the data points. The convex hull of a set of points S is the

smallest convex set that contains all points in S. The data of a B-spline instead

weights the curve rather than requiring an exact fit and a change to a data point

16

2.2. B-SPLINES 17

Figure 2.2: Cubic Spline plotted with actual function

will only affect the spline within a certain local interval rather that change the

spline as a whole.

2.2.1 Bézier Curves

B-splines are a generalization of Bézier curves. In fact, they are a combina-

tion of Bézier curves and cubic splines in that B-splines are multiple Bézier

curves pieced together into a spline that has many of the same properties of

cubic splines (the curves meet in function values, as well as first and second

derivatives). Bézier curves were developed in 1959 by a young engineer named

Paul de Faget de Casteljau while working for the French car company Citroën.

These curves were used to design smooth automobile bodies, and Citroën kept

de Casteljau’s work a company secret. About the same time as de Casteljau

worked on his curves and surfaces at Citroën, Pierre Bézier worked on the same

idea for Rénault, a competing French automaker. Although Bézier published

his work in 1962, and thus received the credit for the curves and surfaces that

bear his name, we know that both Bézier and de Casteljau developed nearly

17

2.2. B-SPLINES 18

identical results from different mathematical perspectives [7].

Bézier curves approximate n + 1 points of data with a polynomial of degree

n. These curves do not pass through all the data points, only the first and

last points. The intermediate points determine the slope and curvature of the

curve. In a cubic Bézier curve, the line connecting points p0 and p1 determines

the slope of the curve at p0 and the line connecting points p2 and p3 determines

the slope of the curve at p3. If we let the coordinates of each point represent

the vector,

pi =

(

xi

yi

)

then the cubic Bézier curve is of the form

x(u) = (1 − u)3x0 + 3(1 − u)2ux1 + 3(1 − u)u2x2 + u3x3,

y(u) = (1 − u)3y0 + 3(1− u)2uy1 + 3(1− u)u2y2 + u3y3,

where 0 ≤ u ≤ 1. Notice that the point (x(0), y(0)) is equivalent to p0 and

(x(1), y(1)) = p3. Also, note how the Bézier curve uses the points p1 and p2 to

pull the curve toward them without forcing the curve to pass through them. This

shows the regression aspect of the Bézier curve which B-splines inherit. Also,

as previously mentioned, because dx/du = 3(x1 − x0) and dy/du = 3(y1 − y0)

at u = 0 then the slope of the curve is dy/dx = (y1 − y0)/(x1 −x0) which is the

slope of the line connecting p0 and p1. Similarly the slope of the line at u = 1

is dy/dx = (y3 − y2)/(x3 − x2) which is the slope of the line connecting p2 and

p3.

18

2.2. B-SPLINES 19

Often we represent cubic Bézier curves as

P (u) = [u3, u2, u, 1]

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

p0

p1

p2

p3

or

P (u) = uT M2p.

2.2.2 B-Splines in the Plane

B-splines use Bézier curves as the basis for the spline. Just as cubic splines used

portions of cubic polynomials between data points, B-splines use cubic Bézier

curves. The general form for the cubic B-spline for the interval (pi, pi+1) (where

pi represent points in our data set) is

xi(u) =
1

6
(1 − u)3xi−1 +

1

6
(3u3 − 6u2 + 4)xi

+
1

6
(−3u3 + 3u2 + 3u + 1)xi+1 +

1

6
u3xi+2;

yi(u) =
1

6
(1 − u)3yi−1 +

1

6
(3u3 − 6u2 + 4)yi

+
1

6
(−3u3 + 3u2 + 3u + 1)yi+1 +

1

6
u3yi+2.

Here again, u ∈ [0, 1]. We use the set of four points to generate the portion of

the B-spline associated with the two inner points. Thus as we move along the

data set we set pi = pi+1 for i = 0, 1, 2 and we set p3 to the next point in the

data set.

B-splines have the same characteristics as the cubic splines we discussed

earlier: continuity of the curve and equality of the first and second derivatives.

We examine each of these conditions:

19

2.2. B-SPLINES 20

(a) Continuity of the curve.

Bi(1) = Bi+1(0) =
pi + 4pi+1 + pi+2

6
.

(b) Equality of the first derivative.

B′

i(1) = B′

i+1(0) =
−pi + pi+2

2
.

(c) Equality of the second derivative.

B′′

i (1) = B′′

i+1(0) = pi − 2pi+1 + pi+2.

We can represent the cubic B-splines, much like Bézier curves, as

Bi(u) =
1

6
[u3, u2, u, 1]

−1 3 −3 1

3 −6 3 0

−3 0 0 0

1 4 1 0

pi−1

pi

pi+1

pi+2

or

Bi(u) =
uT Mbp

6
.

B-splines are a slight variation on a Bézier curve, and in fact only differ in three

ways [8].

1. For a B-spline, the curve does not begin and end at the extreme points.

2. The slopes of the B-splines do not have any simple relationship to lines

drawn between the points.

3. The endpoints of a B-spline are in the vicinity of the two intermediate

given points, but neither the x- nor the y- coordinates of these endpoints

20

2.3. B-SPLINE SURFACES 21

normally equals the coordinates of the intermediate points.

Item 1 simply means that the curve is not fixed at either end. However,

a spline between two points requires a total of four points (by adding the two

neighboring points) so the splines at the end of the curve are computed with mul-

tiple copies of the endpoints. In this way, the ends of the curve are “weighted”

toward the extreme point, but they are not required to evaluate to that value.

Item 2 refers to a characteristic of Bézier curves where the slope of the

curve approaches the slope of the line connecting points p0 and p1 as the curve

approaches p0. The Bézier curve also approaches the slope of the line connecting

p2 and p3 when the curve is near p3.

From item 3 we can see that the spline is close to the anchor points, yet

almost never equals those points. This implies that the spline smooths some of

the bumps in the data and highlights one of the advantages a B-spline has over

cubic splines. For example, a data point might force a cubic spline to curve

outside of the trend of the data in order to pass through that point. Not only

that, but because of the definition of the cubic spline, a change to that one point

of data will affect the entire curve. Changes to data within a B-spline affect

only local changes, and what’s more, because the spline is not required to pass

through the data points, we can reduce the effect of outliers in the data on the

curve.

2.3 B-Spline Surfaces

So far we have discussed methods for fitting a smooth curve to data points in

the plane, but the data for dose deposition is in three dimensional space. In

this case we need to extend our method to a higher dimension and use tools to

fit a smooth surface to data. Most splines for this purpose are bicubic (that is,

cubic in x and cubic in y) simply because, as in dealing with fitting curves in the

21

2.3. B-SPLINE SURFACES 22

plane, the cubic is the simplest polynomial that we have sufficient control over

both slope and curvature. We choose the bicubic surface for the same reasons

in creating a surface spline [6].

When we created B-spline curves we used four points to determine the spline

between the two intermediate points. For surfaces, we extend the dimensions

and use sixteen points to fit a patch between the four interior points. That

is, for patch Si,j we use the matrix of data points (often called control points)

given as

Qij =

pi−1,j−1 pi−1,j pi−1,j+1 pi−1,j+2

pi,j−1 pi,j pi,j+1 pi,j+2

pi+1,j−1 pi+1,j pi+1,j+1 pi+1,j+2

pi+2,j−1 pi+2,j pi+2,j+1 pi+2,j+2

.

Patch Si,j fits a surface between points pi,j , pi,j+1, pi+1,j , and pi+1,j+1.

The way we define the patches allows us to separate the domain of the spline

into separate rectangular regions. Similar to the way in which we copied the

endpoints for weighting for curves in the plane, we copy the edges of the data

set so that each patch has sixteen control points to create the surface. Once

again, copying the boundaries and the corners help us weight the surface toward

the control points.

Figure 2.3 shows a B-spline patch with its control points. Because the only

data needed to compute the surface patch is sixteen points surrounding the

patch, any adjustments to the data or outliers within the data have only local

effects. Once again, B-spline surfaces, like B-spline curves, avoid overfitting the

data by examining the interpolation problem as small, localized regions rather

than tackling the global problem all at once.

22

2.3. B-SPLINE SURFACES 23

Figure 2.3: B-spline patch with its control points

2.3.1 Computing B-spline Surfaces

A B-spline surface is composed of patches over its domain. Given data points in

an m×n grid we compute (m−1)×(n−1) patches Srs(u, v), r = 1, 2, . . . , m−1, s =

1, 2, . . . , n− 1. Each patch is a bicubic polynomial, meaning that it is expressed

as

Srs(u, v) =

3
∑

i=0

3
∑

j=0

ciju
ivj .

We compute these patches as

Srs(u, v) =
1

36
UMQrsM

T V T , 0 ≤ u, v,≤ 1,

where U = [u3, u2, u, 1], V = [v3, v2, v, 1],

M =

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

,

23

2.3. B-SPLINE SURFACES 24

and

Qrs =

pr−1,s−1 pr−1,s pr−1,s+1 pr−1,s+2

pr,s−1 pr,s pr,s+1 pr,s+2

pr+1,s−1 pr+1,s pr+1,s+1 pr+1,s+2

pr+2,s−1 pr+2,s pr+2,s+1 pr+2,s+2

.

When evaluating S(x, y) we have that

S(x, y) = Srs(x − r, y − s), (x, y) ∈ [1, m] × [1, n],

where r = bxc and s = byc. In this manner, for a point (x, y) in the domain

we know which patch corresponds to the region containing that point simply by

evaluating the floor of x and y.

Computing the B-spline surface requires only matrix multiplication of 4× 4

matrices. We store the matrices 1/36MQrsM
T as coefficients to the bicubic so

that the description of each is

[

u3 u2 u 1

]

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

v3

v2

v

1

.

Upon inspection of this form we notice that the first row has an x3 term,

the second row an x2 term, etc, and we also notice that the first column has a

y3 term, the second column a y2 term, etc. This insight allows us to compute

the partial derivatives of Srs quite easily. We obtain,

24

2.3. B-SPLINE SURFACES 25

∂

∂u
Srs =

[

u3 u2 u 1

]

0 0 0 0

3a00 3a01 3a02 3a03

2a10 2a11 2a12 2a13

a20 a21 a22 a23

v3

v2

v

1

,

and

∂

∂v
Srs =

[

u3 u2 u 1

]

0 3a00 2a01 a02

0 3a10 2a11 a12

0 3a20 2a21 a22

0 3a30 2a31 a32

v3

v2

v

1

.

So differentiating only require shifting a row or column and multiplying by

scalars, and thus Newton’s method is an attractive option. Also, as was men-

tioned earlier, computing each patch only requires the data for the matrix Qrs,

which implies that we can parallelize this computation.

2.3.2 A B-spline Surface Example

To demonstrate how we fit a surface to data points, we generate data for the

function f(x, y) = 20 − (5 − x)2 − (5 − y)2 such that x, y ∈ [0, 10]× [0, 10] and

x, y ∈ Z. Then, the data is a set of 121 points on a regular grid, and we fit 100

surface patches to the data. Figure 2.4 shows a scatter plots of the data points

generated by the function and the B-spline surface obtained.

It is difficult to tell from the figures, but the B-spline surface tends to smooth

the data; the peaks are not as high and the valleys are not as low. The surface

pulls toward the mean. We can see that the corners of the domain seem to curve

upward. This is due to the method duplicating the boundary points.

25

2.3. B-SPLINE SURFACES 26

(a) Control points (b) B-Spline with Isocurves

Figure 2.4: Control points and resulting B-Spline surface

26

Chapter 3

The Hit and Run Algorithm

Now that we have a functional representation of the radiation distribution,

we want to find a level curve of that surface. In order to accomplish this we

explore a class of algorithms called the shake-and-bake algorithms, which will

allow us to find a set of uniformly distributed points on the bounding curve

for that isoregion. The particular algorithm we consider, called the hit-and-

run algorithm, begins with an initial iteration, x0, and randomly generates a

direction to search. (Because we are searching within the plane we need only

generate an angle θ on the uniform distribution from 0 to 2π and search along

the vector (cos θ, sin θ)). We then search along this vector to find the point

of intersection with our isodose curve. Once we have an intersection point,

x̂1, we take the midpoint on the line segment connecting x0 and x̂1 by setting

x1 = x0 +(x̂1−x0)/2 and again generate a random direction in which to search.

To find the intersections along the vector with the isodose curve, we employ

Newton’s method because we have projected the problem into R
2 by narrowing

our search domain to the line defined by x0 and θ. Newton’s method converges

in O(n2), so searching is reasonable. Additionally, because each search is done

27

3.1. NEWTON’S METHOD 28

independently of the others, we parallelize the searching. This is what is known

as an “embarrassingly parallel” operation in that each operation is completely

independent of the others, assuming of course that the random numbers gener-

ated by the processes are not the same.

The benefit of using the hit-and-run algorithm is that we have a certificate

that the algorithm uniformly samples the isodose curve. Boender et al. [4] prove

that all algorithms in the class SB (Shake-and-bake) converge to the uniform

distribution on the boundary of a convex polyhedra.

Theorem. For every algorithm in the class SB, the random sequence {Xn}∞n=0

of iteration points converges to the uniform distribution on ∂S, independently

of the starting point in the set S.

Computationally, the first step is to choose some point that is on the interior

of the isoregion. Our approach is to find the dose point with the maximum dose

value (maximum height) and start from that point. More precisely, we start

near that point by moving a small distance. This is to account for a numeric

instability in Newton’s method that occurs if ∇f(x, y) = 0. The first directions

we search are not entirely random. Our method first searches along eight vectors,

for θ = nπ/4, n = 0, 1, 2, . . . , 7, which attempts to diversify the search. To keep

track of how many points we have on the curve, we use a vector and add new

points as they are found. Also, we push new starting points onto a queue as we

find points on the curve and compute the midpoint of that search vector.

3.1 Newton’s Method

Newton’s method is a widely used algorithm for root-finding. It uses the slope

of the tangent to approximate linearly the root. This algorithm is iterated by

continuing to move to the intersection of the tangent line and the x-axis and

28

3.1. NEWTON’S METHOD 29

recomputing the tangent line for that x-value. In computing the next iteration,

we let

xn+1 = xn −
f(xn)

f ′(xn)
.

Numerically, the algorithm becomes unstable near a horizontal asymptote or

local extremum because f ′(xn) approaches zero. Figure 3.1 shows an example

of how Newton’s method works. We see that each successive iteration moves

closer to the root. The tangent lines are shown in green, and we see also how

they are used to compute the next iteration point.

Figure 3.1: Newton’s Method for three iterations [10]

The distance between the current point and the new approximation is called

the Newton step. Sometimes in working with our B-spline surface, the Newton

step attempts to jump beyond the domain. If that were allowed, because the

function is undefined there, the program would crash. In order to compensate

for attempts to escape the domain we place a simple check after each iteration

of Newton’s method. If our iteration fails to be in our domain, then we compute

the intersect of the search vector with the boundaries of our spline’s domain.

Because the domain models the dimensions of a CAT scan, the domain is rect-

29

3.1. NEWTON’S METHOD 30

angular, so computing those intersections does not add any complexity to the

algorithm.

Newton’s method converges to a root quadratically (O(n2)), which means

that the number of accurate digits roughly doubles on each step. Numerical

methods only seek to find an x-value that has a functional value within a speci-

fied tolerance of 0 because of the imprecision of floating point arithmetic. How-

ever, Newton’s method does not always converge; it suffers from the possibility

of cycling. It is plausible that Newton’s method might step past the root and

then on the next iteration return to the original point. In order to catch this

we set a limit on the number of iterations Newton’s method can perform before

giving up. Theoretically, we should converge to a tolerance such as 0.000001 in

only 3 iterations. (Recall that the algorithm converges quadratically). However,

to be safe we wait 100 iterations before declaring it a cycle.

The hit-and-run algorithm efficiently (coupled with Newton’s method) pro-

vides a uniform sampling of the boundary of the isoregion. Beyond the speed

characteristics of the algorithm, it also gives us a certificate of uniform sampling,

which allows us to see the form of the isodose curve.

30

Chapter 4

Computing the Isodose

Curves

The sample radiation data used in these experiments comes from software devel-

oped at Trinity University as part of the RAD project (Radiotherapy OptimAl

Design). The system computes dose deposition for treatments by inverse plan-

ning.

4.1 Newton’s Method

As discussed earlier, Newton’s method is our choice of a root-finding algorithm.

In order to use this method we redefine the relationship between successive

iteration points.

xn+1 = xn + αd

where

d = (cos θ, sin θ)

31

4.1. NEWTON’S METHOD 32

and

α =
k − f(xn)

∇f(xn)T d

for some isolevel k. This adjustment to the method simply allows us to project

the root-finding problem into two dimensions by using the line x0 + λd, λ ∈ R.

All movement must stay on that line, so we move a scalar multiple of d. Also,

we use the directional derivative (∇f(x)T d) to measure the Newton step.
The function for Newton’s method looks like this

// ==== Begin Newton’s Method ==== //

X0 = X;

if(X0[0] < 0 || X0[0] > (n-1) || X0[1] < 0 || X0[1] > (m-1))

return;

int ctr = 0;

Vector2 OldX;

do

{

double alpha = ((isoLevel-f(X,surface,m,n))/

(fpartialx(X,surface,m,n) * d[0] +

fpartialy(X,surface,m,n) * d[1]));

OldX = X;

if(ctr == 0)

{

// Make sure to step forward

if(alpha < 0)

{

alpha *= -1;

}

}

X = X + d * alpha;

DomainCheck(X,theta,X0,m,n);

ctr++;

if(ctr >= 100)

{

cycle = true;

break;

}

}while(abs(f(X,surface,m,n)-isoLevel) > 0.00001);

// ==== End Newton’s Method ==== //

This follows our mathematical understanding of Newton’s method almost com-

32

4.2. DOMAIN CHECK 33

pletely, with a few adjustments. First, the check to ensure that the first step

is in the forward direction attempts to make sure that the root we find will

be in the positive d direction. If our starting point is closer to one side of the

boundary than the other then it may be possible for Newton’s method to try

to step backward (as we are thinking of it), which would reduce the number of

random directions by half. This check does not guarantee that we will find a

root in the positive d direction, but it helps to influence that trend.

The second adjustment is the DomainCheck function call. As previously

discussed, we need to ensure that our iteration points stay within the defined

domain for our B-spline. DomainCheck determines whether our new iteration

point is outside of the domain and, if necessary, cuts the Newton step short in

order to keep the problem well defined.

4.2 Domain Check

The DomainCheck function is essential to the algorithm’s stability. Newton’s

method often attempts to step past the bounds, so our defense lies in this

function. The check is quite simple, it looks at the x and y coordinates of the

iteration point to determine if any of them exceed the boundaries. If this is

the case, we compute values k such that X0 + kd hits a boundary value in one

of the coordinates. That is to say, that X0,x + k · cos θ = 0 or (n − 1) or that

X0,y + k · sin θ = 0 or (m − 1). We choose the minimum k value to ensure that

we are within all bounds. Additionally, to account for errors in floating point

arithmetic we decrease |k| by a small constant (0.0001) to guarantee that our

method strictly satisfies our boundary constraints. The following source code

snippet of the DomainCheck function places additional checks on cos θ and sin θ

to avoid any possible divisions by zero. Also, to double check the method we

call the same check after adjusting the iteration point. If this check fails, the

33

4.3. EXAMPLE CANCER TREATMENT 34

program exits.

if(X[0] > (n-1) || X[0] < 0 || X[1] > (m-1) || X[1] < 0)

{

Vector2 OldX = X;

double k = 1000000;

if(abs(cos(theta)) > 0.0001)

{

k = ((n-1)-X0[0])/cos(theta);

if(abs(-X0[0]/cos(theta)) < abs(k))

k = -X0[0]/cos(theta);

}

if(abs(sin(theta)) > 0.0001)

{

if(abs(((m-1)-X0[1])/sin(theta)) < abs(k))

k = ((m-1)-X0[1])/sin(theta);

if(abs(-X0[1]/sin(theta)) < abs(k))

k = -X0[1]/sin(theta);

}

if(k<0 && k < -0.001)

k+=0.001;

else if(k > 0 && k > 0.001)

k-=0.001;

X = X0 + Vector2(cos(theta) * k, sin(theta)*k);

if(!(X[0]<=(n-1)&&X[0]>=0&&X[1]<=(m-1)&&X[1]>=0))

{

cerr << "Error in Domain Check!\n";

cerr << "OldX = " << OldX << " \t" << "X = " << X << endl;

cerr << "Theta = " << theta << " \tk = " << k << endl;

cerr << "X0 = " << X0 << endl;

assert(X[0]<=(n-1)&&X[0]>=0&&X[1]<=(m-1)&&X[1]>=0);

}

}

4.3 Example Cancer Treatment

The sample problem we examine is an acoustic neuroma. The CAT scan in

Figure 4.1 shows the head, and we see that the clinic has highlighted the left

eye, the spinal cord, and the tumor.

After computing a treatment plan with RAD, we run our method on the

34

4.3. EXAMPLE CANCER TREATMENT 35

Figure 4.1: CAT Scan

surface spline over the deposited dose and compute the 50% isodose curve (50%

of the prescribed target dose, or dose to the tumor), which is shown in Figure

4.2.

We find that Newton’s method cycles when the surface approaches vertical

asymptotes, which nearly occurs at the boundary of the target. When this

happens we do not have points on that part of the boundary. This is a numerical

flaw in our method; one that needs further investigation. However, we know

that if we had a more consistent method of computing intersections with the

boundary then we would have a uniform sampling [4].

35

4.4. DRAWBACKS OF THE METHOD 36

Figure 4.2: Treatment plan with 50% isodose curve

4.4 Drawbacks of the Method

The method we use samples the isodose curve uniformly along the boundary,

but this is not a true level curve of the splined function. While the scatter plot

of these points is sufficient to identify the isodose curve, it might be considered

to be an over approximation for the level curve. If we knew the sequence of

the points around the boundary we could create a spline of those points using

the methods discussed in Chapter 2. However the nature of the hit-and-run

algorithm is such that we find boundary points is no particular order, and

attempting to sort the points in any meaningful way is difficult.

The method also depends heavily on where we begin the hit-and-run algo-

rithm. If we place the starting point within the isoregion then the algorithm

behaves well. However, if there are two disjointed regions that represent a par-

ticular level of dose, we are limited to finding only the region in which we have

an iteration point in the interior. For example, when we try to find an isolevel

36

4.4. DRAWBACKS OF THE METHOD 37

curve for f(x, y) = (5 − x)2 − (5 − y)2 at f(x, y) = 0 we see that there are two

distinct regions with values greater than zero. If we place our first iteration in

the interior of the left-side region (0 ≤ x ≤ 5, y ≤ 10 − x, y ≥ x). Then the

boundary we sample is only of that region, with only a small chance of finding

a few points on the boundary of right-side region.

(a) f(x, y)

(b) Example of the algorithm finding only one region

Figure 4.3: B-spline surface example for a saddle point

Figure 4.3 shows f(x, y) along with a scatter plot of the boundary points

37

4.4. DRAWBACKS OF THE METHOD 38

that the hit-and-run algorithm finds when the first iteration point is at (0, 5).

We can see that a few points are on the boundary for the right-side region, but

for the the most part, the algorithm misses the right-side region. If we had no

prior knowledge of the surface we might think those points were mistakes.

Because we notice that in the previous example the algorithm finds a few

points on the second region, we explore the possibility that increasing the quota

of points that the algorithm catalogs before stopping will improve our sampling

over disjointed regions. To test this theory we examine a surface with many

disjointed regions. The surface defined by f(x, y) = cosx · sin y appears in

Figure 4.4.

Figure 4.4: f(x, y) = cosx · sin y

If we search for the level curve at f(x, y) = 0.5 there are isolevel curves

surrounding each of the six peaks. The algorithm chooses to start at (5, 0) and

because of the close proximity of the disjointed regions the algorithm will hit the

boundaries of several of the regions. We run the program with search quotas of

100, 200, 500, and 1000 boundary points and compare the results to determine if

an increase in the sampling of the boundaries will better find disjointed regions.

The resulting scatter plots are shown in Figures 4.5 – 4.8. We should find

38

4.4. DRAWBACKS OF THE METHOD 39

that there are six circles outlined by the blue points, and we conjecture that

increasing the number of boundary points will improve the resolution of those

circles.

Figure 4.5: Sampling 100 Points

We can see that increasing the search quota for the algorithm does not

necessarily improve the quality of the level curves. Rather than increasing the

number of sample points, increasing the number of starting points to include

those other regions will sample all boundaries. The problem lies in how we try

to place starting points. If we include all points of the data set that achieve the

max of the set, then we can improve our sampling, but we ignore those regions

which do not achieve the same height as that max.

Fortunately for us, radiation distributions behave well. That is to say that

we seldom have disjointed isoregions due to the nature of treatment planning.

Most radiation accrues near the isocenter and inside the tumor and from there

39

4.5. CONCLUSIONS 40

Figure 4.6: Sampling 200 Points

the level of radiation falls away.

4.5 Conclusions

While this method is not perfect, it achieves its goal. It provides us with a spatial

understanding of how a treatment deposits radiation into the anatomy. Our

novel approach provides us with fast executions and an interesting perspective

on the isodose problem.

By benefit of the theorem in Boender et al. [4], we know that this is a valid

approach to finding isodose curves. What problems exist with the method have

to do with our implementation of the principles of finding the boundary inter-

section points. Improvements to Newton’s method in terms of finding multiple

roots (up to 3 for this problem) will help to improve the quality of our isodose

curves as well as assist in finding the disjointed isoregions.

40

4.5. CONCLUSIONS 41

Figure 4.7: Sampling 500 Points

Anticipated future work will examine the possibility of achieving a sampling

of points in a known order so that we can fit a spline to the sampled points.

Another idea that we can consider is to use the CAT scan’s pixel resolution to

our advantage and limit our search to that discrete set. If we color the pixels

that correspond to our sample points we may find that we indeed have what

appears to the eye to be a continuous curve. Curiosity to try adjustments to the

method implies that a solution may never truly be finished, yet takes the form

of an ever-changing (and hopefully improving) entity while always tackling the

same problem.

41

4.5. CONCLUSIONS 42

Figure 4.8: Sampling 1000 Points

42

Bibliography

[1] Sacred Heart Cancer Center.

[2] The TomoAdvantage: Simulated Hi-Art treatment plan for breast cancer.

[3] Cancer: Number One Killer. BBC News online, November 2000.

[4] C. G. E. Boender, R. J. Caron, J. F. McDonald, A. H. G. Rinnooy Kan,

H. E. Romeijn, R. L. Smith, J. Telgen, and A. C. F. Vorst. Shake-and-Bake

Algorithms for Generating Uniform Points on the Boundary of Bounded

Polyhedra. Operations Research, 39(6), November-December 1991.

[5] D. Cheek, A. Holder, B. Salter, and M. Fuss. The Relationship Between

the Number of Shots and the Quality of Gamma Knife Radiosurgeries.

Technical Report 84, Trinity University, 2004.

[6] Fuhua Cheng and Ardeshir Goshtasby. A Parallel B-Spline Surface Fitting

Algorithm. ACM Transactions on Graphics, 8(1):41–50, January 1989.

[7] Gerald Farin. A History of Curves and Surfaces in CAGD.

[8] Curtis F. Gerald and Patrick O. Wheatley. Applied Numerical Analysis.

Addison Wesley Longman, Menlo Park, California, sixth edition, 1999.

[9] A. Holder and B. Salter. A Tutorial on Radiation Oncology and Optimiza-

tion, chapter 4. 2004.

43

BIBLIOGRAPHY 44

[10] David E. Joyce. Newton Basins. August 1994.

[11] Marilynn Marchione. Cancer Now No. 1 Killer Illness in United States.

The Arizona Republic Online, January 2005.

[12] Inizio Pagina. La protezione del paziente in radioterapia. 15(4), April 2002.

44

Appendix A

BSplines.c

/**

* BSplines.c

*

* @author: Ryan Acosta

*

* 02.02.2005

* This program is intended to compute a B-Spline interpolating surface

* for a given data set.

*

* 02.03.2005

* At the present this program computes M Q Mt (Mt means M transposed)

* but I still need to figure out how to incorporate the variables

* into the patch equation.

**/

#include <stdio.h>

void ReadDataPoints(char* filename, double*** DosePoints, int *m, int *n);

void PrintDataPoints(double** DosePoints, int m, int n);

void BSpline(double** DosePoints, int m, int n);

double** Transpose(double** A, int m, int n);

double** MatMult(double** A, double** B, int m, int n);

void ScalarMult(double** A, double k, int m, int n);

int main(int argc, char* argv[])

{

45

46

double** Data;

int m, n;

if(argc != 2)

{

printf("Usage: %s DataPoints\n",argv[0]);

}

ReadDataPoints(argv[1], &Data, &m, &n);

// PrintDataPoints(Data, m, n);

BSpline(Data, m, n);

return 0;

}

void ReadDataPoints(char* filename, double*** DosePoints, int* m, int *n)

{

FILE *fptr;

int i, j;

fptr = fopen(filename, "r");

if(fptr == NULL)

{

printf("Error opening file %s\n", filename);

exit(1);

}

fscanf(fptr, "%d %d\n", m, n);

(*DosePoints) = (double**)malloc((*m)*sizeof(double*));

for(i = 0; i < *m; i++)

(*DosePoints)[i] = (double*)malloc((*n)*sizeof(double));

for(i = 0; i < (*m); i++)

{

for(j = 0; j < (*n); j++)

{

fscanf(fptr, "%lf", &(*DosePoints)[i][j]);

}

}

fclose(fptr);

}

void PrintDataPoints(double** DosePoints, int m, int n)

46

47

{

int i, j;

for(i = 0; i < m; i++)

{

for(j = 0; j < n; j++)

printf("%0.2lf ", DosePoints[i][j]);

printf("\n");

}

printf("\n");

}

void BSpline(double** DosePoints, int m, int n)

{

int i, j;

int r, s;

double** Q;

double** M;

double** MQM;

FILE* fptr;

Q = (double**)malloc(4 * sizeof(double*));

M = (double**)malloc(4 * sizeof(double*));

MQM = (double**)malloc(4 * sizeof(double*));

for(i = 0; i < 4; i++)

{

Q[i] = (double*)malloc(4 * sizeof(double));

M[i] = (double*)malloc(4 * sizeof(double));

MQM[i] = (double*)malloc(4 * sizeof(double));

}

// Initialize M

M[0][0] = -1; M[0][1] = 3; M[0][2] = -3; M[0][3] = 1;

M[1][0] = 3; M[1][1] = -6; M[1][2] = 3; M[1][3] = 0;

M[2][0] = -3; M[2][1] = 0; M[2][2] = 3; M[2][3] = 0;

M[3][0] = 1; M[3][1] = 4; M[3][2] = 1; M[3][3] = 0;

fptr = fopen("Patches.m", "w");

fprintf(fptr, "function [Patches] = Patches()\n\n");

fprintf(fptr, "Patches = [\n");

for(r = 0; r < m-1; r++)

{

for(s = 0; s < n-1; s++)

{

47

48

for(i = 0; i < 4; i++)

{

for(j = 0; j < 4; j++)

{

if(r-1+i == -1)

{

if(s-1+j == -1)

Q[i][j] = DosePoints[0][0];

else if(s-1+j == n)

Q[i][j] = DosePoints[0][n-1];

else

Q[i][j] = DosePoints[0][s-1+j];

}

else if(r-1+i == m)

{

if(s-1+j == -1)

Q[i][j] = DosePoints[m-1][0];

else if(s-1+j == n)

Q[i][j] = DosePoints[m-1][n-1];

else

Q[i][j] = DosePoints[m-1][s-1+j];

}

else if(s-1+j == -1)

{

if(r-1+i == -1) // Should never happen

Q[i][j] = DosePoints[0][0];

else if(r-1+i == m)

Q[i][j] = DosePoints[m-1][0];

else

Q[i][j] = DosePoints[r-1+i][0];

}

else if(s-1+j == n)

{

if(r-1+i == -1)

Q[i][j] = DosePoints[0][n-1];

else if(r-1+i == m)

Q[i][j] = DosePoints[m-1][n-1];

else

Q[i][j] = DosePoints[r-1+i][n-1];

}

else

Q[i][j] = DosePoints[r-1+i][s-1+j];

} // for i

} // for j

// Q holds the necessary Data points

48

49

MQM = MatMult(M, MatMult(Q, Transpose(M, 4, 4), 4, 4), 4, 4);

ScalarMult(MQM, 1/36.0, 4, 4);

for(i = 0; i < 4; i++)

{

for(j = 0; j < 4; j++)

fprintf(fptr, "%lf ", MQM[i][j]);

fprintf(fptr, ";\n");

}

}

}

fprintf(fptr, "];\n");

fclose(fptr);

for(i = 0; i < 4; i++)

{

free(Q[i]);

free(M[i]);

}

free(Q);

free(M);

}

double** Transpose(double** A, int m, int n)

{

double** At;

int i, j;

At = (double**)malloc(m * sizeof(double*));

for(i = 0; i < m; i++)

At[i] = (double*)malloc(n * sizeof(double));

for(i = 0; i < m; i++)

for(j = 0; j < n; j++)

At[i][j] = A[j][i];

return At;

}

double** MatMult(double** A, double** B, int m, int n)

{

double** C;

int i, j, k;

49

50

double sum;

C = (double**)malloc(m * sizeof(double*));

for(i = 0; i < m; i++)

C[i] = (double*)malloc(n * sizeof(double));

for(i = 0; i < m; i++)

for(j = 0; j < n; j++)

{

sum = 0;

for(k = 0; k < m; k++)

sum += A[i][k] * B[k][j];

C[i][j] = sum;

}

return C;

}

void ScalarMult(double** A, double k, int m, int n)

{

int i, j;

for(i = 0; i < m; i++)

for(j = 0; j < n; j++)

A[i][j] *= k;

}

50

Appendix B

Vector2.h

#ifndef VECTOR2_H

#define VECTOR2_H

/**

* Vector2.h

*

* @author: Ryan Acosta

*

* 02.10.2005

* This class defines a mathematical vector in R2 and some of the

* normal, useful operations on such vectors.

**/

#include <iostream>

using namespace std;

class Vector2

{

public:

Vector2();

Vector2(double x, double y);

Vector2(const Vector2& _v);

~Vector2();

Vector2 operator*(double k) const;

Vector2 operator+(const Vector2& _v) const;

51

52

Vector2& operator=(const Vector2& _v);

const double& operator[](int i) const;

double& operator[](int i);

friend ostream& operator<<(ostream &os, const Vector2& _v);

private:

double v[2];

};

#include "Vector2.cpp"

#endif

52

Appendix C

Vector2.cpp

/**

* Vector2.cpp

*

* @author: Ryan Acosta

*

* 02.10.2005

* This is the implementation of the member functions

* of the Vector2 class.

**/

Vector2::Vector2()

{

}

Vector2::Vector2(double x, double y)

{

v[0] = x, v[1] = y;

}

Vector2::Vector2(const Vector2& _v)

{

v[0] = _v[0], v[1] = _v[1];

}

Vector2::~Vector2()

{

}

53

54

Vector2 Vector2::operator*(double k) const

{

return Vector2(v[0]*k,v[1]*k);

}

Vector2 Vector2::operator+(const Vector2& _v) const

{

return Vector2(v[0]+_v[0],v[1]+_v[1]);

}

Vector2& Vector2::operator=(const Vector2& _v)

{

v[0] = _v[0], v[1] = _v[1];

return *this;

}

const double& Vector2::operator[](int i) const

{

if(0<=i&&1>=i)

return v[i];

else

return v[0];

}

double& Vector2::operator[](int i)

{

if(0<=i&&1>=i)

return v[i];

else

return v[0];

}

ostream& operator<<(ostream &os,const Vector2& _v)

{

os << "(" << _v[0] << ", " << _v[1] << ")";

return os;

}

54

Appendix D

hitandrun.cpp

/**

* Ryan Acosta

* hitandrun.cpp

*

* This program will use the hit-and-run algorithm to find an isodose

* curve.

**/

#include <iostream>

#include <iomanip>

#include <fstream>

#include <vector>

#include <queue>

#include <string>

#include "Vector2.h"

using namespace std;

#define PI 3.14159

/**

* Class: patch

*

* This class holds the coefficients for a bicubic patch.

**/

class patch

{

55

56

public:

double partialCoeffs[2][16];

double coeffs[16];

};

void ReadDosePoints(vector <vector <double> > &dosePoints, int&m, int&n);

void ReadPatchCoeffs(vector <patch> &surface, int m, int n);

Vector2 FindMaxDosePoint(vector<vector<double> > dosePoints, int m, int n);

void PreparePartialDerivs(vector<patch> &surface);

void printHeader(string line);

double f(Vector2 X, vector<patch> surface, int m, int n);

double fpartialx(Vector2 X, vector<patch>surface, int m, int n);

double fpartialy(Vector2 X, vector<patch>surface, int m, int n);

void HitAndRun(Vector2 Max, queue<Vector2> &startingPoints,

vector<Vector2> &PtsOnCurve,

vector<patch> &surface, int m, int n,

double isoLevel, int numPoints);

void NewtonsMethod(Vector2 &X, Vector2 d, Vector2 &X0,

double theta, vector<patch>surface, int m,int n,

double isoLevel,bool &cycle);

void DomainCheck(Vector2 &X, double theta, Vector2 X0, int m, int n);

void PrintCoefficients(vector<patch> surface);

int main(int argc, char* argv[])

{

int m, n;

vector <patch> surface;

vector <vector <double> > dosePoints;

vector <Vector2> PtsOnCurve;

queue<Vector2> startingPoints;

double isoLevel = 0.0;

int numPoints = 200;

// Switches

bool printCoeffs = false;

if(argc > 1)

{

if(strcmp(argv[1],"-Coeffs") == 0)

{

printCoeffs = true;

isoLevel = atof(argv[2]);

numPoints = atoi(argv[3]);

}

56

57

else if(strcmp(argv[1],"-help") == 0)

{

cout << "Usage: " << argv[0] << " <isoLevel> <numPoints>\n";

exit(1);

}

else

{

isoLevel = atof(argv[1]);

numPoints = atoi(argv[2]);

}

}

// Read dose points from file

ReadDosePoints(dosePoints, m, n);

Vector2 Max = FindMaxDosePoint(dosePoints,m,n);

ReadPatchCoeffs(surface, m, n);

PreparePartialDerivs(surface);

// Show I received the correct input

if(printCoeffs)

PrintCoefficients(surface);

printHeader("Done with Input");

HitAndRun(Max,startingPoints,PtsOnCurve,surface,m,n,isoLevel,numPoints);

printHeader("IsoDose Curve Points");

ofstream out;

out.open("IsoPoints.m");

out << "IsoX = [\n";

for(int i = 0; i < PtsOnCurve.size(); i++)

{

out << PtsOnCurve[i][0];

if(i != PtsOnCurve.size()-1)

out << ";\n";

else

out << "\n";

}

out << "];\n\n";

out << "IsoY = [\n";

for(int i = 0; i < PtsOnCurve.size(); i++)

{

out << PtsOnCurve[i][1];

if(i != PtsOnCurve.size()-1)

57

58

out << ";\n";

else

out << "\n";

}

out << "];\n\n";

out << "IsoZ = " << isoLevel << "*ones(length(IsoX),1);\n";

out << "scatter3(IsoX,IsoY,IsoZ)\n";

out.close();

return 0;

}

void ReadDosePoints(vector <vector <double> > &dosePoints, int &m, int &n)

{

// Read in the original dose points.

printHeader("Read Dose Points");

ifstream in;

in.open("Level0.dat");

in >> m >> n;

vector<double> tempVec;

double temp;

for(int i = 0; i < m; i++)

{

tempVec.clear();

for(int j = 0; j < n; j++)

{

in >> temp;

tempVec.push_back(temp);

}

dosePoints.push_back(tempVec);

}

in.close();

}

Vector2 FindMaxDosePoint(vector<vector<double> > dosePoints, int m, int n)

{

// Choose the maximum point as our starting place.

printHeader("Find Max Dose Point");

double maxValue = dosePoints[0][0];

int maxX = 0, maxY = 0;

for(int i = 0; i < dosePoints.size(); i++)

{

for(int j = 0; j < dosePoints[i].size(); j++)

{

if(dosePoints[i][j] > maxValue)

{

58

59

maxValue = dosePoints[i][j];

maxX = j; maxY = (m-1)-i;

}

}

}

return Vector2(maxX, maxY);

}

void printHeader(string line)

{

if(line.length()<=40)

{

cout << "[=== ";

for(int i = 0; i < (40-line.length())/2; i++)

cout << " ";

cout << line;

for(int i = 0; i < (40-line.length())/2; i++)

cout << " ";

if(line.length()%2)

cout << " ";

cout << " ===]\n";

}

else

{

cerr << "Header string cannot be over 40 characters in length\n";

}

}

void HitAndRun(Vector2 Max, queue<Vector2> &startingPoints,

vector<Vector2> &PtsOnCurve,

vector<patch> &surface, int m, int n,

double isoLevel, int numPoints)

{

double theta;

bool cycle = false;

Vector2 X = Max + Vector2(0.01, 0.01);

startingPoints.push(X);

startingPoints.push(X+Vector2(-0.01, 0.00));

startingPoints.push(X+Vector2(-0.02, 0.00));

startingPoints.push(X+Vector2(-0.02,-0.01));

startingPoints.push(X+Vector2(-0.02,-0.02));

startingPoints.push(X+Vector2(-0.01,-0.02));

startingPoints.push(X+Vector2(0.00,-0.02));

startingPoints.push(X+Vector2(0.00,-0.01));

srand(static_cast<unsigned>(time(NULL)));

59

60

int iterations = 0;

while(startingPoints.size() != 0 && PtsOnCurve.size() < numPoints)

{

X = startingPoints.front();

startingPoints.pop();

theta = ((double)rand()/(double)RAND_MAX)*2*PI;

switch(iterations)

{

case 0:

case 1:

theta = PI*0.25;

break;

case 2:

case 3:

theta = PI*0.5;

break;

case 4:

case 5:

theta = PI*0.75;

break;

case 6:

case 7:

theta = PI;

break;

case 8:

case 9:

theta = PI*1.25;

break;

case 10:

case 11:

theta = PI*1.5;

break;

case 12:

case 13:

theta = PI*1.75;

break;

case 14:

case 15:

theta = 0.0;

break;

default:

break;

}

// theta = PI/2; // For Test purposes

Vector2 X0;

60

61

Vector2 start = X;

cycle = false;

for(int iter = 0; iter < 2; iter++)

{

X = start;

if(iter == 1)

theta += PI*0.5;

Vector2 d = Vector2(cos(theta), sin(theta));

NewtonsMethod(X,d,X0,theta,surface,m,n,isoLevel,cycle);

if(!(X[0] < 0 || X0[0] > (n-1) || X0[1] < 0 || X0[1] > (m-1)))

{

if(!cycle && abs(f(X,surface,m,n)-isoLevel)<0.00001)

{

PtsOnCurve.push_back(X);

// Put the midpoint into startingPoints

startingPoints.push(Vector2(X0[0]+0.5*(X[0]-X0[0]),

X0[1]+0.5*(X[1]-X0[1])));

startingPoints.push(Vector2(Max[0]+0.5*(X[0]-Max[0]),

Max[1]+0.5*(X[1]-Max[1])));

}

else

{

cerr << "Cycle on " << start << endl;

}

}

iterations++;

}

}

}

void NewtonsMethod(Vector2 &X, Vector2 d, Vector2& X0,

double theta, vector<patch>surface, int m,int n,

double isoLevel,bool &cycle)

{

X0 = X;

if(X0[0] < 0 || X0[0] > (n-1) || X0[1] < 0 || X0[1] > (m-1))

return;

int ctr = 0;

Vector2 OldX;

do

{

double alpha = ((isoLevel-f(X,surface,m,n))/

61

62

(fpartialx(X,surface,m,n) * d[0] +

fpartialy(X,surface,m,n) * d[1]));

OldX = X;

if(ctr == 0)

{

// Make sure to step forward

if(alpha < 0)

{

alpha *= -1;

}

}

X = X +

d * alpha;

DomainCheck(X,theta,X0,m,n);

ctr++;

if(ctr >= 100)

{

cycle = true;

break;

}

}while(abs(f(X,surface,m,n)-isoLevel) > 0.00001);

// ==== End Newton’s Method ==== //

}

void DomainCheck(Vector2 &X, double theta, Vector2 X0, int m, int n)

{

if(X[0] > (n-1) || X[0] < 0 || X[1] > (m-1) || X[1] < 0)

{

Vector2 OldX = X;

double k = 1000000;

if(abs(cos(theta)) > 0.0001)

{

k = ((n-1)-X0[0])/cos(theta);

if(abs(-X0[0]/cos(theta)) < abs(k))

k = -X0[0]/cos(theta);

}

if(abs(sin(theta)) > 0.0001)

{

if(abs(((m-1)-X0[1])/sin(theta)) < abs(k))

k = ((m-1)-X0[1])/sin(theta);

if(abs(-X0[1]/sin(theta)) < abs(k))

k = -X0[1]/sin(theta);

}

62

63

if(k<0 && k < -0.001)

k+=0.001;

else if(k > 0 && k > 0.001)

k-=0.001;

X = X0 + Vector2(cos(theta) * k, sin(theta)*k);

if(!(X[0]<=(n-1)&&X[0]>=0&&X[1]<=(m-1)&&X[1]>=0))

{

cerr << "Error in Domain Check!\n";

cerr << "OldX = " << OldX << " \t" << "X = " << X << endl;

cerr << "Theta = " << theta << " \tk = " << k << endl;

cerr << "X0 = " << X0 << endl;

assert(X[0]<=(n-1)&&X[0]>=0&&X[1]<=(m-1)&&X[1]>=0);

}

}

}

double f(Vector2 X, vector<patch> surface, int m, int n)

{

// return the value of f based on which patch (x,y) is in

if(X[1] == 0)

X[1] = 0.02;

int mypatch = (n-1)*(m-1-(int)(ceil(X[1]))) + (int)X[0];

if((int)X[0] == (n-1))

mypatch--;

if(mypatch > surface.size()-1 || mypatch < 0)

{

cerr << "Bad mypatch value: " << mypatch << endl;

cerr << "X = " << X << endl;

exit(1);

}

double x = X[0] - (int)X[0];

if((int)X[0] == (n-1))

x = 1.0;

double y = X[1] - (int)X[1];

if((int)X[1] == (m-1))

y = 1.0;

return surface[mypatch].coeffs[0]*x*x*x*y*y*y +

surface[mypatch].coeffs[1]*x*x*x*y*y +

surface[mypatch].coeffs[2]*x*x*x*y +

surface[mypatch].coeffs[3]*x*x*x +

surface[mypatch].coeffs[4]*x*x*y*y*y +

surface[mypatch].coeffs[5]*x*x*y*y +

63

64

surface[mypatch].coeffs[6]*x*x*y +

surface[mypatch].coeffs[7]*x*x +

surface[mypatch].coeffs[8]*x*y*y*y +

surface[mypatch].coeffs[9]*x*y*y +

surface[mypatch].coeffs[10]*x*y +

surface[mypatch].coeffs[11]*x +

surface[mypatch].coeffs[12]*y*y*y +

surface[mypatch].coeffs[13]*y*y +

surface[mypatch].coeffs[14]*y +

surface[mypatch].coeffs[15];

}

double fpartialx(Vector2 X, vector<patch> surface, int m, int n)

{

// return the value of f based on which patch (x,y) is in

if(X[1] == 0)

X[1] = 0.02;

int mypatch = (n-1)*(m-1-(int)(ceil(X[1]))) + (int)X[0];

if((int)X[0] == (n-1))

mypatch--;

double x = X[0] - (int)X[0];

if((int)X[0] == (n-1))

x = 1.0;

double y = X[1] - (int)X[1];

if((int)X[1] == (m-1))

y = 1.0;

return surface[mypatch].partialCoeffs[0][0]*x*x*x*y*y*y +

surface[mypatch].partialCoeffs[0][1]*x*x*x*y*y +

surface[mypatch].partialCoeffs[0][2]*x*x*x*y +

surface[mypatch].partialCoeffs[0][3]*x*x*x +

surface[mypatch].partialCoeffs[0][4]*x*x*y*y*y +

surface[mypatch].partialCoeffs[0][5]*x*x*y*y +

surface[mypatch].partialCoeffs[0][6]*x*x*y +

surface[mypatch].partialCoeffs[0][7]*x*x +

surface[mypatch].partialCoeffs[0][8]*x*y*y*y +

surface[mypatch].partialCoeffs[0][9]*x*y*y +

surface[mypatch].partialCoeffs[0][10]*x*y +

surface[mypatch].partialCoeffs[0][11]*x +

surface[mypatch].partialCoeffs[0][12]*y*y*y +

surface[mypatch].partialCoeffs[0][13]*y*y +

surface[mypatch].partialCoeffs[0][14]*y +

surface[mypatch].partialCoeffs[0][15];

}

64

65

double fpartialy(Vector2 X, vector<patch> surface, int m, int n)

{

// return the value of f based on which patch (x,y) is in

if(X[1] == 0)

X[1] = 0.02;

int mypatch = (n-1)*(m-1-(int)(ceil(X[1]))) + (int)X[0];

if((int)X[0] == (n-1))

mypatch--;

double x = X[0] - (int)X[0];

if((int)X[0] == (n-1))

x = 1.0;

double y = X[1] - (int)X[1];

if((int)X[1] == (m-1))

y = 1.0;

return surface[mypatch].partialCoeffs[1][0]*x*x*x*y*y*y +

surface[mypatch].partialCoeffs[1][1]*x*x*x*y*y +

surface[mypatch].partialCoeffs[1][2]*x*x*x*y +

surface[mypatch].partialCoeffs[1][3]*x*x*x +

surface[mypatch].partialCoeffs[1][4]*x*x*y*y*y +

surface[mypatch].partialCoeffs[1][5]*x*x*y*y +

surface[mypatch].partialCoeffs[1][6]*x*x*y +

surface[mypatch].partialCoeffs[1][7]*x*x +

surface[mypatch].partialCoeffs[1][8]*x*y*y*y +

surface[mypatch].partialCoeffs[1][9]*x*y*y +

surface[mypatch].partialCoeffs[1][10]*x*y +

surface[mypatch].partialCoeffs[1][11]*x +

surface[mypatch].partialCoeffs[1][12]*y*y*y +

surface[mypatch].partialCoeffs[1][13]*y*y +

surface[mypatch].partialCoeffs[1][14]*y +

surface[mypatch].partialCoeffs[1][15];

}

void ReadPatchCoeffs(vector <patch> &surface, int m, int n)

{

printHeader("Read in Patch Coefficients");

// Read in coefficients for all the patches

char* dummy;

char dummyChar;

ifstream in;

in.open("Patches.m");

patch tempPatch;

dummy = (char*)malloc(80 * sizeof(char));

65

66

in.getline(dummy, 80);

in.getline(dummy, 80);

in.getline(dummy, 80);

for(int i = 0; i < m-1; i++)

{

for(int j = 0; j < n-1; j++)

{

// Read in the 4x4 matrix of coefficients

// Store in row major order in a double array

for(int k = 0; k < 16; k++)

{

in >> tempPatch.coeffs[k];

if((k+1)%4 == 0)

in >> dummyChar;

}

surface.push_back(tempPatch);

}

}

free(dummy);

in.close();

// 3.21.2005

// The coefficient matrices don’t behave as they should

// Perform the necessary changes to fix the matrix

// To get these numbers I replaced y with x and replaced

// x with (1-y)

for(int i = 0; i < m-1; i++)

{

for(int j = 0; j < n-1; j++)

{

for(int k = 0; k < 16; k++)

{

tempPatch.coeffs[k] = surface[i*(n-1)+j].coeffs[k];

}

surface[i*(n-1)+j].coeffs[0] = -tempPatch.coeffs[0];

surface[i*(n-1)+j].coeffs[1] = 3*tempPatch.coeffs[0] +

tempPatch.coeffs[4];

surface[i*(n-1)+j].coeffs[2] = -3*tempPatch.coeffs[0] -

2*tempPatch.coeffs[4] -

tempPatch.coeffs[8];

surface[i*(n-1)+j].coeffs[3] = tempPatch.coeffs[0] +

tempPatch.coeffs[4] +

tempPatch.coeffs[8] +

tempPatch.coeffs[12];

66

67

surface[i*(n-1)+j].coeffs[4] = -tempPatch.coeffs[1];

surface[i*(n-1)+j].coeffs[5] = 3*tempPatch.coeffs[1] +

tempPatch.coeffs[5];

surface[i*(n-1)+j].coeffs[6] = -3*tempPatch.coeffs[1] -

2*tempPatch.coeffs[5] -

tempPatch.coeffs[9];

surface[i*(n-1)+j].coeffs[7] = tempPatch.coeffs[1] +

tempPatch.coeffs[5] +

tempPatch.coeffs[9] +

tempPatch.coeffs[13];

surface[i*(n-1)+j].coeffs[8] = -tempPatch.coeffs[2];

surface[i*(n-1)+j].coeffs[9] = 3*tempPatch.coeffs[2] +

tempPatch.coeffs[6];

surface[i*(n-1)+j].coeffs[10] = -3*tempPatch.coeffs[2] -

2*tempPatch.coeffs[6] -

tempPatch.coeffs[10];

surface[i*(n-1)+j].coeffs[11] = tempPatch.coeffs[2] +

tempPatch.coeffs[6] +

tempPatch.coeffs[10] +

tempPatch.coeffs[14];

surface[i*(n-1)+j].coeffs[12] = -tempPatch.coeffs[3];

surface[i*(n-1)+j].coeffs[13] = 3*tempPatch.coeffs[3] +

tempPatch.coeffs[7];

surface[i*(n-1)+j].coeffs[14] = -3*tempPatch.coeffs[3] -

2*tempPatch.coeffs[7] -

tempPatch.coeffs[11];

surface[i*(n-1)+j].coeffs[15] = tempPatch.coeffs[3] +

tempPatch.coeffs[7] +

tempPatch.coeffs[11] +

tempPatch.coeffs[15];

}

}

}

void PreparePartialDerivs(vector<patch> &surface)

{

// Prepare the partial derivates

for(int p = 0; p < surface.size(); p++)

{

for(int dir = 0; dir < 2; dir++)

{

if(dir == 0)

{

for(int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++)

switch(i)

67

68

{

case 0:

surface[p].partialCoeffs[dir][4*i+j] = 0.0;

break;

case 1:

surface[p].partialCoeffs[dir][4*i+j] =

3*surface[p].coeffs[4*(i-1)+j];

break;

case 2:

surface[p].partialCoeffs[dir][4*i+j] =

2*surface[p].coeffs[4*(i-1)+j];

break;

case 3:

surface[p].partialCoeffs[dir][4*i+j] =

surface[p].coeffs[4*(i-1)+j];

break;

}

}

else

{

for(int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++)

switch(j)

{

case 0:

surface[p].partialCoeffs[dir][4*i+j] = 0;

break;

case 1:

surface[p].partialCoeffs[dir][4*i+j] =

3*surface[p].coeffs[4*i+j-1];

break;

case 2:

surface[p].partialCoeffs[dir][4*i+j] =

2*surface[p].coeffs[4*i+j-1];

break;

case 3:

surface[p].partialCoeffs[dir][4*i+j] =

surface[p].coeffs[4*i+j-1];

break;

}

}

}

}

}

void PrintCoefficients(vector<patch> surface)

68

69

{

for(int p = 0; p < surface.size(); p++)

{

cout << "[~~ Patch " << setw(2) << p << " ~~]\n";

for(int i = 0; i < 4; i++)

{

for(int j = 0; j < 4; j++)

{

if(abs(surface[p].coeffs[4*i+j]) < 0.000001)

cout << setw(10) << "0" << " ";

else

cout << setprecision(4) << setw(10)

<< surface[p].coeffs[4*i+j] << " ";

}

cout << endl;

}

cout << endl << "x-partial" << endl;;

for(int i = 0; i < 4; i++)

{

for(int j = 0; j < 4; j++)

{

if(abs(surface[p].partialCoeffs[0][4*i+j]) < 0.000001)

cout << setw(10) << "0" << " ";

else

cout << setprecision(4) << setw(10)

<< surface[p].partialCoeffs[0][4*i+j] << " ";

}

cout << endl;

}

cout << endl << "y-partial" << endl;

for(int i = 0; i < 4; i++)

{

for(int j = 0; j < 4; j++)

{

if(abs(surface[p].partialCoeffs[1][4*i+j]) < 0.000001)

cout << setw(10) << "0" << " ";

else

cout << setprecision(4) << setw(10)

<< surface[p].partialCoeffs[1][4*i+j] << " ";

}

cout << endl;

}

}

}

69

	Trinity University
	Digital Commons @ Trinity
	5-9-2005

	Computing Isodose Curves for Radiotherapy Treatment Plans
	Ryan Acosta
	Recommended Citation

	tmp.1273592984.pdf.SRZ6c

