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ABSTRACT

It has recently been shown by experiment that a quantity known as the

J Integral may be a useful fracture criterion in the inelastic range. The

mathematical definition of the J Integral is used here to derive a relation-

ship between the conventional elastic stress concentration factor of a sharp

notch and the elastic stress intensity factor for a crack of the same shape.

This relationship has previously been derived only by assuming some partic-

ular shape of cracked body, but this assumption is shown to be not necessary.

The same assumptions, together with Neuber's equation for the inelastic stress

and strain concentration factors for a sharp notch, are used to derive a

relationship between the J Integral and the parameter K_ , of the Equivalent

Energy Method. A graphical procedure for estimating upper and lower bounds

on the full restraint value of the fracture toughness is also discussed.
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Nomenclature

2A Crack area, in.

a Defect size, generally half-length, in. :

B - Plate thickness, in.

C Shape factor, dimensionless

c^ Constant, in.~

Cp Constant, dimensionless

E Modulus of elasticity, psi •

p
G Critical elastic strain energy release rate, in.-lb/in.

G a Critical elastic strain energy release rate measured
c with a large specimen, in.-lb/in.

G_ Elastic strain energy release rate for plane strainElastic strain energy re3
conditions, in.-lb/in..

G_ Critical elastic strain energy release rate for plane
c strain conditions, in."-lb/in.

The J Integral, in.-lb/in.2

p
Critical value of the J Integral, in.-lb/in.

Critical value of the J Integral measured with a small
c specimen, in.-lb/in.2

Critical value of the J Iptegral measured under plane
strain conditions, in.-lb/in.

Critical value of the elastic crack tip stress intensity
factor, ksi.in.1/?



K . Critical value of the elastic crack tip stress intensity
factor estimated from the value of S f, ksi.in. '

2

1/2Kj. The elastic crack tip stress intensity factor, ksi.in. '

K_ Critical value of the elastic crank tip stress intensity
factor for plane strain conditions, ksi,in.V2

Kj. , The same as K ; the subscript d indicates the size
(usually thickness) of the specimen being considered;
in this report- d is sometimes represented ay m, p, t
or »; ksi.in.1/2

K. Elastic stress concentration factor, dimensionless

K Actual strain concentration* factor, dimensionless

K Actual stress concentration factor, diaensionless

k' Initial slope of the curve of P/B versus &/B, ksi

m Thickness of a model specimen, in.

P_ Failure load,, kips

P_ Pseudo-elastic failure load, kips

p Thickness of a prototype, in.

S Nominal stress, ksi

S f Actual nominal stress at failure, ksi

S f Pseudo-elastic nominal stress at failure, ksi

s . The size effect, also called the volumetric energy ratio,
m' between the sizes m and t, dimensionless



t Thickness, in.

U Nominal strain energy density, ksi

V Total potential energy, in.-kips

W Width of a Compact Tension Specimen, in.

W Strain energy density at the crack tip on the plane of
crack extension, ksi

V Strain energy density on the crack tip contour, ksi
s

x Distance in the direction of crack extension, in.

Shape factor for the Compact Tension Specimen; also
sometimes denoted by f(a/W); dimensionless

Distance perpendicular to the plane of crack extension,
in.

T, The crack tip contour (not an algebraic quantity)

A Displacement of the load, in.

8 Position angle measured at the crack tip, radians

\ Total nominal strain, in./in.

e Maximum total strain at the notch tip, in./in.

v Poisson's ratio, dimensionless

p Notch tip radius of curvature, in.

a Maximum stress at the notch tip, ksi
max



°r Stress normal to the notch tip surface, ksi

a6 stress tangential to the notch tip surface, ksi

°Y Yield stress, ksi



Introduction

The need for measured values of the fracture toughness, K- , for nuclear

pressure vessel steels is the result of the requirement that the safety of

nuclear power plants must be proven in advance, by methods of analysis that

are as quantitative as possible and that agree with experimental data.

Current testing procedures require that the size of the specimen required to

measure a valid value of KT must increase with the square of the ratio

K-. /CL.. This results in specimens as thick as twelve inches being required

to measure a valid value of K T for unirradiated A533-B steel at room tem-

perature. Such thickness requirements reduce to a practical impossibility

the irradiation of specimens sufficiently thick to measure the higher values

of K_ required to quantitatively demonstrate the safety margins that exist

for irradiated nuclear pressure vessels. Consequently, there is a need for

ingenious alternate approaches to the quantitative determination of high

values of fracture toughness, using small volumes of irradiated material.

One approach, described by Klausnitzer sn& Gerseha, is to insert, by electron

beam welding, a small irradiated crack tip element into a larger unirradiated

specimen. Another approach is to rely on a theoretical relationship between

the elastic-plastic load-deflection behavior of a small specimen and the .

elastic fracture toughness that would, or might have been, measured directly,

using a much larger specimen. The latter approach is the one to be discussed

in this paper.



Current Approaches to the Development of

Elastic-Plastic Fracture Analysis

In order to obtain a measure of fracture toughness from a specimen that

has been fractured after gross yielding, it is first necessary to hypothesize

a fracture criterion that is not based on the assumption of completely elastic

behavior. To do this; it is logical to begin by making the assumption that

the onset of fracture is caused by a critical condition of stress or strain

being reached at or near the crack tip. If changes in transverse restraint

due to gross section yielding are ignored, at least temporarily, then in

addition it can be assumed that the critical condition remains the same

regardless of whether the specimen fails before or after gross section yield-

ing. Thus if an assumed critical quantity can be calculated, or measured

directly, from inelastic ultimate load data obtained from a small specimen,

and it can be calculated, for elastic conditions, for other geometries, then

it can be used as a basis for calculating KL . Such a quantity, known as
4.

the J Integral, was suggested by Rice as an analytical device for _.

the inelastic range. Rice showed that the J Integral, which for a notch

with a finite root radius no matter how small, has the definition

J " Iv V '
' *t s

where T. is the crack tip contour, If is strain energy density in ksi,"
b S

and y is the distance normal to the crack plane in inches, is also equal to

minus the rate of change of total potential energy with respect to crack

surface area, at constant deflection, assuming nonlinear elastic behavior.

Thus,

J = " 3X ' * = COnst '



where V is total potential energy in inch-kips, A is crack surface area

in in. , and A is the displacement of the load, in inches. Clearly, Eq. (2)

is a generalization of the equation for G , the elastic strain energy release

rate. In addition, if J has a critical value at fracture, which can be

denoted by J , then Eq. (1) gives an explicitly stated notch tip condition

at fracture.

4 5

.Following the reasoning developed by Rice, Begley and Landes of the

Westinghouse Research Laboratories showed experimentally, with specimens of

Ki Cr Mo V rotor steel and A533-B steel, that the value of J_ obtained from

small specimens is substantially the same as the value of Gj obtained pre-

viously from much larger specimens. In other words,

where the subscripts s and 4 indicate small and large specimen sizes,

respectively. Landes and Begley also presented evidence indicating

that J_ is independent of geometry.

Another generalization, for inelastic conditions, of the elastic
7

equations used to calculate K_ has been prqposed by Witt and Mager.

For a Compact Tension Specimen which fails after the onset of gross yielding,

a fracture toughness parameter, K_ ., is defined by the equation

P * Y

In Eq. (4), P- is the load at a point on the extended initial tangent to

the actual load deflection curve which defines a pseudo-elastic load de-

flection curve the area under which is the same as the area under the

actual load deflection curve at maximum load. Y is the elastic ally calcu-

lated nondimensional shape factor, sometimes denoted by the symbol f(a/w);



B is the specimen thickness, in inches; and W is the specimen width, in •

inches. The elastic equation for KT , is identical in form to Eq. (4).

The subscript d in the term K T . refers to the thickness of the specimen

tested. The subscript I, as used by Witt and Mager, implies the opening

mode of crack extension, but does not necessarily imply plane strain. Witt
7

and Mager found that values of K- ,, obtained with one-inch-thick Compact

Tension Specimens of A533-B, Class 1, steel up to 50°F, match previously

measured values of K- obtained with specimens up to twelve inches thick,

as shown in Figure 1. Thus, although the parameter KT ,, as originally

defined, appears to have no explicit meaning in terms of notch tip conditions,

it has been shown to have the correct value when -the correct value was

already known. Thus, it is of interest to ask the question, "Does K-. , have

any explicit meaning in terms of notch tip conditions?" in order to evaluate

its physical significance. The strategy adopted for answering this question

was to begin with the equation for the J Integral, which does have an explicit

meaning in terms of notch tip conditions, as given by Eq. (1), and, by a

series of assumptions., to derive an expression identical to Eq. (4), thus '

answering the question affirmatively.

Derivation of the Irwin-Neuber Equation

Before applying the J Integral to an inelastic analysis, it will be

applied first to the derivation of an important existing elastic equation

relating the stress concentration factor of a sharp notch to the stress in-

tensity factor for a crack of the same shape. The derivation to be presented

here is important because it demonstrates the reasonableness of the assumptions

to be used subsequently for an inelastic analysis, and because the elastic

equation being derived has previously been derived only by assuming some

specific overall geometry (see, for instance, ref. S).
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L
Since J is a generalization of G, it follows that, for plane strain

elastic conditions,

Lim J = GT , (5)
p-» o

where p is the notch root radius in inches- Combining Eqs. (1) and (5)

gives

Lim / r Wefer = G . (6)
p-» o Xt s J

If the crack tip configuration is assumed to be the arc of a semicircle,

as shown in Fig. 2, and it is assumed that

Wg = W o cos 9 , (7)

where W is the strain energy density at the point on the crack tip for

which 6 = 0 ° , then combining Eq. (6) and (7) gives

W
GT = Lim — / P x dy = Lim J W p . (8)

p-» o p -p p-» o

On the crack tip contour, for elastic plane strain conditions, e = 0

and a = 0. where a is the stress normal to the crack surface. Consequently,

Ws " 2 2E '

where aQ and eQ are the stress and the strain, respectively, tangential

to the crack tip contour. For 9 = 0 ° , VT = u and
s o

where K. is the elastic stress concentration factor and S is the nominal

stress. Substituting Eq. (10) into Eq. (8) and rearranging gives
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(1 - V2) p-» O

Since

EG.

EG- (K.S)2 Tip
1 - Lim — £ . . (ii)

(1-v 2) I

substituting Eq. (12) into Eq. (11) and taking the square roots of both

sides gives

(12)

Kj = Lim | KtS /np . (13)
p-» o

9 10
Equation (13), referred to here as the Irwin-Neuber equation, ' has

already been extremely useful in the field of fracture mechanics. It has

been used to derive stress intensity factor solutions when the corresponding

stress concentration factor solutions were already known. It should be

noted that an assumption similar to, but not identical to, Eq. (7) has been

12used by Rice to estima-

Eq. (13) did not result.

12used by Rice to estimate the maximum strain at the tip of a notch, but

A Relationship Between the J Integral and

the Parameter KT ,led

For an inelastic analysis, combining Eqs. (1) and (7), and again assuming

a semicircular notch tip configuration, gives

which is a generalization of Eq. (3) without taking the limit as p approaches

zero. Still assuming plane strain,
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e

o

where a and e are the maximum stress and the maximum strain,

respectively, at the tip of the notch. In order to evaluate the right

hand side of Eq. (15), it will be assumed that both the nominal and the

notch' tip stress-strain curves can be represented by equations of the

form

stress = constant X (strain) . (16)

Applying Eq. (16) to Eq. (15) thus gives

w -Wo

The actual stress and strain concentration factors are defined by the

equations

and

14 /

According to an analysis developed by Neuber, the quantity \K.K )

remains constant even after yielding, and can be estimated from the

equation

(20)
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Neuber's original analysis was for in-plane shear loading, but subsequent

studies by Van Buren, and by Gowda and Topper, have supported the use

of Eq. (20). at least as an approximation, for other modes of loading.

Therefore, substituting Eqs. (18) and (19) into Eq. (17), and using Eq. (20)

gives

From Eq. (16), it also follows that

o
j S L - - J X S d X = U , (22)

o

where U is the nominal strain energy density at the location of the flaw,

in ksi. Combining Eqs. (21) and (22) gives

WQ = Kj U , (23)

and combining Eqs. (23) and (14) then gives

J = -| np . ' (24)

Equation (23) expresses the basic physical relationship implied by this

analysis, namely, the proportionality between the maximum strain energy

density at the crack tip and the nominal strain energy density.

The elastic stress concentration factor, K,, can be evaluated by recognizing

that Eq. (13) is actually a good approximation whenever the ratio of notch depth

to root radius is large. Thus, combining Eq. (13), without the limit notation,



with the basic expression for the stress intensity factor, which is

Kj. = CS Jm. , (25)

gives

Kt = 2C / ^ . (26)

Substituting Eq. (26) into Eq. (24-) eliminates the unknown root radius

and gives

J = (2TT C2a)u , (27)

Thus, the value of the J Integral is approximately proportional to the

product of the crack size and the nominal strain energy density. If J

has a constant value at fracture, then the product of U times a must be

constant at fracture.

By substitution, Eq. (27) can be rewritten in a form identical to the

equation for K_, Eq. (25). Assuming the validity of Eq. (3), then at fracture

Jc = Gc = T = (2TT ° 2 a ) U '

where the subscript I implying plane strain has been set aside pending

experimental verification. The quantity U can be written as

i (sj)2

U = — — , (29)
2E .

where st defines the end point of a pseudo-elastic stress strain curve,

the area under which is the same as the area mder the actual S — X curve

at maximum load, as shown in Fig. 3. Substituting Eq. (29) into Eq. (28)

then leads to

K* = CS* / m , (30)
C i
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where K is an estimate of K based on S~. Equation (30) is identical in
ry

form to both Eq. (25) for K_ , and to Witt and Mager's expression for KT

in terms of the nominal stress.

An expression applicable to the Compact Tension Specimen, and identical

in form to Eq. (4), can now be derived. The first step is to define a

normalized load-displacement curve that has an initial slope equal to E,

the elastic modulus. The normalized load can be arbitrarily defined by the

equation

Then, if the initial slope of the curve of P/B2 versus &/B is k', the

normalized displacement will be defined by the equation

(32>

It is also necessary to assume that K and K remain constant during load-
er 6

ing, and that Eq» (23) therefore remains valid.

For elastic conditions, Eq. (13) can be written, without the limit

notations, as

KIc = I KtSf

It follows from Eqs. (30) and (33) that

2
For elastic conditions,

PfY

6
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Combining Eqs. (31), (33), and (35) gives

2 K f . (36)

Finally, combining Eqs. (34) and (36) gives

Pf Y

K* = -i * (37)

which is identical to Eq. (A).

Noting that

K c = K I c d > •

it follows that an approximate relationship between the J Integral and

the parameter K_ - does exist, subject to the limitations of deformation

theory.

The above derivation should not be interpreted as a general proof that

the gross load-deflection curve always controls the fracture process, beyond

the elastic range. This hypothesis can be disproven by considering an edge

cracked, eccentrically loaded, elastic-ideally plastic tensile bar with the

crack on the side of the minimum strain. Deformation theory definitely does

not apply to this specimen, because shortly after yielding occurs on the

side of the maximum strain, the stress and strain on the other side (the

cracked side) can begin to decrease, before yielding occurs there. A calcu-

lation of KT . for this specimen would be meaningless.
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A Graphical Procedure for Estimating Upper and Lower Bounds

on the Fracture Toughness

7

In applying Eq. (4), Witt and Mager found that the calculated values

of K_d, for A533-B steel, either remained constant or increased as tho

specimen size increased as shown in Figure 4. Assuming this to be the case.
17

Witt and Mager proposed a calculations! procedure for finding upper and

lower bounds on the fracture toughness that would be obtained from an in-

finitely large specimen. If two geometrically similar specimens are each

tested to their maximum load, then from Eqs. (29), (30), and (38),
s

aJJ t U.
^K, ~ - -™
m m m

where the subscripts m and t denote the model size and some other size,

17
respectively. Witt and Mager used the definition

8m + = T T *
ill* M \J *

' t
where s is termed the size effect, or the volumetric energy ratio,

m, t

between the sizes m and t. Combining Eqs. (39) and (40), and inverting,

gives

\ KIct •' *>* *•'

17For determining a lower bound, tfitt and Mager assumed that

KIct=KIcp •

where p represents the size of a prototype, and p > m.
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17For determining an upper bound, Witt and Mager assumed that

sm,t " C2

where the constants co and c. are determined by the values of K_ _ and
2 j. icm

c o + cnm = 1 . (44)

KIcp' For * = m>

For t = p, vising Eq. (4-1),

Solving Eqs. (44) and (45) for c, and c , gives

— ; •— 1

(46)

p — m

and

c2 = 1 - Cjm . (47)

Combining Eqs. (41) and (43) gives

Cfe
Equation (48) implies that if Eq. (43) is assumed, then the quantity •

(K_ /KJ .)?- will be a linear function of l/t. Therefore, on a plot of

(KIcn/KIct^2 ver8us V*f as shown in Figure 5, the upper bound value of

KIct is de*ermined by tlie intercept of a straight line through the points

corresponding to t = ra and t = p with the vertical axis, providing that the
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curve is concave upward. The value of the upper bound is given by

•.. 2

so that

(50)

In addition, if similitude holds at fracture, for .some range of thickness,

then, from Eq. (40),

and substituting Eq. (51) into Eq. (41) gives

f

According to Eq. (52), the condition of similitude at fracture is represented

by a straight line through the origin, in the type of plot shown in Fig. 5.

A plot of (Kjcn/Kjc-fc)2 versus l/t for A533-B steel, at 100°F, 200° F

and 550°F is shown in Fig. 6. This plot is based on the data shown in Fig. 4.

The curves all show a tendency to be concave downward instead of concave

upward. Thus, the upper bound values increase instead of decrease as p in-

creases, for a fixed value of m, and the existence of an asymptotic value

of K- t is not clearly established, at least at these temperatures. However,

since K- t does increase as t increases, a value of KT is, as assumed, a

lower bound value for all thicknesses equal to or greater than p, for this

material.
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Discussion and Conclusions

An approximate relationship between the £ Integral and the parameter

It- - of the equivalent energy method has been derived. The assumptions of

a semicircular notch tip configuration and the strain energy density on the

notch tip varying with cos Q were shown to be reasonable assumptions by using

them to derive the Irwin-Neuber equation, Eq. (13). The use of Neuber's

inelastic stress and strain concentration factor equation, Eq. (20), may

be incompletely justified theoretically, but it has enough experimental

justification to warrant its use, at least on an-interim basis. This

equation should be further investigated theoretically. Existing data are

such that the upper and lower bound values of fracture toughness do not

always converge at the higher temperatures. This phenomenon also needs

further study. The lower bound hypothesis is thus far confirmed by the

experimental data for A533-B steel.
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Figure Captions

Fig. 1. Comparison of KT and K- , Values up to 50°F (longitudinal

direction).

Fig. 2. Crack Tip Configuration Assumed for Analysis.

Fig. 3. Diagram Defining S f .

Fig. 4. Variation of K, d as a Function of Temperature and Thickness,

for A533-B Steel.

Fig. 5. Schematic Example of Graphical Determination of Upper and

Lower Bounds on Fracture Toughness.

Fig. 6- Curves for Graphically Determining Bounding Values of Fracture

Toughness for A533-B Steel.
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