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I. INTRODUCTION

This report presents the results of a study which was performed to deter-
mine the maximum power and temperature capability of the SNAP 2 reactor con-
cept, based on minimal extrapolation of current technology. The present SNAP 2
reactor design, which is described briefly in Section III, is being developed as
the nuclear heat source for the SNAP 2 Compact Power Unit which utilizes a
mercury-Rankine cycle to generate 3.5 kw electrical power. This system
requires a reactor capable of producing 55 kw thermal power which is trans-

ferred to a NaK coolant loop at a maximum coolant temperature of 1235°F,

Prior to freezing the design for the SNAP 2 reactor system, it is con-
sidered necessary to re-evaluate the performance margins available in the
present design and to determine the nature and extent of the de sign modifica-
tions required to increase both the power and the maximum coolant temperature
capability. This information is needed to estimate the reliability of the reactor
at its present de sign point and to incorporate those features which would permit

operation over a wide range of operating conditions.

Although studies of this general nature were performed when the SNAP 10A/2
reactor was conceived, progress in the development and testing of SNAP fuel
elements, improved nuclear data and analytical techniques, and operational data
from the SNAP 2 Developmental Reactor require a timely reappraisal of this

subject.

On the basis of previous analyses and operating experience, it is known that
the most fundamental limitation on reactor power level and temperature for long-
term operation is the loss of reactivity due to excessive hydrogen leakage from
the zirconium hydride-uranium alloy fuel-moderator elements. As the tempera-
ture of the reactor core is increased, the hydrogen dissociation pressure in-
Creases, as does the permeation rate through the ceramic diffusion barrier
which is applied to the inside of the fuel-moderator cladding. Since the core
is inherently undermoderated, any loss of hydrogen moderator results in a loss
of reactivity. This long-term reactivity change is compensated by the gradual
burnout of samarium oxide Prepoison which is incorporated in the elements

and by inward rotation of the control drums,

NAA-SR-9407
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At the present SNAP 2 operating conditions, the total reactivity loss due to A

hydrogen leakage is relatively small compared to the total cold, clean reactivity
requirements. Due to the exponential relationship between hydrogen dissocia- e
tion pressure, hydrogen permeation rate, and fuel temperature, however, the

importance of hydrogen leakage increases rapidly at higher reactor power levels

and/or coolant temperatures. Fortunately, several design variables can be

adjusted to compensate for these effects. The most important of these design

variables are:

a) Increased Reflector Thickness — The nominal thickness of the bery-~
lium reflector for the present SNAP 2 design is #2.3 in. whereas an
essentially "infinite'' reflector would be ~10 in. thick. Thus, the
initial reactivity of the reflected reactor and the control drum worth
can be increased substantially by increasing the radial-reflector
thickness. However, since the reactor must be subcritical with two
of the four control drums fully rotated inward, a definite limit on

reflector thickness exists for a given core composition and geometry.

b) Reduced Ny — The hydrogen dissociation pressure for zirconium
hydride is strongly dependent on the H/Zr atom ratio. By reducing .
this ratio (and hence the initial hydrogen concentration, NH) the
hydrogen loss rate can be reduced, at the expense of initial reac-
tivity. This reduction of initial reactivity must be compensated by

increasing the reflector thickness.

c) Decreased Fuel-Moderator Element Diameter — The maximum and
average temperature of the cylindrical ZrH-U alloy fuel moderator
elements can be reduced by decreasing the element diameter. While
this modification reduces the hydrogen pressure within the element,
the available area for hydrogen permeation is increased. Therefore,
a theoretically optimum diameter exists for a given set of operating
conditions, with a larger number of small diameter elements being

preferable for higher power density cores.

d) Increased U-235 Loading — Increasing the U-235 loading will provide
a gain in initial reactivity, but since the SNAP 2 core is under-
moderated and since the additional fuel atoms must displace zir-

conium (and thus hydrogen) atoms in the alloy fuel moderator ele-

ments, the net gain for extending long-term operation is small.

NAA-SR-9407
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The core size is another design variable which would obviously affect the
reactor power capability. Due to the substantial amount of critical experiment
and operational data available for the present SNAP 2 core designs, however,
the design variables considered in the present study were limited to the
first two items discussed above; i.e., reflector thickness and hydrogen

density.

The reactor power level and coolant outlet temperature were varied parame-
trically over a range up to 200 kwt and 1350°F respectively. The coolant tem-
perature rise through the core was held constant at 200°F, since this value has
been shown to be near optimum for various power conversion systems over a

wide range of power levels.

The analysis was conducted in three major areas: core heat transfer, fuel
element performance, and nuclear analysis. The basic assumptions, methods,
and results of these tasks are described in Sections IV through VI and the con-

clusions of the study are included in the summary.

NAA-SR~9407
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IIl. SUMMARY AND CONCLUSIONS

The reactivity limits and design modifications required to achieve high
power and elevated temperature operation of the SNAP 2 reactor concept have
been investigated and defined. Core heat transfer analyses established fuel
element temperatures for thermal power levels ranging from 53 to 200 kw and
coolant outlet temperatures from 1200 to 1350°F., Maximum fuel temperatures
along the centerline of the hottest element ranged from 1275°F at 53 kw, 1200°F
NaK outlet temperature to ~1690°F at 200 kw, 1300°F NaK outlet temperature.
Maximum clad and hydrogen barrier temperatures for corresponding operating

conditions ranged from ~1230 to 1440°F,

Analytical methods for estimating hydrogen leakage from the fuel elements
at advanced operating conditions were developed to account for the temperature
distributions within the fuel and over the clad surface, and hydrogen redistribu-
tion within the fuel. Leakage coefficients were developed to account for leakage
through the blend and through the coated clad walls. These leakage coefficients
were obtained from out-of-pile leak rate measurements on 50 production ele-
ments assembled for the SNAP 10A FS-1 core. Hydrogen leakage rates were
then computed for the range of operating conditions studied and for initial hy-

22

drogen concentrations (NH) ranging from 6.0 x 107" to 6.5 x 1022 atoms/cm3.

Clad strain due to hydrogen pressure buildup at the higher operating condi-
tions was investigated and found acceptable. Potential fuel swelling problems
were also investigated. Based on conservative application of existing data, it
is concluded that radial growth would not be sufficient to cause contact between
the fuel-moderator rod and the clad barrier, even at the 200 kwt/1350°F oper-
ating conditions. Due to the lack of adequate expansion space at the hot oper-
ating conditions, axial fuel swelling at power levels above ~150 kwt could pre-
sent a problem with the present fuel element design. If future in-pile tests and
more rigorous analyses indicate that a problem exists, additional space can be

provided to accommodate axial expansion.

The nuclear analyses established reactivity requirements to compensate
for temperature and power defects, xenon buildup, hydrogen redistribution,
fuel depletion, fission product buildup, hydrogen leakage and samarium buildup

and burnout over the complete range of power levels and coolant temperatures

NAA-SR-9407
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studied. Total cold, clean reactivity requirements were found to vary from

approximately $3.00 to $8.00.

The initial hydrogen density and reflector thickness were varied for each
operating point to determine the minimum weight and size reflector which would
provide sufficient reactivity and control for one year operation while maintaining
a cold shutdown margin of at least 50¢ with two control drums rotated full in.
Shield weight increments were also calculated, based on maintaining a constant

vehicle dose rate and separation distance.

The most significant results obtained from this study are summarized on
Figure 1. This figure illustrates the combinations of reactor power level and
coolant outlet temperature which can be achieved with the current reference
design, by increasing the reflector weight in 10 1b increments up to 40 1b and
by adjusting the hydrogen density (NH) in the core. These results show that the
present SNAP 2 reactor design concept has a reactivity margin sufficient to sus-
tain operations for one year at ~250% of design power at the design coolant

temperatures or at 100°F higher coolant temperatures at the design power level.

210

N,y=62 Ny=61
DASHED LINES INDICATE
APPROXIMATE VALUES OF Ny
180l REQUIRED TO ATTAIN THE
s
H- 0

{50
3z
x N\
@ 120
w
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8 WEIGHT

»  PENALTY
90 (LB)
J
60
PRESENT
& oesion PoNT 0
30 i 1 | 1
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1-22-64 7635-0037

Figure 1. Minimum Weight Penalties vs
Power and Temperature
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Also, the present SNAP 2 reflector and control drum design can accommo-
date ~20 additional pounds of beryllium shims with relatively minor redesign.
the

With this modification, and by dropping the N_; to ~6.25 x lO22 a‘corns/crn3

t
H b
reactor should thus be capable of one year operation at ~140 kwt with a maxi-

mum coolant outlet temperature of 1300°F or ~185 kwt at 1235°F.

By reducing the NH to ~6.1 x 1022 and redesigning the reflector block and
control drums to permit an additional increase in reflector weight (to 40 1b),
the power level or coolant temperature could be raised approximately another
40 kwt or 50°F respectively. Subsequent studies, however, have indicated that
this last extrapolation from the reference design would be less desirable than
modification of the core design to use a larger number of smaller diameter

elements.

The total weight change (reflector plus shield) required to increase the
power and/or coolant temperature and maintain a constant fast neutron flux at
an arbitrarily fixed dose plane is shown in Figure 2. However, both the reactor-
payload separation distance and the shadow shield angle would probably change
for the higher power applications and the incremental shield weights shown are

thus somewhat academic,

220

200
180
160
140

Figure 2. Total Weight Penalty 120
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80
60 100 Kw
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Ill. DESCRIPTION

An artist's concept of the SNAP 2 reactor, reflector, and shield assembly
is shown on Figure 3 and a summary of the major design and performance char-

acteristics is presented in Table 1.

8-21-63 7622-0025
Figure 3. Artist's Concept of SNAP 2 Reactor,
Reflector and Shield Assembly

The reactor assembly consists of a thin-walled, stainless steel vessel as-
sembly, inlet and outlet NaK lines, grid plates, fuel-moderator elements, in-
ternal reflectors and the core support structure, assembled as shown in the
cutaway view, Figure 4. The reactor core consists of 37 fuel-moderator ele-
ments arranged in a close-packed hexagonal array. The internal reflectors fill

the spaces between the hexagonal core and the circular vessel.

NAA-SR=-9407
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TABLE 1

SUMMARY OF DESIGN AND PERFORMANCE REQUIREMENTS AND
CHARACTERISTICS SNAP 2 REACTOR SUBSYSTEM

I Performance Requirements

Reactor thermal power (kw)
to NaK
Heat loss to space
Total

Coolant outlet temperature (°F})
Max
Min

Coolant inlet temperature (°F)
Max
Min

Nominal coolant flow rate (lb/min)
Minimum operating laifetime (yr) in space
Environment
Maximum launch acceleration (g's)
Axial
Lateral and normal
Maximum launch vibration
Longitudinal

Lateral and normal

Subsystem weight objective (not
including electronic equipment)

Fast neutron dose rate at CPU/AGENA
mating plane (nvt/yr)

Gamma dose rate at CPU/ AGENA mating
plane r/yr

1I Reactor Design Characteristics
Core
Equivalent diameter (in )
Active height (in )
Fuel
Moderator
Number of fuel-moderator elements
Fuel element diameter (1n )
Cladding
Permeation barrier
Fuel-moderator alloy composition
{(wt %)
Uramium
Carbon
Zircomium hydride
Effective hydrogen density
(atoms/cm3 x 10-22)
Prepoison material
Internal reflector matetial
Grid plate material

53
55

1235
1185

1015
963
70

+76 -25
1 0

g's
1/21n DA

75

g's
1/2in DA
25
50
75

630 1b
5 x 1012

107

810

12 25

U235 (enriched)
Zirconmum hydride
37

125

Hastelloy N

Al 'D'

u
10
01
90

6 35

Samarium

clad BeO

42% Ni-Fe Low
Exp Alloy

frequency (cps)

5-12

12 - 400
400 - 3000

frequency (cps)

5-10

10 - 250
250 - 400
400 - 3000

jans

Vessel
Material
Internal diameter
Length
Wall thickness
Reflector
Material
ID (an )
Thickness (equivalent in }
Height (1n )
No fine control drums
No coarse control drums
Shield
Casing material
Casing wall thickness (in )
Shield material
Maximum height (in )
Maximum diameter at base {in )
Minimum diameter at top {(an )
Current weight summary (estimatedlb)
Reactor assembly
Reflector assembly
Shield assembly
Electronic equipment
Total

Performance Characteristics
Thermal-Hydraulic

Coolant pressure drop {psi)
Maximum fuel temperature (°F)
Maximum fuel clad temperature (°F}
Average reflector temperature (°F)
Maximum shield temperature (°F)
Minimum shield temperature (°F)

Nuclear Parameters
Average core thermal flux
(nfcm?l -sec)
Mean fission energy (ev)
Average 1sothermal temperature
coefficient (¢/°F)
Uramum loading(kg U235
Effective delayed neutron fraction
Mean prompt neutron lifetime ( K -sec}
Prepoison reactivity worth ($)
Imtial cold excess reactivity ($)

Lifetime reactivity loss ($)
Xenon equilibrium
Samarium burnout
Temperature and power defect
Hydrogen loss
Hydrogen redistribution
Burnup and fission product poison
Total ($)
Contingency ($)

Total control drum worth ($)
Total shim worth ($)
l-yr dose at CPU/AGENA mating
plane

Fast neutrons (nvt)

Gamma (r/yr)

SSs 321
8 875
15 6

0 040

Beryllium
9 090
212

12 25

2

2

SS 321
0 060
LaH
25

27 2
209

170
117
355
25

667

02
1336
1298
770
1000
600

34 x 10!l
018

-0 2]
475
0 008

-1 80
353

1$=0008 AW/k
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REACTOR OUTLET

UPPER GRID PLATE
CORE HOLD-DOWN SPRING

FUEL ELEMENT

INTERNAL BERYLLIUM REFLECTOR

LOWER GRID PLATE

REACTOR INLET

8-1-63 7622-0026
Figure 4. Reactor Assembly, Cutaway View

The fuel-moderator elements contain highly enriched U-235 which is alloyed
with zirconium and hydrided to achieve a compact, lightweight core with the
desirable control characteristics of a hydrogen moderated reactor. A drawing
of a fuel-moderator element assembly is shown on Figure 5. The elements are
clad with Hastelloy-N, the inner surface of which is coated with a thin ceramic
hydrogen diffusion barrier. The fuel-moderator rod is an alloy of zirconium

10 wt % uranium, hydrided to an N_, of 6.35 x 1022 atoms/cm>. The nominal,

H
cold radial gap between the rod and the hydrogen barrier is 0,002 in.

NAA-SR-9407
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1-10-64

SNAP 2 Fuel Element

Figure 5.

The beryllium reflector is mounted external to the reactor vessel and con-

tains four control drums which are rotated to achieve both fine and coarse reac-

The reflector is split longitudinally into two halves, hinged at

tivity control.

vices, permits reflector ejection for reactor shutdown during various phases of

the bottom, and retained at the top with a thin, stainless steel band. Separation
of the band, due either to melting upon reentry or actuation of band release de-

launch and orbital operation.

The radiation shield reduces the neutron and gamma dose levels at the Agena

mating plane to tolerable levels and also provides structural support for the

The shield consists of a stainless steel casing assembly

reactor assembly

filled with lithium hydride (LiH) which is cast in place to achieve an efficient,

high-temperature structure.

NAA-SR-9407
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V. THERMAL-HYDRAULIC ANALYSIS

The thermal-hydraulic analyses described in this section were performed
to determine core temperature distributions for a range of power levels and
coolant temperatures. Coolant pressure drop across the reactor vessel was
also investigated briefly. In predicting the temperature distributions, it was
assumed that (1) the coolant flow is maintained proportional to reactor power
so as to yield a 200°F coolant temperature rise in the core, (2) the axial and
radial power distributions remain constant (neglecting the effect of possible
changes in reflector geometry), and (3) the flow is orificed to obtain a (within

+10%) uniform coolant temperature rise in the coolant channels.

Fuel element temperatures were based on the nominal temperature rise in
the NaK film, clad, hydrogen barrier material, gas gap and fuel. Peaking
factors were included to account for reduced coolant velocity in the cusps of

the coolant channel and for the effect of fuel eccentricity inside the clad.

Given the equation for the axial power distribution (Equation 1) and assum-
ing that the reactor core is orificed for equal power-to-flow ratio in all chan-
nels, equations can be written as follows to describe the axial temperature dis-

tributions in the fuel elements.

-‘%—).: 1.47 cos (1.479 - 0.2413Z) <. (1)
(0 = Z < 12.25 in.)
NaK temperature
T_(Z) = T, + A[O.C)% - sin (1.479 - 0.24132)] ..(2)
Hydrogen barrier temperature
Tb(Z) = TC(Z) + BP cos (1.479 - 0.2413Z2) ... (3)
Fuel surface temperature

TfS(Z) = Tb(Z) + CP cos (1.479 - 0.24132) ... (4)

NAA-SR-9407
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Fuel centerline temperature

Tcl(z) = TfS(Z) + DP cos (1.479 - 0.2413Z) ...(5)

where

Tin = reactor inlet temperature (°F)

P = reactor power (kwt)
Z = distance from core inlet (in.)

Because the axial power distribution does not vary with core radius, Equa-
tions 2 through 5 may be used for any fuel element, given the proper constants
A, B, C, D. The values of these constants for the average and hot fuel ele-

ments are given in Table 2.

TABLE 2

CONSTANTS FOR USE IN THE GENERAL EQUATIONS
FOR AXIAL POWER DISTRIBUTION CALCULATIONS

Average Fuel Hot Fuel
Element Element

A 100°F 111°F
B 0.75°F /kw 1.00°F/kw
C 0.29°F /kw 0.38°F/kw
D 0.79°F /kw 1.03°F /kw

Constant A is one-half the NaK temperature rise expected in the channels
surrounding the average or hot fuel element. The hot-channel temperature rise
has been increased by 10% to account for orifice inaccuracies. The only other
quantity that was used to differentiate between the hot and average fuel elements

was the radial power factor, which has a value of 1.31,

Equations 3 and 4 permit the evaluation of the circumferential average
barrier and fuel surface temperatures at each elevation in the core. Equation 5
permits the evaluation of maximum fuel temperatures located on or near the
fuel cylinder centerline. The average fuel temperature at any elevation is

closely approximated by the arithmetic average of the fuel surface and the maxi- .

mum fuel temperature near the fuel centerline.
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Figures 6 and 7 show the maximum fuel temperature, maximum fuel sur-
face temperature, and maximum barrier temperature as a function of reactor
thermal power for an average fuel element and for the hot fuel element.
Figures 8 through 15 show the axial temperature distributions for the average

and the hot elements for reactor net power levels of 53, 100, 150, and 200 kwt.

The fuel and barrier temperatures for the average fuel element are used to
determine the rate of hydrogen loss from the system. Section V-A of this re-
port describes the use of the temperature information in hydrogen leakage
calculations. The hot-element analysis is required to evaluate barrier and
cladding integrity. Cladding creep strength is a function of temperature, as
discussed in Section V-B. Hydrogen pressure in the annulus between the fuel
and the barrier and the growth of fuel during irradiation are also direct functions
of fuel temperature., Therefore, the hot-element temperature distribution is
used to conservatively estimate fuel element performance capabilities and

limitations.

Figure 16 shows the variation of total reactor pressure drop with reactor
power. Curves are shown for an orificed and an unorificed core. For both
cases, it is assumed that the flow areas of the inlet and outlet nozzles are made
proportional to coolant flow. This requires that more than one inlet nozzle be
used for power levels above 75 kwt. For the orificed core, it is assumed that
the area of the orifice holes is proportional to flow rate, so as to maintain a

constant ratio between orifice pressure drop and nozzle pressure drop.
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V. FUEL ELEMENT ANALYSIS

Fuel element performance was evaluated as a function of reactor power and

coolant inlet temperature over an initial N_, range of 6.0 to 6.5. The current

SNAP 2 Fuel element configuration and caion content (0.10 wt %) were main-
tained constant in all cases. The carbon content will be maintained below 10 wt %,
consequently, using this value as a constant will result in a conservative estimate
of hydrogen leakage. Hydrogen loss rates were computed for the "'average'' fuel
elements, Hastelloy-N cladding strength limitations were determined based

upon operation of the '"hot' fuel elements (a safety factor of 2 on creep strength

was used to account for local "hot spots''), and fuel irradiation swelling was

examined. Each of these performance parameters is discussed in detail below.

A, HYDROGEN LEAKAGE

To perform the parametric study, it was necessary to develop a method of
estimating fuel element hydrogen loss rates under reactor operating conditions
from rates experimentally measured at isothermal conditions. The first step
was to assume that the total element permeation was made up of two types of
leakage — one through the ceramic coating proper, and the other through defects
in the cladding. The blend was considered to be a defect. Previous work had
shown that blend permeation could be correlated by an Arrhenius equation

(Equation 1) and it was assumed that this equation would hold for defects as well,

.-12,760/T

g1 = Kpy VP ce e (1)

where

$p1 = permeation rate through the blend

K = a constant

o
H

hydrogen pressure

=
I

temperature (°R)

Thus ¢ varies as the square root of the pressure, a characteristic of hydrogen

permeation through metals.

. Permeation through Solaramic-coated cladding membranes was correlated

in a separate study by the Langmuir-type equation:
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5/2 _-28,160/T

o . = KAgingPT (2)
Cl~ 5/2 8.432(10)13p .~28,160/T
where
®cy = permeation rate through the cladding proper
K, . = a second constant
Aging

This ¢ varies almost directly as the pressure, a characteristic of hydrogen

permeation through glass.

Adding the two equations gives the total isothermal permeation rate through

an element:

KAgingPT5/2 ,~28,160/T

5/2

- K ﬁe—12,760/T N

’E ~ "Bl -z8,160/7 )

+8.432 x 1013P e

where or is permeation rate for whole element. Thus, the isothermal hydro-
gen loss rate can be expressed as a function of temperature and pressure, pro-

viding that the constants are known,

An evaluation was performed for the production lot of 50 fuel elements fab-
ricated for the SNAP 10 FS-1 core to determine proper values for the constants
Kaging 374 Kp)

100 and KBl = 511.3, the latter being the average of the sum of the blend and the

defect constant for the entire lot of 50 elements. These values of the indicated

of Equation 3. The evaluation indicated that KA . = 1,455 x
ging

constants were used to compute permeation rates for the various cases con-

sidered in this study.

The dissociation pressure for isothermal fuel hydride is given as a func-

tion of temperature and hydrogen concentration by the following equation:

£,(H/Zx) -(104/T)f2(H/Zr)
P = e ce.(4)

where
fl(H/Zr) = -8.8455 + 88.9801(H/Zr) - 78.8961(H/Zr)2

+ 21.3731(H/zr)3 ... (5)
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£,(H/Zr) = 12.9720 - 9.7707(H/Zz) + 2.4984(H/Zr)? ... (6)

B 108,595 H
(H/Z1) = (1o0-H) (1200-103.22 C-120) 27
where
H = wt % hydrogen in fuel
U = wt % uranium in fuel alloy prior to hydriding
C = wt % carbon in fuel alloy prior to hydriding

Fuel element operation in a reactor is nonisothermal and, accordingly,
hydrogen migrates from high temperature regions to colder temperature
regions. When the redistribution of hydrogen is complete, an equilibrium
dissociation pressure is obtained which is lower than the dissociation pres-
sure before redistribution. A new computer code designated Hydrogen Redis-
tribution Equilibrium Pressure (HYREP) was written to obtain the equilibrium
pressure values used in Equation 3. An axial average fuel temperature profile,
expressed as a quadratic in L, is substituted for T in Equation 4. The HYREP
computation is based on conservation of hydrogen and the fact that, at equilib-

rium, dPEQ/dL = 0, where EQ is equilibrium.

Figure 17 shows the computed hydrogen equilibrium gradients as a function

of initial Ny for a specific case investigated, viz., 100 kw reactor power and

1100°F NaK coolant.

for non-

For computation of fuel element permeation in a reactor, i.e.,

isothermal fuel element operation, integration of Equation 3 is required. It is
assumed that equilibrium hydrogen redistribution has occurred and that the
distribution of defects in the coating and blend are uniform. Using a total

coating area of 49.45 in.2 and the specific K and K constants presented

Aging Bl
previously, the indicated integration is:

A=49 45
511.3 /P -12,760/T
EQ . ’ ce dA

PE = T 49.45

'A=0
A=49.45 5/, -28,160/T
1.455 x 1061:E (T )12 ce

Q ce
49.45 13

5/2
20 (T_.) +8.432x 107"P e

.(8)

+ dA

-28,160/T __
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where

' A

T
- ce

cladding area

It

cladding temperature (°R)

Solution of Equation 8 was performed numerically using:

N
-12,760/(T __) 4
¢ = 10.34 /PEQ e A |+ 2.942 x 10
i=1

N oo/ .(9)
-28,160/(T _ ).
(T ). 5/2 e ’ cel ,
t Peg == 58 1607(T )
5/2 13 e ce'i
— (Tce)i + 8,432 x 10 PEQe
where
(Tce)i = average cladding temperature (°R)
Ai = the cladding area segment

The results of the hydrogen leakage calculations for the range of parameters
studied are presented in Figure 18. As expected, the hydrogen loss rate is a

rather sensitive function of initial N coolant temperature, and reactor power

H’
level.

In general, the hydrogen loss rates shown in Figure 18 are probably con-
servatively high for the following reasons: (1) Hydrogen depletion from the fuel
over l-yr of operation was not taken into account in calculating hydrogen loss.

The fuel was assumed to remain at its initial hydrogen concentration throughout
the reactor lifetime. With this assumption, hydrogen loss is overestimated by

as much as 50% in the higher temperature, higher power cases; (2) Recent S8ER
experimental information indicates that use of the general methods and constants
discussed above, with allowance for hydrogen depletion, still tends to over-
estimate observed in-pile hydrogen loss rates by as much as 100%. The hydrogen
loss information contained in Figure 18 therefore appears to contain a safety
factor of approximately 2, which allows for uncertainties in loss due to hot spots,

. locally high hydrogen or additive concentrations.
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B. CLADDING STRENGTH

It can be shown that long term creep is the limiting criterion for evaluation
of Hastelloy-N cladding strength. A strain limit of 0.2% in 10,000 hr was used
in this study because laboratory testing has shown that the ceramic coating is
still effective as a hydrogen barrier at this strain level. ORNL creep data for

Hastelloy-N may be correlated by the following equation:

-0.202

- t
o = 5.57(€>

where 0 = creep strength (psi).

617,700/’1‘ ...(10)

Because of the unknown effects of irradiation of Hastelloy-N, it is con=-
sidered desirable to use a safety factor of 2.0 with Equation 10 in computing

the allowable stress, viz:

-0.202
o = 2.785(—2—) 17,700/T ...(11)
which, for 10,000 hr life and an allowable strain of 0.2%, reduces to:
c = 0312 el7’7OO/T .. {(12)

Equation 12 was used to compute the limiting cladding stress, with T set equal

to the peak cladding temperature in degrees Rankine.

Using the basic hoop stress equation for thin wall pressure vessels, viz:

_ PD
0'—7;{— ...(13)
w

and assuming a NaK coolant pressure of 20 psia, the following equation gives

the resultant cladding stress:

[(pEQ) (14.7) - zo] D

o = 5% ...(14)
w
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where

P = internal pressure (psi)
D = tube diameter
X = tube wall thickness

Equation 14 permits calculation of the actual cladding stress, using the equilib-

rium hydrogen dissociation pressure.

Figure 19 shows the calculated clad stresses and creep limits for various pow
power levels, coolant temperatures, and cladding thicknesses. In all cases the
calculated stress is based on nominal values of cladding thickness, NH’ carbon
addition, etc. From the curves given in Figure 19 it can be seen that with an NH
of 6.35 or less and an inlet temperature of 100°F, that only in the 200 kw case

is the structural integrity of the cladding questionable,
C. FUEL GROWTH DUE TO IRRADIATION

The following equation was used to compute change in fuel volume as a func-

tion of metal atom percent burnup and peak fuel temperature (°R):

5 -12,000/T
e

AVY% - 3770b* ... (15)

where
V = volume
b = burnup (total metal atom percent)
T = temperature (°R)

The fuel element, excluding end hardware, was considered to be composed
of six 2~in. increments rather than a single 12-in. rod. The radiation-induced
swelling in each increment was determined. This volume increase was assumed
to be isotropic and dimensional changes for each increment were calculated.
Only the increment having the highest temperature and burnup was considered
in determining the radial change; the incremental axial changes were summed
to obtain the total axial change. To determine the available volume, the dif-
ferential thermal expansion between the fuel and the cladding was calculated for
each 2-in. increment, using the average temperature in each component. The
resultant clearance was then computed. Summation of the axial changes is
again required. Comparing the radiation-induced dimensional changes with the
available clearance, mechanical interference exists when the change due to
swelling exceeds the clearance.
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The calculated dimensional changes and available clearances are plotted in
Figures 20 and 21 for the reactor powers of interest. Referring to Figure 20,
no mechanical interference is shown in the radial direction for any reactor
power considered. Figure 21 shows interference beginning in the axial direc-
tion below a reactor power of 150 kwt. It is estimated that a 15-mil reduction
in the length of the fuel rod will eliminate the axial interference for all cases
up to a reactor power of 200 kwt. Therefore, it is concluded that, with a slight
reduction in fuel rod length, the reference fuel element design for the SNAP 2
reactor, up to and including reactor powers of 200 kwt, is not limited from the

standpoint of mechanical interference caused by fuel swelling.,

Equation 15 was derived empirically from the results of earlier irradia-
tions of small SNAP fuel specimens in a limited temperature and burnup range.
Later preliminary data, from hot cell examinations now underway, indicate that
the volume changes are no greater than those which are predicted by this rela-

tionship. Confirmation of the burnups of the later specimens is required for a

final evaluation. The latest specimens are also small and further irradiations .
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of larger prototype fuel elements must be completed before adequate predictions
of fuel element performance in an irradiation environment can be made. How-
ever, there appears to be little question that Equation 15 predicts fuel swelling

behavior that is conservative from the design standpoint.

This study assumed that the criterion for an allowable limit on fuel swelling
was mechanical interference between the fuel and the hydrogen barrier. No
allowance was made for cladding creep in this part of the study. Equation 15
was used to compute the fuel swelling resulting from operation at various reactor
power levels; the volume available in the fuel element to accommodate swelling
was calculated from differential thermal expansion considerations. The nominal
dimensions of the fuel element for the 53 kwt reactor were used in computing
the available volume. For each reactor case (53, 100, 150, and 200 kwt), the
temperature and burnup conditions of the hottest fuel element in the core were
chosen. In all cases, a 200°F AT and a coolant outlet temperature of 1300°F

were assumed.
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VI. NUCLEAR ANALYSIS

Nuclear limitations on the temperature and power levels attainable in the
SNAP 2 core arise because of increased reactivity losses associated with oper-
ation at these levels. The eight modes of reactivity change associated with a
SNAP 2 core are (1) temperature defect, (2) power defect, (3) xenon buildup,

(4) hydrogen redistribution, (5) fuel depletion, (6) fission product buildup,

(7) hydrogen leakage, and (8) samarium burnout and buildup. To a first approx-
imation, temperature defect is dependent upon temperature only; power defect,
xenon buildup, hydrogen redistribution, fuel depletion, fission product buildup,
and samarium effects are dependent upon power level only; hydrogen leakage is
a strong function of temperature, power, and hydrogen concentration. A more
detailed description of the dependence of these effects on power and temperature

is given below.

A. ISOTHERMAL TEMPERATURE DEFECT

This defect in a SNAP 2 reactor is due mainly to contributions from grid
plate expansion, and spectrum changes. The grid plate expands radially, de-
creasing the density of materials in the core and increasing neutron leakage,
the axial expansion of the fuel also increases the core size, decreasing densities
and increasing leakage, Increased temperatures harden the neutron spectrum in
the core, decreasing neutron cross sections and thereby further increasing leak-
age. In SNAP 2 nuclear analysis, isothermal temperature defects are calculated
by correcting S2DR experimental temperature coefficients for the fact that
Carpenter LE-42 (Invar) rather than Hastelloy-C is the grid plate material. The

resulting isothermal temperature defects used are listed below:

Average Temperature SNAP 2 Temperature Defect
(°F) ($)
1100 2.21
1150 2.35
1200 2.49
1250 2.64
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B. POWER DEFECT

The power defect in a SNAP 2 reactor arises from the fact that the core is
not isothermal during power generation., The effects of distributed temperature
in the core are lumped into a power coefficient, A value of 0.42;?5/1(\)&11 was used

in this study.
C. XENON BUILDUP REACTIVITY

This effect was calculated from a combined analytical and experimental

method., The steady state xenon concentration was calculated at various powers
from the standard xenon buildup equations. The worth of the xenon was assumed

to be linear with xenon concentration and was normalized to an experimental

value of 13.4¢ at 30.5 kwt as measured in S2DR.
D. HYDROGEN REDISTRIBUTION REACTIVITY LOSS

This loss arises from the migration of hydrogen from the hotter to colder
regions of the fuel elements under the influence of a temperature gradient. Since
the colder regions are also regions of less nuclear importance, a net reactivity
loss results, The loss was calculated by the HY TRAN code. S2-DR experimental
information has shown that the magnitude of the reactivity defectaccompanying hy-
drogen redistribution is predicted relatively accurately by HY TRAN, There are also
experimental indications that the code tends to overestimate the rate of hydrogen
redistribution. However, exactknowledge of the rate of hydrogen redistribution is
notrequired in design of actively-controlled reactors. The results are shown in

Figure 22.
E. FISSION PRODUCT BUILDUP REACTIVITY LOSS

This loss was estimated from ORNL da.ta.2 Fuel depletion losses were

calculated with the AIM-6 code.3 Results are shown in Figure 23,
F. HYDROGEN LEAKAGE RATES

The hydrogenleakage rates through the cladding were calculated as a function of

temperatures and power takenfrom the correlation of Nathan.4 Theseleakage rates
were converted into reactivity by means of a constant hydrogen worth of 64¢/% change

inhydrogen., Results are shown in Figures 24 and 25.
G. SAMARIUM CONCENTRATIONS

Samarium concentrations as functions of power and time were calculated using
standard differential equations for this phenomenon, the reactivity effectof aparti-
cular samarium concentration was obtained using the AIM-6 code. Calculations
were based on a constant samarium loading of 8,0 mg Sm203/in. of active fuel length,
Uncertainties in samarium loading and samarium reactivity worthwere not con-
sidered, since minor effects of this nature canbe corrected by control drum move-

ment in an actively-controlled system.
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FOR 1 YR OF OPERATION (HYTRAN CALCULATION)
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Reactivity requirements for one year operation at a particular power and
temperature were then calculated as the sum of the above eight effects described

above. Some examples of reactivity requirements are shown in Table III.

TABLE 3

REACTIVITY REQUIREMENTS

POWER (kw) 55 200 150
NaK OUTLET TEMPERATURE (°F) 1200 1200 1300
TEMPERATURE AND POWER DEFECT $ 244 $263 $29
XENON BUILDUP .23 75 .59
HYDROGEN REDISTRIBUTION 19 .61 43
FISSION PRODUCT BUILDUP .09 .31 24
FUEL DEPLETION 05 18 14
Sm BURNOUT* -27 -.56 -.51
HYDROGEN LEAKAGE 21 .84 174

TOTAL (reactivity loss for 1 yr.) $2.92 $4.76 $5.54

*Sm BURNOUT LEADS TO A REACTIVITY GAIN. THE PRESENT SINGLY-SHIMMED
SNAP 2A CORE HYDRIDED TO Ny= 6.25 HAS A COLD EXCESS REACTIVITY OF
$ 3.58 THE ADDITION OF 20 POUNDS OF BERYLLIUM TO THE REFLECTOR
RAISES THE COLD EXCESS REACTIVITY TO $§ 5.56

Available absolute excess reactivities were calculated by correcting
SCA-4C experimental results for differences in hydrogen level, samarium
loading, grid plate material, and reflector-core gap thickness. The resulting
excess reactivity was $3.19 for a cold, Sm=poisoned, unshimmed SNAP 2 core

at an NH level of 6.25.

High power and temperature operation requires higher initial excess reac-
tivities; either the thickness of the beryllium reflector or the hydrogen level
of the core had to be increased. From a weight penalty point-of-view, the
most effective method for reactivity increase is increase in hydrogen content.
Because of the use of two coarse control drums which are snapped in by springs
and due to ground handling safety considerations, there is a cold shutdown

margin requirement of 50¢ with two drums in, which cannot be maintained
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as the hydrogen level is increased at constant reflector thickness. In order to
maintain the shutdown margin with initial higher excess reactivities, the in-
creased reactivity requirement must be built in by increasing the beryllium
reflector thickness at constant or even decreased hydrogen concentrations.
This helps to increase shutdown margin due to higher control drum worth. This
effect is illustrated in Figure 26. If an excess reactivity of $5.00 is needed for
a particular mission, it can be obtained at an Ny of 6.5 and a beryllium thick-
ness of 2.23 in. This configuration has a 2-drum shutdown margin of only about
15¢ however, and is unsatisfactory for safety reasons. The same excess reac-
tivity can be obtained at an NH of 6.25 and a beryllium thickness of 2.95 in. The

shutdown margin of this configuration is about 60¢ which is satisfactory.
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Figure 26. Cold Excess Reactivity of SNAP 2 Core

An optimization study was made to determine the highest NH level which
could be tolerated while still maintaining a sufficient shutdown margin with the
present prepoison loading. Figures 27 and 28 show the resulting optimum NH

level and resulting weight penalties for various power-temperature operation,.
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Figure 1, which was shown in Section II, illustrates the power and temperature

limitations for various beryllium weight penalties.

In addition, there is a shield weight penalty associated with operation at
advanced performance conditions. This arises both from the additional shield
length required to attenuate the increased radiation associated with higher power
operation and from the increased shield radius necessary to shadow the greater
thickness of beryllium associated with high power and/or temperature operation,

The reflector plus shield weight penalty is shown in Figure 2, Section IL

A major limiting assumption in the study was that of constant samarium
prepoisoning., Calculations were based on a samarium prepoison level of
8.0 mg Srn203/in. of active fuel length in order to reduce the number of cases
to be studied. Subsequent calculations have shown that increases in prepoisoning
would increase the cold shutdown margin or allow higher hydrogen levels for a
given shutdown margin requirement. These higher hydrogen levels would in turn
require a smaller beryllium weight penalty for a given set of operating conditions.
Use of a poison with a higher cross section, such as gadolinium, would also lead
to increased performance due to more complete prepoison burnout over the 1 yr

operating lifetime of the reactor.

The main uncertainties in the study arise through uncertainities in hydrogen
leakage, weights, and worths of particular reflector configurations. The hydro-
gen loss information used was based upon '""average'' elements (defined as an ele-
ment producing 1/37 of the core power) and averaged hydrogen worths. Dis-
tributed temperature effects and distributed hydrogen worths will increase the
hydrogen leakage reactivity losses. Another major uncertainty associated with
use of hydrogen loss information from Reference 4 is the assumption that in-
pile barrier performance at advanced SNAP 2 temperature can be predicted on
the basis of out-of-pile isothermal permeation tests conducted at 1200°F, How-
ever, recent S8ER experimental information indicates that use of the hydrogen
loss equations and constants discussed in this report tends to overestimate
observed in-pile hydrogen loss rates by as much as 100%. Thus the hydrogen

loss rates quoted, though uncertain, should be conservative.

Reflector worths were calculated by homogenizing the mass of beryllium
in the reflector into an equivalent volume annulus. Since present reflector

designs provide more beryllium near the center plane of the reactor, which is
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a region of higher worth, this homogenization underestimate the reactivity worth
of added beryllium. On this basis, the study maintained the approach of obtain-
ing conservative results, The SCA-4A reflector worth experiments will pro-
vide information regarding distributed beryllium worths and will decrease this

calculational uncertainty.

Although these uncertainties exist in the calculation, it is felt that the trends
shown by the results are real, although the actual numbers shown may be changed
as further experimental and operational information become available, Significant
increases in power level and/or temperature over the reference SNAP 2 values
of 53 kwt at 1200°F NaK outlet have been shown to be attainable with only minor

reflector redesign,
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