
Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

11-16-2004

Perceptual evaluation of point-based object
representation
Paul Schwarz
Trinity University

Follow this and additional works at: http://digitalcommons.trinity.edu/compsci_honors

Part of the Computer Sciences Commons

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,
please contact jcostanz@trinity.edu.

Recommended Citation
Schwarz, Paul, "Perceptual evaluation of point-based object representation" (2004). Computer Science Honors Theses. 1.
http://digitalcommons.trinity.edu/compsci_honors/1

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors/1?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

A Perceptual Evaluation of Point-Based Object Representation

Paul Schwarz

A departmental honors thesis submitted to the Department of Computer Science at

Trinity University in partial fulfillment of the requirements for Graduation.

April 21, 2004

Thesis Advisor

Committee Member

Department Chair

Associate Vice President for

Academic Affairs

A Perceptual Evaluation of Point-Based Object

Representation

Paul Schwarz

Abstract

Researchers have proposed several methods of representing three-dimensional objects in

computer memory along with different methods of displaying these objects on two-

dimensional computer displays. Using a polygon-based representation that linearly

interpolates between a set of sample points is by far the most popular way of representing

objects today, mostly because of its ability to display an object on a computer screen at a

fast and consistent rate. However, as graphics hardware increases in speed, polygon-

based models prove to be increasingly inefficient. Point-based representations have been

proposed that consist of densely sampling some surface and using solely the samples to

portray the object on a computer display. This research proposes a similar approach to

point-based representation while making use of current graphics hardware to compare the

benefits and drawbacks of using point-based representations over polygon-based

representations in interactive environments. An experiment has been conducted with

human subjects to gather perceptual data about each representation method. The results

from this experiment are presented and analyzed.

A Perceptual Evaluation of Point-Based

Object Representation

Paul Schwarz

Acknowledgements

I would like to thank my thesis advisor, Dr. John Howland, for his constant

support and advice throughout this project. I greatly appreciate his guidance.

Dr. Glenn Meyer provided instrumental insight into the experiment design and

usability of the experiment, and I thank him for lending me his expertise.

I would also like to thank Dr. Gerald Pitts for his encouragement and motivation.

Thanks goes to the Trinity University Computer Science department. This work

would not be possible without the dependable facilities they provide.

I would like to sincerely thank all my friends and family who have inspired me

and struggled with me. I certainly could not have finished this work without them.

Table of Contents

Chapter 1: Introduction ... 1

1.1 Object Representation and Its Impacts on Visual Fidelity.................................. 1

1.2 Volume-Based Object Representations .. 2

1.3 Manifold Based Object Representations... 3

1.4 Point-Based Object Representations... 6

1.5 Visual Fidelity Definition and Past Work... 8

1.6 Past Work in Point-Based Representations... 8

Chapter 2: Experiment Design .. 12

2.1 Goals ... 12

2.2 Choosing Constants .. 12

2.3 Test Specifications .. 14

2.4 Evaluating Performance.. 18

Chapter 3: Program Design ... 22

3.1 Generating a Point-Based Object.. 22

3.1.1 Sampling the Object-Space.. 22

3.1.2 Simplifying Polygons... 24

3.1.3 Finding Polygon Vertices .. 25

3.1.4 Finding Polygon Edges .. 25

3.1.5 Finding the Polygon Interior.. 26

3.1.6 Calculating the Per-Sample Normal Vectors... 29

3.1.7 Calculating Per-Sample UV Coordinates .. 31

3.1.8 Creating the Oct-tree.. 32

3.2 Rendering a Point-Based Object... 35

3.2.1 Overview.. 35

3.2.2 Backface Culling.. 36

3.2.3 Calculating Point Size.. 37

3.2.4 Frustum Culling ... 39

3.2.5 Determining Traversal Depth .. 41

3.2.6 Splatting ... 43

Chapter 4: Results... 44

4.1 Speed Results .. 44

4.2 Object Recognition Results... 51

4.3 Low-Speed Navigation Test Results... 55

4.4 High-Speed Navigation Test Results .. 57

Chapter 5: Conclusions .. 59

Chapter 6: Future Work .. 61

List of Tables

Table 4.1: Test performance results (seconds per frame) ... 48

Table 4.2: Object Recognition accuracy results ... 52

Table 4.3: Object Recognition timing results (in thousands of clock cycles) 52

Table 4.4: Low-Speed Navigation Test results... 56

Table 4.5: Improvement between Low-Speed Navigation Tests A and B 56

Table 4.6: High-Speed Navigation Test results .. 57

Table 4.7: Improvement between High-Speed Navigation Tests A and B....................... 58

List of Figures

Figure 2.1: Direction grading for the navigation tests .. 19

Figure 2.2: Path divisions for grading the Low-Speed Navigation Test........................... 20

Figure 3.1: Finding interior subdivision intersections of a polygon................................. 27

Figure 3.2: A surface with all its subdivisions computed... 29

Figure 3.3: Psuedocode for point-based rendering ... 36

Figure 3.4: A surface rendered at different traversal depths... 41

Figure 3.5: Psuedocode for determining traversal depth .. 42

Figure 4.1: Per point quantity rendering speed results ... 45

Figure 4.2: Distribution of points-per-frame for the Far Object Recognition Test 46

Figure 4.3: Distribution of points-per-frame for the Near Object Recognition Test 47

Figure 4.4: Distribution of points-per-frame for the Low-Speed Navigation Test........... 47

Figure 4.5: Distribution of points-per-frame for the High-Speed Navigation Test 48

1

Chapter 1: Introduction

1.1 Object Representation and Its Impacts on Visual Fidelity

Interactive computer graphics deals with an essential tradeoff between the detail of

computer-generated images and the speed at which these images can be generated. The

more detailed a scene becomes, the more information must be processed into an image,

and therefore display speed decreases as scene detail increases. Object detail and

rendering speed are two aspects that contribute to the overall visual fidelity of the scene.

Visual fidelity is a qualitative metric of how closely the synthesized scene mimics its

real-world counterpart. Rendering is the proper name for the procedure that translates

object information into images. The purpose of much computer graphics research is to

find a way to maximize both of these parameters to yield the highest visual fidelity

possible. The manner in which one decides to represent objects in computer memory

impacts the method of rendering that one can use, and thus the speed of the rendering

[11].

A major problem in computer graphics is finding a way to represent a real-world

object in computer memory, to yield the most effective method of converting this

representation into an image. There have been three major different types of approaches

to object representation: volume-based representations, manifold-based representations,

2

and point-based representations [2]. In this paper, I will present the point-based

representations as offering a higher level of visual fidelity than that of the traditionally

used manifold-based representations. I will use results gathered from perceptual

experiments to support my hypothesis.

1.2 Volume-Based Object Representations

Volume-based representations divide the three-dimensional object space into a large set

of cubes, which make up the basic element of this representation. These elements are

referred to as voxels [7]. A voxel contains information that conveys some characteristic

of the object (e.g. density, heat, etc.). Often, voxels simply represent whether or not the

object exists in that location [5] [7]. A voxel is essentially a sampled point of the space

around the object. Because the basic primitives of volume-based representations are

voxels, the sampling rate must be high enough to sufficiently convey the details of the

object. The primary advantage of volume-based representations are that they convey

more than just the surface of the object, like the manifold and point based representations.

Making volume-based representations more appropriate for objects that are characterized

by their volumetric qualities, such as smoke and liquids [5] [13]. The rendering

algorithms associated with voxels however must be very complex to account for the

representation of the volumetric data projected onto a two-dimensional plane [7]. This

makes volume-based representations slow and unsuitable for interactive applications.

The resulting visual fidelity of a scene containing objects with volume-based

3

representations will be low because the scenes will not be able to render fast enough. In

practice, for more efficient rendering, volume-based representations will often be

converted into polygon representations discussed later.

1.3 Manifold Based Object Representations

Manifold-based representations are characterized by the fact that they use interpolation

methods to create an approximation of the surface between a relativly sparse set of

sample points [2]. Different types of interpolation methods account for different types of

manifold-based surfaces. The most popular manifold-based surface is the polygon-based

surface, which linearly interpolates between sample points. That is, a line is drawn

between each adjacent sample point to form polygons. This representation is popular

because of its simplicity as compared to many of the other manifold surfaces. Most other

manifold-based representations use curves to interpolate between sample points [1] [14].

Splines [10] and Non-Uniform Rational B-Splines [18] fall under this category. The use

of curves as a rendering primitive greatly increases the complexity of the rendering

algorithm. Therefore, these complex curve-based representations are usually estimated

by a polygon-based representation prior to rendering. Though manifold-based

representations do not require the storage of a high volume of sample points, they do

require that some sort of connectivity or topological information be stored and processed

for use in rendering [9].

4

Polygon-based representations have been the standard in computer graphics [4].

Computer hardware has been optimized to support the efficient rendering of polygons.

Among the optimizations include a pipeline of computation that speeds up the projection

of the sample points onto a two-dimensional image plane, and the filling in of polygons

between these sample points [16]. Most applications that use three-dimensional

representations of objects use a polygonal representation. As stated before, this

popularity is accounted to their low complexity, and therefore speed of rendering.

The enhanced speed of polygon-based rendering boosts the visual fidelity

produced by using polygon-based representations. The difficulties with polygon-based

representations lie in that they must sample an object more densely where the surface of

the object curves. The rendering speed of a polygon-based object is inversely

proportional to how well its curves are represented. Often curves in objects cannot be

adequately sampled, resulting in the model appearing blocky. Many techniques have

been proposed to resolve the jagged aliasing of polygon representation, such as

interpolation of the shading across the surface to give it the appearance of smoothness

[11]. Polygons remain very useful for representing very geometric and jagged surfaces,

but inefficient at the display of curved more organic objects. To summarize, polygons

sacrifice some object detail for rendering speed, and can therefore be considered as a sort

of compressed object representation that trades off a lot of the details of the real-world

object for enhanced rendering speed.

5

The increasing speeds of computer hardware have allowed for the appearance of

more highly sampled objects in interactive environments. The effect is that more

complex objects may be better represented by polygons, but as more polygons are added

to an object, the smaller the average screen size of a polygon on any given frame.

Polygons are not inherently output-sensitive. Meaning that the amount of computation

required to render a polygon does not take into account how large the polygon will

appear on the screen. Consider when hardware speeds increase further, and rendering

hardware will be able to accommodate so many polygons such that on average they

occupy less than a pixel on the screen. Now, even though the polygons appear as points

they require the extra overhead associated with rasterizing polygons [16]. Several

techniques have proposed a solution to this. Level-Of-Detail algorithms pre-compute

different representations for an object at different sampling densities and determine

which one is appropriate to display during render-time, thus reducing the amount of time

spent on polygons that will only appear very small in the rendered image [19]. Some

adaptations on this idea will compute level-of-detail representations during render-time,

thus providing a more adaptable method of increasing render speed [8]. Generally,

Level-of-Detail algorithms suffer from not being able to smoothly transition from one

representation to another, resulting in “popping” artifacts [19].

6

1.4 Point-Based Object Representations

Point-based representations of real-world objects consist of a very dense set of sample

points along the object’s surface. They are much like volume-based representations,

except that the samples exist only along the surface of the object. No attempt is made to

directly represent the volume of the object. These surface sample points, or surfels, are

then used as the sole display primitives of the object; therefore the sampling density of

the surface must be very high [17]. Point-based representations are to polygon

representations what rasterized shapes are to vector shapes. Point-based representations

attempt to sample an object at a high enough density so that the object has the illusion of

a continuous surface [9]. An advantage of the point-based representation is that points

are very simple to render, allowing for several points to be rendered at the same rate of a

single polygon [16]. Another advantage to point-based representations are that they are

output sensitive—not all of the object primitives must be rendered all the time in order to

convey the shape of the object [15]. This gives objects represented by points the

opportunity to be faster than polygon-based objects.

Currently the study of points as a surface primitive is fairly novel, but is

becoming more commonplace. Researchers typically arrange a dense series of points

representing an object into a hierarchical data structure such as an oct-tree [2] [15], where

all the leaf nodes of the tree are the original sampled points, and the parent nodes contain

points that encompass all the children nodes. During rendering this tree-structure is

traversed, and if the projected point size of a point falls below a threshold, the point’s

7

parent node can be rendered in its place and in the place of all of its siblings, reducing the

amount of the points that must be displayed, and the amount of the tree that must be

traversed [2] [15]. Therefore providing a solution to the output sensitive problem.

Though point-based representations handle the output-sensitive problem they do

not currently interpolate between the points. Therefore, if one views an object from a

very small distance, the object can appear very blocky or pixelated. Because point-based

representations do not interpolate between samples, the points grow in size if one gets

closer to an object than the sampling density accommodated for. This is analogous to the

effect one gets from upsizing a bitmap image. Pixelation artifacts become apparent.

Therefore in order for many objects to enable being seen from up-close, they must be

sampled at very high densities, and consequently, contain a large number of point

primitives to be handled by the rendering algorithms.

Overall, point-based representations allow for an output-sensitive display of a

surface whose complexity is limited by the resolution of the display screen and the

resolution at which the object was sampled. A major drawback of point representations

is that they require a lot more rendering primitives to be handled by the traditional

rendering pipeline. Though the cost of rasterizing a point is much less than a polygon,

many more of them must be computed.

8

1.5 Visual Fidelity Definition and Past Work

Visual fidelity is the quality at which an image or environment, in this case, is perceived

[22]. This kind of metric has been used in the past with applications such as image

compression [3], movie compression [6], and the simplification of different objects

represented in the computer [19]. Watson et al. review different metrics to measure the

visual fidelity of models that have been simplified [22]. They use three quantitative

metrics: rating, preference and mean naming time. Rating is a test where the subject

ranks certain objects. Preference is where the subject selects a particular object from a

set of objects. Mean naming time is the measure of how quickly a user can identify and

name a presented object. The amount of time it takes to identify a presented object

indexes a number of factors that contribute to object recognition, thus it is a particularly

good signifier of visual fidelity [23]. In this paper, I will use the concept of visual

fidelity to compare scenes that use a polygon-based representation of objects, to scenes

that use point-based representations. To measure visual fidelity I set up tests that enable

the user to either identify objects, or rank objects, therefore I can rate the fidelity of the

object-representation methods based on the results I obtain.

1.6 Past Work in Point-Based Representations

Levoy and Whitted first proposed a method that used points primitives to render any

object [9]. They are interested in using points as a meta-primitive, believing that the

reduced rendering overhead of the point primitive is advantageous, and that objects

9

represented using all different kinds of methods should first be converted to a point

representation and then rendered. Levoy and Whitted demonstrate this using a polygon-

based surface. They convert the surface to points by placing a point at each vertex in the

polygon mesh, and interpolating in-between with more points. Then they proposed a

complex rendering method that calculates the contribution of each point to the image as a

Gaussian curve centered at the point. Though this produces images that have correctly

anti-aliased edges, it results in “fuzzy points” that must be properly blended and

occluded.

Levoy and Whitted’s “fuzzy point” is their solution to a problem in point-based

rendering called splatting [15]. Points are mathematically zero-sized locations in three-

dimensional space. Splatting deals with how to represent these points as part of a surface

in a final image. Levoy and Whitted demonstrate the popular approach of using Gaussian

weighted filter functions to determine how much each point contributes to the area

around it. This method is slower than other methods, but it yields a quality image [13].

Other methods include those used by the OpenGL programming interface [13] [16].

OpenGL allows for two different kinds of splat types: a square, or a fuzzy square much

like the gaussian weighted points used by Levoy and Whitted [16]. Circles and ellipsis

have also been used as splat types [13]. Ellipsis are used by drawing an ellipses around

the specified point, and using the point’s normal vector to determine the ellipsis’s

orientation and size [13].

10

Szeliski and Tonneson approach point-based representations from the background

of volume-based representations [17]. They started from the consideration of a particle

system, where the particles move according to a set of predefined rules. Szeliski and

Tonneson use these particles to arrange themselves into objects, to where the particles

have attraction and local repulsion forces acting on them to evenly space them across a

surface. They then include an orientation with the particles so that the particles include a

vector that must be facing away from the surface. They call these oriented particles

“surfels,” because they can exist only on the surface of an object, and not the entire

volume as the volume-based representations use [17].

Rusinkiewicz and Levoy produced a program that effectively renders highly

sampled objects at interactive rates using a point-based representation, called QSplat

[15]. They start from objects that had been scanned using 3D scanning technology. This

technology produced a large collection of sample points from the surface of the scanned

object. Rusinkiewicz and Levoy then arrange the sample points into a bounding sphere

hierarchy. In this bounding sphere hierarchy the original sample points make up the leaf

level of the hierarchy and parent nodes are created as spheres that contain their child

nodes, thus solving the output-sensitive problem discussed earlier. They also use the

hierarchical data structure to perform culling at coarser levels of detail. In this set-up if a

parent node is found that can be completely removed from view, than it’s children can

also be removed and do not need to be traversed. This results in rendering speeds of

around 0.1 seconds for 200 to 300 thousand points.

11

Botsch et al. uses an oct-tree structure to arrange points [2]. Botsch employs a

variety of simplification methods to reduce the intensity of the calculations that must be

performed during rendering at each node to boost the speed of point-based rendering.

Botsch’s pure software renderer performed at 14 million points per second, roughly seven

times faster than QSplat [2] [15].

Other notable research in point-based rendering includes research by Wand et al.

who uses points to sample a scene represented in polygons to display at a very fast rate

[20]. Wand et al. samples the given polygon-based scene based on the location of the

viewpoint, so that sample points would only be created if that area of the scene affected

the output image. These points are then splatted onto the final image to render scenes

with a very high polygon-count in a efficient output-sensitive manner [20].

12

Chapter 2: Experiment Design

2.1 Goals

I wish to examine the differences between the visual fidelity of scenes rendered using

polygon-based representations and scenes rendered using point-based representations.

Furthermore, I wish to evaluate the visual fidelity that these object representation

schemes produce in interactive scenes. In order to evaluate visual fidelity one must

gauge how well the user is able to correctly perceive and interact with each scene. Thus

an experiment program must be set up that allows the users to navigate in a scene that

uses polygon-based representations and in a scene the uses point-based representations.

This program must record data (e.g. as the user’s position at each frame) that will lead to

the generation of metrics that contribute to visual fidelity. The purpose of this is to weigh

the drawbacks and the benefits of each representation method, and therefore I have had to

make certain decisions as to how to implement each method.

2.2 Choosing Constants

A significant question is how much, if any, should the polygon models be simplified to

portray their ability to roughly estimate a model and allow for efficient rendering? I

13

approach this issue experimentally, reducing the models as needed to keep the frame rates

of the polygon-based scenes competitive with those of the point-based scenes. As will be

discussed later, the polygon-based scenes need no simplification, and in many cases

prove to be much faster than their point-based counterparts.

Another difficult issue is the fact that so much of current graphics hardware is

optimized to handle polygon-based representations [4] [16]. Given this, how much, if

any hardware rendering should be performed in the point-based scenes? In the interest of

keeping the point-based rendering comparable to the polygon-based rendering, I decide to

use as much hardware support during point-based rendering. I use the graphics hardware

to perform vertex transformation and rasterization. I believed that for transformations

and rasterization, hardware support would provide faster times than a pure software

implementation.

A benefit to using the point-based representation comes from the fact that per-

vertex shading is often an adequate way to represent textures across a surface. In

polygon-based representations the vertices are often too sparse or non-uniform across the

surface so that defining the color at the vertices does not typically give enough texture

information, thus texture mapping is employed to give the illusion of further detail.

Vertex shading works for point-based representations because the vertices are the

smallest primitive viewable. Therefore, for the sake of testing the benefits and

drawbacks to each representation I use only vertex shading for the point-based

representation, and texture mapping for the polygon-based representations.

14

2.3 Test Specifications

The testing program will administer a series of tests in random order to human subjects.

For each test, the program will first run a polygon-based representation of a scene, and

then, based on a random number, the program will either run a point-based representation

of the same scene, or run the polygon-based scene over again. This puts each subject into

either a control category, if they interact with two polygon-based scenes; or a variable

category, if the second scene used point-based representations. If a user is faced with the

same scene twice in a row, they will likely do better the second time. This dual-scene

setup is used to allow for the effect of learning on the users performance. Because I have

placed users in control and variable groups I will be able to compare the amount of

improvement in the variable and the control group. Thus I will use a paired-difference

test to statistically analyze the results. If the control group improves more on the second

test than does the variable group than the polygon-based representation was able to

present a better visual fidelity. If the variable group improved more, than this supports

the idea that point-based representations lead to better visual fidelity.

In order to set up the tests for this experiment one must define the series of

metrics that we need to obtain. Watson et al. did a similar experiment using static images

of polygon-based models at different levels of simplification [22]. They gathered three

different metrics: mean naming time, rating, and preference [22]. Mean naming time is

how long it takes for a subject to name a presented object. Rating is the result obtained

by an experiment where the experimenter presents the subject with a series of objects,

15

and the subject must rank the objects based on the perceived quality. Preference is

similar to rating. The subject must chose one object out of a series that represents the

original object the most.

The time it takes for a subject to name an object is a useful metric in that it

references many factors in object recognition [21]. Naming times are effected by factors

from the low to high cognitive levels. One must recognize an object and then find the

correct word to describe it. Watson and others have noted that naming times vary

between man-made artifacts and natural objects [21]. The reason for this has been

hypothesized as natural objects tend to have many related objects that are structurally

similar, therefore needing more disambiguation. For example if one were to have to

name an object that was a dog, they would subconsciously have to find a difference

between that and the rest of the four legged mammals. Man-made artifacts, on the other

hand, tend to have more varied shapes. Due to this effect, all the objects in the object

recognition tests for this paper are natural objects, so that disambiguation will be

relatively constant among all tests. Also noted by Watson is that preferences and ratings

involve mostly very low levels of cognition. These tests only reference the recognition

and visual perception parts of cognition and do not deal with higher level linguistic

functions.

To evaluate the performance of point-based representations in relation to polygon-

based representations I am mainly interested in the preference and naming time metrics.

The users will express their preferred representation scheme by how well they can

16

perform the specified tasks using either point or polygon representations. I also include

naming time metrics because they are an effective and easy to measure signifier of visual

fidelity. Naming time is also especially suited for scenes that contain only the object to

be identified, which is much like most of the interactive scenes to be produced by point-

based research so far.

Specifically, the tests the experiment program will administer are: a far object

recognition test, a near object recognition test, a high-speed navigation test, and a low-

speed navigation test. The two object recognition tests are proofs of concept. They do

not represent interactive scenes, but only the display of single objects at a fixed distance.

These tests rate the effectiveness of both algorithms in producing a single object at an

interactive rate. They mimic the programs produced by previous research in point-based

representations, such as Rusinkiewicz’s QSplat program [15], in order to compare the

visual fidelity of the results of past research with their polygon-based counterpart.

I have chosen to present objects in these object recognition tests at distance that

will bring out the advantages and shortcomings of each method. The nature of the point-

based representation concludes that objects when viewed from very close up will appear

pixilated or blocky. The near object recognition test is meant to test how much this

affects the visual fidelity of the object at this non-optimal range. The far test puts the

polygon-based scene at a disadvantage, because polygons are inherently not output-

sensitive. A high density model when viewed from far away may result in a very slow

17

frame rate in that all polygons must still be processed even though they may appear to be

less than a pixel in size on the screen.

During the Object Recognition Test the user must identify the object presented.

The user is allowed to rotate the object around, but he is not allowed to change his

distance from the object. Once the subject has identified the object he will hit the enter

key. Then the program will present the user with a dialog box where he will enter the

name of the object he just identified. The program will record the user’s position at each

display cycle of the program, therefore allowing the researcher to measure how long it

took for the subject to name the object.

The high-speed navigation test displays a canyon that the user must navigate a

ship through. This tests the visual fidelity of the canyon’s representations for both

methods where fluid movement is important. During this test the program will record the

position of the user as well as the time delay between the last frame rendered and the

number of points rendered, if applicable. The position and time variable will be used to

see how well the user was able to navigate the canyon in either representation. I will use

this measure of performance to signify the user’s preference. This test requires for the

point-based representation to render a large flat surface that the viewer most likely see

from very up-close, which is not at all an optimal configuration for the point-based

scheme. However, the canyon walls will require a relatively high polygon count to

render effectively using the polygon-based representation, because the canyon walls are

curvy and cannot be accurately represented using a few polygons.

18

The low-speed navigation test is much like the high-speed navigation test. The

low-speed navigation test presents the user with a rocky terrain to navigate. Within this

rocky landscape exists a smooth path the user must stay on. If the user strays from the

path a red warning light will flash, and the user will be bumped back onto the path. This

test will record the same data as the high-speed navigation test, and performance will be

used in the same way to signify preference. This test measures how well the user

navigates a scene at a slower pace, but requires a lot more polygons to render the intense

detail of the terrain. For the polygon-based scenes the rocky terrain test is much like the

canyon walls in the high-speed terrain test in that the rocky terrain requires a very high

amount of polygons to represent a jagged rocky area. For the point-based scenes the

rendering of the terrain models differ because the canyon model relies on large obvious

detail, whereas the important information in the rocky terrain is more subtle and requires

the point-representation to render at its highest detail.

This experiment was conducted on 15 undergraduate students, who reported that

they use computers in an everyday capacity.

2.4 Evaluating Performance

The position results of the navigation tests require a method to extract some rating of the

performance of any particular subject. Important events to consider are when the subject

is running into a boundary, either a canyon wall or rocky terrain area, and when the user

is going the wrong way down a path.

19

Figure 2.1: Direction grading for the navigation tests

I decided to grade the subject’s direction of movement. For each sample collected

while the subject was taking the test, I examine those that show a change in position. I

then compare the subject’s direction vector to an optimal direction for that part of the

path. If the subject is moving along the path or towards the center of the path I grade that

sample as a 100%. If the subject is moving away from the center of the path, I grade it

between 100% and 0%, giving the user a 0% when they are moving perpendicular to the

optimal direction. If the angle between the subject’s direction and the optimal direction

is beyond 90 degrees than the subject is going backwards down the path, and I grade that

sample as 0%. If the user is beyond the bounds of the path, in the case that the collision

detection has failed to keep the user within the bounds, than I also grade that sample as

0%. The total grade for each subject is the average of the grades for each sample.

20

Figure 2.2: Path divisions for grading the Low-Speed Navigation Test

In the low-speed navigation test, I find the optimal direction by splitting the

correct path into a set of discrete four-sided polygons. Because the path is essentially

two-dimensional in the low-speed navigation test, I only need to specify these sample

polygons in two-dimensions. Each polygon has two sides that correspond to the walls of

the path, and the other two sides crossing over the path. The optimal direction is then

)(bav −=
v

 where a is the average of the points on the line segment crossing further

down the path, and b is the average of the points on the line segment crossing further up

the path.

The high-speed navigation test uses the same method as the low-speed navigation

test, but because the path is three-dimensional, I specify several layers of paths. So if the

21

subject is closer to the ground I compare his direction to a slightly different optimal

direction than if he were closer to the ceiling of the canyon.

Because I have only approximated the path with discrete segments, I have

introduced some built-in error to the results. However, I am interested only in a paired-

difference comparison. Given that this error does not change between the two

performances of the same test, than this error will cancel out. For the purposes of this

experiment I will assume that the error due to approximating the optimal direction will

not change between two executions of the same test.

22

Chapter 3: Program Design

3.1 Generating a Point-Based Object

Point-based representations of objects are related to manifold-based representations, like

bitmapped images are related to vector-based images. Point-based representations are

essentially the results of a dense sampling of either a real-world object (such as can be

obtained by a 3D-scanner) or a manifold-based object. For the purposes of this paper one

can start generating a point-based representation of an object from a polygon-based

object that contains enough primitives to accurately represent the detail of the intended

real-world object. Many of the polygon-based models I start from were results of 3D-

scans of real-world objects.

3.1.1 Sampling the Object-Space

We start the conversion from polygon-based objects by dividing the area surrounding the

object into a number of cubes, then we determine which cubes intersect each polygon.

To define our starting object, let 3ℜ⊂∃ XS , such that XS is the set of all points along

the surface of the object. Let 3ℜ⊂⊂∃ XX SV , such that XV is the set of all the sample

23

points defined in our starting object. In the polygon-based case, XV would represent all

the vertices in the object. Now let 3ℜ∈∃C such that C is the mean of all the elements

in XV . Because XV is finite, Xi Vv ∈∃ where iv has the greatest distance, D, from C in a

dimension, where ℜ∈∃D .

Now that the base model is clearly defined we must divide the area around the

model into discrete chunks that represent portions of the continuous space around the

object. Let 3ℜ⊂∃ XA such that:

() () ()DCzDCDCyDCDCxDCAa zizyiyxixXi −≥≥+∧−≥≥+∧−≥≥+⇔∈∀

where ()iiii zyxa ,,= and ℜ∈iii zyx ,, . Therefore XA defines a cube around the center

point of the object, and XA encompasses each vertex in the object. Assuming that the

input object is a polygon-based object, this means that XA encompasses the entire object.

In other manifold-based surfaces it is possible to have some portion of the surface whose

distance from C is greater than D , but such representations are out of the scope of this

paper.

Next, we will divide XA into a set of nnn ×× subsections, where Ν∈n and

represents the sampling density. Also, because we eventually want to represent this

subdivided space as leaf nodes in an oct-tree, we want kn 8= , where Ν∈k represents

the depth of the oct-tree. Let 3Ν⊂∃ XG ,

() () ()iiiXi znynxnGg ≥∧≥∧≥⇒∈∀

24

where ()iiii zyxg ,,= and Ν∈iii zyx ,, This way we have turned the continuous object

space into discrete quantities, and therefore I am ready to obtain a uniform sampling of

the surface of the object in object-space.

3.1.2 Simplifying Polygons

Now we will find each subdivison that intersects each polygon in the model, but first we

must simplify each polygon into a series of triangles. Going back to the original source

model, let XF be the set of all polygons in the model, { }wX PPPF ,,, 21 K= and let

Xi VP ⊆ be the set of vertices in the ith polygon of the model, such that

{ }ki vvvP ,,, 21 K= where Xk Vvvv ∈,,, 21 K and kvvv ,,, 21 K are coplanar. Meaning that,

for ℜ∈∀ kmmm ,,, 21 K ; and 3
21 ,,, ℜ∈∃ kuuu

rKvv
 such that pvu ii −=

v
, ki ≤≤1 , and p is

any point on the ith polygon of the model; then:

22112211 brbrumumum kk

vvvKvv
+=+++

where ℜ∈21 , rr are variables and 3
21 , ℜ∈∃ bb
vv

are basis vectors for the plane that contains

the represented polygon. Given this, we can simplify any iP into a series of triangles

Xs VTTT ⊆,,, 21 K , where { }3,2,1, ,, iiii tttT = ; Xiii Vttt ∈3,2,1, ,, , because

() () 2211132121 brbrttmttm
vv

+=−+−

obviously holds for 3
21 , ℜ∈∀ mm . So now let { }hX TTTF ,,, 21 K=′ where iT∀ is a

triangle in 3ℜ . The benefits to triangles are: from the previous argument one can

25

guarantee that the vertices of a triangle will always be coplanar; and triangles are always

convex.

3.1.3 Finding Polygon Vertices

Now we start to find all the cube-shaped subdivisions Xk Gccc ∈,,, 21 K that intersects the

triangle defined by Xj FT ′∈ . To do this, we first find each subdivision that contains a

vertex of jT . This is a fairly straightforward process, given ji Tt ∈∀ where

()ttti zyxt ,,= ; 3,, ℜ∈ttt zyx , then Xi Gc ∈∃ where ()ccci zyxc ,,= ; Ν∈ccc zyx ,, such

that:

() () xcxt rxnDCx +=−− such that ℜ∈xr and 0≥> xrn

() () ycyt rynDCy +=−− such that ℜ∈yr and 0≥> yrn

() () zczt rznDCz +=−− such that ℜ∈zr and 0≥> zrn

I used the Division Algorithm to divide by n to emphasize the conversion from real

numbers to natural numbers, and therefore the change from continuous quantities to

discrete quantities.

3.1.4 Finding Polygon Edges

After finding the subdivision that contains each vertex of jT , we can define a subset of

subdivisions that bounds only the current triangle, Xj GG ⊆ . We need to find all the

subdivisions of jj GE ⊂ , such that ja Ee ∈ if and only if ae intersects an edge of the

26

triangle, jT . Given jaj Tt ∈∀ , and jbj Tt ∈∀ , such that ba ≠ , we can define the function

for an edge of jT to be:

() ()ajbjajj ttstse ,,, −+=

for ℜ∈s and 01 ≥≥ s . The symmetric equations are then:

ab

a

ab

a

ab

a

zz

zz

yy

yy

xx

xx
s

−

−
=

−

−
=

−

−
=

where () 3,, ℜ∈zyx ; ()aaaaj zyxt ,,, = ; and ()bbbbj zyxt ,,, = . We can now test the

bounds of each subdivision in jG . For ji Gc ∈∀ , let ℜ⊂iB be the set of bounds of

ic such that

 +−+−+−=

2
,
2

,
2

,
2

,
2

,
2

n
z

n
z

n
y

n
y

n
x

n
xB cccccci , where

() 3,, ℜ∈ccc zyx is the center of ic in real continuous space. If iBd ∈∃ such that when

you apply the symmetric equation you get a valid s and point within the bounds of ic ;

then the edge jE intersects ic , and ji Ec ∈ . Repeat this process for each edge in jT to

find all ji Ec ∈ .

3.1.5 Finding the Polygon Interior

Once we have found all the subdivisions that intersect the edges of jT we can perform a

sort of flood-fill to find all the elements of jI , the subdivisions that intersect with the

interior of jT . We start this process by picking a dimension. Any dimension will work,

but for the sake of demonstration we will pick the x dimension. Let jx GH
a
⊂ where

27

ax
H is the set of all subdivisions that share the x-value, ax . Now find

axj HE I . If there

is only one subdivision in this intersection, then the slice
ax

H intersects only a vertex of

jT and contains no subdivisions that intersect the interior of jT . If there is more that one

subdivision in
axj HE I , then pick a second dimension, for demonstration y, and find

axjls HEcc I∈, such that sc contains the smallest y-coordinate, and lc contains the

largest y-coordinate. Define a subset,
aa xx HW ⊆ , that is inclusively bounded by the

rectangle with sc and lc as corners. Now for
axi Wc ∈∀ , because we are constraining the

input to subdivisions that lie between two edges we can assert that, ji Ic ∈ if and only if

ic intersects the plane defined by jT .

Figure 3.1: Finding interior subdivision intersections of a polygon

This is a fairly straightforward calculation. First we will define the plane,

(){ }DCzByAxzyxPj =++ℜ∈= 3,, where ℜ∈DCBA ,,, are coefficients and

28

1,, =CBA . Now we can project the center point of ic , ()zyx ccc ,, , onto the plane.

We first need to find the distance, d , between ()zyx ccc ,, and jP :

DCcBcAcd zyx −++=

Then the projected point ji Pp ∈ is:

() ()CBAdcccp zyxi ,,,, −=

If ip lies within the bounds of ic , then ic intersects the plane defined by jT . Therefore

ji Ic ∈ .

The subset Xjjj GIEZ ⊆= U is the set of all subdivisions that intersect the

polygon, jT , where Xj FT ′∈∀ . Then define { }kX ZZZZ UKUU 21= is the set of all

subdivisions that intersect the surface of the original polygon-based model.

29

Figure 3.2: A surface with all its subdivisions computed

3.1.6 Calculating the Per-Sample Normal Vectors

Lighting effects are essential in providing the illusion of a continuous surface, and

because each sample point is rendered separately, it is advantageous to calculate a normal

per sample. This involves the interpolation of the normal vectors defined in the original

polygon-based object. For this process we assume that the input object has a normal

defined for each vertex. Here, we will use linear interpolation for simplicity, but other

more advanced interpolation methods can be incorporated, and because this all pre-

process more advanced interpolation methods will not effect render time.

30

In implementation, I used a three-dimensional array of lists to represent the

subdivided space, XG . These lists keep track of which polygons intersect each

subdivision, and XZ is simply the set of array elements that contain a non-empty list.

For xi ZZ ∈∀ the list S of faces that intersect iZ is non-empty. Then for STj ∈∀ there

exist three vertices, 321 ,, vvv , and three corresponding normal vectors 321 ,, nnn
vvv

. Now

consider the plane-space of the polygon, where any point on the polygon can be

expressed as a linear combination of basis vectors 21 ,bb
vv

. Given that we already have

three vertices on the plane, we can define 1b
v

 and 2b
v

 as 121 vvb −=
v

 and 132 vvb −=
v

.

Therefore 3ℜ∈∃p such that p is on the plane defined by jT then:

() () 1132121 vvvkvvkp +−+−=

where ℜ∈21 ,kk are coefficients. We can treat the normal vectors in a similar fashion.

Consider an alternate vector space for the normal vectors on jT . Any normal vector

coming off of the plane defined by jT can be defined as a linear combination of two basis

vectors, 1r
v

 and 2r
v

. Using the corresponding given normal vectors we define 1r
v

 and 2r
v

 as

()121 nnr
vvv

−= and ()132 nnr
vvv

−= . Therefore 3ℜ∈∃m
v

 such that m
v

 is a normal on jT ,

then:

() () 1132121 nnnknnkm
vvvrvv

+−−−=

where ℜ∈21 ,kk are coefficients, and notably the same coefficients as those that define a

point on the plane of jT . Therefore, if we project the center point, ()zzz zyx ,, of jZ on

31

to the plane by the method discussed previously. We can then find 1k and 2k that satisfy

the linear combination for points on a plane, then we can plug 1k and 2k into the above

linear combination to calculate m
v

, the normal vector at that point. The overall normal

for jZ is the average of the normal vectors calculated for each polygon that intersects

jZ .

3.1.7 Calculating Per-Sample UV Coordinates

Because texturing is a part of the experiment, the polygon-based input object will have a

UV-coordinate specified with each vertex. A UV-coordinate it a two-dimensional

coordinate that specifies where the associated vertex corresponds to the bitmap. The UV-

coordinate for each sample point in the point-based representation must be computed in

order to assign the correct color to that point. The method used is much like the method

used to find the per-sample normal vectors.

For Xi ZZ ∈∀ the list of polygons that intersect iZ , S , is non-empty. Therefore

let STj ∈∃ and 2
321 ,, ℜ∈∃ uuu such that 321 ,, uuu represent the UV-coordinates that

correspond to the vertices of jT . Any UV-coordinate on the plane defined by jT can be

defined as a linear combination of basis vectors 1r
v

 and 2r
v

. Given our input model we can

define these basis vectors as ()121 uur −=
v

 and ()132 uur −=
v

. Therefore 2ℜ∈∃m such

that m is a UV-coordinate on jT and:

() () 1132121 uuukuukm +−+−=

32

where ℜ∈21 ,kk are coefficients. As with the per-sample normals the same conversion

can take place. We can find the projected center point of iZ and find 1k and 2k by

evaluating the linear combination of vertices on the plane defined by jT . The we can use

these coefficients 1k and 2k to find m, where m is the UV-coordinate of the center point

of iZ projected onto the plane defined by jT .

To find the color information at each sample point, iZ , we must calculate the UV-

coordinate of each polygon that intersects iZ , and use it to find an appropriate color

value. Then we must average together the different color values from the difference

vertices to obtain out final per-sample color information.

3.1.8 Creating the Oct-tree

Now that we have sampled all the information needed from the polygon-based input

object, we are ready to organize the sample points in a hierarchical fashion. For this we

use an oct-tree structure. An oct-tree is a tree structure where the children divide the

space of their parent into eight octants. Often the tree-structure itself provides enough

geometric data to place the nodes of the tree in some space, so storing vertex values is

unnecessary. Let XY be the parent node of the oct-tree, such that { }821 ,,, YYYYX K=

where { }821 ,,, YYY K is an ordered set of sub-trees each containing their own ordered set

of nodes. Any subtree may contain the empty set if it has no children nodes. That is, if

the surface of the object does not pass through it’s bounds. The exact location of the each

33

node is defined as follows: let the center of a subtree, 0Y , be () 3
000 ,, ℜ∈zyx ; and let the

dimensions of the subtree be kkk ×× , where ℜ∈k ; then the geometry of it’s child sub-

trees are:

1,0Y is centered at ()404040 ,, kkk zyx +++ , with dimensions 222
kkk ×× ,

2,0Y is centered at ()404040 ,, kkk zyx ++− , with dimensions 222
kkk ×× ,

3,0Y is centered at ()404040 ,, kkk zyx +−+ , with dimensions 222
kkk ×× ,

4,0Y is centered at ()404040 ,, kkk zyx +−− , with dimensions 222
kkk ×× ,

5,0Y is centered at ()404040 ,, kkk zyx −++ , with dimensions 222
kkk ×× ,

6,0Y is centered at ()404040 ,, kkk zyx −+− , with dimensions 222
kkk ×× ,

7,0Y is centered at ()404040 ,, kkk zyx −−+ , with dimensions 222
kkk ×× ,

8,0Y is centered at ()404040 ,, kkk zyx −−− , with dimensions 222
kkk ×× ,

where the position in the ordered set of child nodes defines the exact geometry of each

child node.

As discussed earlier the space around the object is divided nnn ×× , into cubes;

where kn 8= . Let k be the highest level in our oct-tree. We can now just define the

sampled space as the leaf nodes in the oct-tree, and those samples that do not intersect the

surface XS are empty nodes. From this base point we can fill in the parents of the non-

null leaf nodes. The only geometric information that we need to store at each leaf node is

the normal vector and the color information. To calculate the normal vector and color

34

information at each parent node, we take the average of the normal vectors and colors of

each non-null child node.

We also need to specify a normal cone angle at each node for use in the rendering

algorithm. This normal cone angle defines how much the node’s children’s normal

vectors deviate from their parent’s normal vector. For this I use a similar method to

when I found the vertex in the polygon model that deviated the furthest from the center

point. Let 3ℜ∈∃a such that a is the furthest deviation in any dimension from the

parent’s normal vector; and 3
0 ℜ∈∃n
v

 that defines the normal vector for the parent node.

Now let { }sn nnnC
vKvv
,,, 21= , and 3

21 ,,, ℜ∈∃ snnn
vKvv

 be the normal vectors for each non-

null child node. If there are no non-null child nodes, the current node is a leaf node, than

0=a . If there are some non-null child nodes, than ni Cn ∈∃
v

such that inh
v

∈ and 0ng
v

∈

where g is in the same dimension as h. Then let ghd −= and trd −≥ for jnr
v

∈∀ and

0nt
v

∈∀ where r and t share the same dimension, and for nj Cn ∈∀
v

. Therefore d is the

largest deviation from the parent’s normal vector in any dimension. This is not an exact

measure of the angle of largest deviation between the parent’s normal vector and the

children’s normal vectors, but it is sufficient for the rendering algorithm.

35

3.2 Rendering a Point-Based Object

3.2.1 Overview

For the purposes of this project I decided to use as much graphics hardware support as

possible to render a point-based object. Graphics hardware has been optimized for the

rendering of polygon-based representations, so I am not able to fully utilize the hardware.

However I do use the graphics pipeline to do much do much of the final transformation,

lighting calculations, and final display of the point primitives. The hierarchical

organization of the point-based object allows for an efficient rendering algorithm that

adapts the detail to be rendered based on the amount of detail that will be visible on the

final output.

We can take advantage of the hierarchical oct-tree structure we have organized

the points in during rendering. The benefits of the hierarchical structure are: we can

easily display the model at a coarse resolution if we need to, and we can perform

backface culling and frustum culling at coarser resolutions, for a more efficient

algorithm.

During rendering we perform a depth-first traversal of the oct-tree, because it

requires the least overhead and is the most intuitive method for this application. Botsch

et al. discussed the possibilities of using a breadth-first traversal, and showed that while it

offered some benefits, it also cost a lot of overhead. Figure 3.3 shows the pseudocode for

traversing the each node for rendering.

36

RenderNode
{

if (node is empty)
return;

if (subtree is front facing)
{

Calculate the node’s projected size;
if (subtree is within the view frustum) and (
(node is a leaf node) or (the benefit of recursing
further is low))
{

if (node is within the view frustum and the node
is front facing.)
{

draw a point;
}

}

Render each child node;
}

}

Figure 3.3: Psuedocode for point-based rendering

We now examine the details of this algorithm.

3.2.2 Backface Culling

As stated earlier, we can cull off entire subtrees of the oct-tree by adapting basic culling

procedures. Backface culling is a procedure that determines whether or not a primitive is

turned towards the camera. In many cases it is beneficial to constrain rendering only to

those primitives that face the camera, as the primitives that do not face the camera are

often on the hidden side of objects and will not appear in a final image anyway.

To determine whether or not a primitive is back-facing let 3ℜ∈∃n
v

such that n
v

 is

the normal vector to the primitive. In this case the rendering primitives are the points

37

represented by each node in the oct-tree. Let M be a 44× matrix such that eMn
vv

=

where e
v

 is the normal vector with respect to the camera position. In other words, M is

the transformation from world-space into camera-space. If the resulting camera-space

vector, e
v

 has a negative z-component than the normal is facing back towards the camera

and the normal is considered front-facing. Otherwise the normal is considered back-

facing and we do not render the corresponding primitive.

Using the normal cone angle discussed earlier we can easily extend this operation

to determine whether or not the cone of normal vectors is front of back-facing. After we

determine e
v

, the camera-space normal vector of a primitive, we simply check to see if

the z-coordinate of e
v

 is greater than the cone angle. If this is the case, than the entire

cone of normal vectors is facing away from the camera and the entire sub-tree under the

current node can be culled.

3.2.3 Calculating Point Size

Before we can discuss Frustum Culling we must first discuss the method we use to find

the amount of space that each point will occupy on the screen. Here is an example where

current graphics hardware systems do not provide an optimal environment for point-

based rendering. The only way to specify a point-size in the OpenGL API is to specify

the screen-size of the point. This requires the point-rendering algorithm to already know

the projection of each point before it is sent through the pipeline.

38

Let 3ℜ∈∃p such that p is the coordinate of a point, and let ℜ∈∃l that

represents the distance from the center point p to any side of the cube represented by the

current node. Also let PM ,∃ that are 44× matricies. M represents the transformation

from world-space to camera-space as discussed earlier, and P represents the

transformation from camera-coordinates to clip-coordinates. Clip coordinates are used

further in frustum culling, but for these purposes we use it as an intermediate stage on the

way to projected coordinates. Let ()ccccc wzyxp ,,,= be a clip-coordinate, than:

=

c

c

c

c

c

c
p w

z

w

y

w

x
p ,,

represents the projected coordinate of our original point p.

We use this method to find the projected size of a point p by first calculating the

z-coordinate, cz , of p with respect to the camera. Next we let this cz represent the

distance of the point to the camera. In order to calculate the real distance of a point to the

camera we would have to calculate:

222
ccc zyxd ++=

which would take a significant amount of computation if it had to be done for each point.

Therefore we can shorten the computation by using just the cz value and still get

satisfactory results.

Because l simply represents the smallest distance from the center point, p, to the

edge of the cube, we must compute 3×= ls so that s is the greatest length from p to

39

the edge of the cube. This way we can eliminate any holes that may occur in between

points. Next we define a point r as ()czsr ,0,= . Now we take the clip-coordinates of r

and then the projected coordinates of r, pr . Because of how we defined r the x-

coordinate of pr is ps the projected size of the original point p. We now have a value we

can input to the hardware through the OpenGL interface to specify the size of any point

in world space. We may, however, get a negative value for ps . If this occurs, than the

point p must have been behind the camera. If this occurs we cull this node off as part of

the frustum culling.

We also use this point size to partially determine how many levels to traverse

during any given rendering process. If the point size falls below a specified threshold,

than we will draw the current point and not traverse any of the current node’s children

nodes. This allows us to not render any primitives that are not noticeable on the final

output, therefore making this algorithm output-sensitive.

3.2.4 Frustum Culling

Frustum culling is not rendering any primitive that falls outside of the area being viewed

by the camera. This cuts down on the total number of primitives that must be rendered,

therefore increasing efficiency. In the case of point-based representations arranged into

hierarchical data structures we can use this technique to further remove sub-trees from

calculation and increase the efficiency of the rendering algorithm.

40

In order to determine whether or not a primitive lies within a view frustum we

simply calculate the clip coordinates discussed above by taking any point p as well as the

world-to-camera transformation M and the camera-to-clip transformation P and applying

them to our original point p to get cp the clip-coordinate of p. Now, given

()cccc zyxp ,,= , w and h are the width and height of the final viewport, and ()00 , yx is

the center of the viewport, than the screen coordinates ()sss yxp ,= are:

()
()
()

+

+

+

=

2
1

2
1

02

02

c

c
h

c
w

s

s

s

z

yy

xx

z

y

x

Now if () () ()1000 ≤≤∧≤≤∧≤≤ sss zhywx than p is within the view frustum,

otherwise p is not within the camera’s view, and is culled off.

The most obvious way to extend this to determine whether or not an entire sub-

tree is within the view frustum is to compute whether or not any of the corners of the sub-

tree’s bounding sphere occur within the view frustum. However this would involve the

projection of eight points into screen-space.

A faster way to extend this operation to sub-trees is the use of the point’s already

calculated projected size. This way, given the screen-coordinates of a node’s center point

sp , we can use the projected point size ps so if:

() ()psppsp shysswxs +≤≤−∧+≤≤−

Than at least part of the sub-tree is within the view frustum, else the entire sub-tree can

be culled off. Notice that we remove the evaluation of the sz component. This is

41

because the point size does not correspond to the z-coordinate of the screen-space point,

due to the fact that the z-dimension of the screen space is scaled differently than the x and

y dimensions. Instead of spending extra computation to try and account for this scaling,

we simply do not evaluate the z component, and we get satisfactory results.

3.2.5 Determining Traversal Depth

Figure 3.4: A surface rendered at different traversal depths

In addition to not traversing sub-trees of nodes that do not occupy a significant portion of

the output, we can specify a maximum depth for the rendering algorithm to traverse down

to. The purpose of this is to allow for fluid movement even when the amount of leaf

nodes visible require so much computation that interactive frame rates are not possible.

This is accomplished by setting a maximum frame speed parameter, maxf , a minimum

frame speed, minf , and a minimum traversal depth mink . It also keeps track of how far it

it traversed the tree during the last render, 0k . The render function for the point

representation takes in the amount of time needed to render the last node, f and whether

42

or not an event occurred such as the user requested a change in the viewpoint. The

rendering function also outputs a Boolean value based on whether or not we can refine

the model further without increasing frame speed over the threshold. Before we start

traversing the oct-tree of the point representation we determine the traversal depth.

Figure 3.5 shows the psuedocode for determining traversal depth. Using this method we

can adjust the traversal depth so that we can adjust the level of detail to keep an

interactive frame rate. This will result in very coarse models in scenes where many

points must be rendered, however this is the tradeoff which we mean to evaluate.

Render Object
{

refine = true;

if (f < minf)

{

increment mink ;

min0 kk = ;

}

if (f > maxf)

{

decrement 0k ;

refine = false;
}

if (an event occurred)

min0 kk = ;

Traverse hierarchy to 0k ;

return refine;
}

Figure 3.5: Psuedocode for determining traversal depth

43

3.2.6 Splatting

In order to facilitate a comparison, I have selected the rectangular point-representations

used by graphics hardware in order to trade-off some of the visual quality produced by

point-based models for the increased speed that they can support.

44

Chapter 4: Results

4.1 Speed Results

A discussion of the computer performance results is essential to understanding the

perception-based user-performance results discussed later. These tests were all

performed on a Pentium 4, 2.0Ghz processor with 512MB of memory. The operating

system was RedHat Linux 9.0. I chose to use Linux because its handling of the large

amounts of memory required by the point-based representation was better than that of

Windows XP. These computers used an Nvidia RIVA TNT 2 Model 64 Pro graphics

card.

 The point-based object representation used in this project allows for the amount

of rendering primitives sent to the graphics hardware to vary based on how many

primitives are viewable. Graphics hardware will perform this sort of operation on

polygon primitives as well, however it hardware usually performs some calculations,

such as transformations, on all primitives including those that are eventually excluded.

Culling out large amounts of data in software reduces the amount of these general

calculations the hardware must perform. Therefore, the speed needed to render objects

represented by points varies greatly on how many points are viewable at any given

45

moment. Figure 4.1 shows the amount of time to render one frame at a given quantity of

points. These results were obtained from the data collected from the subjects. It is a

combination of data from each test. The error bars in Figure 4.1 are the standard

deviation from the mean of each set of samples for a particular point quantity. They help

to illustrate the variations in the rendering speed at each quantity level.

Figure 4.1: Per point quantity rendering speed results

These results are not surprising. The time needed to render a frame increases with the

number of primitives sent to the graphics hardware. Figure 4.2, Figure 4.3, Figure 4.4,

Figure 4.5 show the number of frames that rendered a certain number of points for each

46

type of test. Looking at these in conjunction with Figure 4.1 gives some idea as to the

rendering performance during each test. Note the difference between the graphs of the

Object Recognition tests and the Navigation tests.

Figure 4.2: Distribution of points-per-frame for the Far Object Recognition Test

47

Figure 4.3: Distribution of points-per-frame for the Near Object Recognition Test

Figure 4.4: Distribution of points-per-frame for the Low-Speed Navigation Test

48

Figure 4.5: Distribution of points-per-frame for the High-Speed Navigation Test

The terrain models in the navigation tests require a large amount of points to display

properly, because they are often rendered very close to the viewer. This leads to the

navigation tests frequently rendering a large amount of points, as compared to the object

recognition tests.

Trial Average Median Minimum Maximum
Standard
Deviation

T 0.05 0.05 0.02 0.08 0.011near:
P 0.08 0.1 0.0 0.2 0.046
T 0.16 0.16 0.08 0.19 0.019far:
P 0.01 0.01 0.0 0.02 0.007
T 0.05 0.04 0.01 0.11 0.010low-

speed: P 0.13 0.12 0.01 0.91 0.038
T 0.04 0.04 0.01 0.07 0.012high-

speed: P 0.11 0.11 0.0 0.34 0.06

Table 4.1: Test performance results (seconds per frame)

49

Table 4.1 shows statistics about the overall rendering speed of the two different

methods on each test. T indicates data for scenes using the polygon-based representation,

and P represents data for scenes using the point-based representation. To estimate the

difference between the mean rendering speeds of each method we use the following to

construct a confidence interval:

()
2

2
2

1

2
1

221 nn
zxx a

σσ
+±−

Where 1x and 2x are the two mean rendering speeds, 1σ and 2σ are the population

variances of the different rendering speeds from each method, and 1n and 2n are the

number of readings taken from each method. The 2az term represents the margin of

error that we want this confidence interval to represent. Specifically the 2az represents

the area under a normal distribution curve that represents the probability of the mean

being at a certain point. The assumption here is that the sample sizes are large enough to

apply the Central Limit Theorem to conclude that the possible differences between the

means have a normal distribution. The two values produced by this equation are the

upper and lower bounds of our confidence interval. For the purposes of this investigation

we wish to construct a 99% confidence interval, therefore 58.22 =az for all our tests.

This gives us a large margin of error, so that we can make very solid assertions about the

data. Also, because our sample sizes are very large, we can use the standard deviations

of each test to estimate 1σ and 2σ .

50

For the Near Object Recognition test we collected 207 samples for the point-

based rendering method and 314 samples for the polygon-based method. Using these and

the values from the tables we have the difference of the average time needed for point-

based rendering from the average time needed for polygon-based rendering is somewhere

between 0.022 and 0.037. Therefore we can conclude that the polygon-based rendering

speed is faster than the rendering speed of the point-based representations.

For the Far Object Recognition Test, I collected 2,845 and 296 samples for the

point-based version and polygon-based version, respectively. The point-based version of

this test collected far more samples than the polygon-based version because the samples

are collected per-frame, and as we shall see, the point-based version was able to render

many more frames per second than the polygon-based version. Under a 99% confidence

interval, the difference between the polygon-based Far Object Recognition Test and its

point-based counterpart is between 0.147 and 0.153. Therefore we can firmly assert that

in the Far Object Recognition test the point-based rendering method produced much

faster rendering speeds than that of the polygon-based test.

The results of the Far Object Recognition Test and the Near Object Recognition

Test are due to the difference in output-sensitivity between the two representation

schemes. Objects represented with points can employ a hierarchical data structure within

the object to adjust the level of detail to render. Polygon-based objects typically have no

such capability. The data suggests that polygon-based representations even incur a speed

51

penalty when being viewed from far away. This could possibly be due to complications

in the rasterization of many polygons that are very closely grouped together.

The sample sizes for the Low-Speed Navigation test are 7,065 and 45,992 for the

point-based version and polygon-based version respectively. Again, the reason for the

difference in sample sizes is that the polygon-based method yielded higher rendering

speeds and therefore rendered more frames, collecting more samples. The bounds for the

99% confidence interval of the difference between the polygon-based Low-Speed

Navigation Test and its point-based version are 0.079 and 0.080. Therefore the polygon-

based rendering method is much faster than the point-based rendering method when

applied to the Low-Speed Navigation test.

 For the High-Speed Navigation tests the samples size for the point-based

method is 207, and the sample size for the polygon-based method is 24,020. Thus under

a 99% confidence interval the difference between the average rendering speed for the

polygon-based test and the average rendering speed for the point-based test is between

0.067 and 0.072. Therefore, in the High-Speed Navigation Test the polygon-based

method yields faster rendering speeds.

4.2 Object Recognition Results

In order to evaluate the object recognition tests I have examined the naming time for the

second execution of each test, treating the first execution as a practice run. I can do this

because the two executions display different objects to the user, making the results

52

independent. The object to be identified in the far object recognition test was a dog, and

the object in the near test was a rabbit. The testing program randomly gave each of the

fifteen subjects a point-based object or a polygon-based object. Table 4.2 reports the

number of subjects who accurately identified the object in each test. P stands for a test

using the point-based object representation, and T stands for a test using the polygon-

based representation.

Trial Correct Incorrect Percent correct
T 6 0 100%near:
P 7 2 78%
T 4 1 80%far:
P 9 1 90%

Table 4.2: Object Recognition accuracy results

These results do not indicate a significant difference in overall accuracy between the two

types of representations. Instead we must look at the amount of time each subject needed

to identify an object. Table 4.3 shows statistics on how long it took subjects to identify

the object presented in either tests. This table excludes those who incorrectly identified

the object. Each unit in Table 4.3 represents a thousand clock cycles.

Trial Average Median Minimum Maximum
Standard
Deviation

T 892 980 480 1290 347near:
P 2110 1760 1480 4010 889
T 7157 7055 4760 9760 2492far:
P 2861 2090 1010 6620 1987

Table 4.3: Object Recognition timing results (in thousands of clock cycles)

Looking first at the Near Object Recognition Test we can analyze whether or not

the data sets are significantly different using a t-test of the difference between two means.

53

We cannot use the method from Section 4.1, because our sample size is small, and the

Central Limit Theorem no longer applies. Instead we must calculate a test statistic t:

()

+

−−
=

21

2

021

11

nn
s

Dxx
t

where 1x and 2x are the two population means and 1n and 2n are the two population

sizes, and 0D is our guess for the difference in the means. 0D will be 0 because our null

hypothesis will typically be that the two populations are the same. The variance of the

population s is found by finding the weighted average between the two different standard

deviations:

() ()
2

11

21

2
22

2
112

−+

−+−
=

nn

snsn
s

where 1s and 2s are the standard deviations of the two populations. Also, we must

define a degrees of freedom variable, df:

221 −+= nndf

Now we can use our degrees of freedom to compare our calculated t-statistic and to the

Student’s t distribution to find the probability that our guess is correct.

For the Near Object Recognition Test, our null hypothesis is that the two means

are essentially equal. Whereas the alternate hypothesis is that the mean for the point-

based representation is significantly larger than that of the polygon-based test. For this

test our samples sizes are 6 and 7 for the polygon-based version and the point-based

54

version respectively, resulting in a degrees of freedom of 11. Using the above formulas

yields a t-value of 3.34, which is larger than the t-value for 0.005 percentile, meaning that

there is less than a 0.5% probability that the means of the two data sets are essentially the

same. Therefore we can confidently say that the mean naming time for the point-based

object is significantly larger than the mean naming time for the polygon-based object.

The subjects had a much harder time identifying the model, in this case a rabbit, from

close up when it was rendering using points. This makes sense, because the point-based

representation suffers from severe aliasing when viewed from up close. The object

surface is not interpolated between samples, but it is roughly estimated using the closest

sample value. Polygon-based objects, on the other hand, are interpolated and therefore

yield a significantly better picture than the point-based models when viewed from a close

distance.

Now we consider the Far Object Recognition Test. The sample size for the

polygon-based test is 4 and the sample size for the point-based test is 9, therefore we

have 11 degrees of freedom. Our null hypothesis is that the two means are the same.

This time our alternate hypothesis is that the mean for the naming times of the point-

based object is less than the mean for the naming times of the polygon-based object, as

the data would suggest. Our calculated t-value is 3.14, which is larger than the t-value

for the 0.005 percentile. Therefore the probability that the two data sets are the same is

less than 0.5%. We can reject the null hypothesis and assert that subjects were able to

identify the point-based object faster than the polygon-based object. This illustrates that

55

the output-sensitivity of the point-based representation enables for more efficient object

representation when the user sees the object from far away.

Overall, these results support my hypothesis of how point-based representations

will behave with respect to polygon-based representations. The interpolation of the

polygon-based representations allow for better rendering for an object that is close to the

viewpoint, whereas the point-based representation yields better results in the case where

polygons become smaller than points, such as in an object far from the viewpoint. Now

let us examine how the two object-representation methods compare when applied to

interactive environments.

4.3 Low-Speed Navigation Test Results

The Low-Speed Navigation Test prompted the subject to navigate a smooth path through

a rocky terrain from a start point to a finish point. Here I employ the method described in

Section 2.4 to generate a rating of the subject’s performance for this test. This test was

performed twice in a row for each user, the first time using polygon-based representations

and the second time using either polygon-based representations or point-based

representations depending on a random number generated by the program. Table 4.4

shows the grades gathered by the tests. Test A uses polygon-based representations in

both the control group and the variable group. Test B uses polygon-based representations

in the control group and point-based representations in the variable group.

56

Trial Average Median Minimum Maximum
Standard
Deviation

A 63.6% 63.3% 46.2% 82.2% 11.5%control:
B 72.5% 74.1% 58.7% 85.3% 10.4%
A 72.5% 74.6% 60.6% 79.4% 7.11%variable:
B 69.3% 74.4% 42.2% 81.2% 15.4%

Table 4.4: Low-Speed Navigation Test results

The values alone show some interesting possible trends. In the control group

performance seems to have improved between test A and B. This is not surprising

because the subject is presented with the same terrain to navigate, and they can navigate

the terrain more easily the second time. The variable group seems to have started out

well in test A, and slightly decreased in performance in test B. However, notice that test

B’s standard deviation is much larger, and that the minimum and maximum values of test

B reach further extents. This suggests that people were still able to improve performance

between the two different kinds of object representation, and others had a very difficult

time with this task when it was using point-based rendering.

In order to statistically validate these observations we must perform a paired-

difference analysis. Because test A and B present the same objects the two tests are not

independent, so instead of examining the performance on each test, we must examine the

difference in performance between the two tests.

Trial Average Median Minimum Maximum
Standard
Deviation

control: 8.7% 7.3% -4.4% 20.8% 8.1%
variable: -4.3% 0.0% -32.4% 13.8% 19.7%

Table 4.5: Improvement between Low-Speed Navigation Tests A and B

57

The sample size for the control group is 10, and the sample size for the variable group is

5. Consequently we have 13 degrees of freedom. Our null hypothesis is that the

population means are the same; while our alternate hypothesis is that the difference in the

averages for the control group is greater than the differences in the averages for the

variable group. Using the calculations described in Section 4.2 we find a calculated t-

value of 1.65, which lies between the 0.025 and 0.05 percentiles on the Student’s t

distribution. This means that there is a 2.5% to 5% chance that the difference in

improvement between the control and variable groups is due to the variance in the

samples and not due to the mean improvement of the variable group being less than the

control group. This chance is small, but not insignificant; therefore we can only

tentatively state that the point-based objects yield lower performance in this test than do

the polygon-based objects, but we cannot assert this as a fact.

4.4 High-Speed Navigation Test Results

The High-Speed Navigation test presented the user with a canyon to fly a ship through.

The set-up is the same as the Low-Speed Navigation test with two tests per subject and

each subject is placed into either a control group or a variable group.

Trial Average Median Minimum Maximum
Standard
Deviation

A 72.6% 77.8% 34.4% 88.44% 21.9%control:
B 80.2% 91.3% 37.5% 93.1% 24.0%
A 73.5% 71.6% 58.1% 89.8% 12.8%variable:
B 64.6% 63.5% 26.2% 92.4% 23.1%

Table 4.6: High-Speed Navigation Test results

58

The results from the High-Speed Navigation Test, shown in Table 4.6, are very similar to

those collected from the Low-Speed Navigation Test from Table 4.4. They indicate that

the point-based representations used in variable test B may have caused some subjects to

perform worse, while other subjects were still able to improve their performance between

tasks. However, there were three cases that had to be thrown out because a collision

detection failure resulted in the program not being able to output data, and the grading

method used to analyze the results had no way to take that into account. Two of these

cases occurred in a scene that used point-based representations, and one case happened

while using the polygon-based representations.

Trial Average Median Minimum Maximum
Standard
Deviation

control: 7.6% 5.6% 2.9% 15.8% 5.0%
variable: -8.9% -7.0% -41.7% 20.2% 23.6%

Table 4.7: Improvement between High-Speed Navigation Tests A and B

The resulting sample sizes for this test are 5 and 6 for the control and variable

groups, respectively. We have 9 degrees of freedom. Using the same paired-difference

analysis from the Low-Speed Navigation Test we compare the difference between tests A

and B, shown in Table 4.7 with the calculations described in Section 4.2, we calculate a t-

value of 1.522, which falls between the 0.05 and 0.10 percentiles on the Student’s t

distribution. This means that there is a 5%-10% percent chance that the difference in

means of the two groups is due to the variance of the subjects’ performances. Therefore,

we cannot make any solid assumptions about the differences between the improvements

in performance.

59

Chapter 5: Conclusions

From the results, one can clearly see that using polygon-based representations yield a

scene that is much faster and clearer than one that uses point-based representations.

From the standpoint of visual fidelity, all tests except the Far-Object Recognition Test

pointed in favor of using polygon-based objects. Point-based representations especially

fail in the case of terrains, large objects that are often seen partly close up. Because of

the user’s proximity to these kinds of objects, they require an especially dense sampling,

and that large quantities of points be rendered. Looking at the difference in the quantity

of points rendered between the Low-Speed Navigation Test, Figure 4.4, and the Near

Object Recognition Test, Figure 4.3, I conclude that the large quantities of points

rendered per frame are mainly responsible for the difference in rendering speeds between

the two representations. Therefore any advances in improving the efficiency per-point of

point-based rendering would significantly affect these results. Currently, graphics

hardware is built with polygon-based rendering in mind, which can result in difficulties

for non-polygon-based methods. If optimizations were made for point-based rendering in

hardware, these results would change significantly [4].

The Far-Object Recognition Test stands out as an exception from the rest of the

tests. The point-based version of the Far Object Recognition test yielded faster rendering

speeds, Table 4.1, and better user performance, Table 4.3. The increase in speed is

60

undoubtedly due to the fact that point-based models are output-sensitive, and can reduce

the number of primitives rendered as they become less significant on screen, Figure 4.2.

This test affirms that there are currently some cases where using the point-based

representation scheme in lieu of polygon-based objects offers an improvement in speed

and clarity.

Using current consumer graphics hardware the point-based representation yields a

significantly lower visual fidelity than that of polygon-based representations when

applied to interactive scenes. However, these results still support the prediction that

because polygons are not output sensitive, using point-based representations for three-

dimensional models will eventually be advantageous.

61

Chapter 6: Future Work

The results indicate that the current form of point-based rendering performs well when

viewing an object that the user does not have to get very close to. This algorithm suffers

when it must render a terrain or landscape that the user must get very close to and interact

with. Therefore a new method of rendering for point-based representations of terrain

would greatly benefit this research. Such a method could take into account the distance

of a sub-tree from the viewpoint to determine how many levels to render.

Another drawback to the point-based rendering algorithm proposed in this paper

is that calculations done during tree-traversal involve floating-point values. If these

values could be represented as integers or some other discrete quantities and only

converted to floating point before being processed by the graphics hardware, the time

needed for computation may reduce and provide better performance.

An advantage of point-based rendering is that the lighting calculations may be

performed for each point primitive, providing for better detail representation across the

objects surface. This effect is studied somewhat in this research, but several other

implications exist; such as being able to easily vary the specular and ambient material

attributes with each point.

The user-performance results suggest a strong correlation between rendering

speed and the visual fidelity of interactive scenes. Further research in the strength of this

correlation and the relationship between object clarity and visual fidelity of interactive

62

scenes would be beneficial for better determining how much of the tradeoff between

rendering speed and object detail is perceived by the user.

63

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,

and Claudio T. Silva. Point Set Surfaces. In Proceedings of the conference on

Visualization ’01. IEEE Computer Society, 2001.

[2] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient High Quality

Rendering of Point Sampled Geometry. In Thirteenth Eurographics Workshop

on Rendering, pages 53-64. The Eurographics Association, 2002.

[3] Chandrajit Bajaj, Insung Ihm, Sanghun Park. 3D RGB Image Compression for

Interactive Applications. In ACM Transactions on Graphics, v.20 n.1 pages10-

38. ACM Press, 2001.

[4] Liviu Coconu and Hans-Christian Hege. Hardware-Accelerated Point-Based

Rendering of Complex Scenes. In Thirteenth Eurographics Workshop on

Rendering. The Eurographics Association, 2002.

[5] C. Csuri, R. Hackathorn, R. Parent, W. Carlson, M. Howard. Towards an

Interactive High Visual Complexity Animation System. In Proceedings of the 6th

annual conference on Computer graphics and interactive techniques, pages 289-

299. ACM Press, 1979.

64

[6] Changcheng Huang, Michael Devetsikiotis, Ioannis Lambadaris, A. Roger Kaye.

Modeling and Simulation of Self-Similar Variable Bit Rate Compressed Video:

A Unified Approach. In Proceedings of the conference on Applications,

technologies, architectures and protocols for computer communication, pages

114-125. ACM Press, 1995.

[7] Arie E. Kaufman. Volume Visualization. In ACM Computing Surveys, v.28 n.1

pages 51-64. IEEE Computer Society Press, 1993.

[8] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust,

Gregory A. Turner. Real-Time, Continuous Level of Detail Rendering of Height

Fields. In Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques, pages 109-119. ACM Press, 1996.

[9] Marc Levoy and Turner Whitted. The Use of Points as a Display Primitive.

Computer Science Department, The University of North Carolina, 1985.

[10] Charles Loop, T. D. DeRose. Generalized B-Spline Surfaces of Arbitrary

Topology. In Proceedings of the 17th annual conference on Computer graphics

and interactive techniques, pages 347-356. ACM Press, 1990.

[11] Bui Tong Phong, Illumination for Computer Generated Pictures. In

Communications of the ACM, v.18 n.6 pages 311-317. ACM Press, 1975.

65

[12] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, Markus Gross. Surfels:

Surface Elements as Rendering Primitives. In Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pages 335-342.

ACM Press, 2000.

[13] W. T. Reeves. Particle Systems—a Technique for Modeling a Class of Fuzzy

Objects. In ACM Transactions on Graphics, vol. 2 issue 2, pages 91-108. ACM

Press, 1983.

[14] Patrick Reuter, Ireneusz Tobor, Christophe Schlick, Sébastien Dedieu. Point

Based Modeling and Rendering Using Radial Basis Functions. In Proceedings of

the 1st international conference on Computer graphics and interactive techniques

in Austalasia and South East Asia, pages 111-118. ACM Press, 2003.

[15] Szymon Rusinkiewicz and Marc Levoy. QSplat: A Multiresolution Point

Rendering System for Large Meshes. In Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pages 343-352

ACM Press, 2000.

[16] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification

(Version 1.5), 2003.

http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf

66

[17] Richard Szeliski and David Tonneson. Surface Modeling with Oriented Particle

Systems. In Proceedings of the 19th annual conference on Computer graphics

and interactive techniques, pages 185-194. ACM Press, 1992.

[18] Demetri Terzopoulos, Hong Qin. Dynamic NURBS with Geometric Constraints

for Interactive Sculpting. In ACM Transactions on Graphics, v.13 n.2 pages103-

136. ACM Press, 1994.

[19] Greg Turk. Re-Tiling Polygonal Surfaces. In Proceedings of the 19th annual

conference on Computer graphics and interactive techniques, pages 55-64 ACM

Press, 1992.

[20] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide,

Wolfgang Stra_er. The Randomized Z-Buffer Algorithm: Interactive Rendering

of Highly Complex Scenes. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 361-170. ACM Press,

2001.

[21] Benjamin Watson, Alinda Friedman, Aaron McGaffey. Using Naming Time to

Evaluate Quality Predictors for Model Simplification. In Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 113-120.

ACM Press, 2000.

67

[22] Benjamin Watson, Alinda Friedman, Aaron McGaffey. Measuring and

Predicting Visual Fidelity. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 213-220. ACM Press,

2001.

[23] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, Markus Gross. Surface

Splatting. In Proceedings of the 28th annual conference on Computer graphics

and interactive techniques, pages 371-378. ACM Press, 2001.

	Trinity University
	Digital Commons @ Trinity
	11-16-2004

	Perceptual evaluation of point-based object representation
	Paul Schwarz
	Recommended Citation

	tmp.1273862996.pdf.ngOjR

