
LA-UR-7J-3'<£T" BBCBVED BY TIC m 1 1 ^

TITLE: COMPUTER PROGRAM OPTIMIZATION USING SOFTWARP

MONITORING TECHNIQUES a ISO&Ot-'/

AUTHOR(S): A. Frank McGirt

Lawrence E. Ruds inski

K. J e r r y Melendez

SUBMITTED TO: AEC S c i e n t i f i c Computer Informat ion
Exchange (SCIE) Meeting May 3 and 4 ,
1973 a t S i r F r a n c i s Drake H o t e l , San
F r a n c i s c o , C a l i f .

By acceptance of this article for publication, the publisher
recognises the Government's (licensel rights in any copyright
and the Government and its authorized representatives have
unrestricted right to reproduce in whole or in part said article
under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the
publisher identify this article 35 work performed under the
auspices of the U. S. Atomic Energy Commission.

- N O T I C E -

of the Un i ve r s i t y of Ca l i f o rn ia
IOS A L A M O S , NEW MEXICO 8 7 5 4 4

This report was prepared as an account of wo; k
sponsored by the United States Government. Neither
the United States nor (he United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com­
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe privately owned rights.

/ \

MASTER
Form No. H'M
St. No. 2629
1/73

U N I T E D f iTATES
A T O M I C E N n t G Y COMMISSION

COt .TO ACT W 7 4 0 5 - E M G - 3C

DJSTTHBimON Of THIS OOCUMENT IS UKUMfTED

n

COMPUTER PROGRAM OPTIMIZATION USING

SOFTWARE MONITORING TECHNIQUES*

F. McGirt, L. Rudsinski, K. J. Melendez
Los Alamos Scientific Laboratory

University of California
Group C-4

P. 0. Box 1663
Los Alamos, New Mexico 87544

ABSTRACT

Concern about the efficient use of computer resources at the Los
Alamos Scientific Laboratory (LASL) has led to the development of software
performance measurement tools and a formal computer program optimization
project. In this paper the design, implementation, and use of such tools
is discussed. A description of the optimization project execution proce­
dures and typical gains in program efficiency versus manpower and machine
time costs are given. Problems and recommendations which are of interest
to others who plan development of computer performance measurement tools or
establishment of formal optimization projects are discussed.

INTRODUCTION

Use of the computer at the Los
Alamos Scientific Laboratory (LASL)
has become one of the most valuable
Laboratory resources. Controls of
computer usage such as by allocation
and direct charging of machine time
have been implemented. This, in
turn, has caused users to become more
concerned about the execution effi­
ciency of their codes. Were they
making full use of the computer time
for which they were paying? It was
this growing concern about code effi­
ciency that clearly pointed out the
need for performance measurement
tools and perhaps a formal code opti­
mization effort.

COMPUTER SYSTEM CONFIGURATION
AND JOB MIX

The LASL computer system con­
figuration consists of three Control
Data Corporation (CDC) 6600 compu­
ters and two CDC 7600 computers.
However, the discussion will be re­
stricted to the 7600 computers be­
cause most of the production work
is done on these machines. The CDC
7600 computers each have 65,536K
words of Small Core Memory (SCM) and
S12Kiowords of Large Code Memory
(LCM), three 40M» word disk modules,
and six tape drives. Four line
printers, a card reader, and a card

*This work done under the auspices of

punch are available for each machine.
The 7600's operate under the LASL
developed CR0S operating system and
are about four times faster than the
CDC 6600's for production jobs.

The job mix at LASL is quite
varied. Of the jobs run on the
7600's, 64$ finish in less than 30
seconds and 921 finish in less than
S minutes. Only 1.7$ of the total
jobs that execute on the 7600*5 run
for longer than 30 minutes, but these
jobs use more then 55* of the total
available 7600 machine time. It is
clear then that a few programs use
most of the machine time and that
an optimization effort should be
initially directed toward those few
programs.

PRELIMINARY OPTIMIZATION STUDY
AND TOOL DEVELOPMENT

Before a formal optimization
project could be tackled some tools
and information had to be assembled.
First we wanted to find out how effi­
ciently the hardware was being used.
LASL had done a very limited amount
of hardware monitoring which con­
sisted primarily of hooking counters
to the 760C functional units and
measuring the MIP (millions of in­
structions per second) rate. These
measurements showed that the object
code generated by the F0RTRAN

the Atomic Energy Commission.

compiler executed at a rate between 9
andl2MIP. The theoretical maximum
execution rate for the 7600 is 36 MI P.
This indicated that the 7600 hardware
was executing only 251 of the instruc­
tions which were theoretically cap­
able of being executed because the
FORTRAN compiler was generating in- •
efficient obj ect code. Al though work
on the compiler would surely result
in definite gains in execution effi­
ciency, it was likely that some gains
could also be made using optimization
techniques with the current compiler.

We first wanted to know where
time was being spent during program
execution. For this we needed a
tool which would monitor codes dur­
ing execution and describe the areas
being used most heavily. We de­
cided on the following design goals
for such a tool:

1. The tool must provide
meaningful execution time
statistics such as I/O
wait time, and it should
determine the relative
frequency with which in­
structions are executed.

2. The tool should be easy
to use.

3. The tool should use mini­
mum overhead and interact
with the executing pro­
gram as little as possible.

4. Output should be displayed
in an easily comprehen­
sible form and quickly be
accessible after each
run.

With these goals in mind we decided
that monitoring the program address
register (P-register) was probably
most feasible. By March of 1972,
we had designed and implemented a
routine called STAT1 for execution
on the 7600's. STAT makes use of a
7600 hardware interrupt feature to
save the contents of the P-register
every 3.5 milliseconds during pro­
gram execution, with virtually no
overhead to the executing program.
At the end of the job, the results
are displayed as a printer plot his­
togram which shows code address
versus the number of times the

P-ragister was found to be equal to
the code address. Application of
STAT to several user jobs showed
that we had indeed satisfied our de­
sign goals and were able to isolate
heavily-used areas of executing
programs.

The next piece of information
that we judged necessary to have
before starting a formal optimisa­
tion project was whether or not the
laboratory programmers were using
good techniques and whether they
were taking advantage of certain
features of the 7600's which were
not available on the 6600 computer.
To accomplish this we began a sur­
vey of randomly selected 7600 jobs
from the input shelves to learn what
percentage gains in efficiency could
be expected. Efficiency gains were
to be achieved in three rather sim­
ple ways which would serve to limit
the effort expended on each program.
The three methods used were:

1. Improve the F0RTRAN pro­
gramming techniques,

2. Correct deficiencies in
system routines, and

3. Improve numerical
algorithms.

This survey ran for three months
during the summer of 1972, and
showed that significant gains (an
average of 391 for 20 cases) in
program efficiency could be realised
with relatively small investments in
manpower* and machine time. In
addition to the significant improve­
ment in program efficiency, the
summer survey had other benefits.
Programming techniques were discov-
which the F0RTRAN programmer could
use at th<* source code level to im­
prove object code execution effi­
ciency.** Several tools were devel­
oped during the survey as the need
became evident. One of these tools
was a program called REGREF1 which

* A full-time programmer and a sum­
mer student were responsible for
the survey.

**These optimal programming techni­
ques are being published for the
benefit of all LA5L programmers.

processes the print file from a
F0RTRAN compiler or CjSMPASS assem­
bler and indicates delay cycles
between instructions. Delays re­
sulting from register conflicts,
functional unit conflicts, and the
instruction stack (which may have
been introduced by poor programming
techniques) are given. A register
reference of the 24 CPU registers
is also given.

OPTIMIZATION PROJECT

Based on the results of the
summer survey and tne fact that
some necessary tools for software
performance measurement had been
developed, it was decided in Dec­
ember 1972 to begin a formal opli­
mitation project. This project has
two primary goals:

1. To examine user programs
which use appreciable
amounts of machine time
to determine if efficient
use is being made of LASL
computers and to improve
programming efficiency
where possible. Heavily
used areas of code are
isolated so that optimi­
zation efforts can be
concentrated.

2. To document the optimiza­
tion techniques developed
during the project for
future reference by LASL
programmers.

Tim procedures for project
execution are defined as follows:

1. The LASL Computer Division
(C-Division) will provide
a project leader whose
duties are to accept jobs
and assign them a prior­
ity, monitor the path of
jobs, keep the cost and
performance records for
each job and provide the
primary contact with
users. In addition, the
Computer Division will
provide code optimizers,
consulting, and assist­
ance in optimization
techniques.

2. A person will be appointed
from each division to
coordinate optimization
activities with C-Division.
This person will be respon­
sible for insuring that
appropriate test Jobs and
current production versions
of the programs are made
available to the C-Division
optimizers and will moni­
tor the results of the
optimization. Since a
good relationship between
the code authors and the
code optimizers is very
important to the success
of the project, the divi­
sion coordinator will also
provide this liaison.

3. Aft«r obtaining test jobs
and pertinent documenta­
tion, the heavily-used
areas of the codes to be
optimized are isolated
usin? the STAT routine

?revlously described. hese areas are analyzed
by the optimizers and
recommendations for im­
provement are made to
the code author.

4. The code author can then
make the necessary
changes himself or take
advantage of the labora­
tory programming services.

The above procedures imply
close user-optimizer cooperation and
communication. This is very impor­
tant when large production codes are
to be optimised because the optimi­
zation techniques will depend in
large part on exactly what the au­
thor is trying to accomplish with
his code. The optimizer is depen­
dent on the code author to provide
this information.

The project *s presently begun
will operate in stages. Stage 1
will concentrate on those codes
which use the most 7600 time (> 20
hours per month). Stage 2 will in­
clude codes which use somewhat less
time (10 < t < 20 hours per month).
Stage 3 will accept the remainder
of the production codes in the
laboratory.

Stage 1 is presently staffed
with five people, each spending 1/2
of their time on optimization re­
lated work. A sharing effort
between several people is important
because of the "cross fertilization"
between project members who are ex­
pert in different areas of program­
ming and mathematics. With several
areas of expertise available, the
entire program execution procedure
can be analyzed for optimal exe­
cution. In fact, the analysis of
each code to be optimized has been
broken up into several areas which
•atch the interests of individual
project members. The areas which
are analyzed for execution effi­
ciency are:

1. Numerical algorithms.

2. F0RTRAN programming
techniques.

3. Inner loops for possi­
ble reprogramming in
machine language.

4. Existing machine lan­
guage routines.

5. Program structure in­
cluding data handling
and I/O.

After the analysis is complete,
the project members meet to discuss
their findings and to prepare a re­
port to the code author. Repro­
gramming of the code is then begun,
either by the author or by a project
member.

To date, work has been comple­
ted on three large production codes
used for hydrodynamics and neutro-
nics calculations. The use of each
of these codes has varied between
100 to 150 hours/month of 7600 time
for the past six months. Between
20% and 30% improvement in execution
speed was realized for each rode;
however, the techniques used for
achieving the gains were different
in each case. Examples of some
techniques which we used to achieve
significant gains are described
below.

Small F0RTRAN subroutines which
are heavily used in inner loop cal­
culations can be rewritten in ma­
chine language. The execution

statistics which were obtained using
the STAT program during a typical
production run showed that 601 of
the total run time for this parti­
cular code was being spent in a 500
word FORTRAN subroutine. The
F0RTRAN was analyzed and the deci­
sion made to rewrite the subroutine
in machine language since little
gain was evident from redoing the
F0RTRAN. The reprogramming in ma­
chine language took about 1/2 man-
month including debugging and tes­
ting and gained about 50% in execu­
tion speed for the subroutine which
is a 30% improvement for the entire
code. This is a savings of 50
hours/month of 7600 time.

If inefficient F0RTRAN subrou­
tines are large (> 500 statements)
with lots of branching and transfer
statements so that program flow is
relatively hard to define, repro­
gramming in machine language is
usually not very effective. One
can instead improve the F0RTRAN
programming techniques. For exam­
ple, on the 7600 a divide is very
slow and should be changed to a
multiply.* The code discussed
above is an example of the case
where large gains can be made with
little investment. The next code
to be optimized is a perfect counter
example. The execution statistics
for this code showed that there
were few areas which were used much
heavier than other areas. The three
most heavily-used areas were picked
for closer study. Two short F0RTRAN
subroutines were rewritten (in
F0RTRAN) and a portion of the
F0RTRAN main program was replaced
by a machine language subroutine.
The analysis and reprogramming re­
quired about 2 man-months of effort.
The gain in execution speed was
about 24%, which translates into a
savings of 24 hrs/month of 7600
time. In this case, the payoff was
smaller for a much larger effort.

Yet another technique which can
be used to achieve large savings in
execution time, but may be expensive
in manpower, is the understanding of
algorithms and their subsequent

*See Reference 4 for other examples.

reprogramming for efficient execu­
tion. For example, one user was
employing a least-squares spline
package for smoothing experimental
data. The data were equally spaced
which meant that no sophisticated
mathematical techniques were re­
quired for smoothing. A single
weighted averaging technique would
have sufficed.

One, of course, must sometimes
employ a combination of these and
other techniques. Execution sta­
tistics for a large production code
showed two major problem areas. The
first was a machine language sub­
routine which was being used about
30% of the total time for a typical
production run. Close analysis re­
vealed that the routine was essen­
tially a translation of the object
code produced by a F0RTRAN compiler.
A study of the program flow pointed
out many illogical and unnecessary
branches. In fact, we discovered
that one of the illogical branches
was an error which had existed for
several years. We redesigned the
program flow for more efficient
execution and a careful rewrite in
F0RTRAN produced a version of the
subroutine which executed as fast
as the original machine language
version. The F0RTRAN version was
then rewritten in machine language
and about a ISI improvement in
execution speed was achieved for the
entire code.

The second problem area for
this code was the I/O war: time
which varied from 71 to 2 31 of the
total run time. Recommendations
for changes which would improve
this situation were made r.o the
code user. He modified the data
handling procedures and achieved up
to a 20% reduction in execution
speed for the entire program. A
total savings of about 30 hours/
month were achieved for this code.

SUMMARY

Given in the Table below is a
summary of the costs and the gains
for a three-month optimization
effort on production codes. It is
clear that the savings in computer
time far outweigh the cost of the
project, at least for the codes
which have been optimized to date.
However, there are several problems
which were encountered which could
add greatly to future project costs.

Some codes are much harder to
optimize than others because of the
detailed analysis required for under­
standing what the user is trying to
accomplish with the code. This is
particularly true when codes have
been handed down from user to user
as is the case with some of the
older production codes at LASL.
The initial logic is usually modi­
fied so that the documentation, if
present, may be of little use. It

TABLE 1

OPTIMIZATION PROJECT COST EFFECTIVENESS SUMMARY

Total Usage of Production Codes
before Optimization 370 hrs/month

Savings in Computer Time after
Optimization 104 hrs/month

Manpower Expenditure for
Optimization 3 man.months

Computer Costs for Optimization 3 hours

is, therefore, probably not cost
effective to try to optimize codes
when little can be learned about
the internal logic. The cost of
analysis may outweigh the gains in
execution speeds for such codes.

Codes which have no heavily-
executed areas as compared with
other areas are costly to optimize,
because significant gains are usu­
ally accumulated from smaller gains.
Several areas may yield gains of 31
to 5% in execution speed after much
effort has been spent in analysis
and reprogramming.

Subroutines in which a large
fraction of time is spent in tight
inner calculational loops and sub­
routines which are designed for a
very specific (but time consuming)
task are the most amenable to
optimization. Usually, substantial
gains in execution speed can be
realized by using more efficient
algorithms and either by improve­
ment of the programming techniques
or by reprogramming the inner loop
in machine language. Machine lan­
guage, however; should be used with
care and good documentation must be
provided because machine language
routines are harder to maintain and
may be difficult to move to new
machines.

Debugging and testing efficient
subroutines which have been written
for inclusion in large codes may
also prove quite expensive, espe­
cially if subprogram linkages are
very complicated and difficult to
isolate. For these cases using
simple driver programs to test the
subroutines is almost impossible.
The subroutines must be tested as
part of a regular production run or
a tool must be developed which
would allow monitoring the execution
of the program and displaying inter­
mediate results when appropriate.
An interactive program debugging
package is presently being develop­
ed by optimization-project people
at LASL. Having or being able to
develop program monitoring and de­
bugging tools as needs become evi­
dent is a key part of any computer
program optimization effort. Set­
ting aside part of the optimization
project resources for tool

development not only helps to take
care of technical project needs,
but it also provides some variety
for project members who are in­
volved in quite complicated pro­
gramming tasks. The freedom to
design and implement software tools
important to project requirements
is a relaxing and productive
alternative.

A final consideration which is
extremely important to the success
of an optimization project is the
program author-program optimizer
relationship. As stated earlier,
close author-optimizer cooperation
and communication are essential be­
cause the optimizer must know what
the author is trying to accomplish
with his program. The optimizer
should recognize that often a high
level of ego involvement exists
between the computer program author
and his program*, and the optimizer
should manage his relationship with
the program author accordingly.

CONCLUSION

The optimization project pre­
sently underway at LASL has shown
that appropriate specialists using
appropriate tools and techniques
can significantly increase the
execution speed of production
codes provided they have the coop­
eration of the authors and/or prime
users of those codes. The work com­
pleted to date has shown a 3 to 1
profit/cpst relationship. This
ratio should increase as more opti­
mization techniques and better tools
are developed during the course of
the project.

REFERENCES

"STAT: A Software Performance
Measurement Tool for the CDC
7600", K. J. Melendez, F. McGirt,
P. A. Plaisted, and L. E.
Rudsinski, Rio Grande Chapter
of the ACM, Santa Fe, New
Mexico, October 13, 1972,

"Program Library, Abstracts and
Usages", Programmers' Informa­
tion Manual, Vol. 2, Los Alamos
Scientific Laboratory, Los
Alamos, New Mexico, 1972.

The Psychology of Computer
Programming, Gerald M.
Weinberg, van Nostrand Rein-
hold Co., New York, 1971.

••CDC 7600 F0RTRAN Optimizing
Techniques", F. McGirt, L.
Rudsinski, and K. J. Melendez,
LA-S219-MS, Los Alamos Scienti­
fic Laboratory, to be published.

