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A New Parallel Algorithm for Planarity Testing

Rebecca Ingram

Abstract

Determining whether a graph is planar is both theoretically and practically interesting.

Although several sequential algorithms have been introduced which accomplish planarity

testing in O(V ) time for graphs with V vertices, very few of these have been parallelized. In

a recent comparison of sequential planarity testing algorithms, the newest algorithms were

found to be fastest; however, these are the ones which have not been parallelized. The goal

of this thesis is to introduce a method for parallelizing one of the newest planarity testing

algorithms.
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Chapter 1

Introduction

1.1 Motivation

With the development of multi-core and multi-processor systems that are capable of com-

pleting more and more tasks in parallel, it is increasingly important to develop algorithms

which can take full advantage of these capabilities. Some tasks, however, have been found to

be more easily parallelizable than others. For example, if one wanted to add a list of num-

bers, one could simply assign equal portions of the list to each process or thread, compute

the sums of these smaller lists, and then add all of the results together.

In contrast, the parallelization of graph algorithms is much less straightforward. Perhaps

a large part of the difficulty lies in the fact that graphs have a kind of inherent irregularity in

that each vertex may be adjacent to any number of other vertices in the graph. Furthermore,

there is not always a pattern in these connections between vertices. These “irregularities”

contribute to difficulties in dividing the work into subtasks so that the workloads are well-

balanced.

One such problem is planarity testing. A graph is planar if it may be drawn in such a
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way that no pair of edges intersects. In addition to being of theoretical interest, determining

whether a given graph is planar also has practical applications. For example, in VLSI it is

important to determine whether a circuit diagram is planar because an edge crossing will

cause a short circuit. Furthermore, according to Garey and Johnson [6], many instances

of NP-complete problems, such as finding cliques, bipartite subgraphs, max cut, feedback

arc sets, and graph isomorphisms may be solved in polynomial time if the input graph is

planar.

Several sequential algorithms have been proposed to solve the planarity testing problem.

The algorithm introduced by Hopcroft and Tarjan [8] was the first to accomplish planarity

testing in O(V ) time, where V is the number of vertices in the graph. Later, Booth and

Lueker described the PQ-tree data structure, which can be used as part of a planarity testing

algorithm. More recently, Shih and Hsu [15, 9] introduced the PC-tree data structure,

which is simpler and faster than PQ-trees. Boyer and Myrvold [5] described a different

algorithm based on construction of biconnected components, which is considered by some

to be identical to the algorithms used with PC-trees [7].

Although several sequential algorithms exist which can test for planarity in O(V ) time,

only a few authors seem to have addressed the problem of parallelizing planarity testing

algorithms. Klein and Reif [11] describe parallel algorithms for the PQ-tree data structure

(which will be further discussed later), and Bader and Sreshta [1] identify errors in [11] and

other algorithms based on it and provide corrections for them. Ramachandran and Reif

[14] describe a parallel planarity testing algorithm based on open ear decomposition.

The following sections provide the terminology needed to understand how planarity

testing is done, introduce a few sequential planarity testing algorithms to familiarize the

reader with some commonly used techniques, describe Boyer and Myrvold’s edge addition

method, and finally lead up to the proposal of a parallelization of Boyer and Myrvold’s
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algorithm.

1.2 Terminology

In order to prevent confusion, the definitions of the graph-related terms that will be used

throughout are provided. Readers already familiar with these concepts are invited to skip

ahead to Chapter 2.

Readers are assumed to be familiar with the standard definition of a graph (a set of

vertices and edges), as well as the meanings of connected components, cycles, and subgraphs.

Throughout, assume that V represents the number of vertices in a graph, and that E is the

number of edges.

A graph is planar if it may be drawn in a plane such that no pair of edges intersects; this

planar representation is called an embedding. One point that should be discussed here is

how embeddings can be represented and differentiated from each other. Although a graph

can be completely described as a set of vertices and edges, this is insufficient for embeddings.

To describe an embedding, the order in which edges are arranged around a vertex is used.

This ordering is called the orientation of a vertex. Edges may be listed in either clockwise

or counterclockwise order, as long as the use is consistent throughout. Notice that reversing

the orientation of all vertices (that is, switching from a clockwise order to a counterclockwise

order or vice versa) produces a graph which is a mirror image of the original. Reversing

the orientation of the vertices does not affect whether or not an embedding is planar, and

PQ-trees, PC-trees, and the Boyer-Myrvold edge addition algorithm all take advantage of

this fact.

Another important concept is homeomorphism. McConnell and Hsu [10] describe this

idea in terms of subdivision. The subdivision of an edge with endpoints a and b is created



4

by adding a new vertex, say f , deleting the edge (a, b), and inserting the two new edges

(a, f) and (f, b). A more concise definition is provided in [5], which states that a graph is

homeomorphic to another graph if it is identical except that paths may replace some of the

edges. Refer to Figure 1.1 for an example.

a

b

c

d e

a

b

c

d e

f

Figure 1.1: A pair of homeomorphic graphs

Another important concept is that of biconnected components. Hopcroft and Tarjan

provide an excellent explanation of what they are. Given any pair of vertices, x and z, if

there is a third vertex y such that every path from x to z includes y, then y is a cut vertex

(also known as an articulation vertex), and the graph is not biconnected. Although they

do not discuss methods for doing so, [8] mention that it is possible to divide any graph

that is not biconnected into biconnected components in linear time. For this reason, some

planarity testing algorithms begin with the assumption that the input graph is biconnected.

Figure 1.2 demonstrates examples of biconnected and non-biconnected graphs.

Theorem 1.2.1. A graph is planar if and only if its biconnected components are planar.

One of the foundational ideas in studies of planar graphs is Euler’s formula, which defines

the relationship between the number of vertices, edges, faces, and connected components of

a graph. The faces of a graph are the regions of the plane which are separated by cycles of

the graph. The external face is the region typically considered to be “outside” the graph.

In Figure 1.2(b), the external face is defined by the cycle consisting of vertices a, c, d, b,
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a

b

c

de

a

b

c

de

Figure 1.2: A pair of graphs to illustrate biconnected components. The graph on the left
is not biconnected. Vertex b is a cut vertex. The graph on the right is biconnected. Every
graph may be divided into biconnected components. In the graph of the left, the biconnected
components are the subgraphs consisting of b, e, a and b, c, d.

and e. In order for Euler’s formula to be correct, the external face must be included in the

set of faces. According to [10], Euler’s formula states that:

Theorem 1.2.2. If F is the number of faces and C the number of connected components,

then V + F = E + C + 1.

This formula holds for all graphs and is used to derive several important properties of

planar graphs. For example, it has been shown that:

Theorem 1.2.3. E ≤ 3V − 6

The interested reader is referred to [13] for a proof. The fact that the maximum number

of edges in a planar graph is proportional to the number of vertices means that the number

of edges is O(V ). This makes it possible to bound the amount of time required for planarity

testing to O(V ).

Perhaps the most significant theorem regarding planar graphs is Kuratowski’s Theorem,

which states that

Theorem 1.2.4. A graph is planar if and only if it does not contain a subgraph homeo-

morphic to K5 or K3,3.
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K5 is the complete graph (every vertex is adjacent to every other vertex) with five

vertices, and K3,3 is the complete bipartite graph with three vertices. A bipartite graph

is one is which the vertices may be divided into two disjoint sets such that the vertices of

one set are only adjacent to vertices in the other set. A complete bipartite graph is one in

which every vertex of the first set is adjacent to all vertices in the second set and vice versa.

Refer to Figure 1.3 for pictorial representations of the two Kuratowski subgraphs.

(a) K5 (b) K3,3

Figure 1.3: Every non-planar graph contains a subgraph homeomorphic to one of the Ku-
ratowski subgraphs. K5 is the complete graph of five vertices and K3,3 is the complete
bipartite graph of six vertices.

Although many algorithms for planarity testing include techniques for identifying Kura-

towski subgraphs, they usually do not work by searching for these subgraphs, a task which

could easily require time proportional to V 6, if not longer [8]. Several common approaches

to planarity testing will now be discussed.



Chapter 2

Background and Related Work

2.1 Hopcroft and Tarjan

The first linear time algorithm for planarity testing was developed by Hopcroft and Tarjan

[8]. Unlike many later planarity tests, Hopcroft and Tarjan use a path addition approach,

which identifies the cycles in a graph and embeds these one at a time. Although their

method is very different from subsequent planarity testing algorithms and has also been

shown to be the slowest in a comparison of implementations performed by Boyer, et al.

[12], three of the ideas discussed in their paper have been used in several other algorithms,

and it is for this reason that their techniques will be introduced here.

The first of these three concepts is that of using a depth-first search (DFS) to explore

the graph and assign labels to vertices systematically. One advantage of this is that it

ensures that all vertices have a sensible label, i.e., vertices are numbered consecutively from

1 to V. More importantly, it guarantees that the labels have certain helpful properties. For

example, all vertices in the same connected component have a path to vertex 1 consisting

solely of lower-numbered vertices. A recursive definition of DFS is given in Figure 2.1. The

7



8

invocation Depth-First-Search(a, 1) will assign numbered labels to all vertices beginning

with vertex a. To number the vertices in reverse order, simply change the recursive call

in line 4 to use n − 1 instead of n + 1, and use Depth-First-Search(a, V ) for the initial

invocation.

Figure 2.1: Pseudo-code for a depth-first search

Depth-First-Search(v, n)

1 for w ∈ neighbors(v)
2 do if w is unlabeled
3 then label(w) ← n
4 Depth-First-Search(w, n + 1)

The second of the ideas used by almost all planarity testing algorithms is the depth-first

search tree (DFS tree), which is almost identical to the structure which [8] refers to as a

palm tree. The term DFS tree will be used since it is more common in recent literature. The

tree is constructed such that the children of a vertex are those vertices for which that vertex

calls Depth-First-Search() in the algorithm described above. The edges between parents

and children in the DFS tree are called tree edges and correspond to arcs in palm trees.

The remaining edges are called back edges and correspond to palm tree fronds. Typically,

the edges of the tree are considered to be directed: tree edges are directed from the parent

to the child, and back edges are directed from the descendant to its ancestor. Figure 2.2

depicts a graph and the corresponding DFS tree.

A third important idea used in [8] is that of lowpoints. The lowpoint of a vertex, v, is

the lowest numbered vertex reachable by a single back edge from v or one of its descendants.

In Figure 2.2, the lowpoint of vertex 5 is 2; however, if an edge were added between vertices

1 and 6, then the lowpoint of 5 would be 1 because vertex 6 is a descendant of 5 in the DFS
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1

2 3

4
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1

2

3
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6

b
ac

k
ed

ge

arc

Figure 2.2: A graph (left) with vertices labeled according to a DFS and the corresponding
DFS tree (right). In the DFS tree, solid arrows are tree arcs, and dashed arrows are back
edges. Arrowheads indicate the direction imposed on the edge.

tree.

To determine whether a graph is planar, Hopcroft and Tarjan first split up the graph

into its biconnected components and then use a DFS to explore each of these components

and construct a DFS trees. A recursive pathfinding algorithm is used to identify one cycle

and several paths. Note that because the edges of the DFS tree are assumed to have a

direction, the cycle must consist of two or more tree arcs and exactly one back edge. The

cycle is removed from the graph, dividing it into smaller segments. To test for planarity, an

attempt is made to construct a planar embedding, beginning with the cycle. Every segment

that is added to the embedding must be inserted either inside or outside the cycle. If a

conflict occurs, segments may be moved to the other side of the cycle; however, if a segment

cannot be inserted, then the graph is known to be non-planar. To ensure that the algorithm

can run in O(V ) time, two stacks named L and R are maintained to keep track of the side

of the cycle on which back edges are embedded. A block is defined as the maximal set of

back edges in L and R such that “the placement of any one of the [back edges] determines

the placement of all the others” [8]. Using the blocks and stacks, it can be shown that the
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algorithm runs in O(V ) time.

This method has a several disadvantages. First, the implementation details are some-

what cumbersome: two stacks and several blocks all have to be maintained and updated.

Furthermore, no method is given for isolating Kuratowski subgraphs, which means that the

algorithm only states whether a graph is planar or not; it does not provide any way to

identify edges that should be removed to make the graph planar. Also, as was mentioned

earlier, the implementation of this method tested in [12] was slower than implementations

of other planarity testing algorithms.

2.2 Booth and Lueker

The next major development in planarity testing was that of the PQ-tree, created by Booth

and Lueker in [2]. According to [2], the PQ-tree is a data structure designed to represent

the “permutations of a set U in which various subsets of U occur consecutively.” PQ-trees

have two kinds of nodes: P-nodes and Q-nodes. The children of P-nodes may be permuted

in any order, whereas the only acceptable permutations of the children of Q-nodes are the

order in which they are listed or reverse order. The main difficulty of PQ-trees lies in the

use of 11 templates which are used to determine when P-nodes and Q-nodes are added

to or removed from the tree. Although the visual representations are fairly intuitive, the

implementation details can be tedious.

The elements of PQ-trees are P-nodes, Q-nodes, and leaves. P-nodes and Q-nodes are

interior and always have descendants, which may be other nodes or leaves. The frontier of a

PQ-tree is the result of reading the leaves of a tree from left to right. The primary operation

for PQ-trees is Reduce, which takes as input a PQ-tree, T , and a set of elements, S, which is

a subset of the leaves of the PQ-tree and outputs a modified version of the original PQ-tree
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in which constraints are applied so that the elements of S occur consecutively.

A B C

D E

F G H

I

Figure 2.3: A PQ-tree with frontier A, B, C, D, E, F, G, H, I

To accomplish this, the PQ-tree is traversed in a separate procedure called Bubble,

which marks leaves that are part of S as full and all other leaves as empty. A node whose

children are all marked full is also marked as full, and nodes which have both full and empty

children are marked as partial. After Bubble is complete, Reduce applies the templates

where necessary, beginning at the bottom of the tree and moving toward the root. The goal

of Reduce is to modify the tree so that all leaves in S occur consecutively in the frontier of

the tree. To accomplish this, the templates are applied to eliminate partial nodes until at

most one remains. If a partial node remains, then it must be either a P-node which contains

as a child exactly one full node whose descendants are exactly the elements of S; or else a Q-

node whose children are all either full or empty and whose full children occur consecutively.

Notice that it is possible for Reduce to fail if the elements of S cannot be arranged so that

they occur consecutively in the tree. In this situation, a null tree will be returned. From this

point forward, the Reduction procedure will be defined as the procedure in which Bubble

is performed, followed immediately by Reduce. Reduction requires as input a PQ-tree and

a set S. (Note, this definition of Reduction is slightly different from that of [2], in which

the second input to Reduction is a set of sets, meaning that Bubble and Reduce will be

performed several times, once for each set.)
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Using an iterative vertex addition approach, the PQ-tree can be used to help test a

graph for planarity. This algorithm takes advantage of Theorem 1.2.1 to assume that the

input graph is biconnected. As a further restriction, the vertices are assumed to be labeled

from 1 to V such that vertices 1 and V are adjacent and all other vertices have at least one

neighbor with a smaller label and at least one neighbor with a larger label. According to

[2], it can be proven that such a labeling scheme can be created for any biconnected graph

in linear time. (The interested reader should note that this labeling technique is called an

s, t-numbering in the literature.)

In the PQ-tree used to test for planarity, the leaves of the tree are edges in the input

graph. The first step is to construct an initial PQ-tree consisting of one P-node whose

children are the edges incident to vertex 1. To insert vertex 2, reduce the tree using the

set of edges whose second endpoint is 2 (easy since there will only be one, namely edge

(1, 2)). Replace this set of edges with a P-node whose children are the edges whose first

vertex is 2 (such as (2, 3), etc.). Vertices 3 through V − 1 are inserted in the same way.

In general, to insert vertex v, reduce the tree with respect to the set of edges incident to

v (will include edges of the form (u, v), where u < v). After the reduction, all edges which

have an endpoint at v will be consecutive in the frontier of the PQ-tree. Replace all of these

edges with a P-node whose children are the back edges incident to v, that is, all edges of

the form (v, w), where v < w. If the reduction operation ever fails, the graph is non-planar.

Otherwise, if all vertices are successfully inserted, then the graph is planar.

The PQ-tree approach to planarity testing was the first vertex addition method that

could be done in linear time. However, the disadvantage is that the numerous templates

make the implementation much more complicated. This complexity provided the motivation

for the development of simpler planarity testing algorithms.
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2.3 Shih and Hsu

PC-trees were introduced by Shih and Hsu [15, 9] specifically to represent partial embeddings

of planar graphs and were intended to be simpler to use than PQ-trees. It was later observed

that PC-trees are actually a generalization of PQ-trees and that by using a free tree rather

than a rooted tree all, of the PQ-tree templates could be reduced to one case. Furthermore,

it was demonstrated that PC-trees can be converted to PQ-trees by adding a “dummy”

node to serve as a root [10].

Despite their similarity to PQ-trees, the planarity testing algorithm which uses PC-trees

is very different from that for PQ-trees. In Shih and Hsu’s planarity testing algorithm, P-

nodes represent cut vertices of the partial embedding, and C-nodes represent biconnected

components [4]. As in PQ-trees, the children of P-nodes may be permuted in any order.

Children of C-nodes are restricted to either a cyclic ordering or its reverse.

The algorithm begins by constructing a DFS tree and creating a PC-tree consisting of

all of the vertices and tree arcs. Each vertex, i is visited in reverse DFS order, and all back

edges incident to i and its descendants are embedded at iteration i. Essentially, at each

iteration, a “terminal path” is identified, checks are made to ensure that embedding the

back edges of the current iteration does not result in a non-planar graph, and C-nodes are

inserted where necessary to indicate the creation and merging of biconnected components.

To explain a terminal path, the concepts of i-subtrees and i*-subtrees are intro-

duced. At each iteration, the back edges entering vertex i are considered for embedding.

The i-subtrees are the descendants of i which have back edges to i; i*-subtrees are

those which have back edges to ancestors of i. Terminal nodes are identified as those which

have descendants that have both i-subtrees and i*-subtrees and which do not have any

other descendants that could be considered terminal nodes. A planar graph may not have
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more than two terminal nodes (readers interested in a proof are referred to [15]). If there

are two terminal nodes, the path between them in the PC-tree is referred to as the terminal

path, and, according to [4], this is where conditions for non-planarity will occur. If there is

only one terminal node, then u′ is the earliest node in the tree that contains an i*-subtree,

and the terminal path extends from the terminal node to u′ in the tree.

If conditions for planarity are met (for a complete description of these conditions, refer

to [3]), a C-node including the “essential nodes” on the terminal path may be inserted. The

essential nodes are those which have back edges to vertices larger than i and therefore have

edges that have not yet been embedded. These vertices will appear on the representative

bounding cycle (RBC) of the biconnected component represented by the new C-node. In

a visual representation of the graph, these vertices would appear in the cycle defining the

external face. After all vertices have been examined and all back edges embedded without

the conditions being met for non-planarity, the graph is declared planar.



Chapter 3

Boyer and Myrvold: Edge Addition

3.1 Overview

The planarity testing algorithm of most interest for this thesis is Boyer and Myrvold’s

edge addition method [5]. The algorithm “exploits the fact that subgraphs can become

biconnected by adding a single edge” [5]. It essentially works by constructing several small

biconnected components in a new graph, G′, and merging these together when an edge is

embedded whose endpoints are in what were previously separate biconnected components

in G′.

Unlike other algorithms, this method does not assume that the input graph, G, is

biconnected because the biconnected components will be constructed in G′ as the partial

embedding is created. A key observation for this to work correctly is that in a DFS tree

each vertex has a path of lower numbered ancestors leading to the root. This means that

all of these lower numbered ancestors must be embedded in the same face of G′. For

simplicity, this face is designated as the external face of G′. As edges are embedded, a

check is performed to identify vertices which have back edges in G that have not yet been

15
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embedded, and these are marked as externally active. The externally active vertices are

then required to remain on the external face of their biconnected component in G′. For

this reason, a flipping operation is defined which allows the orientation of biconnected

components to be flipped. For example, if the order of vertices on the cycle defining the

external face were initially a, b, c, d, then the new order of vertices after the flip would be

a, d, c, b. An example is given in Figure 3.1, and the pseudocode as it appears in [5] is

included in Appendix A. A more in-depth explanation of the details of the algorithm will

now be provided.
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Figure 3.1: Example execution of a step in Boyer and Myrvold’s edge addition algorithm,
reproduced from [5]. Vertices enclosed in squares are externally active. The first part
shows G′ immediately before the embedding of edge (1, 4). After that, the second part
demonstrates the flip operation for the biconnected component with root 34, which must be
performed because vertex 6 is externally active. The third part shows the actual embedding
of edge (1, 4) in such a way that the externally active vertices 2 and 6 remain on the external
face.
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3.2 Implementation Details

Specifically, the algorithm works in the following way. First, a DFS tree is constructed and

the lowpoint values for vertices in the input graph, G are computed. Refer to Section 2.1

for information about lowpoint calculations. Also, to aid in determining quickly whether or

not a vertex is externally active, each vertex, v is given a separatedDFSChildList which

consists of the neighbors of v that are in a separate biconnected component in G′. At

initialization, this list should include all neighbors of v. When a biconnected component

containing v and its DFS parent is merged with a biconnected component with v as the cut

vertex, the second component must contain at least one child of v, which is then removed

from v’s separatedDFSChildList.

Vertices are examined in reverse order, and all edges from a vertex to its descendants in

the DFS tree are embedded before proceeding to the next vertex. Consider the embedding

process for vertex v. First, create a new biconnected component in G′ consisting of a

“virtual vertex,” vc, vertex c, and an edge connecting these two vertices for each child c of

v. Note, v may have more than one child, which would result in the creation of multiple

biconnected components. Hence, the root of the new component is called vc to distinguish

it from the roots of other biconnected components. Vertex v is treated as if it is a cut vertex

until an edge is added with endpoints in the biconnected components containing v and vc,

at which time vertices v and vc are merged. After the edges between v and its children in

the DFS tree are embedded, a Walkup of the G′ is performed for all back edges incident to v

and a descendant w. For convenience, call these back edges between v and its descendants

the back edges of v.
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3.2.1 Walkup

The goal of the Walkup is to identify the pertinentRoots, that is, the roots of the bi-

connected components that will be merged as a result of embedding the back edges of v.

Each vertex w with a back edge to v must be on the external boundary of its biconnected

component because it is externally active. For each such vertex w, begin with w in G′ and

proceed simultaneously clockwise and counterclockwise, visiting vertices on the external

face in w’s biconnected component until the root, say rs is found. Vertex rs is added to the

list of pertinentRoots, and then the biconnected component containing r is searched for

its root vertex and so on until rs is equal to vc, where c is a child of v in the DFS tree.

3.2.2 Walkdown

After the Walkup, a Walkdown of G′ is performed for each DFS tree child c of v. The overall

aim of the Walkdown is to actually embed the back edges incident to v and each of its

descendants. If a descendant, w, is in a separate biconnected component in G′, then two

or more biconnected components may need to be merged. Essentially, the Walkdown begins

at vertex vc and must explore paths in both directions (clockwise and counterclockwise)

along the external face cycle. When a vertex in pertinentRoots is found, say r, the search

continues in the biconnected component rooted at rs. The Walkdown is searching for a path

along which edge (v, w) may be embedded; therefore, it cannot traverse past an externally

active vertex because embedding the edge there would “block in” that vertex, making it

impossible to embed a future edge. When the Walkdown descends to rs, the traversal of this

biconnected component will either proceed in the same direction as that of the previous

biconnected component or else in the opposite direction, depending whether or not there

are externally active vertices present. If the traversal proceeds in the opposite direction,
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the component must be flipped before the edge is embedded.

After the Walkdown, it is important to ensure that all back edges incident to v and its

descendants were successfully embedded. If not, the graph is known to be non-planar, and

a subgraph homeomorphic to either K5 or K3,3 is identified.

After all vertices have been examined and all edges are embedded, a planar embedding

indicating the order of edges around each vertex and the orientation of the biconnected

components in G′ can be retrieved. Refer to [5] for information on how to do this.



Chapter 4

Parallelizing Edge Addition

4.1 Shared Memory Model

To parallelize Boyer and Myrvold’s edge addition algorithm, a shared memory model was

selected. In the course of execution, the algorithm constructs several small biconnected

components. If a message passing model were employed, about half of these biconnected

components would have to be sent between processes at every merge step, which could be

prohibitively expensive, especially for large graph sizes.

4.2 Initialization

Before beginning, a DFS tree should be constructed to assign labels to vertices, and edges

should be sorted according to the following constraints:

• For each edge (v, w), v < w

• Edges are sorted by descending order of v and then by ascending order of w, e.g.,

(2, 3), (1, 2), (1, 3)

20
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Edges are to be distributed equally among the threads, so it is important that each edge

appear only once. Recall from Chapter 3 that a back edge from vertex v to a descendant

w is embedded when v is explored. If a list were made of the order in which edges were

embedded in the sequential algorithm, edge (5, 6) would be added before (3, 5). Recall that

when a vertex v is visited in the sequential algorithm, the edges from v to its children in the

DFS tree are embedded first, followed by any other back edges from v to its descendants.

Further, recall that in the DFS tree every vertex has a smaller number than any of its

descendants. Thus, as long as edges from v to its descendants are embedded by ascending

order of the descendants of v, the every edge from v to one of its children is guaranteed to

be embedded before the edges from v to the descendants of that child. The sorted order

of the edges then roughly mimics the order in which edges are embedded by Boyer and

Myrvold’s algorithm.

Throughout, assume that there are t threads numbered from 1 to t. Edges will be

distributed evenly among threads in reverse sorted order, so thread t will be given the edges

at the beginning of the sorted list of edges. The input graph G and the DFS tree T created

when labeling the vertices are assumed to be accessible by all threads. Each thread will

have its own G′, and as a notational convenience to distinguish between the G′ of different

threads, Gi will be used to refer to the G′ constructed by thread i.

4.3 General Procedure

The general idea of the parallelized version of the algorithm is that each thread is assigned

a portion of the edges, which are embedded into Gi in a similar fashion to that of the

sequential algorithm, with some exceptions that will be discussed later. After each thread

has finished, the Gi are merged pairwise (if there are an odd number of threads, thread 1
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does not merge). Thus, all of the Gi will be merged in log2(t), steps where t is the number of

threads. As a notational convenience, renumber the threads after each merge step, so that

if there are t threads before the merge, then there are ⌈t/2⌉ threads numbered sequentially

beginning with 1.

The exceptions alluded to earlier will now be explained. First, observe that Gi is initially

empty, so embedding some edges can result in the creation of new vertices in Gi. However,

because the edges are distributed among threads, it could be the case that if all edges were

embedded a vertex, say v, might be created in several different Gi. If multiple copies of

the same vertex are created, these will eventually have to be merged, which would require

locating all of the copies and then identifying sets of conditions in which vertices may and

may not be merged. Although virtual vertices may at first appear to do exactly this, they

are slightly different in that they are created in a controlled way; i.e., they are only created

between parents and children in the DFS tree. Rather than creating multiple copies of the

same vertex and attempting to merge them later, edges which could cause this problem

are marked as pending and temporarily skipped until a merging operation occurs. An edge

(v, w) in thread i should be marked as pending when both of the following conditions hold:

• w is not a child of v in the DFS tree

• v or w is not already present in Gi

This means that immediate children of v in the DFS tree are always embedded imme-

diately. Any edges that could cause two biconnected components in Gi to merge may also

be embedded. Edges which could result in merging a component in Gi with one in another

thread are marked as pending. Another attempt to embed them will be made when threads

are merged. Note that because of the constraints defined in Section 4.1, w must be a

descendant of v in the DFS tree. The merge operation occurs after all edges except those
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marked as pending have been embedded. Because edges are distributed equally among

threads, it is possible that edges from a vertex v to its descendants are divided among

multiple threads. In the case where v has one DFS child, this edge will be the first one

embedded, edges to other descendants will be embedded after the merge operation. If v has

multiple children in the DFS tree, the edges to these children may or may not be on the

same thread, but they are embedded first, regardless.

Suppose that during the merge operation, Gi is merged with Gi+1. All of the biconnected

components in Gi+1 are added to Gi, and the pending edges marked by Gi are examined

to determine if any of them may now be embedded.

Theorem 4.3.1. Pending edges marked in thread i + 1 will remain pending after a merge

operation between Gi and Gi+1.

Proof. Consider one such edge (v, w) that was marked as pending in thread i + 1. It is

already known that w was not present in Gi+1, so the edge can only be embedded in Gi if w

was present in Gi before the merge occurred. Consider how it would be possible for vertex w

to be in Gi already. It must be the case that an edge with an endpoint at w was successfully

embedded, i.e., it was not marked as pending. Also, recall that edges are distributed among

threads in reverse order. Clearly, for every edge (t, u) in Gi, t ≤ v. Therefore, any edge

in thread i incident to w must be a back edge from w to an earlier numbered vertex, say

s, where s < v. In order for edge (s, w) to be embedded, it must be the case that at least

one of the conditions listed above is violated. Since the goal is to determine how it was

possible for vertex w to be added to Gi in the first place, assume that the second condition

holds; therefore, it must be the case that w is a child of s in the DFS tree. However, it has

already been stated that w has a back edge to v, so v must be an ancestor of w in the DFS

tree. Since s is the parent of w, it must also be the case then that v is an ancestor of s in
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the DFS tree. However, if v is an ancestor of s, then v < s, a contradiction to the earlier

statement that s < v. Thus, w could not have been present in Gi before the merge, and

(v, w) will not be embedded in Gi after the merge occurs.

4.4 Revised Embedding Process

Boyer and Myrvold’s algorithm relies on the fact that each vertex has a path through lower-

numbered vertices to the DFS tree root, which means that at any point in the execution, all

as yet unprocessed vertices can be embedded in a single face of G′. This face is assumed to

be the external face. Due to the fact that edges are not necessarily processed in this order,

this constraint no longer holds, so some additional observations are necessary to allow the

parallel algorithm to work.

First, we observe that the criteria for externally active vertices still hold, despite the

parallel nature of the algorithm. On any given thread, edges are processed by decreasing

value of v, so it is still the case that every vertex has a path in the DFS tree through lower

numbered, unprocessed vertices, and all of these must still be embedded in a single face of

G′, which will be assumed to be the external face.

In addition to the externally active vertices, consider an edge (v, w) in thread i which

is marked as pending, where vertex v is in Gi. The problem is that v can not simply be

assumed to be on the external face of Gi. In fact, it is fairly easy to construct an example

in which this assumption causes a planar graph to be called non-planar. Suppose that all

vertices with unembedded back edges were marked as externally active and kept on the

external boundary. Consider the graph in Figure 4.1, which is clearly planar.

Now, imagine that the edges are distributed in such a way that the biconnected compo-

nents depicted in Figure 4.2 are created in two separate threads. All vertices in this figure
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Figure 4.1: Graph to be used in a counter-example demonstrating that vertices cannot all
be assumed to be externally active in parallelizing edge addition.

would be marked as externally active because they all have unembedded edges. Those in

the subgraph on the left all have unembedded edges to the vertices in the subgraph on the

right and vice versa. To indicate that the vertices are externally active they are drawn in

squares.
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Figure 4.2: Two potential biconnected components created from the graph in Figure 4.1 in
separate threads

Figure 4.3 demonstrates what would happen if these threads merged their results as they

would in the original, sequential algorithm and began embedding edges that had previously

been marked as pending. The component on the right in Figure 4.2 would have to be flipped

first; otherwise edge (j, o) could not be embedded. After that, embedding edge (h, p) is still

an issue because inserting it in one orientation results in blocking externally active vertex
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i, and inserting it the other direction blocks vertices g and l. This failure to embed edge

(h, p) would result in the graph being declared non-planar, despite the fact that it clearly

is planar.

g
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k

l

m

n o

p

Figure 4.3: Problems arise when attempting to embed edge (h, p) because externally active
vertices are blocked.

Clearly, the solution to this problem revolves around realizing that the component on

the right side of Figure 4.2 should be embedded within the component on the left side of

the same figure. This leads to the following definitions and theorem.

Definition 4.4.1. If there is an edge (v, w) in thread i which is marked as pending, then v

is called a partially active vertex.

Definition 4.4.2. The process of embedding one biconnected component within another is

called submerging.
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Theorem 4.4.1. If a graph is planar, then for any biconnected component bi in thread

i, which must be merged with biconnected component bj in thread i + 1 there exists a set

of partial vertices in bi which if edges were added between them would form a cycle within

which bj could be submerged.

For an example of Theorem 4.4.1, consider Figure 4.3. The component referred to as bi

is the one consisting of vertices g, h, i, j, k, l, and component bj includes vertices m, n, o, p.

The set of partial vertices in bi includes all of the vertices because they all have back edges

to vertices in bj . Note that the vertices in bj are still considered externally active in the

sense that they have unembedded back edges to lower numbered vertices. Although the

submerging process can result in these vertices no longer being on the external face of their

new biconnected, this is not a problem because all of their back edges are to vertices on the

cycle into which their component has been submerged.

Figure 4.4 shows the two cases for what a final graph could look like after the biconnected

component consisting of vertices v, w, x, y, z, call this component B, has been submerged.

It is either the case that no elements of B will remain on the external face or that some

of them will be on the external face. Vertices v, y, z are drawn in squares to indicate that

they were externally active before B was submerged because they had unembedded back

edges. The graph on the left represents the case in which B is completely submerged, and

no vertices in B are on the external face. Cycle C consists of vertices a, b, c, d, e, f . Note

that vertices v, y, z are no longer externally active after the embedding: it is assumed that

their only back edges were to members of C. The graph on the right shows the case in which

B is not completely submerged in that some vertices remain on the external face. Cycle

C consists of vertices a, e, f , and again note that vertices v, y, z are drawn in squares to

indicate that they were externally active before the submerging process. Although vertices
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Figure 4.4: Graphs demonstrating the two cases for submerging the biconnected component
consisting of vertices v, w, x, y, z.

v and y may still be externally active, vertex z is assumed to have all back edges embedded

now.

Proof of Theorem 4.4.1. Recall that when the edges of thread i+1 are embedded, all exter-

nally active vertices remain on the external boundary. Clearly, the biconnected component

bj cannot be embedded across multiple faces of bi, as this would cause at least one pair

of edges to intersect. Therefore, bj must be embedded in a single face of bi, which may

or may not be the external face, if it may be embedded at all. Every face in the graph is

defined by a cycle of vertices. Call the cycle around the face in which bj is embedded C.

If bj is embedded on the external face of bi, then C consists of the vertices that were on

the external face cycle of bi before bj was embedded. Every vertex to which the externally

active vertices in bj have a back edge must be in cycle C. Therefore, every partial vertex

in bi that is adjacent to an externally active vertex in bj must be in C.

It is possible that C includes additional vertices that are not partial vertices; however,

these do not have back edges to any vertices in bj (otherwise, they would be partial vertices),

and, if they have back edges to vertices in C other than their two immediate neighbors in
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the cycle, these may be embedded “outside” of cycle C, otherwise some vertices would not

have been included in C.

Consider two partial vertices in C, say v1 and v2 which are separated in C (in one

direction) by one or more non-partial vertices, but no partial vertices. For the theorem to

hold, it must be possible to embed an edge between v1 and v2 within cycle C, eliminating

the non-partial vertices between v1 and v2 from C without causing any edges to cross. As

an example, consider the graph on the left side of Figure 4.4. The two partial vertices b

and d are separated by a non-partial vertex c. For the theorem to hold, it must be possible

to insert an edge (b, d) into the graph if the edge does not already exist. Note that if such

an edge had already been embedded, the theorem would hold trivially. If this edge were

inserted, it would not intersect any outgoing edges from the non-partial vertices for the

following reasons. If a non-partial vertex had outgoing edges to other vertices in the cycle

(other than than its two immediate neighbors in the cycle), these edges could not span

across any partial vertices because they would intersect with edges between the partial

vertices and bj . In Figure 4.4, vertex c could not have edges to vertices on the cycle other

than b and d that were embedded within cycle C because these edges would intersect with

edges incident to b or d and the submerged component. Furthermore, since c is non-partial,

it does not have any back edges to vertices in the submerged component. Therefore, edge

(b, d) could not intersect any edges incident to the non-partial vertex c.

The edge between v1 and v2 cannot intersect any edges between partial vertices in the

cycle either because there are, by assumption, no partial vertices in the cycle between v1

and v2. In Figure 4.4, it is fairly easy to see that no edge between b and any other partial

vertex could intersect with an edge from b to d.

The last case is that edge (v1, v2) intersects with an edge between a partial vertex in

C and bj , but this is also impossible because of the assumption that there are no partial
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vertices on the cycle between v1 and v2. In Figure 4.4, the edge (b, d) could not intersect

an edge between any other partial vertex and the submerged component. Since vertex c is

non-partial, it cannot have any edges to vertices in the submerged component. Therefore,

the theorem holds.

4.5 Summary of Method

In order to account for the possibility that some biconnected components must be sub-

merged, certain changes must be made to the algorithm. Below is a brief overview of how

the parallelized algorithm will work:

1. Perform a DFS to label all vertices and construct a DFS tree.

2. Divide the edges evenly between threads as described in Section 4.2.

3. For the first iteration, embed edges as described in [5], with the exception of pending

edges as described in Section 4.3.

4. Merge threads pairwise. If there are an odd number of threads, thread 1 is left out.

For each pair of threads i and i + 1, add the biconnected components of Gi+1 to Gi.

5. For each edge (v, w) that was marked as pending by thread i, determine if it may now

be embedded. If not, leave it marked as pending. Otherwise, identify the biconnected

components of Gi+1 that should be submerged and submerge them. If one or more

components cannot be submerged, mark the graph as non-planar.

6. Continue until all edges that were pending in thread i have been reconsidered for

embedding. Some edges may still be pending.
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7. Repeat steps 4 through 6, merging threads pairwise until the graph is found to be

non-planar or only one thread remains and all edges have been embedded.

In order for this algorithm to work effectively, some additional data and procedures must

be defined. A description of some of the new implementation details will now be provided.

4.6 Implementation Details

In order to accommodate the changes introduced in the parallelization, some additional

information and procedures need to be included. The goal is to keep track of the cycle

of vertices into which biconnected components will be embedded in the future. When a

partial vertex is identified, it is added to a list of partial vertices local to the current thread.

The first time this occurs, create a new biconnected component consisting of the partial

vertex p and a temporary vertex B, which represents the biconnected component that will

be submerged at some time in the future. Each time a partial vertex is identified, embed

an edge from the newest partial vertex to B. The idea is that these edges represent the

back edges between partial vertices and the biconnected component that will be embedded

in the future. It also ensures that a cycle containing all of the partial vertices is maintained.

Note that B need not remain in the external face, since it represents a component that will

be submerged. In fact, B should not be embedded in the external face if it would obstruct

externally active vertices; however B should be kept on the external face whenever possible.

Any partially active vertices encountered in the future must also have an edge to B. This

maintains the cycle and ensures that if an edge to B cannot be embedded then the graph

will be declared non-planar. Figure 4.5 demonstrates this idea by showing where vertex q

would be inserted in place of the biconnected component formed by vertices m, n, o, p.
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Figure 4.5: Vertex q is inserted as a temporary placeholder for the biconnected component
consisting of vertices m, n, o, p until that component may be submerged.

4.6.1 A Special Case

It is possible that a biconnected component, C, which itself contains partially active vertices

will need to be submerged within another component D. There are two cases for this

situation:

1. The temporary vertex in C is on the external face.

2. The temporary vertex in C is not on the external face.

Call the temporary vertices in C and D V and W , respectively. In case 1, V and W

will essentially merge so that all vertices in C which had edges to V will now have edges

to W , and V will no longer exist. Pending edges between vertices in C and D will then be

embedded.

If instead case 2 applies and the V is not on the external face of C, then there are two

possibilities:

1. All pending back edges incident to W and other vertices in D may be embedded as a

result of submerging C.
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2. Some back edges incident to W and other vertices in D are still pending after C is

submerged.

In the first case, W may simply be eliminated and all edges that were incident to W may

be embedded. For the second case, recall that it was earlier stipulated that the temporary

vertex be kept on the external face whenever possible, which means that V is embedded

within a cycle. If not all back edges incident to W and vertices in D are embedded, this

implies that some of the partial vertices in D are incident to elements of the biconnected

component represented by temporary vertex V . If this is the case, then the graph must be

non-planar. This is because the component represented by V must be submerged in the

interior of C (otherwise V would be on the external face), and yet some vertices in D are

adjacent to vertices in the biconnected component represented by V (otherwise all edges

incident to W could have been embedded).

4.6.2 Submerging Components

After components which must be submerged are identified, the only task remaining is to

actually submerge them. This procedure is similar to the original embedding process. When

threads i and i+1 are merged, the edges of i that were marked as pending are reconsidered

for embedding. Edges (v, w) that are no longer pending are embedded by descending order

of v and ascending order of w (i.e., the same order in which edges were sorted prior to

distribution among threads). Before embedding, identify the partial vertices that will no

longer be partial after all pending edges are embedded, and remove the edges between

these partial vertices and their temporary vertex. This is important to prevent incorrect

identification of the graph as non-planar. If the temporary vertex has no edges left, delete

it from the graph.
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Now, consider the first edge, (v, w) that is to be embedded. Clearly, v and w are in

separate biconnected components, one of which was on thread i and the other of which was

previously on thread i+1 (otherwise the edge and both vertices would have been on thread

i, and the edge would not have been marked as pending). The biconnected component con-

taining w will be inserted in the same place that the temporary vertex of the biconnected

component containing v was. The first pending edge examined may be inserted without

difficulty. To embed subsequent pending edges, care must be taken that edges are not per-

mitted to cross and that “externally active” vertices in the component being submerged

remain on that component’s external face. Note that because the component has already

been submerged, these externally active vertices may not actually be on the external face

of their new biconnected component. This may be accomplished using modified versions of

Walkup and Walkdown. The change that must be made is that if the component must be

flipped, then the pending edges that have been embedded must be rechecked to ensure that

flipping the component will not result in any of them being incorrectly embedded. One

fairly straightforward way to do this would be to keep a stack containing edges that are

embedded during the submerging of a biconnected component. If the component is success-

fully embedded without need to flip, then the stack is cleared after all edges are inserted.

Otherwise, if a flip occurs, pop the stack to identify edges which must be reconsidered for

embedding. Delete edges from the graph as they are popped from the stack, and then begin

again trying to reinsert them in order. If they cannot be successfully embedded, declare the

graph non-planar; otherwise the graph is planar.



Chapter 5

Conclusions and Future Work

This thesis presents a new parallel planarity testing algorithm based on Boyer and Myr-

vold’s sequential edge addition algorithm and an argument for its correctness. Although

a complete analysis of the complexity has not been conducted, this is one area for future

research. Another potential area for research is implementation. This algorithm has not

yet been implemented. Bader and Sreshta [1] state that they “have efficient shared memory

implementations for most of the major steps involved in the[ir] algorithm,” which seems to

imply that they do not have a complete implementation. A search for implementations of

other parallelized planarity testing algorithms was also unsuccessful; nor do there seem to

be any published articles addressing this issue. Testing is needed to determine how much of

a speed advantage these different parallelization techniques offer. It may be that they offer

a significant speedup, or it could be that none of the proposed solutions offers any sizeable

advantage.
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Appendix A

Boyer and Myrvold: Edge Addition

The pseudocode for Boyer and Myrvold’s edge addition algorithm as it appears in [5] is

reproduced here for convenience.

Planarity(G)

1 Perform depth first search and lowpoint calculations for G
2 Create and initialize G′ based on G, includng creation of

separatedDFSChildList for each vertex, sorted by child lowpoint
3 for each vertex v from V − 1 down to 0
4 do for each DFS child c of v in G
5 do Embed tree edge (vc, c) as a biconnected component in G′

6 for each back edge of G incident to v and a descendant w
7 do Walkup(G′, v, w)
8 for each DFS child c of v in G
9 do Walkdown(G′, vc)

10 for each back edge of G incident to v and a descendant w
11 do if (vc, w) /∈ G′

12 IsolateKuratowskiSubgraph(G′, G, v)
13 return (NONPLANAR, G′)
14 RecoverPlanarEmbedding(G′)
15 return (PLANAR, G′)
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