
Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

4-22-2009

Agent Communication in Multi-Agent Models of
Information Cascades
Jennifer West
Trinity University

Follow this and additional works at: http://digitalcommons.trinity.edu/compsci_honors

Part of the Computer Sciences Commons

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,
please contact jcostanz@trinity.edu.

Recommended Citation
West, Jennifer, "Agent Communication in Multi-Agent Models of Information Cascades" (2009). Computer Science Honors Theses. 22.
http://digitalcommons.trinity.edu/compsci_honors/22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trinity University

https://core.ac.uk/display/216383509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors/22?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Agent Communication in Multi-Agent Models of Information Cascades

Jennifer West

A departmental thesis submitted to the

Department of Computer Science at Trinity University

in partial fulfillment of the requirements for Graduation.

April 22, 2009

Thesis Advisor Department Chair

Associate Vice President

for

Academic Affairs

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License. To view a copy of this license, visit

<http://creativecommons.org/licenses/by-nc-nd/2.0/>or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

Agent Communication in Multi-Agent Models of

Information Cascades

Jennifer West

Abstract

Understanding how information is transmitted and how an information cascade is formed

has many applications both in understanding political and economic behavior and how to

best implement economic and public policies. Many papers have shown that information

cascades do occur, but they always describe a very basic situation that does not occur often

in the real world. To further understand information cascades in more complex conditions,

I extended a multi agent simulation model that set out to investigate information cascades

in the motion picture industry. I extended the model by allowing agents to speak to other

agents before making a movie viewing choice. By allowing agents to communicate, the

agents were more effective in choosing high quality movies. How the information cascade

presented itself altered with the agent communication. Information cascade occurred in

the information the agents transmitted to one another. This resulted in the agents choices

focusing their movie choices over a smaller number of movies. This result shows that given

a large variety of choices where many are good choices, cascading on a single choice becomes

more difficult.

Acknowledgments

I would like to thanks my thesis committee of Dr. Lewis, Dr. Watson, and Dr. Zhang

for reading through the thesis and providing helpful comments. I would additionally like

to thanks Dr. Lewis for helping me come up with the topic, and helping with the project.

I would like to thank Dr. Watson for being tremendously helpful with any questions I had

about the economic aspects of the project. Finally, I would like to thank my sister Amy for

generally being an awesome sister.

Agent Communication in

Multi-Agent Models of

Information Cascades

Jennifer West

Contents

1 Introduction 1

1.1 Introducing Information Cascades . 1

1.2 Background . 3

1.3 Other Models . 5

1.4 Motivation . 8

2 The Approach 11

2.1 Base Model . 11

2.2 Extended Model . 13

3 Base Model Results 22

3.1 Analysis of Correct Choices . 22

3.2 Cascade Analysis . 24

4 Extended Model Results 29

4.1 Analysis of Correct Choices . 29

4.2 Cascade Analysis . 34

5 Conclusion and Recommendations 45

5.1 Conclusion . 45

5.2 Reconmendations . 46

A Base Model Agent 51

B New Model Agent 54

C Agent Decision Making Class 63

D Media Agent 71

List of Tables

3.1 Correctness of Choice for Base Method . 23

4.1 Correctness of Choice for Extended Model p=0.55 31

4.2 Correctness of Choice for Extended Model p=0.95 33

List of Figures

1.1 Effect of Alpha on the Probability Density Function 7

2.1 Base Model Agent Start Up . 12

2.2 Base Model Agent Decision Tree . 14

2.3 Extended Model Agent Setup and Movement 16

2.4 Agent Movie Preference Decision Tree . 19

2.5 New Model Agent Movie Decision Tree . 21

3.1 Base Method C and D Values . 23

3.2 Base Method Agent Choices for p=.95 . 24

3.3 Base Method Agent Choices for p=.55 . 25

3.4 Base Method Alpha Values . 28

4.1 Extended Method C and D Value for p=.55 30

4.2 Extended Method Change in C and D Value for p=.55 30

4.3 Extended Method C and D Value for p=.95 32

4.4 Extended Method Change in C and D Value for p=.95 32

4.5 Extended Method Agents Choices for pi=.55 35

4.6 Extended Method Agents Choices for pi=.95 36

4.7 Extended Method Agents Choices for pi=.55 37

4.8 Extended Method Agents Choices for pi=.95 38

4.9 Extended Method Alpha Values for p =.55 40

4.10 100 Movie Choices from the Base Model with p=.55 41

4.11 100 Movie Choices from the New Model with p=.55 and pi=.95 42

4.12 Extended Method Alpha Values for p=.95 43

Chapter 1

Introduction

1.1 Introducing Information Cascades

There are many economic situations in which agents must make decisions using only in-

complete information and the observed actions of others. These situations raise several

questions. For one, do agents converge on a single decision? For another, how do agents re-

ceive the information? Lastly, how do agents use this information? By understanding these

dynamics, economists may begin to understand phenomenon such as the housing bubble

and the movements of the stock market.

An information cascade occurs when a sequence of agents each make a decision, based on

an independent private signal and observations from previous agents independently of their

own private information signal. The private signal provides the agent with information on

the correctness of a hypothesis. In the models described in this paper, the hypothesis will

always be if a certain movie is correct. In the example below the hypothesis is if a certain

path is correct. The private signal has a probability, which is denoted as p, of being correct.

In cases of an information cascade the agents decision, even to ignore her own private

1

2

signal, is a rational choice that she decided using Bayesian updating. Bayesian updating is

a statistical way to update information where evidence or observations are used to update

the probability that a hypothesis is true. Bayesian updating updates the probability the

hypothesis is true using the following formula:

P (E) =
P (E|H)P (H)

/P (E)

H is the specific hypothesis, E is the new evidence, P(H) is the prior probability of H,

P(E—H) is the conditional probability, P(E) is the marginal probability of E, and P(H—E)

is the posterior probability of H given E.

Agents must infer the private signals of the agents who went ahead of them to make

up for their own incomplete information. A common example of an information cascade is

three people approaching a fork in the road. One road leads to a pot of gold and the other

leads to nothing. Each person receives a personal signal about the hypothesis that going

left will lead to the pot of gold. There is a 2/3 chance each person will receive a correct

private signal about whether or not going left will lead to the pot of gold. Assuming the

third person observes both the first and the second person choose left. If the third personal

was acting rationally, she would go left even if her private signal was to go right. This

example also demonstrates some problems with information cascades. Even if people are

acting rationally in ignoring their private signals, they may all be wrong. In the example

above, it is possible for thousands of people to choose wrong entirely because of the first two

peoples decisions. The above example demonstrates a very basic example of an information

cascade. Other studies show other characteristics of information cascades in more complex

cases. For example, Goeree et al. [6] found that information cascades are also fragile: any

new information presented to agents can end and potentially reverse a cascade.

3

1.2 Background

The paper that began the research into information cascade was the paper by Bikhchandani

et al [3]. This paper used mathematical proofs to give insight into specific aspects of

information cascade formation. The paper concluded that information cascades can explain

the formation, maintenance, and change of social norm and fads. Given the paper relied

only on mathematical proofs, the models can’t be guaranteed to hold when applied to real

people.

The classical information cascade experiment can be found in a paper by Anderson et

al. [2]. In the experiment, agents make decisions sequentially and they have access to the

decisions of all the agents ahead of them. They are then paid if they answer correctly.

This paper assumed that the participants made decisions using Bayesian updating. Huck

et al. [7] set out to find if people always made decisions using Bayesian updating. Bayesian

updating is statistical inference where a person uses observations to infer the probability

something being true. They discovered that roughly half of participants in their experiment

made decisions using Bayesian updating. Part of the reason, they believed, for the low

percentage of people using Bayesian updating to make decisions was due to their experiment

being more complex than previous experiments. This added complexity may have made

Bayesian updating too difficult for many of the participants in the study. Oberhammer

and Stiehler [9] looked into how subjects calculated probability by requiring participants to

submit maximum prices that they would be willing to pay to participate in the game. The

results could not be explained by Bayesian updating or by heuristics. Also, they discovered

that subjects were willing to pay more in the beginning, but as the experiment drew on

they were willing to pay less and less.

Continuing to look at how confidence in previous agent’s decisions progressed, Kubler

4

and Weizsacker [8] looked into applying a positive cost to getting private signals. The paper

found that participants were willing to buy more private signals in the beginning. The later

participants purchased less signals, presumably because they had more faith that previous

decisions were based on private data. This paper suggests that fads occur because people

believe that previous decision makers made informed choices and thus the person is willing

to follow the majority.

Ivo and Welch [10] investigated information cascades using experts. In this case they

used investment analysts to see if being an expert made you more or less likely to follow

another expert. The paper showed that the decision of a single analyst effects the decisions

of the next two analysts. Also, the current prevailing consensus has a positive effect on

an analysts decisions regardless of how correct it is. The prevailing consensus has a larger

influence if there is a good economic condition and the promise of return is higher than usual.

These results help show that people do have certain herding behavior. Herding behavior

is defined as occurring when several agents make identical decisions without ignoring their

private information.

To attempt to answer the question of whether information cascades exist, De Vany and

Lee [5] ran a multi agent simulation of the movie industry to measure the cascade affect.

They extended the previous models by having local interaction, among other changes. The

author discovered that information cascades did not occur as often as expected or converge

as narrowly or as quickly as the theory would suggest.

Several papers then tried to explain how certain added variables affect the information

cascade. One paper by Goeree et al. [6] added longer sequences of decision and variation

of how informative a signal is. The results were quite different than the standard theory.

Their experiment showed fewer permanent cascades, more variation in the length of the

cascades, and more alterations between correct and incorrect cascades than was previously

5

expected. Also, they found participants were, on average, overconfident in their own pri-

vate signal. Bogachan and Kariv [4] also found that subjects gave more weight to their

own private signals than others. They also discovered, while trying to distinguish herding

from cascades, that cascades do occur around a third of the time. The authors also looked

into how perfect and imperfect information models explain information cascades. They find

that the imperfect information model is best at describing occurrences such as fad and is

more realistic. They also found that with imperfect information, cascades last longer and

the chance of a reverse cascade drops. Alevy et al. [1] looked into the affect being a profes-

sional has on your confidence in others’ decisions. They found that financial professionals,

when compared to college students, better understood that other’s judgments have varying

degrees of quality and overall acted more in line with economic theory in that they were

more consistent with using Bayesian updating to help make decisions.

1.3 Other Models

In 1992 Bikhchandani, Hirshleifer and Welch [3], who will be refered to as BHW, gave one of

the earliest descriptions of information cascades. In their model, agents adopted or rejected

an action based on their own private signals and the decisions of all the agents ahead of

them. The agents are all standing in a line and can view the action of all the agents ahead

of them. If an agent accepts the decision, the following agents can infer they received high

personal signal about the action, and conversely, they can conclude an agent received a low

personal signal if they rejected the action. The paper assumes agents make their decision

based on Bayesian updating. If enough of the agents before a specific agent adopts the

action, a rational agent may choose to accept an action even if she got a low signal because

she has decreased the weight she places on her own decision.

6

Key results of this paper are as follow:

1. As the precision of a person’s private signal increases, a correct cascade (one where

agents adopt the correct choice) starts earlier and is more likely to occur.

2. A noisy enough signal can increase the probability of an incorrect cascade to as high

as 0.5.

3. An agent with a high probability of choosing correctly early in the sequence can start

a cascade, but a higher precision agent can shatter a cascade later on if she chooses

to.

4. The precision of no cascade occurring decreases as the number of agents in the se-

quence increases.

5. An increase in the number of agents increases the probability a cascade will start.

6. Once started, a cascade will last forever given no new information.

7. New information can potentially shatter a long-lasting cascade.

8. As more public information is released, the correct choice becomes clearer and indi-

viduals settle into a correct information cascade.

De Vany and Lee [5] developed a multi-agent model based on the movie industry to

try and to develop information cascades in this environment and compare their findings to

the theoretical predictions of the BHW model. The BHW model gave only probabilities of

cascades but provided no tests to give credit to its assumption, De Vany and Lee wished to

fill that gap. This model found the following results.

7

1. An increasing value in p (the probability an agents private signal is correct) is not

necessarily associated with a higher percentage of correct choices.

2. Their model found that the probability of a cascade is not nearly 1, in fact for low

values of p cascades rarely occur and when they do they are very fragile.

3. Higher value of p are associated with a heavier-tailed distribution of agents over movies

(as indicated by a lower α in a Pareto distribution.). This means as p increase cascades

become less fragile.

Research described by De Vany and Lee [5] show that the market shares of the motion

picture industry are well modeled by the Pareto-Levy distribution. This distribution is

a heavy tailed distribution which means that it has more probability mass on extreme

outcomes than a normal distribution. The figure below shows the effect of changing the α

value:

Figure 1.1: Effect of Alpha on the Probability Density Function

When related to movie market shares, a lower α value means a few movies are capturing

8

a greater percentage of market shares when compared to higher α values.

My intention was to replicate the results from De Vany and Lee, and then add another

element. Unfortunately I could not replicate the exact results De Vany and Lee found. I

could not verify their first assumption; in fact I found that an increasing value of p is always

associated with higher percentage of correct choices. This discrepancy between my results

and theirs may be a result of a misunderstanding of what exactly their method was. Either

way, I created a model, based off of theirs, and then added the ability of agents to speak

to other agents and use this data in their final decision making process. My approach is

described in the next chapter and the results are in the following chapters.

1.4 Motivation

Many papers on information cascades set out to determine if they occur and if they are

fragile, meaning the cascade is highly prone to ending. De Vany and Lee [5] considered a

third question: what types of choice distributions do information cascades produce. They

hoped to understand the properties of converging information cascades statistical distribu-

tions. The answer to this question would also explain whether information cascades occur

and whether or not they are fragile. De Vany and Lee choose to model movie attendance

to test the choice distribution for an information cascade. Movies are a good choice for

several reasons, but the most important is that they offer an opportunity for both public

and private information. Information from the media that shows the market share of each

movie provides an aggregate signal required for an information cascade. People also have

a private idea of whether a movie will be good or bad, the personal signal aspect of the

model. De Vany and Lee expanded on the basic model to make it more realistic. They

allow learning by letting agents gather information about movie quality from others. They

9

also allow local interactions among the agents; each can personally interact with the agent

directly ahead of them in line.

There are a few problems I found with the model proposed by De Vany and Lee. The

first and biggest problem I found, which will not be solved in this paper but will be improved

upon, is that the model is not a realistic representation of how people make movie decisions.

In the real world, people do not go to the box office without knowing anything about a movie

and then use only market shares and information from the person in front of them. That

said, making a model completely realistic would be impossible, but adding more realistic

elements to the model would give a better idea about whether an information cascade can

occur. In the motion picture industry, advertisers for a specific movie hope to create an

information cascade of sorts to increase their revenue. Whether such a thing is even possible

would help determine the best advertising method.

There are a few specific issues with De Vany and Lees method that I will address in

this paper. One problem with previous models of information cascades concerns agent

interaction. The original models have agents standing in line, observing all the decisions

ahead of them. This would be the same as having available at the ticket booth a list of all

tickets previously purchased. De Vany and Lee improve the model by allowing all agents

access to a global source that gives movie shares and each agent can interact only with the

agent just ahead in line. While more realistic, this still models a group of agents who never

discuss movie options with anyone else before standing in line at the ticket booth.

Another problem I found with the model is that it does not allow for the possibility of

an agent ignoring the quality assessment of another agent and deciding to see a bad movie,

anyway. To account for this, a small probability of ignoring a bad quality assessment is

added to the model. This small probability was added because if an agent decides not to

trust another agent’s quality assessment, it is probable they will decide that a specific movie

10

may still be good. Further, some people may be so set on seeing a specific movie that they

ignore any negative reviews of the movie.

As another aspect that should make the model more realistic, my model allows agents

to interact with other agents before going to the movie. Like the previous model, I will

be using a multi-agent model in which each agent has access to a personal signal, public

information on movie share, and local information gathered from interacting with the agent

directly ahead in line. Additionally, agents will have the chance to interact with a random

number of other agents. With whom they interact is determined spatially; agents move

around a neighborhood and may interact with agents they run into. At every time step,

each agent will be allowed to interact with another two agents. The longer it takes an agent

to go to the movie, the more agents he will interact with.

This paper investigates how adding spatial movements and agent interaction, and to a

small degree adding a chance of ignoring another’s quality assessment, affect the formation

and choice distribution of an information cascade. These changes can help to explain what

leads to certain movies becoming great hits and others going bust, sometimes independent

of the movies quality.

Chapter 2

The Approach

2.1 Base Model

The basic model of an information cascade was presented by Bikhchandani et al(1992) [3].

Their model involved agents using Bayesian updating to make a decision based on their own

private signal and the information about the actions of all the agents ahead of them. This is

the model that involves agent standing in essentially a long line and each agent observes the

decisions of each agent ahead of them. They use this information and their own personal

signal to decide between two options. De Vany et al. created an agent-based version of this

Bikchandani et al. model which I recreated. The model is as described below.

The model involves 2000 agents going to see one of 20 movies. There is a variable, p,

which is defined as the probably that an agents personal signal about the quality of a movie

will be correct. Of the 20 available movies, half will be movies of high quality and the other

half will be of low quality. The agents are lined up sequentially and, in order, choose which

movie they would like to see. Figure 2.1 shows the agents at the start of the simulation.

When its an agents turn to see a movie she will have three pieces of information to help

11

12

Figure 2.1: Base Model Agent Start Up

her make a decision. The first is a public signal in the form of the market shares of the

entire available set of movies. This provides a quantity signal, and to a certain extent a

quality signal as well since the movies with the higher market shares are more likely to be

good movies. This fact is due to the p value of the agents, since the personal signal is above

.5, the agents are more likely to guess the true value of the movie. Of course, how accurate

this signal is increases as the p value increases. Also, this gives a hint as to the decisions

of all the agents ahead of her. Secondly, the agent is shown the movie viewing decision of

the agent directly ahead of her, but of no one else. So the agent doesnt see the decision

of everyone in the line but only of the agent ahead of her. The previous agent’s decision

will either be to see a specific movie or to not see a movie. Finally, the agent will have a

personal signal about the quality of the movie the previous agent saw. The probability of

the personal signal being correct is set by the variable p and is varied between simulations.

When the simulation is set to begin, all the movies are provided one agent who saw the

movie. The first agent in the line of agents is then allocated at random to a movie, and

then the following logic sets in.

13

If the previous agent, agent i-1 saw movie m, then agent i will check her own personal

signal. If the personal signal is high then the agent will see movie m. If the personal signal

is low, then the agent will flip a coin and either choose to not see a movie or pick a movie

based on market shares. If the agent chooses to pick a movie based on market shares, the

movie will be picked based on a weighted average of the market shares. This means that

the movies with higher market shares have a higher probability of being picked. If agent

i-1 did not see a movie, then agent i will check her own private signal. If her private signal

is low, meaning she doesnt believe the movie is a good movie, then the agent will choose to

not see a movie. If her signal is high than she will flip a coin and either not see a movie or

pick a movie based on market shares.

2.2 Extended Model

The basic idea behind the extended model is to simulate a neighborhood where agents

interact with one another. There are m numbers of movies available which the agents in

the neighborhood will discuss with one another throughout the simulation. Each agent

will have one opportunity to go the movies, where they will make their final decision about

which movie they want to see using the information gathered through interacting with other

agents, the decision of the agent directly ahead of them, and their own personal signal.

In my modified model, agents choose between m movies. Agents choose a movie to view

sequentially, with one agent choosing for each step of the simulation. There are two special

variables for this simulation. P is again defined as the probability that an agents personal

signal about the quality of a movie is correct. There is also a value pi, which is defined as the

probability that an agent will believe another agents value, which forms the agents opinion,

about the quality of a movie. The order for the agents to see a movie is randomly generated

14

Figure 2.2: Base Model Agent Decision Tree

15

at the beginning of the simulation. In the beginning of the simulation, agents are placed in

houses, more specifically a specified point on the 2D plane. In the neighborhood, the agents

are evenly placed among the houses with any extra agent being placed in the first house.

The houses are in two vertical rows with a sidewalk running vertically next to the house

on the side closest to the other row of houses. While there is no street in-between the two

houses, agents cannot communicate with agents on the sidewalk horizontal to them. Figure

2.3 shows an example of the states of the agents. In this example there are 20 starting

locations and 40 agents. On the left is the starting location. The squares represent the

starting locations of the agents. To the right are the agents after the simulation has begun.

They are moving around the neighborhood and multiple agents may be in the same spot at

the same time.

The starting place of each agent is determined by the house they are assigned to. This

starting location is just a starting point; the agent will continue to move around the map

and doesnt have any special connection to this starting point. Movements for these agents

go as follows: agents have a 50 percent chance of moving forward one space. They have a

30 percent chance of moving backwards one space. Their final probability of 20 percent is

to cross the street, they will move the horizontally. So if the agent is on the left side of the

street, she will movie right one space. If she is on the right side of the street, she will move

left one space. Agents must stay in bounds, defined as the space of the two rows of houses

and sidewalks that belong to the agents specific neighborhood, plus two additional extra

spaces on the top and bottom of the neighborhood. Each agent moves one space for each

time step.

Each agent keeps an array of their own personal values for all the available movies.

While not at a movie, an agent wanders around the neighborhood according to the de-

scription above to gather information about the quality of the available movies. For each

16

Figure 2.3: Extended Model Agent Setup and Movement

17

simulation, there is one agent per a movie who starts out in the neighborhood who already

has seen a movie. This agent never goes to see a movie again but instead moves around the

neighborhood passing information on to other agents. As a result every agent who passes

on information about a movie got her information from a source that eventually leads to

an agent who has seen a movie. This helps spread information at the beginning of the

simulation immediately instead of waiting for agents within the simulation to see a movie

to begin passing on this information. These agents also simulate critics and other people

who see a movie early at a preview.

If it is not the agents turn to see a movie, then the agent seeks to communicate with

other agents in the same coordinate spot. Each agent only speaks to two other agents per

time-step. An agent communicates only with the agent as it was at the end of the previous

time-step. In this case, multiple agents can communicate with a single agent, and these

agents will be communicating with the same state of the agent. After this information

gathering occurs, the agents then moves and update their information to share with other

agents. Then the next time step occurs. The simulation runs until each agent has a chance

to see a movie. So given n agents, there will be n steps in the simulation. Each agent starts

out with a value of -1 for each movie, meaning the agent has not heard of the movie yet.

When an agent meets another agent, they learn about all the movies the other agent has

heard about. When an agent first hears about a movie their personal value for the movie is

10, meaning neutral. The agent then has to make a decision of whether or not to increase

or decrease their personal value for this movie. These personal movie values are later used

to make a decision about what movie the agent will see.

If the other agents personal value for this movie was 10 or greater, then they have a

high value of this movie. Otherwise their value is low. If the other agents value is high,

then the agent will decide, with probability pi, if she believes the other agents value. If she

18

does then she will choose to increase her personal value of the movie by 2. Otherwise she

will check the market shares and see if the movie is in the top 5. If the movie is in the

top five but has no views, which is likely to occur at the beginning of the simulation until

several different movies have been viewed by agents at the movie, then the agent will check

her personal signal. If her personal signal is high, which is correct with probability p, she

will decide to increase her personal value of the movie by 1 and if her signal is low she will

choose to decrease her personal value for the movie by 1. If the movie is in the top five and

does have vies, then the agent will choose to increase her value by 1. If the movie is not in

the top 5 movies according to market shares, the agent will choose to decrease her value by

1, regardless of her personal signal.

If the other agents personal value for the movie was low (a value less than 10) then the

agent will decide, using value pi, if she believes this other agents value. If she does, then

she will decide to decrease her personal value for the movie by 2. Otherwise she will check

the market shares to see if its in the top 5. If it is, then she will choose to increase her

value by 1. Again, if its in the top five but have zero agents who have seen it, and then

the agent will look at her personal signal. If its high then she will choose to increase her

personal value by 1, otherwise she will decrease it by 1. A figure of this decision process is

shown below.

After an agent makes the decision of whether to increase or decrease her personal opinion

of the movie, she does so according to the following method. If the agent decides to increase

her personal opinion of a movie and the other agents personal value was high, then the agents

personal value will increase by 2. If the agent decides to increase her personal signal but

the other agents personal signal was low, the agent will only increase her personal opinion

by a value of 1. On the other hand, if the agent decided to decrease her personal opinion

and the other agents personal signal was low, the agent will decrease her personal value by

19

Figure 2.4: Agent Movie Preference Decision Tree

20

2. If the agent decided to decrease her personal signal and the other agents personal signal

was high, then the agent will decrease her personal opinion by 1. The values an agent can

assign to a movie range from between 0 and 20 with 0 being the lowest possible value and

20 being the highest.

The way agents communicate to one another means the cascade will occur in the infor-

mation the agents spread to one another. For example, when deciding whether or not to

increase or decrease a movie value and agent may increase their personal value even if their

personal signal is low if the other agent says the movie is good and the movie is in the top

5 market shares. In other words, there is a potential cascade for each of the movies in the

area of the information agents have about its quality.

At the beginning of a time-step, each agent who has not seen a movie checks if its the

agents turn to go to the movies. If so, the agent will remove herself temporarily from the

neighborhood, the agent will not be interacting with any other agents. At the movies an

agent has two sources of information in which to choose which movie to see. The first is

from the media in the form of market shares. This again provides a glimpse of the selections

of all the agents ahead of her and in the same regard provides a quality signal. The agent

also gets to see the decision of the agent ahead of her. If agent i-1 did not see a movie,

then agent i evaluates her own personal signal. This signal has the chance p of correctly

conveying the true value of the movie. If the value is low then agent i will choose to not

see a movie. Otherwise there is a 50 percent chance agent i will choose to not see a movie

or choose the movie with the highest personal value. In the case multiple movies share the

highest personal value; one will be chosen at random to be viewed. If agent i-1 saw movie

j, then agent i evaluates her own personal signal. If the signal is high then the agent will

see movie j, otherwise there is a 50 percent chance agent i will choose to not see a movie or

choose to see the movie with the highest personal value. After the agent has selected the

21

movie, the agent will be placed back in the neighborhood, and will communicate with other

agents in future time-steps.

Figure 2.5: New Model Agent Movie Decision Tree

Chapter 3

Base Model Results

3.1 Analysis of Correct Choices

For our model that had 20 movies available for agents to see, we collected two main data

points. The first is c, the number of correct choices over the entire sequence. This data

helps us determine if higher values of p do increase the likelihood of a correct information

cascade. As shown in the table and the graph below, there definitely is a correlation between

higher p values and higher mean of correct choices. The other variable of interest is d. This

is the mean value of correct choices when you exclude the agents who chose not to see a

movie. The variable d is used to help compare this approach to the other approach where

agents interact and will be discussed later.

These results make sense because as the agents become better at determining if a par-

ticular movie is good, they will move towards cascading on a good movie which leads to a

higher chance the agent will see a good movie. If the previous agent saw a good movie, then

the current agent has a p chance of seeing the good movie, and a .5(p) chance of not seeing

a movie and the same chance to pick one from market shares. So if agents are cascading

22

23

Figure 3.1: Base Method C and D Values

Table 3.1: Correctness of Choice for Base Method
p Value C D

0.5 0.274529 0.539771
0.55 0.334659 0.653182
0.6 0.412987 0.764045
0.65 0.518987 0.873395
0.7 0.567641 0.906972
0.75 0.645289 0.950468
0.8 0.710766 0.970843
0.85 0.758819 0.980487
0.9 0.807544 0.987438
0.95 0.890972 0.996431

on a good movie, then the agents simply have a higher chance of see a good movie by just

going with the cascade. The values of D clearly show that as p increases agents become

better at choosing good movies when they choose to see a movie. Due to both the D and

C values shown in the table, my results agree with the first result of the BHW model that

as the p value increases the chances of a correct cascade increases.

24

3.2 Cascade Analysis

The BHW model also predicts that the probability of a cascade is almost 1. In fact, they

predict the probability of no cascade drops quickly after the number of agents increases

over 5. My results actually agree with the De Vany and Lee model that this is not the

case. Below I show the graphs of the movie choices for when p=.55 to show a low accuracy

case, and p=.95 for an example of a high accuracy case. In the graphs, the vertical axis

corresponds to the 20 potential movie choices. The horizontal axis corresponds to time,

which evolves from left to right. Each movie choice is indicated by a box. A value of -1

indicates the agent chose to not see a movie.

Figure 3.2: Base Method Agent Choices for p=.95

Figure 3.2 shows a high probability case, where p =.95. In this case there is no large

25

Figure 3.3: Base Method Agent Choices for p=.55

26

cascade but instead there are several small cascades. Overall the agents seem to be focusing

their decisions on 3 different movies, with a jump to any other movie quickly being adjusted

back to one of the three more popular ones. The shared focus on the three different movies

is probably the result of the decision to force the agent to pick a movie different from the

previous agent if this agent chooses to pick a movie from market shares. The results for

this high p value found by De Vany and Lee show an overall cascade on a single value with

intermediate jumps that would quickly jump back to the single popular value. The rule I

added most likely prevents a single movie from getting the vast majority of market shares

by allowing other movies to gain market shares by being picked when the top movie is not

available to be picked. This figure also shows the ability of a single agent to break a cascade

and lead a cascade in another direction. The figure also shows the power of the global

information in the form of market shares to pull information back to a previous cascade

once market shares are sufficiently uneven.

Figure 3.3 shows the low probability case, where p = .55. As can be seen, choices jump

all over the place, which was the case in all the simulations that were run for low p values.

Cascades do seem to form; by they are significantly more fragile than for higher p values.

This model confirms the finding of the De Vany and Lee model and shows that for high

accuracy, information cascades do appear but are fragile. The model differs in that for lower

values of p, cascades do occur but are more fragile than for the higher p values.

An important question for movie marketers is, do information cascades occur when

there are multiple movies available for a consumer to watch or is the revenue spread out

amongst all the different movies? Movie marketers depend on an information cascade effect

to increase the revenue for their particular movie. So now we must determine if a cascade has

occurred. Different studies have shown that the distribution of motion picture box office

revenues is well represented by a Pareto-Levy(stable) distribution with infinite variance.

27

This distribution is a heavy tailed distribution, meaning it has more probability mass on

the extreme outcomes than a normal distribution has. A way to deal with this distribution

that was suggested by De Vany and Lee [5] is to examine its upper tail by looking at the

top 10 percent and measure the weight in the upper tail. The value of the weight of the

tail can be found in the index α.

I estimated the tail index by applying least squares regression to the upper 10 percent of

the observation in question. In the upper tail, a Levy stable distribution is asymptotically

a Pareto distribution. It takes the following form:

P [X > x] = xα, forx > k

Where x is the number of entries and k is a large number. A low value of α corresponds

to a slow decay of the tail and is referred to as a heavy tail. This means the information

is more clumped together. In regards to movie market shares, it means that the market

shares are focused more on a few movies that have a large grab of the market. A higher

value of α corresponds to a light tail which means most of the data can be found more

spread out. In regards to market shares, this means that the total market shares are more

evenly spread out amongst all the movies. To gather this data I ran the simulations with

200 movie choices. I then took the top 20 movies and fit the information to the Pareto

distribution and recorded the α value. The results from the base model are shown below in

graph form.

This graph show a clear trend of higher p values corresponding to lower α values. This

agrees with the findings of De Vany and Lee of higher p values meaing a heavy tail. This

confirms the conclusion from the graphs that higher p values produce less fragile cascades.

Therefore there is a positive relationship between heavy tailed distributions and information

cascades given a high enough value of p.

28

Figure 3.4: Base Method Alpha Values

Chapter 4

Extended Model Results

4.1 Analysis of Correct Choices

We now look at how allowing agents to interact with one another before they make their final

movie viewing decision affects the creation of an information cascade. Since this simulation

requires two separate variables, a p and pi, we ran 20 separate simulations for each of the

possible 10 values of pi and each of the possible values of p. I was looking into how the

various values of pi affect the results found in the base results. To look at this effect, I focus

on the data for the results from p=.55 and p=.95 to compare to a low and high accuracy

case. I will start by looking at the data for p=.55. The chart for this data is shown below.

The chart includes the mean C and D value for each value of pi and the difference between

the mean values and the mean value from the base method.

I also include a graph showing the c and d values and another graph depicting the

difference between the new models average c and d and the new models c and d for all

values of pi.

The results show that adding in the pi factor helped agents make a correct decision

29

30

Figure 4.1: Extended Method C and D Value for p=.55

Figure 4.2: Extended Method Change in C and D Value for p=.55

31

Table 4.1: Correctness of Choice for Extended Model p=0.55

pi Value C D C Difference D Difference

0.5 0.449956 0.841474 0.115297 0.188292
0.55 0.469187 0.867437 0.134528 0.214255
0.6 0.503665 0.924868 0.169006 0.271686
0.65 0.507238 0.927869 0.172579 0.274687
0.7 0.510464 0.95149 0.175805 0.298308
0.75 0.514462 0.952332 0.179803 0.29915
0.8 0.524888 0.957076 0.190229 0.303894
0.85 0.510338 0.950779 0.175679 0.297597
0.9 0.525688 0.966522 0.191029 0.31334
0.95 0.534689 0.968965 0.20003 0.315783

for all values of pi. Part of the reason for this can be found in the even higher boost the

pi factor added to the D variable. When agents needed to pick a movie after deciding to

see another movie, they now have more reliable information on which to make a decision.

Since the beginning source of the information about a movie is from an agent that actually

saw the movie, the information starts out correct. Only through agent’s distrust, which

occurs more with lower pi values, does this information lose its correct value. The reason

for the higher C and D values for the extended model can be found in the beginning of

the simulation. For the base mode, in the begining market shares are not well spread out

so when an agent has to pick a movie with only the marketshares to help, they have to

essentialy guess a movie to see because they lack information. In the new model this is only

the case for an agent who has not talked to another information bearing agent. Its possible

that in the new method agents talk to one another so agents have useful information sooner

in the simulation than in the original model. As a result they start to stick to good movies

sooner than in the original method.

Next we look at a high accuracy case, the case when p =.95. The table and graphs are

shown below.

32

Figure 4.3: Extended Method C and D Value for p=.95

Figure 4.4: Extended Method Change in C and D Value for p=.95

33

Table 4.2: Correctness of Choice for Extended Model p=0.95

pi Value C D C Difference D Difference

0.5 0.688368 0.976545 -0.202604 -0.019886
0.55 0.658895 0.975046 -0.232077 -0.021385
0.6 0.766373 0.985563 -0.124599 -0.010868
0.65 0.77009 0.987432 -0.120882 -0.008999
0.7 0.772198 0.988147 -0.118774 -0.008284
0.75 0.839246 0.992689 -0.051726 -0.003742
0.8 0.892321 0.99704 0.001349 0.000609
0.85 0.890823 0.996458 -0.000149 2.7E-05
0.9 0.907699 0.997935 0.016727 0.001504
0.95 0.911449 0.997574 0.020477 0.001143

In this case, adding in the pi aspect seemed to have hurt the C and D values for all

values of pi that are less than p-0.15. This result makes a lot of sense. In the original

method, when an agent needed more information, she turned to the market shares which

were accumulated by the decisions of other agents who have a 95 percent chance of knowing

if a movie is good or not. In the new model, while the agents that start with the movie

information are 100 percent correct, as they pass on the information, the information has a

less than 95 percent chance of being correctly passed on to the next agent. As a result, the

extra information given to an agent when she needs extra information to choose a movie

may not be as reliable as the information available to agents in the original model. This

fact is confirmed by the D values being lower for all values when pi ¡ p-1.5. Inspecting all

results from other p values confirms that the C and D statistic improve for all values of pi

>= p-0.1 or p >= p-0.15.

For all values below this threshold, the reason the C and D statistic would be hurt has

to do with the quality of information an agent gets when they choose to change the movie

to see. With high p values in the base simulation, over time the movie statistics act like a

quality signal to the agents because agents are very good at choosing a good movie. Over

34

time this ability to choose a good movie will result in only a good movie getting high movie

shares. When pi is a lot lower than p, their personal knowledge of which movie is good is

poor, since the information has potentially been passed through several agents who have

low trust in other agents. As a result misinformation is spread around and this incorrect

information is then used to make a decision that is not as well informed as possible.

4.2 Cascade Analysis

Does the ability of agents to move around and communicate with other agents help or hurt

the formation of a cascade? Would helping the agent pick a better movie help the formation

of a cascade and if the pi value is a lot lower than the p value, will this hurt the formation

of a cascade? To see if a high value of p helps increase the probability of a cascade, I will

compare the sequencial graph of agent movie choices for various values. First I will compair

two graphs for a low value of p, when p=.55 for pi values of .55 and .95.

These results suggest that for a given value p, increasing the pi value does not increase

the likelihood of a cascade; although an intersting trend is shown by the graphs. While

the data points jump around, they tend to be constrained on bands more so than the base

method. This is probably the result of good information being spread around the agents.

The agents share information so each agent has a fairly good idea of which movies they

should see and which ones to avoid. The only section of Figure 4.5 that seems more random

than the rest and is not on a more defined band of choices is the very beginning. This

observation can be explained by the fact that many agents who are chosen to see a movie in

the beginning may not have spoken to any agents who have any information about a movie.

As a result, they have to make their decision as blindly as agents in the original model have

to at the beginning of the simulation until movie shares are sufficiently spread out.

35

Figure 4.5: Extended Method Agents Choices for pi=.55

36

Figure 4.6: Extended Method Agents Choices for pi=.95

37

Now I will look into a case with high p, when p = .95. Figure 4.5 and Figure 4.6 compare

pi values of .55 and .95 respectively.

Figure 4.7: Extended Method Agents Choices for pi=.55

Figure 4.7 gives an interesting result. This graph shows several small cascades that tend

to focus on two movie choices. The long gaps seen between two movies choices is the result

of the movie that started the gap being a bad movie. Since the p value is at .95 most agents

correctly guess that the movie is bad which, for the first agent, results in a .5 chance of

not seeing a movie. For the rest of the agents their chance of not seeing a movie is .975.

What probably caused the choices to mostly stay between two different movies has to do

with the initial choices made when the agents were interacting in the neighborhood. As the

various agents who have already seen the movie talked to other agents, these agents decided

to not believe this agent and incorrectly changed their personal information. These agents

38

Figure 4.8: Extended Method Agents Choices for pi=.95

39

then spread this misinformation to other agents. In other words, its possible that a slightly

higher number than expected of agents mistook a good movie for bad at the beginning

and then spread this misinformation around. It’s possible that for most agents, the correct

information received in the area of good movies was for the two good movies that make up

the two cascades.

Figure 4.8 shows some very small and very fragile cascades occurring, of movies 5,7,10

the lack of any large gaps between any two movies, and the high D value, show that agents

are switching between movies of high value. The reason this graph looks more like it is

jumping all over the place is because in this case, agents figures out rather quickly in the

simulation which movies are good, so when the decision to change the movie to be seen

comes up, agents chose from one of almost any of the actually good movies available.

By looking at these graphs, it seems that increasing the pi value alone does have an effect

on the formation of cascades. The effect is found in how many movies agents pick between

when they must choose a movie. In the low pi value, the probability of having the true

knowledge of which movie is good is more uncertain. In the specific case I showed agents

picked mostly between two different movies. The exact number changes with different run,

but the important fact is that the exact number is more uncertain than for high pi values.

In the case of high pi values, agents know with pretty good accuracy and which movies are

good. As a result they can choose between this greater numbers of movies.

Now we look at the decay of the tail for our new model. First we look at the α values

for when the p value is .55 across all pi values. The values are graphed in Figure 4.9.

We now look into how our new model affects the formation of cascades. To do this we

look at the decay of the tail for our new model. First we look at the α values for when the

p value is .55 across all pi values. The values are graphed below.

In general as the pi value increased the alpha value increased. This means that as the

40

Figure 4.9: Extended Method Alpha Values for p =.55

pi value increase, a fewer number of movies collect a larger majority of the movie viewing.

As a result, more movies in the top 20 received only a few views and thus have only a small

share of the market since the views are focused more in the top movies. This result indicates

that the higher pi values allowed the agents to quickly find the true value of a movie so

they picked to see this movie as they switched their movie selection. This result makes

sense given the previous data. The basic model showed that higher p values gave lower

alpha values, meaning that lower p values mean higher alpha values. Given this context, it

makes sense that higher pi values will give higher alpha values due to how the alpha value

is found. Since only the top 20 of the 200 movies are used, the higher pi values will have

the higher movie shares along more of the top 20 movies. In the case of the lower pi value,

agents get conflicting information so the movies agents pick overall are more spread out to

include movies that are not good, but mistakenly are thought to be good.

Despite the affects of a higher pi value, in this case the α values always stayed below the

41

α values from the base model. So overall adding the ability of agent to transmit information

to one another appears to help build a less fragile cascade. While no cascades seemed to

appear in the images above, this heavier tailed choice may have manifested itself in an

extra agent choosing the same movie. So, for example, there may have been a string of

three agents choosing the same movie instead of two as shown by in figures 4.10 and 4.11.

The figures show 100 movie choices of agents in two different simulations. The graph starts

with the choice of the 500th agent to see a movie and records the following 100 choices.

Please note that these two graphs do not show the choice to not see a movie sense the

graphs are used to loot at extra cascades in the movies being seen.

Figure 4.10: 100 Movie Choices from the Base Model with p=.55

This result can be explained by agents making better choices and the fact that if an

42

Figure 4.11: 100 Movie Choices from the New Model with p=.55 and pi=.95

43

agent picked a good movie, there was a higher chance that more agents would follow than

if an agent picked a bad movie. While this is probably not technically a cascade, it does

produce a herding effect that helps produce a cascade like behavior.

Next we look into the α values for when p=.95.

Figure 4.12: Extended Method Alpha Values for p=.95

In this case, the there is no clear result that increasing the pi value for a high p value

brings. At the extreme end the α value increased to over .8. In the base model, the alpha

value for this p value is 0.45. This means that for higher values of p, allowing agents to speak

to one another produces a lighter tailed distribution while for lower values of p, allowing

agents to speak to one another creates a heavier tailed distribution. What is interesting is

that the highest and the lowest pi values for p = .95 had the highest alpha values, for the

middle pi value the α values remained somewhat even. This means that for the lowest and

the highest values, cascades became more fragile than for the middle values of pi. All of

these new alpha values are higher than the results from the base model, which goes against

44

the previous results. A possible reason for this is that, in the base model, agents would

stick more easily to a small collection of good movie, which would quickly dominate the

market shares and continue a cascade on that movie. In the new model, agents learn about

many different movies and have several movies with high values. As a result, when given

the chance to change movies, these agents will pick from a larger collection of movie than

from the base model. This would produce higher $alpha values.

The interesting effect of adding the agent communication was its effect on α. In all cases,

given all else equal, increasing the pi value will increase the α value, meaning cascades

will become more fragile. But when compared to the base model value, adding agent

communication can either make it worse or better. For low p values the α value became

better, but it became worse for higher p values. This effect is probably the result of when

agents pick another movie to see. In the case of the low p, cascades were probably more

fragile in the base model because agents had less idea which movies were good and thus

when picking another movie the choices would appear more random. In the case of a higher

p value, in the base model agents know which movie is good and this movie is probably one

of two movies based on market share, so the choice rotates back and forth between the two

movies. In the case of agent communication, when agents pick a new movie they pick from

any of the good movie, thus creating more diversity in where movie choices jump.

Chapter 5

Conclusion and Recommendations

5.1 Conclusion

Allowing agents to speak to one another before making a final movie viewing decision gives

agents another potentially useful piece of information to help them make correct decisions.

By taking the average percentage of correct choices for 20 simulations from the base simu-

lation and comparing it to the average percentage of correct choices for 20 simulations for

each value of pi given each p value, I found that as pi increased, the percentage of correct

choices increased. I found that as a general rule, if the pi value is less than the p-0.1, the

agents were better off and made more correct choices. We know this effect is the result of

the information gained by talking to other agents by looking at the d value. Since this value

excludes the agents who did not see a movie, we know that agents simply chose more good

movies with the new method than the old method, given a high enough pi value relative to

the p value.

In terms of agent communication on the α value, agent communication can help or hurt

depending on how well the base method did in helping agents make correct decisions. This

45

46

means that agent communication helps more with lower p values than higher values. In

the case of lower p values, agent communication helps agents know which movie is good,

so they tend to choose between the few movies they know are good instead of guessing on

a movie by looking at the market shares which were formed by other agents guessing. In

the case of the higher p value, instead of agents focusing intensely on a single good movie,

agents focus on one of any of the good movies they know about. As a result the α decreased

because agents are choosing between a majority of the good movies.

Does adding agent communication help or hurt the formation of an information cascade?

Adding agent communication changes the way a cascade presents itself. The definition of

an information cascade states that an agent may make a rational decision that goes against

their own personal information. The way the new simulation is set up, the cascades occur

in the information the agents spread to one another. For example, when deciding whether

or not to increase or decrease a movie value and agent may increase their personal value

even if their personal signal is low if the other agent says the movie is good and the movie

is in the top 5 market shares. This cascade of information does not produce a clear straight

line type cascade over the movie choices of the agents but instead produces bands over the

various movie choices of the agents. In a sense, there is a potential cascade going on for

each movie in the area the information agents have about the quality of the movie.

5.2 Reconmendations

There are many ways in which this model can be extended for further research. First, as

mentioned above, the environment the agents are in can be altered to include neighborhoods

and work environments. This change allows the study of how information is diffused.

Another factor that can be altered in this sense is the density of the agents. Our simulation

47

had 50 agents per a house initially. You can adjust this so the density is less to model a

more typical neighborhood.

Another area where changes could be studied is to alter the preferences of movies. In

our simulation we assigned half the movies to be good and the other half to be bad. We

assumed that all agents have the same taste in movies and would thus enjoy any of the good

movies. In reality not everyone enjoys action movies and some love horror while others will

refuse to see it. This preference can be changed by giving agents a movie preference. For

example, there could be three types of movies, one which the agent loves, another they

dislike, and a neutral one. If an agent sees a movie they dislike, then they will transmit the

movie as bad to other agents even if it was a good movie. This change can help investigate

if a cascade for movies can occur in an industry where consumers carry different preferences

for the offered product.

Another way to make the agents more complex is to vary the pi value for different people

they interact with. Most people in the real world place different values on different peoples

opinions. In the context of the movie industry, an agent may trust the opinion of a close

friend who shares the same movie preference as herself more than a random stranger she

meets on the streets. This change will affect how information is transmitted to different

agents in the simulation and the accuracy of the transmitted information.

Another area of study is how the diffusion of information affects the various aspects of

an information cascade. In this simulation 2000 agents are initially placed in 40 houses so

there are 50 agents per house. The decision to make the agents this dense was to ensure

information got passed around the agents quickly. There are many other formats that

can be investigated. Further experiments could explore different types of environments.

For example, agents could be placed in multiple neighborhoods that are isolated. This

environment could be extended to allow a common meeting place between neighborhoods,

48

such as a work space where agents from different neighborhoods can interact with one

another. Also, in my simulation, agents can only speak to two different agents in a time

step. I would imagine that changing this value would have some, even if its only a little,

effect on the results.

As we extend the model to simulate more real life experiences, we can get a better idea

if information cascades do occur.

Bibliography

[1] Jonathan E. Alevy, Michael S. Haigh, and John A. List. Information cascades with

financial market professionals: An experimental study. (18976), 2003.

[2] Lisa R Anderson. Payoff effects in information cascade experiments. Economic Inquiry,

39(4):609–15, October 2001.

[3] Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A theory of fads, fashion,

custom, and cultural change as informational cascades. Journal of Political Economy,

100(5):992, 1992.

[4] Celen Bogachan and Shachar Kariv. Distinguishing informational cascades from herd

behavior in the laboratory. American Economic Review, 94(3):484–498, June 2004.

[5] A. De Vany and C. Lee. Information cascades in multi-agent models. (99-00-05), 1999.

[6] Jacob K. Goeree, Thomas R. Palfrey, Brian X. Rogers, and Richard D. Mc Kelvey.

Self-correcting information cascades. Review of Economic Studies, 74(3):733–762, 07

2007.

49

50

[7] Steffen Huck and Jorg Oechssler. Informational cascades in the laboratory: Do they

occur for the right reasons? Journal of Economic Psychology, 21(6):661–671, December

2000.

[8] Dorothea Kubler and Georg Weizsacker. Limited depth of reasoning and failure of

cascade formation in the laboratory. Review of Economic Studies, 71(2):425–441, 04

2004.

[9] C. Oberhammer and A. Stiehler. Does cascade behavior in information cascades reflect

bayesian updating? (2001-32).

[10] Ivo Welch. Herding among security analysts. Journal of Financial Economics,

58(3):369–396, December 2000.

Appendix A

Base Model Agent

package edu.trinity.cs.mas.informationCascade;

import java.awt.geom.Point2D;

import java.awt.geom.Rectangle2D;

import java.util.ArrayList;

import java.util.List;

import Communication.KQML;

import edu.trinity.cs.mas.Entity;

import edu.trinity.cs.mas.EntityFinder;

import edu.trinity.cs.mas.Renderer;

import edu.trinity.cs.mas.frontend.Log;

import edu.trinity.cs.mas.services.EntityData;

public class SimpleAgent implements Entity{

public SimpleAgent(int apos,int aID, int Type, double Prob, int[] agentlist){

xloc = 10;

yloc = 10;

agentID = aID;

type = Type;

prob = Prob;

arraypos = apos;

findMediaAgent = true;

AgentList = new int[agentlist.length];

AgentList = agentlist;

findMediaAgent = true;

counter = 0;

}

public void gatherData(List<Entity> list, EntityFinder finder) {

for(int i = 0; i < list.size(); i++){

if(list.get(i) instanceof MediaAgent){

int [] movieValue = ((MediaAgent)list.get(i)).getMovieValue();

51

52

int movieNum = ((MediaAgent)list.get(i)).getMovieNum();

double[] marketShares = ((MediaAgent)list.get(i)).getMarketShares();

int movieAssign = ((MediaAgent)list.get(i)).getlastMovieSaw();

int recentMovieSeen = ((MediaAgent)list.get(i)).getRecentMovieSeen(movieAssign);

decision = new Decision(movieValue, movieNum, marketShares,

movieToSee = decision.makeDecision(prob, movieAssign);

((MediaAgent)list.get(i)).seeMovie(movieToSee, movieAssign,

counter++;

return;

}

}

System.err.println("Media Agetn Not Found turn = " + turn + " agent ID =

counter++;

}

public void reset(){

findMediaAgent = true;

counter = 0;

}

public Rectangle2D getBoundingSpace() {

return new Rectangle2D.Double(-20,-20, 20, 20);

}

public Log getLogData(int i) {return null;}

public List<Entity> getNewlyCreatedEntities() {return new ArrayList<Entity>();}

public Point2D getPosition() {return new Point2D.Double(xloc,yloc);}

public Renderer getRenderer() {return null;}

public int getSize() {return 0;}

public double searchRadius() {return 50;}

public void setArrayPosition(int pos) {arraypos = pos;}

public void setID(int x) {agentID = x; }

public void setLocation(int x, int y) {

xloc = x;

yloc = y;

}

public int getID() {return agentID;}

public void update(int timestep) { timeStep++;}

public List<KQML> getMessages() {return new ArrayList<KQML>();}

public void packageData(EntityData ed) {}

public void recieveMessage(KQML message) {}

public void recieveMessages(List<KQML> messages) {}

private int arraypos;

private int xloc;

private int yloc;

private int agentID;

private Decision decision;

53

private int type; //type = 1 means quality decision making, 0 means decision made without

private double prob;

private int movieToSee = 0; //this the movie the agent will see

private int timeStep = 0;

private int[] AgentList;

private boolean findMediaAgent;

private int turn;

private int counter = 0;

private static final long serialVersionUID = 2378493020539472835L;

}

Appendix B

New Model Agent

package edu.trinity.cs.mas.informationCascade;

import java.awt.geom.Point2D;

import java.awt.geom.Rectangle2D;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import Communication.KQML;

import edu.trinity.cs.mas.Entity;

import edu.trinity.cs.mas.EntityFinder;

import edu.trinity.cs.mas.Renderer;

import edu.trinity.cs.mas.frontend.Log;

import edu.trinity.cs.mas.services.EntityData;

public class Simple2DAgent implements Entity{

public Simple2DAgent(int x, int y, int apos,int aID, int Type,int bNum, double Prob, double

int movieAssig, int mNum, int uBounds, int lBounds, int lXbounds,

boolean work, int[] agentlist, int movieseen2){

xloc = x;

yloc = y;

initialX = x;

initialY = y;

agentID = aID;

type = Type;

prob = Prob;

arraypos = apos;

yourTurn = false;

buildingNum = bNum;

if(buildingNum%2 == 0)lSideOfStreet = true ;

else lSideOfStreet = false;

moviesKnown = new int[mNum];

54

55

agentMovieValues = new int[mNum];

movieseen = movieseen2;

agentNum = agentlist.length;

pi = PI;

home = new Point2D.Double(x,y);

lowerBounds = lBounds;

upperBounds = uBounds;

tempagentMovieValues = new int[agentMovieValues.length];

lowerXbounds = lXbounds;

upperXbounds = uXbounds;

goToWork = work;

tempMoviesKnown = moviesKnown;

reset();

}

public void reset(){

xloc = initialX;

yloc = initialY;

timeStep = 0;

for(int i = 0; i < agentMovieValues.length; i++){

agentMovieValues[i] = 0;

moviesKnown[i] = -1;

}

if(movieseen != -1){

moviesKnown[movieseen] = 10;

movieSaw = movieseen;

}

counter = 0;

findMediaAgent = true;

if(agentID == -1){

turn = -1;

}

int m = 0;

}

public void gatherData(List<Entity> list, EntityFinder finder) {

if(findMediaAgent){

for(int i = 0; i < list.size(); i++){

if(list.get(i) instanceof MediaAgent){

m++;

turn = ((MediaAgent)list.get(i)).getTurn(agentID);

pi = ((MediaAgent)list.get(i)).getProb();

movieValues = ((MediaAgent)list.get(i)).getMovieValues();

if(movieseen != -1){

if(movieValues[movieseen] == 1) moviesKnown[movieseen]

else moviesKnown[movieseen] = 0;

movieSaw = movieseen;

56

}

if(turn == -1 && agentID != -1) System.err.println("Turn

findMediaAgent = false;

}

}

}

if(m == 0) System.err.println("Did not find media agent.");

if(timeOfDay == 3 && goToWork){

tempX = xloc;

tempY = yloc;

xloc = 1;

yloc = 1;

}

tempagentMovieValues = agentMovieValues;

int movieNum = 0;

double[] marketShares = new double[agentMovieValues.length];

int recentMovieSeen = 0;

int i = 0;

//if it is your turn to see a movie then you find the media agent and see the movie

if(counter == turn){

int m = 0;

for(i = 0; i < list.size(); i++){

if(list.get(i) instanceof MediaAgent){

m++;

int [] movieValue = new int[agentMovieValues.length];

movieValue = ((MediaAgent)list.get(i)).getMovieValue();

movieNum = ((MediaAgent)list.get(i)).getMovieNum();

marketShares = ((MediaAgent)list.get(i)).getMarketShares();

int movieAssign = ((MediaAgent)list.get(i)).getlastMovieSaw();

recentMovieSeen = ((MediaAgent)list.get(i)).getRecentMovieSeen(movieAssign);

decision = new Decision(movieValue, movieNum, marketShares,

int movieToSee = decision.makeMixedDecision(prob, movieAssign,

((MediaAgent)list.get(i)).seeMovie(movieToSee, movieAssign,

i = list.size();

}

}

}

counter++;

if(counter == agentNum && agentID == -1) reset();

for(i = 0; i < list.size(); i++){

if(list.get(i) instanceof MediaAgent){

marketShares = ((MediaAgent)list.get(i)).getActualMarketShares();

}

}

//Now you search for other agents near you to gather data from

57

for(i = 0; i < list.size(); i++){

int n = 0;

if(list.get(i) instanceof Simple2DAgent && list.get(i) != this){

if(Math.abs(((Simple2DAgent)list.get(i)).getPosition().getX()-xloc)

Math.abs(((Simple2DAgent)list.get(i)).getPosition().getY(

n++;

decision = new Decision(movieValues, movieNum, marketShares,

int[] otherAgentMoviesKnown = ((Simple2DAgent)list.get(i)).getMoviesKnown();

int temp;

for(int p = 0; p < otherAgentMoviesKnown.length; p++){

if(otherAgentMoviesKnown[p] >= 0){

int valueTemp = otherAgentMoviesKnown[p];

int val;

if(valueTemp > 10) val = 1;

else val = 0;

temp = decision.makeQualityDecision(pi, p,

if(tempMoviesKnown[p] == -1) tempMoviesKnown[p]

if(temp == 1){

if(valueTemp >= 10) tempMoviesKnown[p]

else tempMoviesKnown[p]++;

}

if(temp == 0){

if(valueTemp >= 10) tempMoviesKnown[p]--;

else tempMoviesKnown[p] = tempMoviesKnown[p]

}

if(tempMoviesKnown[p] < 0) tempMoviesKnown[p]

if(tempMoviesKnown[p] > 20) tempMoviesKnown[p]

}

}

}

if(n == 2)i = list.size();

}

checkGoHome(list);

}

}

public int[] getMoviesKnown(){return moviesKnown;}

private boolean halfChance(){

if(generator.nextInt(2) == 0) return true;

else return false;

}

public int getMovieKnown(int i){return moviesKnown[i];}

public int getBestMovie(){return bestMovie;}

public int getMovieSaw(){return movieSaw;}

public Rectangle2D getBoundingSpace() {

return new Rectangle2D.Double(-20,-20, 20, 20);

58

}

public Log getLogData(int i) {return null;}

public List<Entity> getNewlyCreatedEntities() {return new ArrayList<Entity>();}

public Point2D getPosition() {return new Point2D.Double(xloc,yloc);}

public Renderer getRenderer() {return null;}

public int getSize() {return 0;}

public double searchRadius() {return 150;}

public void setArrayPosition(int pos) {arraypos = pos; }

public void setID(int x) {agentID = x; }

public void setLocation(int x, int y) {

xloc = x;

yloc = y;

}

public int getID() {return agentID;}

//Location and movie information is updated for the agent

public void update(int timestep) {

if(xloc == 1 && yloc == 1){

xloc = tempX;

yloc = tempY;

}

timeStep++;

moviesKnown = tempMoviesKnown;

bestMovie = bestMovie(agentMovieValues);

move();

if(timeOfDay == 0){

timeOfDay = 5;

}

timeOfDay = timeOfDay - 1;

agentMovieValues = tempagentMovieValues;

}

private void move(){

if(checkOutOfBounds()) return;

else{

if(atHome){

if(lSideOfStreet){

xloc = xloc + 1;

}else{

xloc = xloc - 1;

}

atHome = false;

}

else{

int num = generator.nextInt(100);

if(num > 50){

59

if(yDirection) yloc = yloc + 1;

else yloc = yloc - 1;

}else{

if(num > 20 && num <= 50){

if(yDirection){

yloc = yloc - 1;

yDirection = false;

}

else{

yloc = yloc + 1;

yDirection = true;

}

}

else{

if(lSideOfStreet){

xloc = xloc + 1;

lSideOfStreet = false;

}else{

xloc = xloc - 1;

lSideOfStreet = true;

}

}

}

}

}

}

private boolean checkOutOfBounds(){

if(yloc >= lowerBounds && yloc <= upperBounds){

if(xloc >= lowerXbounds && xloc <= upperXbounds) return false;

else{

if(lSideOfStreet) xloc = lowerXbounds;

else xloc = upperXbounds;

return true;

}

}

else{

if(yDirection){

yDirection = false;

yloc = upperBounds;

}

else{

yDirection = true;

yloc = lowerBounds;

}

if(xloc >= lowerXbounds && xloc <= upperXbounds) return true;

60

else{

if(lSideOfStreet) xloc = lowerXbounds;

else xloc = upperXbounds;

return true;

}

}

}

private void checkGoHome(List<Entity> list){

double dist = Math.abs(home.getX() - xloc) + Math.abs(home.getY() - yloc);

if(dist >= timeOfDay) goHome = true;

}

private void goHome(){

//check if agent is right next to house

if((Math.abs(home.getX()- xloc) == 1) && (Math.abs(home.getY() - yloc) == 0)){

if(lSideOfStreet) xloc = xloc -1;

else xloc = xloc +1;

atHome = true;

goHome = false;

return;

}

//if directly accross the street from the house

if(((buildingNum%2 == 0 && lSideOfStreet != true && xloc == home.getX() - 2) || (buildingNum%2

if(lSideOfStreet){

lSideOfStreet = false;

xloc = xloc +1;

}

else{

lSideOfStreet = true;

xloc = xloc -1;

}

}

else{

int n;

if(((buildingNum%2 == 0 && lSideOfStreet != true) || (buildingNum%2 != 0

n = generator.nextInt(100);

}else n = 0;

if (n < 70){ // you walk down the street

if(home.getY() > yloc) yloc = yloc +1;

else yloc = yloc -1;

}

}

}

public int bestMovie(int[] marketShares){

int r;

int count = 0;

61

int num = 0;

for(int i = 1; i < marketShares.length; i++){

if(marketShares[i] >= marketShares[num]){

if(marketShares[i] > marketShares[num]){

num = i;

count = 1;

}

else count++;

}

}

if(count == 1) return num;

else{

if(count > 0) r = generator.nextInt(count);

else return num;

count = 0;

for(int i = 0; i < marketShares.length; i++){

if(marketShares[i] >= marketShares[num]){

if(count == r) return i;

else count++;

}

}

}

return num;

}

public List<KQML> getMessages() {return new ArrayList<KQML>();}

public void packageData(EntityData ed) {}

public void recieveMessage(KQML message) {}

public void recieveMessages(List<KQML> messages) {}

private int arraypos;

private int xloc;

private int yloc;

private int initialX;

private int initialY;

private int agentID;

private Decision decision;

private int type; //type = 1 means quality decision making, 0 means decision made without

private double prob;

private boolean yourTurn;

private int timeStep = 0;

private int[] agentMovieValues;

private int movieSaw = -1;

private int bestMovie;

private double pi;

private int[] tempagentMovieValues;

62

private int lowerXbounds;

private int upperXbounds;

private boolean goToWork;

private int tempX;

private int tempY;

private int[] moviesKnown;

private boolean findMediaAgent;

private int turn;

private int movieseen;

private int agentNum;

private Random generator = new Random();

private int buildingNum;

private boolean lSideOfStreet; //left side of street

private boolean atHome = true;

private boolean goHome = false;

private boolean yDirection = true; //true = up false = down

private Point2D home;

private int lowerBounds;

private int upperBounds;

private int timeOfDay = 5;

private int[] tempMoviesKnown;

private int counter = 0;

private int[] movieValues;

int m = 0;

private static final long serialVersionUID = 2378493020539472835L;

}

Appendix C

Agent Decision Making Class

package edu.trinity.cs.mas.informationCascade;

import java.io.Serializable;

import java.util.Random;

public class Decision implements Serializable{

public Decision(int[] mValue, int mNum, double[] mShares, int rMS, int assignMovie){

movieValue = mValue;

movieNum = mNum;

marketShares = mShares;

recentMovieSeen = rMS;

movieAssigned = assignMovie;

}

// p is the agents private signal

// return -1 means no movie was seen

//used to make decision at the movies

public int makeDecision(double prob, int movieToSee){

boolean p;

if(prob >= generator.nextDouble()){

if(movieValue[movieAssigned] == 1)p = true;

else p = false;

}else{

if(movieValue[movieAssigned] == 1)p = false;

else p = true;

}

if(recentMovieSeen == 0){

if(!p) return -1;

else{

63

64

if(halfChance()) return -1;

else return weightedMovie(marketShares,movieToSee);

}

}else{

if(p) return movieAssigned;

else{

if(halfChance()) return -1;

else return weightedMovie(marketShares,movieToSee);

}

}

}

// pi is equal to the confidence each agent has in the other agents

// return -1 means no movie was seen

// need fixing

public int makeQualityDecision(double pi, int movieToSee, int value, double prob){

boolean p;

if(prob >= generator.nextDouble()){

if(movieValue[movieAssigned] == 1)p = true;

else p = false;

}else{

if(movieValue[movieAssigned] == 1)p = false;

else p = true;

}

double n = generator.nextDouble();

if(value == 1){

if(n < pi){

return 1;

}

else{

if (topN(movieToSee,marketShares)){

if(Double.compare(marketShares[movieToSee],0)==0){

if(p)return 1;

else return 0;

}

return 1;

}

else return 0;

}

}else{

if(n < pi){

return 0;

}

else{

if (topN(movieToSee,marketShares)){

if(Double.compare(marketShares[movieToSee],0)==0){

65

if(p)return 1;

else return 0;

}

return 1;

}

else return 0;

}

}

}

public int makeMixedDecision(double prob, int movieToSee, int[] movieValues){

boolean p;

if(prob >= generator.nextDouble()){

if(movieValue[movieAssigned] == 1)p = true;

else p = false;

}else{

if(movieValue[movieAssigned] == 1)p = false;

else p = true;

}

if(recentMovieSeen == 0){

if(!p) return -1;

else{

if(halfChance()) return -1;

else return bestMovieKnown(movieToSee,movieValues);

}

}else{

if(p) return movieAssigned;

else{

if(halfChance()) return -1;

else return bestMovieKnown(movieToSee,movieValues);

}

}

}

public int makeQuickDecision(double prob, int movieToSee, int movieseen, double pi, int[]

boolean p;

int[] array;

if(prob >= generator.nextDouble()){

if(movieValue[movieAssigned] == 1)p = true;

else p = false;

}else{

if(movieValue[movieAssigned] == 1)p = false;

else p = true;

}

if(movieToSee == -1){

66

if(halfChance()) return -1;

else return topMovie(marketShares,movieToSee);

}else{

if(movieseen >= 10){

if(generator.nextDouble() < pi) return movieToSee;

else{

if(p) return movieToSee;

else return topMovieChoice(tempMK);

}

}else{

if(generator.nextDouble() < pi) return topMovieChoice(tempMK);

else{

if(p) return movieToSee;

else return topMovieChoice(tempMK);

}

}

}

}

public int makeOriginalQualityDecision(double pi, int movieToSee){

double n = generator.nextDouble();

if(recentMovieSeen == 0){

if(halfChance())return -1;

else return topMovie(marketShares,movieToSee);

}else{

if(movieValue[movieToSee] == 1){

if(n < pi) return movieToSee;

else{

if(halfChance()) return -1;

else return topMovie(marketShares,movieToSee);

}

}else{

if(n < pi) return -1;

else{

if(halfChance()) return -1;

else return topMovie(marketShares,movieToSee);

}

}

}

}

private int weightedMovie (double[] marketShares, int movieToSee){

if(movieToSee != -1) marketShares = normalizeMarketShares(marketShares, movieToSee);

double prob = generator.nextDouble();

double counter = 0.0;

for(int i = 0; i < marketShares.length; i++){

counter = counter + marketShares[i];

67

if(prob < counter) return i;

}

return -1;

}

private double[] normalizeMarketShares(double[] marketShares, int movieToSee){

double[] array = new double[marketShares.length];

double value = 0.0;

for(int i = 0; i < marketShares.length; i++){

if(i != movieToSee){

array[i] = marketShares[i];

value = value + marketShares[i];

}else array[i] = 0.0;

}

for(int i = 0; i < array.length; i++) array[i] = array[i]/value;

return array;

}

//returns the highest or one of the highest movies with the highest personal value that is

//otherwise the movie returned is

private int bestMovieKnown(int movieToSee, int[] movieValues){

int count = 0;

for(int i = 0; i < movieValues.length; i++){

if(movieValues[i] >= 10){

count++;

i = movieValues.length;

}

}

if(count == 0) return bestMovie(marketShares, movieToSee);

int r;

count = 0;

int num = 0;

for(int i = 1; i < movieValues.length; i++){

if(i != movieToSee){

if(movieValues[i] >= movieValues[num]){

if(movieValues[i] > movieValues[num]){

num = i;

count = 1;

}

else count++;

}

}

}

if(count == 1) return num;

else{

if(count > 0) r = generator.nextInt(count);

else return num;

68

count = 0;

for(int i = 0; i < movieValues.length; i++){

if(i != movieToSee){

if(movieValues[i] >= movieValues[num]){

if(count == r) return i;

else count++;

}

}

}

}

return num;

}

private int topMovieChoice(int[] marketShares){

int num = (int)(0.25 * marketShares.length);

if(num == 0 || num == 1) num = 2;

int[] selection = new int[num];

for(int i = 0; i < num; i++){

selection[i] = 0;

}

for(int i = 0; i < marketShares.length; i++){

int y = smallestSelectionShareInt(selection, marketShares);

if(marketShares[i] > marketShares[selection[y]]) selection[y] = i;

}

int r = generator.nextInt(selection.length);

return selection[r];

}

//returns one of the movies in the top 25% of marketshares

private int topMovie(double[] marketShares, int movie){

int num = (int)(0.25 * marketShares.length);

if(num == 0 || num == 1) num = 2;

boolean p = true;

int value = generator.nextInt(marketShares.length);

while(p){

value = generator.nextInt(marketShares.length);

if(value != movie){

if(topN(value,marketShares))p=false;

}

}

return value;

}

private boolean topN(int num, double[] marketShares){

int count = 0;

for(int i = 0; i < marketShares.length;i++){

if(marketShares[i] > marketShares[num] && num != i) count++;

69

}

if(count >= 5) return false;

return true;

}

private int smallestSelectionShareInt(int[] selection, int[] marketShares){

int r;

int count = 0;

int num = 0;

for(int i = 1; i < selection.length; i++){

if(marketShares[selection[i]] <= marketShares[selection[num]]){

if(marketShares[selection[i]] < marketShares[selection[num]]){

num = i;

count = 1;

}

else count++;

}

}

if(count == 1) return num;

else{

if(count == 0) return 0;

else{

if(count > 0) r = generator.nextInt(count);

else return num;

count = 0;

for(int i = 0; i < selection.length; i++){

if(selection[i] <= selection[num]){

if(count == r) return i;

else count++;

}

}

}

}

return num;

}

private boolean halfChance(){

if(generator.nextInt(2) == 0) return true;

else return false;

}

//returns either the movie with the highest marketshares of one of the movies with the highest

//marketshares

public int bestMovie(double[] marketShares, int movie){

int r;

int count = 0;

int num = 0;

for(int i = 1; i < marketShares.length; i++){

70

if(i != movie){

if(marketShares[i] >= marketShares[num]){

if(marketShares[i] > marketShares[num]){

num = i;

count = 1;

}

else count++;

}

}

}

if(count == 1) return num;

else{

if(count > 0) r = generator.nextInt(count);

else return num;

count = 0;

for(int i = 0; i < marketShares.length; i++){

if(i != movie){

if(marketShares[i] >= marketShares[num]){

if(count == r) return i;

else count++;

}

}

}

}

return num;

}

int[] movieValue;

int movieNum;

double[] marketShares;

int recentMovieSeen;

int movieAssigned;

private Random generator = new Random();

private static final long serialVersionUID = 1735466112L;

}

Appendix D

Media Agent

package edu.trinity.cs.mas.informationCascade;

import java.awt.geom.Point2D;

import java.awt.geom.Rectangle2D;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import Communication.KQML;

import edu.trinity.cs.mas.Entity;

import edu.trinity.cs.mas.EntityFinder;

import edu.trinity.cs.mas.Renderer;

import edu.trinity.cs.mas.frontend.Log;

import edu.trinity.cs.mas.services.EntityData;

public class MediaAgent implements Entity{

public MediaAgent(int x, int y, int id,int arrayp, int mNum, double p, int aNum, int[] agentlist,

xloc = x;

yloc = y;

agentID = id;

movieNum = mNum;

prob = p;

agentSeeMovieAssigned = new int[aNum];

movieAgentSaw = new int[aNum];

arraypos = arrayp;

recentMovieSeen = new int[mNum];

seqMovieNumArray = new int[mNum];

71

72

agentNum = aNum;

AgentList = agentlist;

numDiffRuns = numDR;

if(numDR < 20-1) numPR = numDR-1;

else numPR = 20-1;

storeData = new double[5][20-1];

storeMovieSeen = new int[aNum][numPR];

storeMarketShares = new double [mNum][numPR];

reset();

}

private void reset(){

agentID= agentID - 1;

assignMovies();

for(int i = 0; i < movieValues.length; i++){

System.out.print(movieValues[i]+ ", ");

}System.out.println();

movieSeen = new int[movieNum];

for(int i = 0; i < movieNum; i++){

movieSeen[i] = 1;

}

marketShares = new double[movieNum];

actualMarketShares = new double[movieNum];

for(int i = 0; i < agentNum; i++){

movieAgentSaw[i] = -2;

agentSeeMovieAssigned[i] = -1;

}

nextAgentIndexNum = 0;

for(int i = 0; i < recentMovieSeen.length; i++){

recentMovieSeen[i] = 1;

marketShares[i] = 1 / movieNum;

actualMarketShares[i] = 0;

seqMovieNumArray[i] = i + 1;

}

seqAgentNumArray = new int[AgentList.length];

//Shuffle by exchanging each element randomly

for (int i=0; i<AgentList.length; i++) {

int randomPosition = generator.nextInt(AgentList.length);

int temp = AgentList[i];

AgentList[i] = AgentList[randomPosition];

AgentList[randomPosition] = temp;

}

System.out.println();

System.out.print("AgentList: ");

for(int i = 0; i < AgentList.length; i++){

73

System.out.print(AgentList[i]+ ", ");

seqAgentNumArray[i] = i + 1;

}System.out.println();

count = 0;

numGoodMovie = 0;

counter = 0;

seeMovieCounter = 0;

moviesSeen = 0;

masterCounter = 0;

lastMovieSaw = generator.nextInt(movieNum);

firstMovieValue = movieValues[lastMovieSaw];

firstMovie = lastMovieSaw;

agentsFound = 0;

}

private void assignMovies(){

// 1 means High, O means Low

movieValues = new int[movieNum];

for(int i = 0; i< movieNum; i++){

if(i<movieNum/2)movieValues[i] = 1;

else movieValues[i] = 0;

}

for (int i=0; i<movieNum; i++) {

int randomPosition = generator.nextInt(movieNum);

int temp = movieValues[i];

movieValues[i] = movieValues[randomPosition];

movieValues[randomPosition] = temp;

}

}

public void seeMovie(int movieToSee, int assignedMovie, int agentID){

seeMovieCounter++;

if(seeMovieCounter == 3) System.err.println("Agents Found is " + agentsFound);

if(movieToSee != assignedMovie){

agentSeeMovieAssigned[seeMovieCounter-1] = 0;

if(movieToSee != -1){

recentMovieSeen[movieToSee] = 1;

movieSeen[movieToSee] = movieSeen[movieToSee] + 1;

}

recentMovieSeen[assignedMovie] = 0;

}

else{

agentSeeMovieAssigned[seeMovieCounter-1] = 1;

movieSeen[movieToSee] = movieSeen[movieToSee] + 1;

recentMovieSeen[movieToSee] = 1;

}

if(movieToSee != -1){

74

if(movieValues[movieToSee] == 1) numGoodMovie++;

moviesSeen++;

}

movieAgentSaw[seeMovieCounter-1] = movieToSee;

proportionGoodMovie = (double)numGoodMovie/(double)(seeMovieCounter);

pGMSeen = (double)(numGoodMovie)/(double)(moviesSeen);

System.out.println("seeMovieCounter is " + seeMovieCounter);

count++;

updateMovieShare();

if(movieToSee == -1)lastMovieSaw = assignedMovie;

else lastMovieSaw = movieToSee;

}

public int getRecentMovieSeen(int num){return recentMovieSeen[num];}

public void displayData(){

System.out.println("proportionGoodMovie: " + proportionGoodMovie);

System.out.print("movieValues: ");

for(int i = 0; i < movieNum; i++){

System.out.print(movieValues[i]+ ", ");

}

System.out.println();

System.out.print("movieSeen: ");

for(int i = 0; i < movieNum; i++){

System.out.print(movieSeen[i]+ ", ");

}

System.out.println();

System.out.print("marketShares: ");

for(int i = 0; i < movieNum; i++){

System.out.print(marketShares[i]+ ", ");

}

System.out.println();

System.out.print("movieAgentSaw: ");

for(int i = 0; i < movieAgentSaw.length; i++){

System.out.print(movieAgentSaw[i]+ ", ");

}

System.out.println();

System.out.print("proportionGoodMovie without -1: " + (double)(numGoodMovie)/(double)(moviesSeen));

System.out.println();

System.out.print("recentMovieSeen: ");

for(int i = 0; i < recentMovieSeen.length; i++){

System.out.print(recentMovieSeen[i]+ ", ");

}

System.out.println();

System.out.println();

}

private void updateMovieShare(){

75

for(int i = 0; i < movieSeen.length; i++){

marketShares[i] = (movieSeen[i])/((double)moviesSeen+20);

if(moviesSeen == 0) actualMarketShares[i] = 0.0;

else actualMarketShares[i] = (movieSeen[i]-1)/(double)moviesSeen;

}

}

public double[] getActualMarketShares(){

return actualMarketShares;

}

public int getTurn(int agentID){

agentsFound++;

for(int i = 0; i < AgentList.length; i++){

if(AgentList[i] == agentID) return i;

}

return -1;

}

public int[] getMovieValue(){return movieValues;}

public int getSpecificMovieValue(int num){return movieValues[num];}

public int getMovieNum(){return movieNum;}

public double[] getMarketShares(){return marketShares;}

public void gatherData(List<Entity> list, EntityFinder finder) {

masterCounter++;

System.out.println("masterCounter is " + (masterCounter+1));

if((masterCounter)%agentNum == 0 && masterCounter != 0){

System.out.println("End of a Simulation");

displayData();

for(int i = 0; i < list.size(); i++){

if(list.get(i) instanceof SimpleAgent)((SimpleAgent)list.get(i)).reset();

if(list.get(i) instanceof Simple2DAgent)((Simple2DAgent)list.get(i)).reset();

}

reset();

}

}

public double getProb(){return prob;}

public Rectangle2D getBoundingSpace() {return new Rectangle2D.Double(-20,-20, 20, 20);}

public Log getLogData(int i) {return null;}

public List<Entity> getNewlyCreatedEntities() {return new ArrayList<Entity>();}

public Point2D getPosition() {return new Point2D.Double(xloc,yloc);}

public Renderer getRenderer() {return null;}

public int getSize() {return 0;}

public double searchRadius() {return 50;}

public void setArrayPosition(int pos) {arraypos = pos;}

public void setID(int x) {agentID = x; }

public void setLocation(int x, int y) {

xloc = x;

76

yloc = y;

}

public int getID() {return agentID;}

public int[] getMovieValues(){return movieValues;}

public void packageData(EntityData data) {

}

public void recieveMessage(KQML message) {}

public void recieveMessages(List<KQML> messages) {}

public List<KQML> getMessages() {return new ArrayList<KQML>();}

public void update(int timestep) {counter++;}

public int getlastMovieSaw(){return lastMovieSaw;}

private double[][] storeData;

private int[][] storeMovieSeen;

private double[][] storeMarketShares;

private int[] movieValues;

private double[] actualMarketShares;

private int agentNum;

private double prob;

private int xloc;

private int yloc;

private int agentID;

private int movieNum;

private Random generator = new Random();

private int[] movieSeen;

private int[] recentMovieSeen;

private int count = 0;

private double[] marketShares;

private int[] AgentList;

private int nextAgentIndexNum;

private int arraypos;

private int[] agentSeeMovieAssigned;

private int[] movieAgentSaw;

private double proportionGoodMovie;

private int numGoodMovie = 0;

private int counter = 0;

private int[] seqAgentNumArray;

private int[] seqMovieNumArray;

private int seeMovieCounter = 0;

private int moviesSeen = 0;

private int masterCounter = 0;

private int numDiffRuns;

private int numWrites = 0;

private double pGMSeen = 0;

private int lastMovieSaw;

77

private int firstMovie;

private int numPR;

private int agentsFound;

private int firstMovieValue;

private final long serialVersionUID = 17354669;

}

	Trinity University
	Digital Commons @ Trinity
	4-22-2009

	Agent Communication in Multi-Agent Models of Information Cascades
	Jennifer West
	Recommended Citation

	main.dvi

