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On the State Hierarchy of Exploding Automata

Matthew R. Maly

Abstract

A recently revisited question in finite automata theory considers the possible numbers n

and d for which there exists an n-state minimal NFA with a minimal equivalent DFA of d

states. We present a new class of finite automata, the NFA En of n states, which in a sense

contains half of the state hierarchy [n, 2n]; that is, by making small modifications to En,

we can create a minimal equivalent DFA of d states for any d ∈ (2n−1, 2n]. Although this

is not stronger than the most recent of work that has been done on the problem, the value

of this result lies in the systematic and intuitive method by which we, given the parameter

d, construct the appropriate NFA from En. Specifically, the construction from En is a

direct reflection of the binary representation of 2n −d, each 1-bit of which indicates a single

modification to make to En. We conclude the thesis with a discussion of computational

results to suggest that these methods can be extended to reach the entire state hierarchy,

that is, to answer the question for any d ∈ [n, 2n].
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Chapter 1

Introduction

This thesis is primarily concerned with the behavior of deterministic and nondeterministic

finite automata (DFA’s and NFA’s, respectively). Arguably the simplest theoretical model

of computation, a finite automaton is, in essence, a machine that accepts or rejects a string

of input symbols, simply by changing states as it sequentially encounters each input symbol.

1.1 Preliminaries

To summarize the theory of finite automata, we draw from definitions and results in

Hopcroft’s textbook [2].

1.1.1 Alphabets and Strings

An alphabet, typically denoted Σ, is a finite, nonempty set of symbols. Common examples

of alphabets include the binary alphabet {0, 1}, the letter alphabet {a, b, . . . , z}, and the

set of all ASCII characters. A string w is a finite sequence of symbols taken from some

alphabet. The length of w, typically denoted |w|, is the number of symbol positions in w.

1



2

For example, w = 10001 is a string from the alphabet Σ = {0, 1}, and |w| = 5. The empty

string, denoted ǫ, is the unique string of length zero. The concatenation of two strings u

and v, denoted u ◦ v and often abbreviated as uv, is the string formed by following the

symbols of u by the symbols of v. For example, if u = race and v = car are strings from

the letter alphabet, then uv = racecar. Furthermore, w ◦ ǫ = ǫ ◦ w = w for any string w

over any alphabet.

1.1.2 Strings of a Fixed Length

Let Σ be an alphabet. If k is a nonnegative integer, then we define Σk to be the set of

all strings over Σ of length k. For example, if Σ = {0, 1}, then Σ0 = {ǫ}, Σ1 = {0, 1},

Σ2 = {00, 01, 10, 11}, and so forth. We define Σ∗ to be the set of all strings over the

alphabet Σ; that is,

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . .

1.1.3 Languages

If Σ is an alphabet, then a language is any subset of Σ∗. For example, if Σ = {0, 1}, then

{1, 10, 100, . . .} is the language consisting of all binary powers of 2. A language can be

infinite, finite, or empty.

The central focus of automata theory is the problem of deciding whether a given string

is a member of a particular language. Finite automata are abstract machines that can, in

some cases, be used to answer such a question. The class of regular languages comprises

exactly the languages for which finite automata can make this decision.
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1.1.4 Finite Automata

Finite automata are divided into two categories as to whether they are deterministic or

nondeterministic.

Deterministic Finite Automata

For the DFA’s we reproduce the most common definition [13].

Definition 1. A deterministic finite automaton (DFA) is a quintuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set of states,

2. Σ is an alphabet,

3. δ : Q × Σ → Q is a transition function,

4. q0 ∈ Q is a start state, and

5. F ⊆ Q is a set of accept states.

For an example, let Σ = {0, 1} and consider the regular language

L = {w ∈ Σ∗ | w contains an even number of 1’s}.

We wish to construct a DFA D that will “accept” (a notion that will be formally defined

later) an input string w if and only if w ∈ L. This DFA will consist of two states to

keep track of whether the number of 1’s is even or odd as it reads each symbol of w. The

start state should correspond to an even number of 1’s, since the empty string ǫ contains

zero 1’s. Furthermore, this state should be the only accept state of D. To this end, set
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D = {{E,O},Σ, δ, E, {E}}, where δ is the transition function given by

δ(q, σ) =































q if σ = 0,

E if σ = 1 and q = O,

O if σ = 1 and q = E.

Here the states E and O correspond to whether the number of 1’s is even or odd, respectively.

Since it is often difficult to discern the behavior of a finite automaton from its formal

definition, a graphical representation, called a transition diagram, is used. This diagram

is a directed graph in which each state of D is represented by a node and each transition

is represented by an arc from one node to another. The start state is designated with an

arrow pointing to it without a source, and the accept state is designated with a double

circle. Figure 1.1 contains the transition diagram for D.

Figure 1.1: A simple DFA: D.

Before reading an input string, D is in state E, which corresponds to an even number

of 1’s. Reading a 1 at any time will change it to the opposite state, but reading a 0 will

preserve its state, since the number of 0’s in no way affects the number of 1’s in an input

string.

Consider running the DFA D on the input string w = 100. Beginning with the start
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state E, we iterate the transition function δ on each symbol of w. Since δ(E, 1) = O,

the state of D after reading the first symbol of w changes to O. The next state of D is

determined by this new state and the next symbol of w; that is, its next state is δ(O, 0) = O.

Reading the third and final symbol of w, D ends in the state δ(O, 0) = O. Since O is not

an accept state, D does not accept w, from which we conclude that w 6∈ L (rightfully so, as

w contains exactly one 1).

Extending the Transition Function of a DFA

To aid with modeling the computation of a DFA, we recursively extend the function δ to

process not only symbols but also strings. Let w ∈ Σ∗ be a nonempty string; then w = σu

for some σ ∈ Σ and u ∈ Σ∗ such that |u| = |w| − 1. We set

δ(q, w) = δ(δ(q, σ), u),

for any state q of a DFA, where δ(q, σ) is defined as in the DFA description in Section 1.1.4.

The Language of a DFA

As mentioned earlier, the task of a finite automaton is to decide whether an input string

is a member of some regular language. Let D = (Q,Σ, δ, q0, F ) be a DFA. Given an input

string w ∈ Σ∗, it is said that D accepts w if δ(q0, w) ∈ F . Otherwise, D rejects w. The

language of D, denoted L(D), is exactly the set of strings accepted by D; that is,

L(D) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

Then it is said that D describes the language L(D).
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Nondeterministic Finite Automata

Nondeterministic finite automata are slightly different from deterministic ones in that they

can be in multiple states at once. Furthermore, a state of an NFA can have any number of

transitions (including zero) to other states on a given input symbol.

For the NFA’s we present a slight adaptation of an uncommon definition given by Lewis

and Papadimitriou [8].

Definition 2. A nondeterministic finite automaton (NFA) is a quintuple (Q,Σ,∆, q0, F ),

where

1. Q is a finite set of states,

2. Σ is an alphabet,

3. ∆ is a finite subset of Q × Σ × Q, called a transition relation,

4. q0 ∈ Q is a start state, and

5. F ⊆ Q is a set of accept states.

The Transition Relation of an NFA

The literature typically defines an NFA with a transition function δ : Q×Σ → P(Q), where

P(Q) denotes the power set of Q [2, 13]. This function is driven by its underlying transition

relation, which we use instead. This decision has been made to provide greater intuition

for the results of this thesis and in no way weakens the traditional definition. Indeed, given

an NFA with transition relation ∆, we may immediately form the corresponding transition

function δ by setting

δ(q, σ) = {p ∈ Q | (q, σ, p) ∈ ∆}
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for all ordered pairs (q, σ) ∈ Q × Σ. Conversely, given an NFA with transition function δ,

the corresponding transition relation is

∆ = {(q, σ, p) | q ∈ Q, σ ∈ Σ, and p ∈ δ(q, σ)}.

The definitions of certain NFA’s in this thesis will exploit this implicit equivalence between

∆ and δ.

Transitions on the Empty String

Often NFA’s are also presented with additional transitions on the empty string ǫ, often

called ǫ-moves. No NFA’s in this thesis will use ǫ-moves, and so for any NFA M with state

set Q and transition function δ, we have that

δ(q, ǫ) = {q} (1.1)

for every q ∈ Q. Notice that this assumption does not cause us to lose any generality, since

any NFA with ǫ-moves can be converted into an NFA without ǫ-moves by combining any

states sharing ǫ transitions into a single state.

Extending the Transition Function of an NFA

For NFA’s, we extend the transition function, as seen similarly with DFA’s, to process

input strings. Also, since the current “state” of an NFA at a given time is actually a set of

states (specifically, an element of P(Q) in the definition of an NFA), we further extend the
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transition function δ of an NFA M to process sets of states, given by

δ(A,σ) =
⋃

q∈A

δ(q, σ) (1.2)

for all subsets A of the state set QM .

The Language of an NFA

The notion of an NFA’s accepting or rejecting an input string is analogous to that of a

DFA. An NFA M = (Q,Σ,∆, q0, F ) accepts an input string w ∈ Σ∗ if, after reading w, its

resulting set of states contains at least one accept state. Formally, M accepts w if

δ(q0, w) ∩ F 6= ∅.

Otherwise, M rejects w. Finally, as with DFA’s, the language described of M , denoted

L(M), contains exactly the strings accepted by M .

An Example of an NFA

Let Σ = {0, 1} and consider the regular language of all strings w ∈ Σ∗ for which the second

symbol from the end is a 1. We will construct an NFA that recognizes this language. Define

the NFA M = ({q0, q1, q2},Σ,∆, q0, {q2}), where

∆ = {(q0, 0, q0), (q0, 1, q0), (q0, 1, q1), (q1, 0, q2), (q1, 1, q2)}.

Figure 1.2 contains the transition diagram for M .
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Figure 1.2: A simple NFA: M .

Consider running M on the input string w = 100. Beginning with the start state q0, we

have that δ(q0, 1) = {q0, q1}. Then, by (1.2),

δ({q0, q1}, 0) = δ(q0, 0) ∪ δ(q1, 0) = {q0, q2}.

Note that at this point, M ’s current set of states includes the accept state q2. Reading the

final symbol of w changes this, as

δ({q0, q2}, 0) = δ(q0, 0) ∪ δ(q2, 0) = {q0}.

Since {q0} ∩ {q2} = ∅, we conclude that M does not accept w.

1.1.5 The Subset Algorithm

Intuitively it may seem that NFA’s are more powerful than DFA’s in that they can describe

more types of languages. However, they are one in the same, in that any language that can

be described by an NFA can also be described by a DFA, and vice versa. To clarify this

result, we first require a simple definition of equivalence for finite automata [2].

Definition 3. Two finite automata M and N are equivalent if L(M) = L(N).

Notice that for any DFA D, there exists an equivalent NFA; such an NFA M can be
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formed by creating a transition relation ∆M from δM , and leaving all other components of

D the same. Much more interesting is the converse of this statement, which is a crucial

result in automata theory [2].

Theorem 4. If M is an NFA, then there exists a DFA D equivalent to M .

Proof. Given an NFA M = (QM ,Σ,∆M , q0, FM ), let D = (QD,Σ, δD, {q0}, FD) be a DFA

such that the following hold.

1. QD = P(QM ).

2. The transition function δD is formed by extending the transition relation ∆M such

that

δD(A,σ) =
⋃

q∈A

{p ∈ QM | (q, σ, p) ∈ ∆M}

for each A ∈ QD and σ ∈ Σ. Notice that if δM is the transition function of M

created from ∆M , then δD(A,σ) = δM (A,σ) for each A ∈ QD, by the extension of

the transition function of an NFA in (1.2).

3. The set FD of accept states of D contains exactly all subsets of QM that include at

least one accept state of M . Formally,

FD = {A ∈ QD | A ∩ FM 6= ∅}.

We will show that L(D) = L(M). Let δM be the transition function formed from ∆M ,

and let w ∈ Σ∗. Notice that w ∈ L(D) if and only if

δD({q0}, w) ∈ FD.
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Analogously, w ∈ L(M) if and only if

δM (q0, w) ∩ FM 6= ∅.

So, to complete the proof, it is sufficient to show that

δD({q0}, w) = δM (q0, w),

which we will prove by induction on the length of w. In the base case, (1.1) implies that

δD({q0}, ǫ) = {q0} = δM (q0, ǫ),

and so the claim holds. Assume the inductive hypothesis for all strings of fixed length k ≥ 0,

and let w ∈ Σk+1. Then w = uσ for some u ∈ Σk and σ ∈ Σ. Let A = δM (q0, u). Now,

δD({q0}, w) = δD(δD({q0}, u), σ)

= δD(δM ({q0}, u), σ) (by the inductive hypothesis)

= δD(A,σ)

= δM (A,σ) (by remark in #2 above)

= δM (δM (q0, u), σ)

= δM (q0, w).

This result shows that the added power given to the NFA’s from their ability to be in

multiple states at once in no way strengthens their fundamental abilities.
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The above procedure that was used to generate a DFA from an equivalent NFA is

commonly called the subset construction or the subset algorithm. Although it requires some

careful notation, the subset algorithm has an intuitive approach: since the current “state”

of the NFA M at any given time is a set of states of QM , we create a DFA D with each

state corresponding to each possible set of states of QM . If M has n states, then D will

then have |P(QM )| = 2n states, but not all of these states A are necessarily accessible; that

is, there may not exist an input string w ∈ Σ∗ for which δ({q0}, w) = A. It would then be

advantageous to remove all inaccessible states from the DFA D, since their absence in no

way affects the machine’s behavior.

1.1.6 Minimization

When discussing the number of states of an n-state finite automaton N , be it NFA or DFA,

to formalize the notion of minimality becomes crucial. Consider the equivalence class of

N , following from Definition 3. We elect a finite automaton M equivalent to N with a

least number of states to be a representative of this equivalence class. Such a machine is

important in that it is a smallest finite automaton (with regard to number of states) to

recognize the language L(N).

Definition 5. Let M be a DFA (NFA). Then M is minimal if, for any DFA (NFA) N for

which L(N) = L(M), the number of states of N is at least that of M .

Let D be a DFA. We wish to minimize D; that is, find a minimal DFA equivalent to

D. This can be done by finding two distinct states of D that can be replaced by a single

state without altering the language recognized by D. We first define a notion of equivalence

between two states, which will ensure that such a replacement can safely occur.

Definition 6. Let D = (Q,Σ, δ, q0, F ) be a DFA. Two states p and q of D are said to be



13

equivalent if, for all w ∈ Σ∗, we have that δ(p,w) ∈ F if and only if δ(q, w) ∈ F . Otherwise,

p and q are said to be distinguishable.

Notice that state equivalence is an equivalence relation. As shown in the following

lemma, to remove the inaccessible states from D and to replace all pairs of equivalent states

are sufficient to minimize D [2].

Lemma 7 (Hopcroft). Let D = (QD,Σ, δD, qD, FD) be a DFA. If all states of D are acces-

sible and pairwise distinguishable, then D is minimal.

Proof. Seeking a contradiction, suppose that D is not minimal. Then there exists a minimal

DFA C = (QC ,Σ, δC , qC , FC) such that L(C) = L(D) and |QC | < |QD|. We intuitively

extend the definition of equivalence of states across these two DFA’s as follows: a state p

of C and a state q of D are called isomorphic, denoted p ≈ q, if for all r ∈ Σ∗ we have

that δC(p, r) ∈ FC if and only if δD(q, r) ∈ FD. As with state equivalence, notice that state

isomorphism is also an equivalence relation.

Let q ∈ QD. Since all states of D are accessible by hypothesis, there exists an input

string v ∈ Σ∗ such that δD(qD, v) = q. Let p = δC(qC , v). We induct on the length of

v to show that q ≈ p. In the base case, q = δD(qD, ε) = qD by (1.1); similarly, p = qC .

Since L(D) = L(C), the strings accepted by D are exactly those accepted by C, and so

δD(qD, r) ∈ FD if and only if δC(qC , r) ∈ FC for all r ∈ Σ∗. Thus q ≈ p in the base

case. Now assume the inductive hypothesis for some fixed length k ≥ 0, and let w ∈ Σk+1.

Then w = uσ for some u ∈ Σk and σ ∈ Σ. Let r ∈ Σ∗, and let q′ = δD(qD, u) and

p′ = δC(qC , u). Then q′ ≈ p′ by the inductive hypothesis, and so δD(q′, σr) ∈ FD if and
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only if δC(p′, σr) ∈ FC . Notice that

δD(q, r) = δD(δD(qD, w), r)

= δD(δD(qD, u), σr)

= δD(q′, σr).

Similarly,

δC(p, r) = δC(δC(qC , w), r)

= δC(δC(qC , u), σr)

= δC(p′, σr).

Thus δD(q, r) ∈ FD if and only if δC(p, r) ∈ FC . Since r is an arbitrary input string, q ≈ p,

which completes the induction.

We have just shown that for each q ∈ QD, there exists p ∈ QC such that q ≈ p. Now,

since |QD| > |QC |, there must exist two distinct states q1, q2 ∈ QD and one state p1 ∈ QC

for which q1 ≈ p1 ≈ q2. Then q1 and q2 are equivalent, which contradicts the hypothesis that

all states of D are pairwise distinguishable. Hence C cannot exist, and so D is minimal.

There exist many algorithms for minimizing DFA’s; the most common of which is

Hopcroft’s algorithm, which minimizes an n-state DFA in O(n log n) steps [3]. Hopcroft’s

approach involves partitioning the DFA’s set of states into a set of equivalence classes, using

the notion of state equivalence from Definition 6. The algorithm then returns a minimal

equivalent DFA for which each state represents one of these equivalence classes.
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1.2 Original Plans

The specific nature of this thesis originally stemmed from a question posed by Dr. Paul

Myers: What characterizes an NFA with n states that, under the subset algorithm, becomes

a DFA with 2n states that cannot be simplified by the minimization algorithm? This issue

has not only been addressed but also extended and generalized in the literature. Following

this prompt, the original goals of this thesis were to address the following questions.

(1) How does varying which of the n states of an NFA M are accept states affect whether

its resulting minimal DFA has 2n states?

(2) How can we characterize all of the NFA’s that behave according to Dr. Myers’ prompt?

How do they relate? Can two or more be combined to create another?

It appears that nowhere in the current literature has question (1) been considered. Also, a

semester of examination has shed light on how ambitious question (2) really is. Although

these questions served as starting points for attempts at an original contribution to the

theory, a close examination of what problems are of interest to current researchers has led

this work in a slightly different direction.

1.3 Modifications

The literature contains much work on a generalization of Dr. Myers’ prompt to ask if,

given positive integers n and d with n ≤ d ≤ 2n, there exists a minimal n-state NFA for

which a minimal equivalent DFA has d states. The interval [n, 2n] ⊆ N across which d

ranges is often called the state hierarchy of a minimal n-state NFA. This question has been

answered for input alphabets as small as 4 symbols in size, but the NFA’s created to answer

it vary widely with many distinct cases on the numbers n and d. The question has also
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been partially answered for a binary alphabet, but only for certain cases on d instead of the

entire state hierarchy.

This thesis details an attempt to answer the question, beginning by creating a special

NFA En of n states over an n-symbol alphabet that answers the question for d = 2n. To

answer the question for another parameter d′ ∈ [n, 2n] (that is, to construct a minimal

n-state NFA for which the minimal equivalent DFA has d′ states) will then require small

intuitive modifications to En, which work for all d′ ∈ (2n−1, 2n]. Thus, in a sense, there

exists a special class of machines intimately related to En that allows us to reach a little

more than half of the state hierarchy. Their construction will intuitively follow from the

binary representation of the integer k = 2n − d′.

1.4 Terminology and Symbols

Let N denote the set of positive integers {1, 2, . . .}. For each n ∈ N, define the alphabet

Σn = {1, 2, . . . , n} ⊆ N. To prevent ambiguity when necessary, we mark the state sets

and transition functions (or relations) of a finite automaton M with a subscript M . For

example, δD is the transition function with values in the states QD of some finite automaton

D. If M is an NFA, then let M ′ be the equivalent DFA obtained from the subset algorithm,

with all inaccessible states removed.

Let gcd(a, b) denote the greatest common divisor of any two integers a and b. For any

real number x, let ⌈x⌉ (the “ceiling” function) denote the smallest integer m for which

m ≥ x. We use square brackets and parentheses to denote closed and open intervals of

positive integers, respectively; for example, [2, 5) ⊆ N is equivalent to the set {2, 3, 4}.

Finally, as defined in Section 1.1.4, for any set A, let P(A) (the “power set” of A) denote

the set of all subsets of A.



Chapter 2

Related Work

As discussed in Section 1.1.5, applying the subset algorithm to an n-state NFA M will yield

a DFA with up to 2n states. Rabin posed the question of “whether the bound of 2n on the

number of states. . .may be considerably improved” [12].

2.1 Hitting the Bound

The first to answer Rabin’s prompt, Moore gives an example of an NFA Bn over a binary

alphabet such that B′
n is a minimal DFA with 2n states [10]. For any n ≥ 2, define the NFA

Bn = ({q1, . . . , qn}, {a, b}, δ, q1, {qn}) ,

where

δ(qi, a) =

{

{qi+1} if i < n

17
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and

δ(qi, b) =















{qi} if i = 1

{qi+1} if 1 < i < n

for each i ∈ {1, . . . , n}. For an example, Figure 2.1 contains the transition diagram for the

NFA B4.

Figure 2.1: Moore’s NFA B4.

Moore shows in the following two lemmas, the proofs of which are omitted, that B′
n is a

minimal DFA with 2n states. As given by Lemma 7, to prove this fact first requires showing

that all states of B′
n are pairwise distinguishable.

Lemma 8 (Moore). The states of B′
n are pairwise distinguishable; that is, for all P,R ∈

P ({q1, . . . , qn}), P and R are equivalent if and only if P = R.

Next, we must show that all 2n states of B′
n are accessible.

Lemma 9 (Moore). All states in B′
n are accessible; that is, for each P ∈ P ({q1, . . . , qn}),

there exists w ∈ {a, b}∗ such that δ(q1, w) = P .

Moore’s Bn was the first NFA to address the issue of state hierarchy, as it was the first

example of an n-state NFA for which the equivalent minimal DFA had 2n states. Moore

concluded his discussion with a proof that no n-state NFA over a 1-symbol alphabet can
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have an equivalent minimal DFA of 2n states, suggesting that his NFA Bn, which uses a

binary alphabet, is an optimal answer to the problem.

2.2 Exploring the State Hierarchy

The first to extend the issue, Iwama posed the equation of whether there exists a minimal

n-state NFA M such that M ′ is a minimal DFA with 2n−k states, where 0 ≤ k ≤ 2n−n [4].

Notice that this question is equivalent to the prompt given in Section 1.3, with the change of

variables d = 2n − k. All automata considered in their work use the binary alphabet {0, 1},

since, as shown by Moore and discussed in Section 2.1, a unary alphabet is not enough

answer the question. The authors partially answer the question, presenting constructions

for cases in which k can be expressed as 2n − 2r or 2n − 2r − 1 for some nonnegative integer

r ≤ n/2 − 2.

2.2.1 A Slight Improvement

Continuing from previous work, Iwama and Matsuura present similar constructions with

slightly weaker conditions on k [5]. In particular, they answer the question for n and k if

n ≥ 7 and 5 ≤ k ≤ 2n − 2 and one of the following hold:

1. gcd(n, k − 1) = 1,

2. gcd(n, k − 2) = 1, or

3. gcd(n, ⌈k/2⌉ − 1) = 1.



20

2.3 Capturing the State Hierarchy with a Growing Alphabet

As Iwama writes, fully answering the question (reaching the entire state hierarchy) becomes

easier with a larger alphabet [4]. Jirásková was the first to capture the state hierarchy,

creating a minimal n-state NFA with a minimal equivalent d-state DFA for all d ∈ [n, 2n],

but such constructions require an input alphabet that grows exponentially with n [7]. The

work is concluded with a nonconstructive improvement, showing that 2n symbols would be

sufficient for the input alphabet.

Geffert improves the work an additional step, using an input alphabet with n+2 symbols

[1].

2.4 A Fixed Alphabet

Finally, Jirásek and Jirásková were the first to close the state hierarchy over a fixed alphabet,

specifically using four input symbols [6]. Their work begins by creating separate NFA’s for

the cases in which d = n and d = 2n. For the remaining case in which n < d < 2n, there

exists an integer α ∈ [1, n) such that

n − α + 2α ≤ d < n − (α + 1) + 2k+1.

Then

d = n − (α + 1) + 2α + m

for some integer m ∈ [1, 2α). From there, they consider three separate cases on the form

of m, and from each case construct different NFA’s with different transition functions.

Moreover, proving necessary properties about these NFA’s require five further subcases on

the forms of the integers α, n, and m.



Chapter 3

Results

Here we present the original results of this work.

3.1 A Few Helpful Definitions

These definitions are presented for convenience and will aid in the constructions of this

chapter.

Definition 10. Let M be an NFA with transition relation ∆. A transition of M is any

element (q, σ, p) of ∆ and is denoted q
σ
−→ p.

3.1.1 Submachines

Often we create a new NFA from a given NFA by removing certain transitions and leaving

all other components the same. This idea is formalized in the following definition.

Definition 11. Let M = (Q,Σ,∆, q0, F ) be an NFA. An NFA N is a submachine of M if

N = (Q,Σ,∆ \ A, q0, F )

21
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for some set of transitions A ⊆ ∆. We denote N by M \ A.

Informally, the submachine M \ A of M is formed by removing all transitions τ ∈ A

from M . Since A can be empty, an NFA is always a submachine of itself. Moreover, an

NFA with transition relation ∆ has exactly |P(∆)| = 2|∆| submachines.

3.1.2 Exploding Automata

A particular type of NFA has been central to much of this thesis and warrants a name.

Definition 12. An exploding automaton is a minimal NFA with n states that is equivalent

to a minimal DFA with 2n states.

The question of whether a minimal NFA M is exploding is always decidable, as M can

be converted to a DFA with the subset algorithm and then minimized with the minimization

algorithm.

3.2 A Distinguished Machine

For each n ∈ N, we define an n-state NFA

En = (Q,Σ,∆, q1, {qn})

where Q = {q1, . . . , qn}, and ∆ underlies the transition function given by

δ(qi, k) =















{qi+1} if k = 1 and i < n

{qi, qk} if k > 1 and 1 ≤ i < k

(3.1)
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Intuitively, for each i < n, the state qi of the NFA En moves to the next state qi+1 on a

1, and it also has self-loops and transitions to qj for each j > i. Finally, the state qn is an

accept state with no transitions. The two-state and three-state examples of this machine

are given in Figure 3.1 and Figure 3.2, respectively.

Figure 3.1: The NFA E2.

Figure 3.2: The NFA E3.

3.3 On Greater Intuition

Although the past results given in Chapter 2 are, for the most part, constructive, the NFA’s

corresponding to each pair n and k depend on many distinct cases. Their construction is

arguably unintuitive. Here each NFA will be intimitely related; in particular, for a fixed n,

the NFA corresponding to each k ∈ [0, 2n−1) will be a submachine of En.
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3.4 Answering the Question

The ultimate goal of this work is the following theorem.

Theorem 13. Let n ≥ 2 with 0 ≤ k < 2n−1. Then there exists an n-state submachine of

En for which the minimal equivalent DFA has 2n − k states.

We will achieve this result by a combination of several interesting properties of the NFA

En.

3.4.1 En Explodes

Our crucial result is that the NFA En is an exploding automaton, which we will show

with two lemmas. First, consider the NFA E3, previously illustrated in Figure 3.2. For

E3 to be exploding, its equivalent DFA E′
3 must consist of exactly 23 = 8 accessible states

(in addition, these 8 states must be pairwise inequivalent, but for now we only consider

accessibility). In other words, for each subset A of the state set {q1, q2, q3} of E3, there

must exist a corresponding w ∈ Σ∗
3 such that δ(q1, w) = A, where δ is the transition

function of E3. The state set {q1} is already taken care of, since it is the start state of

E′
3. For the other singletons as well as the empty set, we see that δ(q1, 1) = {q2} and

δ(q1, 1
2) = {q3} and δ(q1, 1

3) = ∅. Generally, it appears that any singleton state set can be

accessed by a string of 1’s, and the empty state set can be accessed by using too many 1’s

(in a sense, traveling off the edge of the transition diagram).

The four larger subsets of {q1, q2, q3} remain. Since there is more than one way to

access each of these state sets, we consider the shortest possible input strings for each. In
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particular, we have that

δ(q1, 2) = {q1, q2},

δ(q1, 3) = {q1, q3},

δ(q1, 2 ◦ 3) = {q1, q2, q3}, and

δ(q1, 1 ◦ 3) = {q2, q3}.

The above cases suggest a simple rule for accessing a state set in E′
3. To build an appropriate

string w to reach subset A of {q1, q2, q3} in E3, first use a certain number of 1’s to reach

the earliest state in A (if q1 is the earliest state, use zero 1’s). Once the earliest state has

been reached, use the input symbol i for each remaining state qi in A, in ascending order.

For example, to reach the state set {q1, q2, q3} in E3 above, we used zero 1’s to reach state

q1, and then used a 2 and a 3, corresponding to states q2 and q3, respectively. This gives

the string 2 ◦ 3, which will reach {q1, q2, q3} in E3.

The subtle interplay of the state subscripts and alphabet symbols suggested above with

E3 can perhaps be made clearer with a larger example. Consider the machine E5, which

is illustrated in Figure 3.3. To reach the state set {q2, q4, q5} in E5, we first input a 1 to

move from q1 to q2. Then we input a 4 (corresponding to the state q4) followed by a 5

(corresponding to q5). Hence

δ(q1, 2 ◦ 4 ◦ 5) = {q2, q4, q5},

where δ is the transition function of E5.
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Figure 3.3: The NFA E5.
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Now armed with a bit of motivation, we may now formally prove that all 2n possible

states of E′
n are accessible, by using the method of string construction suggested above.

Lemma 14. The DFA E′
n has 2n states.

Proof. Let Q and δ be the state set and transition function of En, respectively. Let A ∈

P(Q); we will show that A is accessible. If A = ∅, then

δ(q1, 1
n) = δ(qn, 1) = ∅ = A.

Otherwise, A = {qa1 , . . . , qak
} for some k ∈ N such that 1 ≤ a1 < . . . < ak ≤ n. We will

show by induction on k that

δ(q1, 1
a1−1a2 . . . ak) = {qa1 , . . . , qak

}. (3.2)

If k = 1, then δ(q1, 1
a1−1) = {qa1}, which proves the base case. Now suppose that (3.2)

holds true for some fixed m ∈ N. Then

δ(q1, 1
a1−1a2 . . . amam+1) = δ(δ(q1, 1

a1−1a2 . . . am), am+1)

= δ({qa1 , . . . , qam}, am+1) (by the inductive hypothesis)

=
m
⋃

i=1

δ(qai
, am+1) (by the natural extension of δ in (1.2))

=

m
⋃

i=1

{qai
, qam+1} (by construction in (3.1), since ai < am+1)

= {qa1 , . . . , qam , qam+1}.

Hence all of the 2n subsets of Q are accessible from the start state {q1} in E′
n.
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Minimality and Inequivalence

To show that En and E′
n are minimal, we employ a helpful lemma due to Jirásková [7].

Lemma 15 (Jirásková). Let M = ({q1, . . . , qn},Σn,∆, q1, {qn}) be an n-state NFA such

that δ(qi, 1) = {qi+1} for each i ∈ {1, . . . , n − 1}, and δ(qn, 1) = ∅ (the other transitions

may be arbitrary). Then

1. M is a minimal NFA, and

2. No two different states of the DFA obtained from M by the subset construction are

equivalent.

The NFA En satisfies the hypothesis of Lemma 15 by construction. Conveniently, this

lemma not only implies the minimality of En but also eliminates the need to show that the

states of E′
n are pairwise inequivalent, which is all that was left to show that E′

n is minimal.

Corollary 16. The NFA En is an exploding automaton.

Proof. By Lemma 15, En is a minimal n-state NFA that is equivalent to the minimal DFA

E′
n, which, by Lemma 14, has 2n states.

For an additional demonstration, Appendix A contains a detailed example of the explo-

sion from E4 to E′
4.

3.4.2 The Submachines of En

What is unique about Theorem 13 is not the state hierarchy it reaches; rather, it is that

each member of the state hierarchy will be reached by a submachine of En. Specifically,

given n and k, we form the necessary NFA by plucking transitions off of En. To preserve
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the minimality of En and E′
n guaranteed by Lemma 15, we preserve all transitions on the

symbol 1 and only explore removing transitions on other symbols.

Consider the NFA E4 with transition function δ. Following the method of string con-

struction used in the proof of Lemma 14, Figure 3.4 contains the input strings that can be

used to reach the non-singleton state sets in E4; that is, each state set A ⊆ {q1, q2, q3, q4}

appearing in the table’s left column is accompanied by a string w ∈ Σ∗
4 in the right column

for which δ(q1, w) = A.

State Set Input String

{q1, q2} 2

{q1, q3} 3

{q1, q4} 4

{q2, q3} 1 ◦ 3

{q2, q4} 1 ◦ 4

{q3, q4} 12 ◦ 4

{q1, q2, q3} 2 ◦ 3

{q1, q2, q4} 2 ◦ 4

{q1, q3, q4} 3 ◦ 4

{q2, q3, q4} 1 ◦ 3 ◦ 4

{q1, q2, q3, q4} 2 ◦ 3 ◦ 4

Figure 3.4: The state sets and corresponding input strings of the DFA E′
4.

We will first consider the effects of removing transitions from the start state q1. As

suggested in Figure 3.5, which contains a partial transition diagram of E′
4, removing the

transition q1
4
−→ q4 from E4 renders the one state set {q1, q4} inaccessible, but leaves all

other state sets accessible. Removing the transition q1
3
−→ q3 from E4 causes us to lose the

state sets {q1, q3} and {q1, q3, q4}. Finally, removing the transition q1
2
−→ q2 has a more

drastic effect on E4, severing from it the four state sets {q1, q2}, {q1, q2, q3}, {q1, q2, q4}, and

{q1, q2, q3, q4}.
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Figure 3.5: A partial transition diagram of the DFA E′
4.
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As we will see later, it is no mistake that the number of state sets made inaccessible by

the removals considered above is always a power of 2. For now, we will attempt to suggest

a characterization of the state sets that remain accessible in E4 following the removal

of the transition q1
3
−→ q3. Let M be the submachine resulting from this removal; then

M = E4 \ {q1
3
−→ q3}. It seems that any state set A ⊆ {q1, q2, q3, q4} that does not contain

{q1, q3} is accessible in M . Indeed, to reach such a state set A in the above figure does

not require the path from {q1} to {q1, q3}. However, the converse of this statement is not

necessarily true, since the state sets {q1, q2, q3} and {q1, q2, q3, q4}, both of which contain

{q1, q3}, remain accessible in M . It turns out that what keeps them accessible is that they

contain the state q2 between q1 and q3.

Putting all of this together hints at a general characterization of accessible states in

certain submachines of En.

Lemma 17. Let A be a state set of the submachine M = En \ {q1
m
−→ qm} of En such that

1 < m ≤ n. Then A is accessible in M if and only if

1. {q1, qm} 6⊆ A, or

2. A contains a state qi for which 1 < i < m.

Proof. We prove the forward implication by contraposition. Let A be a set of states of M

such that {q1, qm} ⊆ A and i ≥ m for all qi ∈ A \ {q1}. Let w ∈ Σ∗
n. We induct on the

length of w to show that if {q1, qm} ⊆ δM (q1, w), then there exists a state qj ∈ δM (q1, w)

for which 1 < j < m. This will imply that δM (q1, w) 6= A for all w ∈ Σ∗
n, or, equivalently,

A is inaccessible in M . If w = ǫ, then δM (q1, w) = {q1} 6⊇ {q1, qm}, and so the claim holds

true by vacuousness. Assume the inductive hypothesis for some fixed k ≥ 0. Let w = σv

for some σ ∈ Σn and v ∈ Σ∗
n such that |v| = k, and let B = δM (q1, v). Suppose that
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{q1, qm} ⊆ B. By the inductive hypothesis, there exists qj ∈ B for which 1 < j < m. If

σ = 1, q1 6∈ δM (B,σ), satisfying the claim again by vacuousness. Similarly, if 1 < σ ≤ j,

then qm 6∈ δM (B,σ) since j < m. Finally, if σ > j, then M contains the transition qj
σ
−→ qj,

and so qj ∈ δM (B,σ).

The converse requires a slight alteration of the proof of Lemma 14. Let A be a state

set of M such that {q1, qm} 6⊆ A or A contains a state qi for which 1 < i < m. If

A = ∅, then δM (q1, 1
n) = ∅ = A. Otherwise, A = {qa1 , . . . , qat} for some t ∈ N such that

1 ≤ a1 < . . . < at ≤ n. We will show by induction on t that

δ(q1, 1
a1−1a2 . . . at) = {qa1 , . . . , qat}, (3.3)

which implies that A is accessible in all cases. For the base case, we have that δ(q1, 1
a1−1) =

{qa1}. Suppose that (3.3) holds for some fixed k ∈ N, and suppose that t = k + 1. Let

B = A \ {qk+1} = {qa1 , . . . , qak
}.

Consider the two possible cases on A from the hypothesis of the converse. If {q1, qm} 6⊆ A,

then {q1, qm} 6⊆ B as well, since B ⊆ A. In the other case, A contains a state qaj
for some

j ∈ {1, . . . , k + 1} such that 1 < aj < m. If j = k + 1, then qm 6∈ A and so {q1, qm} 6⊆ B.

Otherwise, qj ∈ B. So, in any case, the state set B satisfies the hypothesis of the converse,

and so the inductive hypothesis guarantees that

δ(q1, 1
a1−1a2 . . . ak) = {qa1 , . . . , qak

} = B.
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Now, if ak+1 6= m, then

δ(B, ak+1) =
k

⋃

i=1

δ(qai
, ak+1)

=
k

⋃

i=1

{qai
, qak+1

} (by construction in (3.1), since ai < ak+1)

= {qa1 , . . . , qak+1
}

= A.

Otherwise, ak+1 = m, and so a1 < . . . < ak < ak+1 = m. If q1 ∈ B, then a1 = 1 and so

δ(B, ak+1) = δ(q1,m) ∪
k

⋃

i=2

δ(qai
,m)

= {q1} ∪

k
⋃

i=2

δ(qai
,m) (since q1

m
−→ qm 6∈ ∆M )

= {q1} ∪

k
⋃

i=2

{qai
, qm} (by construction in (3.1), since 1 < ai < m)

= {q1} ∪ {qa2 , . . . , qak
} ∪ {qm}

= A.
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If q1 6∈ B, then

δ(B, ak+1) =
k

⋃

i=1

δ(qai
,m)

=
k

⋃

i=1

{qai
, qm} (by construction in (3.1), since 1 < ai < m)

= {qa1 , . . . , qak
} ∪ {qm}

= A.

We have shown that in all cases,

δ(q1, 1
a1−1a2 . . . ak+1) = δ(B, ak+1) = A.

Hence A is accessible in M .

The Sizes of Such Submachines

Lemma 17 has provided a characterization of exactly which state sets are lost from En

when certain transitions are removed. Using this characterization, we would like to count

exactly how many state sets are rendered inaccessible upon the removal of a transition

q1
m
−→ qm such that 1 < m ≤ n. In the previous discussion, we saw that removing the

transition q1
4
−→ q4 from E4 causes us to lose exactly 20 = 1 set state, meaning that the DFA

(E4 \ {q1
4
−→ q4})

′ has 2n − 20 states. Similarly, removing q1
3
−→ q3 loses 21 = 2 set states,

and removing q1
2
−→ q2 loses 22 = 4 set states. A pattern is emerging.

Lemma 18. Let m ∈ N such that 1 < m ≤ n, and let M = En \ {q1
m
−→ qm}. Then M ′ is

a minimal DFA with 2n − 2n−m states.

Proof. By Lemma 17, a set state A of M is inaccessible if and only if {q1, qm} ⊆ A and
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i ≥ m for all qi ∈ A \ {q1}. Let Sm be the set of all such sets A. Then

Sm = {T ∪ {q1, qm} | T ∈ P({qi | m < i ≤ n})}, (3.4)

and so there are exactly

|Sm| = |P({qi | m < i ≤ n})| = 2n−m

inaccessible states in M ′. Since m > 1, Lemma 15 implies that M ′ is minimal once these

inaccessible states are removed, which leaves 2n − 2n−m accessible states.

Again referring back to the discussion of E4, notice that state sets lost as a result of

one transition removal are all different from those lost via another transition removal. For

example, removing q1
4
−→ q4 loses {q1, q4} from E4, and removing q1

3
−→ q3 loses {q1, q3} and

{q1, q3, q4}. Then removing both transitions at once will surely lose all three of these state

sets, but does this work in general? As the following Lemma shows, it turns out that the

effects of multiple transition removals such as these are always disjoint.

Lemma 19. Let r1, . . . , rt be positive integers for some t ∈ N such that 1 < r1 < . . . < rt ≤

n, and define Sri
as in (3.4) from Lemma 18 for each i ∈ {1, . . . , t}. Then Sr1 , . . . , Srt are

pairwise disjoint.

Proof. Induct on t. The base case is trivial. Assume the inductive hypothesis for some

k ∈ N, and let r1, . . . , rk, rk+1 ∈ N such that 1 < r1 < . . . < rk+1 ≤ n. By the inductive

hypothesis, Sr2 , . . . , Srk+1
are pairwise disjoint. Let

S =

k+1
⋃

i=2

Sri
.
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To show that Sr1 and S are disjoint is sufficient to complete the proof. By construction in

(3.4), qr1 ∈ X for all X ∈ Sr1 . Let Y ∈ S. Then, again by construction in (3.4),

min{ri | qri
∈ Y \ {q1}} ≥ r2 > r1,

and so qr1 6∈ Y . Thus X 6= Y for all X ∈ Sr1 and Y ∈ S, and so Sr1 ∩ S = ∅.

We must prove one more subtle fact concerning the removal of such transitions from

En. For an arbitrary NFA M with distinct transitions τ1 and τ2, let S(τ1) and S(τ2) be

the sets of state sets made inaccessible in M upon the removal of the transitions τ1 and

τ2, respectively. Furthermore, let S(τ1, τ2) be the set of state sets made inaccessible in M

upon the removal of both transitions τ1 and τ2. Even if S(τ1) and S(τ2) are disjoint, it is

not necessarily true that

S(τ1, τ2) = S(τ1) ∪ S(τ2). (3.5)

For an example, consider the NFA

M = ({qa, qb}, {1, 2},∆, qa, {qb})

with

∆ = {qa
1
−→ qb, qa

2
−→ qb}.

Even though the sets S(qa
1
−→ qb) = ∅ and S(qa

2
−→ qb) = ∅ are disjoint, removing both

transitions from M renders the state set {qb} inaccessible, which did not happen upon either

of the individual removals. Thus,

S(qa
1
−→ qb, qa

2
−→ qb) = {qb} 6= ∅ = S(qa

1
−→ qb) ∪ S(qa

2
−→ qb).
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Fortunately, as the following lemma shows, the notion behind (3.5) does hold true in the

case of En.

Lemma 20. Let r1, . . . , rt be positive integers for some t ∈ N such that 1 < r1 < . . . <

rt ≤ n, and define Sri
as in (3.4) from Lemma 18 for each i ∈ {1, . . . , t}. Define Ct

to be the set of all state sets made inaccessible in En upon the removal of the transitions

q1
r1−→ qr1, . . . , q1

rt−→ qrt. Then Ct =
⋃t

i=1 Sri
.

Proof. Induct on t. The base case is trivial, since C1 is the set of all state sets made

inaccessible upon the removal of the transition q1
r1−→ qr1, which is Sr1 by definition. Assume

the inductive hypothesis for some fixed k ∈ N, and let r1, . . . , rk, rk+1 ∈ N such that

1 < r1 < . . . < rk+1 ≤ n. Seeking a contradiction, suppose that

k+1
⋃

i=1

Sri
6⊆ Ck+1.

Then there exists some state set A ∈
⋃k+1

i=1 Sri
such that A 6∈ Ck+1. Then A is made

inaccessible in En by the removal of some transition q1

rj
−→ qrj

for some j ∈ {1, . . . , k + 1},

but A is made accessible again in En once the k remaining transitions are removed. This is a

contradiction, since removing transitions from a finite automaton cannot cause inaccessible

states to become accessible. Thus we have that

k+1
⋃

i=1

Sri
⊆ Ck+1.

We show the reverse containment by contraposition. Let A be a state set of En such that

A 6∈
k+1
⋃

i=1

Sri
.
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Then A 6∈ Ck by the inductive hypothesis, and A is accessible in En \{q1
r1−→ qr1}, . . . , En \

{q1

rk−→ qrk
}, and En\{q1

rk+1
−−−→ qrk+1

}. Furthermore, Lemma 17 implies that {q1, qrk+1
} 6⊆ A

or A contains a state qrj
with 1 < rj < rk+1. Let

M = En \ {q1
r1−→ qr1, . . . , q1

rk+1
−−−→ qrk+1

}.

If A = ∅, then δM (q1, 1
n) = δM (qn, 1) = ∅, and so A is accessible in M . Otherwise,

A = {qa1 , . . . , qam} for some m ∈ N such that 1 ≤ a1 < . . . < am ≤ n.

Here we must employ a second level of induction. Specifically, we will induct on m to

show that

δM (q1, 1
a1−1a2 . . . am) = {qa1 , . . . , qam}. (3.6)

For the base case, we have that δM (q1, 1
a1−1) = {qa1}. Suppose that (3.6) holds for some

fixed s ∈ N, and suppose that m = s + 1. Let

B = A \ {qas+1}.

As in the proof of Lemma 17, since A is accessible in En \{q1
r1−→ qr1}, . . . , En \{q1

rk−→ qrk
},

and En \ {q1

rk+1
−−−→ qrk+1

} and B ⊆ A, we have that B is accessible in each of the above

k + 1 submachines as well. Thus

B 6∈
k+1
⋃

i=1

Sri
.

So, the inductive hypothesis guarantees that

δ(q1, 1
a1−1a2 . . . as) = {qa1 , . . . , qas} = B.



39

Now, if as+1 6∈ {r1, . . . , rk+1}, then

δM (B, as+1) =

s
⋃

i=1

δM (qai
, as+1)

=

s
⋃

i=1

{qai
, qas+1} (by construction in (3.1), since ai < as+1)

= {qa1 , . . . , qas+1}

= A.

Otherwise, as+1 = rj for some j ∈ {1, . . . , k + 1}, and so a1 < . . . < as < as+1 = rj . If

q1 ∈ B, then a1 = 1 and so

δM (B, as+1) = δM (q1, rj) ∪
s

⋃

i=2

δM (qai
, rj)

= {q1} ∪

s
⋃

i=2

δM (qai
, rj) (since q1

rj
−→ qrj

6∈ ∆M )

= {q1} ∪

s
⋃

i=2

{qai
, qrj

} (by construction in (3.1), since 1 < ai < rj)

= {q1} ∪ {qa2 , . . . , qas} ∪ {qrj
}

= A.
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Finally, if q1 6∈ B, then

δM (B, as+1) =

s
⋃

i=1

δM (qai
, rj)

=

s
⋃

i=1

{qai
, qrj

} (by construction in (3.1), since 1 < ai < rj)

= {qa1 , . . . , qas} ∪ {qrj
}

= A.

We have shown that in all cases,

δM (q1, 1
a1−1a2 . . . as+1) = δM (B, as+1) = A.

Hence A is accessible in M , which completes the second induction. Furthermore, this implies

that A 6∈ Ck+1, and so

Ck+1 ⊆
k+1
⋃

i=1

Sri
,

which completes the first induction.

Since each transition removal will cause us to lose a unique collection of state sets from

En, we may remove more than one at a time to move farther along the state hierarchy.

Lemma 21. Let r1, . . . , rt be positive integers for some t ∈ N such that 1 < r1 < . . . < rt ≤

n. If

M = En \ {q1
r1−→ qr1, . . . , q1

rt−→ qrt},

then M ′ is a minimal DFA with

2n − 2n−r1 − . . . − 2n−rt
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states.

Proof. Define Sri
as in (3.4) for each i ∈ {1, . . . , t}. Then, by Lemma 20, the number of

inaccessible states in M ′ is

∣

∣

∣

∣

∣

t
⋃

i=1

Sri

∣

∣

∣

∣

∣

=
t

∑

i=1

|Sri
| (by Lemma 19)

=

t
∑

i=1

2n−ri . (by Lemma 18)

Since rt > . . . > r1 > 1, Lemma 15 implies that M ′ is minimal once these inaccessible states

are removed, which leaves

2n −
t

∑

i=1

2n−ri = 2n − 2n−r1 − . . . − 2n−rt

accessible states.

Completing the Proof

With these key lemmas the proof of Theorem 13 results as an immediate corollary. We

restate it here.

Theorem 13. Let k ∈ N such that 0 ≤ k < 2n−1. Then there exists an n-state submachine

of En for which the minimal equivalent DFA has 2n − k states.

Proof. Write k in its binary form

k = an−2 · 2
n−2 + . . . + a1 · 2 + a0
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where ai ∈ {0, 1} for each i ∈ {0, 1, . . . , n − 2}. Define the set of transitions

A = {q1
n−i
−−→ qn−i | ai = 1},

and let M = En \ A, which is minimal since n − i > 1 for each i ∈ {0, 1, . . . , n − 2}. By

Lemma 21, M ′ is a minimal DFA, and its number of states is

2n −
n−2
∑

i=0
ai=1

2i = 2n −
n−2
∑

i=0

ai · 2
i = 2n − k.

A fully worked out example of the algorithm suggested by the proof of Theorem 13 is

given in Appendix A using the machine E4.



Chapter 4

Conclusion & Future Work

This thesis has presented an intuitive partial solution to the question of whether there

exists a minimal n-state NFA with an equivalent minimal d-state DFA for any n ∈ N

with n ≤ d ≤ 2n. As discussed in Chapter 2, the examination of state hierarchy first

began with a speculation by Rabin. Following the original creation of the subset algorithm

from Theorem 4, Rabin noted the implicit bound of d ≤ 2n and asked whether it was

optimal or if d < 2n [11, 12]. Moore soonafter presented an example in which d = 2n

with a binary alphabet. Nearly thirty years later came a resurgence of the question, when

Iwama generalized Rabin’s question to the other values of d in the interval [n, 2n] [4].

Here it became clear that finding NFA’s to answer the question becomes easier when using

alphabets with more than two symbols. Also, the change of variables k = 2n − d became

a standard convention in approaching the question. Figure 4.1 contains a summary of the

accomplishments made on this problem in chronological order.
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Author |Σ| Restrictions on k ∈ [0, 2n − n]

Moore [10] 2 k = 0

Iwama [4] 2 k ∈ {2n − 2r, 2n − 2r − 1} for some r ≤ n/2 − 2

Iwama & Matsuura [5] 2 many concerning relative primality; see Section 2.2.1

Jirásková [7] 2n−1 + 1 none

Jirásková [7] 2n none, but argument is nonconstructive

Geffert [1] n + 2 none

Jirásek & Jirásková [6] 4 none

Present work n k < 2n−1, but class of machines is intuitive
and may eventually yield no restrictions

Figure 4.1: A chronology of accomplishments regarding NFA state hierarchy.

Although the results of this thesis fit in the table with an alphabet size |Σ| = n and

restriction k < 2n−1, the value of this work is not in the partial state hierarchy it achieves.

What distinguishes the results of this thesis is that, each point in this partial state hierarchy

is reached not through vastly different NFA constructions depending on various cases of k,

but rather through intuitive and systematic modifications to the NFA En. By considering

the value k = 2n − d in its binary form, we remove from En a transition corresponding

to each 1-bit in k. What results is a minimal n-state submachine M of En for which the

minimal equivalent DFA M ′ has d = 2n − k states.

Since this method only works for k ∈ [0, 2n−1) (meaning it only answers the question

when 2n−1 < d ≤ 2n), in this chapter we present future work suggesting that there do

exist similar methods to reach the remaining elements of the state hierarchy; that is, there

do exists submachines of En for which the minimal equivalent DFA has d states with

n ≤ d ≤ 2n−1.
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4.1 Other Minimal Submachines of En

This thesis has considered submachines of En of the form En \ A, where A contains any

number of transitions of the form q1
m
−→ qm such that 1 < m ≤ n. Intuitively, these

submachines are formed by plucking off transitions from En that start from the state q1

and lead to any other state. There are, of course, many other transitions that we may

consider for removal as well when forming a submachine. To keep all submachines minimal

as guaranteed by Lemma 15, we will not remove any transitions on the symbol 1. By

counting all other transitions from the transition function for En constructed in (3.1), we

see that there are

2[(n − 1) + (n − 2) + . . . + 1] = n(n − 1)

= n2 − n

transitions in En that are available for removal. Let An be the set containing these transi-

tions. Since a minimal submachine of En can be formed by removing any number of these

n2 − n transitions from En, there are then

|P(An)| = 2n2−n

minimal submachines to consider. A small subset (call it W ) of these submachines was

considered in Chapter 3; in particular, it was shown that for any d ∈ (2n−1, 2n], there

exists M ∈ W such that M ′ is a minimal DFA with d states. By considering these other

submachines, we hope to reach each remaining d ∈ [n, 2n−1].
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4.1.1 Scanning the State Hierarchy

To this end, we present an algorithm to take each submachine N from the 2n2−n, compute

the DFA N ′, minimize it, and count its number of states. As we try all possible submachines,

we keep a running tally of how many times a certain number of states (an element of the state

hierarchy) has been hit. The Java package dk.brics.automaton is extremely helpful here; it

provides implementations of NFA’s, DFA’s, the subset algorithm, and various minimization

algorithms.

Program Design

The code for this algorithm, given in Appendix B, is fairly straightforward. The main class

StateRangeScanner accepts a single integer argument, which is the value of n for which we

test the n2 − n submachines of En. The program then builds the exploding automaton En

as an object of the class ExplodingAutomaton. Objects of the class Submachine represent

submachines of En, and are given a set of “transition removals” upon construction. The

submachine is built as a copy of En, using all of its transitions except for the ones given in

this set of removals. The submachine is then converted into a DFA via the subset algorithm

and minimized using Hopcroft’s minimization algorithm [3]. The number of states of the

resultant DFA is then some element of the state hierarchy [n, 2n], and its occurrence is

tallied. The algorithm then repeats with another submachine of En, which is created from

another set of transitions to remove.

One interesting design issue for this code is in the class PowersetIterator, which is

used to iterate over all subsets of the set of removable transitions (the transitions not on

the symbol 1) from En. Since the quantity 2n2−n grows very quickly, it is infeasible to store

all subsets at once and return them one-by-one. Instead, we use the binary representation
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of the iterator’s current index to decide which transitions to include in the next subset. For

example, in the case that n = 3, the PowersetIterator has 232−3 = 64 subsets to consider

from the set of removal transitions

A3 = {q1
2
−→ q1, q1

3
−→ q1, q1

2
−→ q2, q1

3
−→ q3, q2

3
−→ q2, q2

3
−→ q3}.

When the PowersetIterator is created, its index value is initialized to 0. When a subset

of transitions is requested from the PowersetIterator, it includes in this subset the ith

transition from its set An of removal transitions if and only if the ith bit (starting from the

least significant end) in the binary representation of index is 1. Once this subset is built,

it increments the value of index by 1 before building the next subset. So, in the above

example, since the value 0 has the binary representation 000000, the first subset returned is

the empty set ∅ ⊆ A3. Then index is incremented to 1, which has the binary representation

000001, and so the next subset returned is {q1
2
−→ q1} ⊆ A3. This process continues until

all 64 subsets have been iterated.

Program Results

The results of this program are quite positive. For each n ∈ {2, 3, 4, 5, 6}, it has been verified

that there exists an n-state minimal submachine of En for which the minimal equivalent

DFA has d states, for any d ∈ (n, 2n]. The program’s inability to produce a case when

d = n has shed light on a limitation of En. In particular, no minimal n-state submachine

of En has an n-state minimal equivalent DFA. This is because δ(qn, 1) = ∅ in En, which

introduces the empty state set ∅ in the equivalent DFA E′
n. Removing transitions from En

to form submachines cannot change this fact, and so any n-state submachine will have a

minimal equivalent DFA with at least n + 1 states.
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Although the program’s results suggest the existence of general methods (for any n) to

construct submachines of En to reach any d ∈ (n, 2n], currently none are known to produce

any d ∈ (n, 2n−1]. Nonetheless, it is enough to suggest a conjecture with which we conclude

this thesis.

Conjecture 22. Let k ∈ N such that 2n−1 ≤ k < 2n − n. Then there exists an n-state

submachine of En for which the minimal equivalent DFA has 2n − k states.
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Appendix A

An Analysis of E4

The purpose of this appendix is to show that the NFA E4 is exploding, as well as provide a

demonstration of the algorithm suggested in Theorem 13 that, given any k ∈ {0, 1, . . . , 7},

constructs a 4-state minimal submachine of E4 for which the minimal equivalent DFA has

24 − k = 16 − k states. Figure A.1 contains the NFA E4.

Figure A.1: The NFA E4.
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Notice that E4 contains the chain of transitions q1
1
−→ . . .

1
−→ q4, and it contains no

transition from q4 on a 1. Then Lemma 15 guarantees that E4 is minimal and that the

states of its equivalent DFA E′
4 are pairwise distinguishable. Thus, E′

4, with all inaccessible

states removed, is a minimal DFA by Lemma 7. So, to verify that E4 is exploding, we

must simply show that E′
4 has 24 = 16 accessible states. This can be done by running the

subset algorithm, as described in Section 1.1.5, on E4 to obtain E′
4. Figure A.2 contains

the transition diagram of E′
4 with 16 states, all of which are accessible from the start state

set {q1}.
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Figure A.2: The DFA E′
4.
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Suppose we are asked to create a 4-state minimal submachine of E4 for which the

minimal equivalent DFA has 13 states. Since 13 = 16− 3 = 24 − 3, we set k = 3, which has

the binary representation

k = 3 = 0 · 22 + 1 · 21 + 1 · 20.

The binary representation of k tells us exactly which submachine of E4 to use to answer

the question. Specifically, each binary digit corresponds to a transition from the state q1 in

E4, and the value of the digit serves as an indicator of whether its corresponding transition

should be removed. In general, the least significant digit of k corresponds to the transition

q1
n
−→ qn, the next digit corresponds to the transition q1

n−1
−−→ qn−1, and so forth.

In this case, k has the binary representation 011. Its least significant digit, 1, indicates

that we should remove the transition q1
4
−→ q4 from E4. The next digit, also 1, indicates that

we should remove the transition q1
3
−→ q3 from E4. The most significant digit, 0, indicates

that we should leave the transition q1
2
−→ q2 alone. Hence the appropriate submachine to

answer the question is

M = E4 \ {q1
4
−→ q4, q1

3
−→ q3}.

Figure A.3 contains the transition diagram of the submachine M .
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Figure A.3: The submachine M of E4.

Since we have preserved the chain of transitions q1
1
−→ . . .

1
−→ q4 in M , Lemma 15 implies

that M is minimal and that the states of its equivalent DFA M ′ are pairwise distinguishable.

By Lemma 21, M ′, with its inaccessible states removed, has

24 − 24−4 − 24−3 = 16 − 1 − 2 = 13

states. Thus M answers the question. To obtain a closer view of how this process works,

we use the subset algorithm to obtain M ′. Figure A.4 contains the transition diagram of

M ′ with 16 states, not all of which are accessible.
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Figure A.4: The DFA M ′ with inaccessible states included.
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Notice that the transition diagram of M ′ is nearly identical to that of E′
4, except for

the subtle changes introduced by the removals of the NFA transitions q1
4
−→ q4 and q1

3
−→ q3.

These removals have eliminated the paths from {q1} to {q1, q4} and from {q1} to {q1, q3}

in the equivalent DFA. The elimination of the former only renders the state set {q1, q4}

inaccessible in M ′, as the other state sets to which it points can be accessed in some other

way (for example, the state set {q2} can be reached by way of the transition {q1}
1
−→ {q2}).

The elimination of the latter is a bit stronger, in that it renders not only {q1, q3} inaccessible

but also {q1, q3, q4} (notice that the only transition pointing to {q1, q3, q4} is from {q1, q3}).

Hence removing the transitions q1
4
−→ q4 and q1

3
−→ q3 to form M has made the state sets

{q1, q4}, {q1, q3}, and {q1, q3, q4} inaccessible in M ′. If we prune these inaccessible state sets

from the transition diagram, we are left with 16 − 3 = 13 accessible state sets. Figure A.5

contains the transition diagram of the final result.
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Figure A.5: The minimal DFA M ′.



Appendix B

Code Used

B.1 StateRangeScanner

package fa.testing;

import java.util.ArrayList;

import java.util.List;

import fa.ExplodingAutomaton;

import fa.Submachine;

import fa.TransitionEntry;

import fa.util.PowersetIterator;

public class StateRangeScanner

{

private static final String USAGE =

"Usage: java StateRangeScanner <n>";

public static void main(String[] args) {

int n = 0;

if (args.length == 1) {

try {

n = Integer.parseInt(args[0]);

} catch (NumberFormatException e) {

System.err.println(USAGE);

System.exit(-1);
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}

}

else {

System.err.println(USAGE);

System.exit(-1);

}

scanStateRange(n);

}

private static void scanStateRange(int numStates) {

ExplodingAutomaton ex = new ExplodingAutomaton(numStates);

ex.build();

List<TransitionEntry> transitions =

new ArrayList<TransitionEntry>();

for (TransitionEntry t : ex.getTransitions()) {

if (t.sigma() != 1)

transitions.add(t);

}

long[] hierarchy = new long[(1 << numStates) + 1];

for (int i = 0; i < hierarchy.length; i++)

hierarchy[i] = 0;

PowersetIterator<TransitionEntry> powerset =

new PowersetIterator<TransitionEntry>(transitions);

for (List<TransitionEntry> removals : powerset) {

Submachine m = new Submachine(numStates, removals);

m.build();

++hierarchy[m.numDeterministicStates() + 1];

}

System.out.printf("[# of DFA states |");

System.out.printf(" # of occurrences]");

System.out.println();

for (int i = 1; i < hierarchy.length; i++)

System.out.printf("[%15d | %15d ]\n", i, hierarchy[i]);

System.out.println();

}

}
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B.2 ExplodingAutomaton

package fa;

import java.util.ArrayList;

import java.util.List;

import dk.brics.automaton.Automaton;

import dk.brics.automaton.State;

import dk.brics.automaton.Transition;

public class ExplodingAutomaton extends Automaton

{

private State[] q;

private List<TransitionEntry> transitions;

private int numStates;

public ExplodingAutomaton(int n) {

numStates = n;

}

public void build() {

transitions = new ArrayList<TransitionEntry>();

createStates();

createTransitions();

}

public int numDeterministicStates() {

if (!super.isDeterministic())

super.minimize();

return super.getNumberOfStates();

}

public List<TransitionEntry> getTransitions() {

return transitions;

}

protected void createStates() {

q = new State[numStates + 1];

for (int i = 1; i <= numStates; i++)

q[i] = new State();

super.setDeterministic(false);

super.setInitialState(q[1]);

q[numStates].setAccept(true);
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}

protected void createTransitions() {

for (int i = 1; i <= numStates; i++) {

if (i < numStates)

addTransition(i, 1, i+1);

for (int j = i+1; j <= numStates; j++) {

addTransition(i, j, i);

addTransition(i, j, j);

}

}

}

protected void addTransition(int q1, int s, int q2) {

transitions.add(new TransitionEntry(q1, s, q2));

q[q1].addTransition(

new Transition(Character.forDigit(s, 10), q[q2]));

}

}

B.3 TransitionEntry

package fa;

public class TransitionEntry

{

private final int sourceState, sigma, destState;

public TransitionEntry(int q1, int s, int q2) {

sourceState = q1;

sigma = s;

destState = q2;

}

public boolean equals(Object o) {

if (o instanceof TransitionEntry) {

TransitionEntry t = (TransitionEntry) o;

return equals(t.sourceState, t.sigma, t.destState);

}

return false;

}
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public boolean equals(int q1, int s, int q2) {

return (sourceState==q1) && (sigma==s) && (destState==q2);

}

public String toString() {

return String.format("(q%d,%d,q%d)",

sourceState, sigma, destState);

}

public int source() {

return sourceState;

}

public int sigma() {

return sigma;

}

public int dest() {

return destState;

}

}

B.4 Submachine

package fa;

import java.util.List;

public class Submachine extends ExplodingAutomaton

{

private List<TransitionEntry> removals;

public Submachine(int n, List<TransitionEntry> r) {

super(n);

removals = r;

}

protected void addTransition(int q1, int s, int q2) {

TransitionEntry delta = new TransitionEntry(q1, s, q2);

if (!removals.contains(delta))

super.addTransition(q1, s, q2);

}
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}

B.5 PowersetIterator

package fa.util;

import java.math.BigInteger;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

public class PowersetIterator<T> implements Iterator<List<T>>, Iterable<List<T>>

{

private List<T> set;

private BigInteger index, numElements;

public PowersetIterator(List<T> s) {

set = s;

index = BigInteger.ZERO;

numElements = BigInteger.ONE.shiftLeft(set.size());

}

public Iterator<List<T>> iterator() {

return this;

}

public boolean hasNext() {

return index.compareTo(numElements) < 0;

}

public List<T> next() {

List<T> ret = new ArrayList<T>(index.bitLength());

for (int i = 0; i < set.size(); i++) {

if (index.testBit(i))

ret.add(set.get(i));

}

index = index.add(BigInteger.ONE);

return ret;

}

public void remove() { }

}
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