x85 6-1-65

Nuclear Materials & Propulsion Operation

CASCADE and CLUSTER

Computer Programs To Simulate Radiation Damage Processes In Metals And Analyze The Distribution Of Defects

D. G. Besco and N. R. Baumgardt

April 1965

ADVANCED TECHNOLOGY SERVICES

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE-

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatuc, material, method, or process disclosed In this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, material, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission or his employment with such contractor.

Printed in USA. Price \$3.00. Available from the

Clearinghouse for Federal Scientific and Technical Information 5285 Port Royal Road Springfield, Virginia 22151

GEMP-356 (INFORMAL) UC-32, Mathematics and Computers

TID-4500 (39th Ed.)

CASCADE and CLUSTER

Computer Programs To Simulate Radiation Damage Processes In Metals And Analyze The Distribution Of Defects

D. G. Besco and N. R. Baumgardt

April 1965

United States Atomic Energy Commission

Contract No. AT (40-1)-2847

NUCLEAR MATERIALS and PROPULSION OPERATION ADVANCED TECHNOLOGY SERVICES

GENERAL 🐲 ELECTRIC

Cincinnati 15, Ohio

Table of Contents

¢

G

4

I	Int	roduction	5
II	The 779	CLUSTER Program (NMPO Programs No. 768 (b.c.c.) and (f.c.c.)	6
	l.	Interstitial Configurations	6
	2.	Frenkel Pair Instability	7
	3.	Defect Clusters	9
	4.	Distance between Clusters	10
III	The	CASCADE Program (NMPO Program No. 767)	11
	l.	Saturation	11
	2.	Minor improvements to the calculation method	11
IV	Pro	gramming Information	13
	1.	System and Setup	13
	2.	Program Organization	14
	3.	Occupancy Change Tape	14
	4.	Defect List Tape	15
•	5 •'	Potential Data Tape (Collision Matrix)	17
	6.	Saturation Tape	17
	7.	Error Procedures	18
	8.	Program Limitations	19
	9.	Note on Binary Materials	20
	10.	Program Listings	20
	п.	Running the Program at Outside Installations	20
	12.	Running Time	22
v	Inp	ut Data	23
	1.	Minimum Data (CASCADE)	23
	2.	Minimum Data (CLUSTER)	25

• 3 •

	3. Deck Setup Example	26
	4. Options	27
VI	Printout Interpretation	33
	1. CASCADE	33
	2. CLUSTER	34
VII	References	37
VIII	Sample Printout	39

· · ·

.

يتي معامل من من من . جو ما ما ي

· · · · ·

· · ·

•

نې ا

•

*1*4

V

. . .

• .

<u>.</u>`

-

- 4 -

. .

• . •

I INTRODUCTION

Computational work has been performed as part of the radiation effects program at NMPO in an effort to describe (a) the dynamics of displacement cascades in the keV energy range in beryllium oxide and in metals, and (b) the resulting distribution of point defects and defect clusters. The published results from these studies may be found in references [1-5]. The computer programs used to provide data for (a) and (b) are called CASCADE and CLUSTER, respectively.

Since their conception, both these programs have been continually evolving. Improvements to the physical model have been made repeatedly as new theoretical and experimental data has become available, and the programs have been adapted and extended to various special purposes as new areas of investigation became of interest. Program reports exist for CASCADE for a square planar lattice version [6], a BeO version [7], and an early version for body-centered cubic and face-centered cubic lattices [8]. Since these reports were issued, CASCADE and CLUSTER have been combined into a single chain job, some new complexities have been introduced into the physical model, and some new options and extra features have been built in.

The purpose of the present report is three-fold:

- (a) To provide a self-contained set of instructions (Chapter V) for using the combined CASCADE-CLUSTER program.
- (b) To document CLUSTER (Chapters II, VI)
- (c) To update reference [8] with respect to the additional program options, and the refinements which have been made to the model during the past year (Chapters III, IV).

- 5 -

II THE CLUSTER PROGRAM

Part of the output of CASCADE is a list of the coordinates of individual point defects produced in a displacement cascade: vacancies and interstitial atoms. This list may then be transmitted to CLUSTER for analysis.

CLUSTER performs three basic functions:

- (a) Searches the lists of vacancies and interstitials for Frenkel pairs which are unstable, i.e. will immediately recombine, and removes these configurations from the defect lists.
- (b) Having removed the unstable pairs, searches the lists for defects which by virtue of their position are members of aggregates: divacancies, di-interstitials, trivacancies, and clusters containing an arbitrarily large number of vacancies and interstitials. (For simplicity, all aggregates of two or more members are called "clusters", since they are treated logically in the same fashion). The individual members of each cluster are itemized, and a statistical breakdown of the number of each cluster type is printed.
- (c) Computes distribution functions for the separation distance and minimum separation distance between various pairs of defect types.

There are two CLUSTER programs: one for b.c.c. and one for f.c.c.

1. Interstitial Configurations

The coordinate system used in the defect lists is one in which two units are equal to one lattice spacing, and (l,l,l) is a lattice site. This implies that the coordinates of a b.c.c. lattice site are integers and are either all even or all odd, and that the coordinates of an f.c.c. lattice

- 6 -

site are integers, and that their sum is odd. (ref. [8], section II.2). Motivated by symmetry considerations, the possible sites for interstitials in CASCADE are those positions which have integer coordinates and which are not lattice sites. These are the so-called "octahedral" interstitials in b.c.c. and "body-centered" interstitials in f.c.c.

Theoretical calculations have indicated, however, that the minimum energy configuration for a single interstitial in copper [9,10] is a "split" interstitial around a lattice site, oriented along < 100 >. Similarly, the most stable configuration in iron [11,12,13] is split around a lattice site, oriented along < 110 >.

Since CLUSTER has been used initially for iron and copper calculations, it assigns the interstitials generated by CASCADE to lattice sites for purposes of determining clustering and computing separation distances. An octahedral interstitial is assigned randomly to one of the two nearest lattice sites from which it is equidistant, and a body-centered interstitial is assigned randomly to one of the six nearest lattice sites from which it is equidistant.

2. Frenkel pair instability

The criteria for determining which Frenkel pairs (vacancy-interstitial pairs) are unstable are taken from references [9] (f.c.c.) and [12] (b.c.c.).

When an atom is ejected from a lattice site during a CASCADE calculation, it is considered to form a stable Frenkel pair if it comes to rest in an octahedral or body-centered interstice which is distant from its original lattice site by greater than \sqrt{R} coordinate units, where R is an input variable usually set equal to 5. If the distance is less than \sqrt{R} , CASCADE performs a recombination.

- 7 -

However, CASCADE cannot sense close pairs which are due to an atom coming to rest less than \sqrt{R} units from a vacancy which is not its own vacancy. Neither can it sense pairs which are separated by a distance greater than \sqrt{R} , but which are unstable due to their orientation along a close-packed line of atoms. CLUSTER does these things.

(a) B.c.c.

A Frenkel pair is unstable in b.c.c. if the members of the pair are first, second, or fifth neighbors, or if they are tenth neighbors separated by a close-packed < lll > line of atoms. CLUSTER tags each recombination with a type number as follows:

	Relative Coordinates	Neighbor	Separation
Type 0	(000)	-	0
Type 1	(100)	-	, 1
Type 2	(111)	·l	$\sqrt{3}$
Type 3	(200)	. 2	2
Type 4	(222)	5	V. 8
Type 5	(333)	10	V27

The program sorts for pairs of types 0 and 1 before assigning the octahedral interstitials to lattice sites. CASCADE may itself assign an interstitial to a lattice site if the target atom in a terminal (i.e., type 4) collision is itself an interstitial. This accounts for the existence of type 0 pairs.

(b) F.c.c.

A Frenkel pair is unstable in f.c.c. if the members of the pair are first, second, or fourth neighbors, or if they are ninth neighbors separated by a close-packed < 110 > line of atoms.

- 8 -

	Relative Coordinates	Neighbor	Separation
Туре О	(000)		0
Type 1	(100)	-	_ 1
Type 2	(110)	· l	√ 2
Туре 3	(200)	2	, 2 ·
Type 4	(220)	4	√_ 8
Type 5	(330)	9	√18 .

3. Defect Clusters

(a) <u>B.c.c.</u>

In iron, the most stable divacancy is the one in which the vacancies are at second neighbor lattice sites [13]. CLUSTER therefore records a vacancy pair as a divacancy if the separation is either first or second neighbor, and itemizes the two cases separately.

By extension, a cluster of n vacancies in b.c.c. is defined to be a set of n vacancies such that each vacancy in the set has a first or second neighbor which is also in the set. For the purpose of cluster formation, each lattice site has 14 neighbors: 8 first and 6 second.

The most stable di-interstitial in iron consists of two split interstitials parallel to each other at first neighbor lattice sites [13]. CLUSTER therefore requires first neighbor separation before two interstitials are considered to be a di-interstitial. Similarly for higher order interstitial clusters.

(b) F.c.c.

The first neighbor divacancy is stable in copper [14]. Therefore, a cluster of n vacancies in f.c.c. is defined to be a set of n vacancies such that each vacancy in the set has a first neighbor which is also in the set. The neighbors of a vacant lattice site for the purpose of cluster formation are therefore its 12 first neighbors.

- 9 -

4. Distance between Clusters

For the purpose of computing distance distributions, CLUSTER classifies the defects into six categories:

1. single vacancies

2. divacancies

3. immobile vacancies

4. single interstitials

5. di-interstitials

6. immobile interstitials

All clusters with three or more members are called "immobile".

For each pair (i,j) of defect types, CLUSTER produces a distance table. There may be a maximum of 21 tables $(i \leq j)$, in the case where there is more than one of each defect type.

Suppose there are N_i defects of type i and N_j defects of type j. The distance between every (i,j) pair is computed. If $i \neq j$ the number of distances is N_iN_j . If i = j, the number of distances is $\frac{N_i(N_i-1)}{2}$. A histogram and cumulative distribution are computed. For the purpose of computing distances, the position of a cluster is taken to be the centroid of the set of single defects composing the cluster.

Also, for each defect of type 1, the distance to the <u>mearest</u> defect of type j is computed. The number of distances is always N_i . Again, a histogram and cumulative distribution are calculated.

A more complete description of the distance tables is given in Chapter VI.

III THE CASCADE PROGRAM

Reference [8] was the original program report for the b.c.c.-f.c.c. version of CASCADE. Chapter II of that report (Physical Model and Computation Methods) is still an accurate description, and the information from that chapter is not repeated in this report. The present chapter serves as an addendum, describing the additional capabilities which have been incorporated into the program.

Chapters III and IV of reference [8] (Program Usage and Programming Information) are to a considerable extent obsolete, and they are updated by this report.

1. Saturation

Studies of the saturated damage state may be made using the feature of CASCADE which allows the damage pattern which CASCADE creates and from which CLUSTER removes the unstable Frenkel pairs, to be used as the initial damage state for a new CASCADE run. This process may be repeated as many times as desired.

Although similar calculations could be done with the original program, the new feature represents a considerable improvement to the physical model, in that all unstable configurations are removed at each step of the way.

The procedure for making saturation runs is now fully automated, requiring very little preparation of data by hand. Details are given in Chapter V.

2. Minor improvements to the calculation method

a) Temporary interstitials

When an interstitial atom was displaced from an interstice, the earlier program printed a message to this effect, indicating the necessity for hand

- 11 -

alteration of the defect list. This condition is now handled automatically by the program, and no message is printed.

b) Relaxation parameter

As indicated in section II.2, the initial criterion that the displacement of an atom from a lattice site be "permanent", is that the displaced atom replaces another atom at a lattice site, or comes to rest in an interstice greater than \sqrt{R} from the site it vacated.

c) Replacement collisions

At the user's option, the program will either record all replacement collisions, or record only those which would disorder a binary crystal.

d) Tracing method

The f.c.c. tracing routine has been slightly modified. The forbidden targets in a collision search are the last n atoms struck by the moving o atom, where n is the number of grazing (p > 1 A) collisions which that atom has had. If n > 3, n is taken to be 3.

IV PROGRAMMING INFORMATION

1. System and setup

CASCADE and CLUSTER are coded in FORTRAN II and FAP. Together they make up a chain job consisting of either three or four chain links, depending upon the problem. Execution is under control of the FORTRAN Monitor System.

The programs use subroutine FNBTP [15] to read and write binary tape. This subroutine may write physical records longer than 458 words, which makes the program incompatible with the IBM Direct Couple Operating System [16]. Therefore, the program may not be executed on directly coupled 7094/7040 configurations, such as the one at Wright-Patterson Air Force Base, until the binary tape I/O is recoded.

The symbolic tape units addressed by the program are the following:

- 2 BCD input
- 3 BCD output
- 5 Occupancy change tape (binary)
- 7 Defect list tape (binary)
- 10 Potential data tape (binary)
- 13 Saturation tape (binary)

Tapes 10 and 13 are specific reels mounted prior to execution. Tape 5 is a scratch tape. Tape 7 is a binary output tape which should be saved after any production runs involving several change cases, at least until it is known whether there were data or other errors that caused the job to be terminated prematurely.

- 13 -

2. Program organization

For a normal CASCADE-CLUSTER job there are three chain links, as follows:

CHAIN	(1,B2)	•	CASCADE link
CHAIN	(1,B3)		EDIT link
CHAIN	(2,B3)		CLUSTER link

For each case, CASCADE is executed once, then EDIT is executed once. These two links are executed alternately until all cases have been run. At that time, CLUSTER is called in, and processes all cases. CLUSTER is loaded just once for each job.

The output on tape 3 is in two parts: first the CASCADE printoul for all cases, then the CLUSTER printout for all cases.

For a saturation job, a fourth chain link:

CHAIN (2, B2)

SATURATION link

is added at the beginning of the binary deck. There is no provision for running saturation change cases, so in such a job each link is executed once.

3. Occupancy change tape

For every collision which changes the occupancy of a site, four words are written on tape 5 by the CASCADE link.

Let K = the atom type involved (1,2, or 3). Set N according to the following scheme:

N = 10: ejection from a lattice site

- 14 -

N = 20: tentative interstitial formation

- N = 30: replacement collision
- N = 40: recombination of a tentative interstitial with an ejection site.

N = 50: displacement from an interstice

Word 1 is equal to N + K, and words 2, 3, and 4 are equal to the lattice coordinates of the event.

Records of length 100 words (25 events) are written on tape 5 by the CASCADE link. The EDIT rewinds the tape after each case, reads it back into core, and produces the CASCADE defect list by examining each displacement event in sequence.

Tape 5 is also used to store the occupancy table prepared by the SATURATION link, for later use by the CASCADE link.

4. Defect List Tape

Tape 7 is the means of communicating the defect list from CASCADE to CLUSTER.

Let NVAC (J), J = 1, 2, be the number of vacancies of type J. Similarly, let NINT (J) be the number of interstitials.

Let KVACX (I,J) be the lattice coordinate in the X direction for the Ith vacancy of type J, I = 1,..., 500, J = 1, 2. Similarly for KVACY, KVACZ, KINTX, KINTY, KINTZ.

For each case, the EDIT link writes one record on tape 7. The

- 15 -

number of words in the record is

25 + 3(NVAC(1)+NVAC(2)+NINT(1)+NINT(2))

The format of the record is as follows:

Words	1-20:	identification
Word	21:	lattice constant
	22:	NVAC(1)
	23:	NVAC(2)
	24:	NINT(l)
	25:	NINT(2)

followed by the defect list:

KVACX (I,1), I = 1, NVAC(1)
KVACY (I,1), I = 1, NVAC(1)
KVACZ (I,1), I = 1, NVAC(1)
KVACX (I,2), I = 1, NVAC(2)
KVACY (I,2), I = 1, NVAC(2)
KVACZ (I,2), I = 1, NVAC(2)
KINTX (I,1), I = 1, NINT(1)
KINTY (I,1), I = 1, NINT(1)
KINTX (I,2), I = 1, NINT(2)
KINTY (I,2), I = 1, NINT(2)
KINTZ (I,2), I = 1, NINT(2)

One record is written on tape 7 for each case in the job. After the CASCADE calculations are complete an end of file is written, the CLUSTER link is loaded, rewinds 7 and uses it as an input tape, processing one record at a time until the end of file is encountered. When the end of file is read a message to that effect is printed, and tape 7 is rewound and unloaded before EXIT is called.

- 16 -

5. Potential Data Tape (collision matrix)

A table of energy transfers and scattering angles as functions of energy and impact parameter, corresponding to a given interatomic potential function [17], may be calculated and punched on decimal cards by the Collision Matrix Program (NMPO Program 770).

These cards may be included with the BCD card input each time. Alternatively, they may be used to prepared a binary data tape which is then mounted as tape 10 prior to each run.

The format for the potential data tape is as follows:

Record 1 - 2 words

Word 1: NE (Number of energy values)

Word 2: NIP (Number of impact parameter values) Record 2 - NE+NIP+2*NE*NIP words

(E(J), J = 1, NE) energies

(P(I), I = 1, NIP) impact parameters

((COSINE (I,J), I = 1, NIP), J = 1, NE)

cosines of center-of-mass scattering angles.

((ETRA (I,J), I = 1, NIP), J = 1, NE)

energy transfer fractions.

Two data tapes are on file in the computer lab at Evendale. Reel number 3219 corresponds to Potential II for copper, of Gibson et al. [9]. Reel no. 4332 corresponds to Potential III for iron of Erginsoy et al. [12].

6. Saturation tape

Tape 13 is the means of communicating a CLUSTER defect list to a subsequent CASCADE.

- 17 -

When directed to do so by the input control word KSATUR (see input data instructions), the CLUSTER link writes on tape 13 the defect list which it received from CASCADE via tape 7, but with the unstable Frenkel pairs deleted.

The interstitials on tape 13 are on their original sites (octahedral or body-centered), rather than the lattice sites to which they are assigned by CLUSTER, because the tape subsequently provides CASCADE with an initial damage state. The tape is read by the SATURATION link, which uses the information to prepare an occupancy table. Later it is used by the EDIT link, which combines the information with that on the occupancy change tape, to produce a new defect list.

7. Error procedures

If an error condition occurs during CASCADE (including DING errors), the usual procedure is to print out an error message via a call to ERRORA, and then call subroutine EREX, which follows one of two exit procedures.

If the input specified that CLUSTER was to be run following CASCADE, EREX writes an end of file on tape 7, rewinds, sets location 774628 to non-zero as a signal to CLUSTER that the job terminated prematurely, and calls CLUSTER.

If CLUSTER was not specified, EREX simply rewinds and unloads tape 7, and calls EXIT.

There are two exceptions to this procedure. If a tape or other error is detected by a FORTRAN I/O subroutine, a message is printed and EXIT is called, with no opportunity for action by the program to salvage anything.

- 18 -

It is for this reason that tape 7 should be saved. The second exception is when a necessary data item is omitted from the first CASCADE case. In this situation, a message is printed and EXIT is called.

When CLUSTER is called by EREX, the spacing of tape 2 is indeterminate, so CLUSTER is unable to read input from tape 2. Instead, it uses values which are built in for such an emergency. It will process as many defect lists from tape 7 as were written correctly before the error occurred.

BTERR is a subroutine which is called after every usage of FNBTP. If an error was detected reading or writing binary tape, BTERR prints an appropriate error message.

8. Program limitations

The following limitations are imposed upon CASCADE by the amount of core storage available.

Item	Maximum number
Vacancies	500 of each type
Interstitials	500 " " "
Replacements	300 " " "
Primary knock-on atoms	300 " " "
Moving atoms	300 at any one time
Occupancy change events	3800
Damaged "boxes"	1500
	(24,000 atoms in b.c.c.,
	48,000 in f.e.c.)

The program terminates a case automatically after 20,000 collisions (10,000 if only the primary atom is being traced).

- 19 -

9. Note on binary materials

The original CASCADE program was coded for a binary (AB) alloy. This is the reason for "Type A" and "Type B" atoms. However, computer limitations prevented several of the later additions from being fully general. For example, the collision matrix would require five times as much memory in the general case of an AB alloy being bombarded by a foreign atom. Also the CLUSTER procedure would be enormously complicated both physically and computationally if a disordered binary crystal were permitted. CLUSTER and SATURATION have therefore been coded only for the monatomic case.

Binary alloys, therefore, may be handled using only those options present in the original program. That is, a Bohr potential is used, and CLUSTER and SATURATION may not be used.

10. Program listings

The listing of the FORTRAN-FAP source deck for CASCADE-CLUSTER is not included in this report, because it is 175 pages long. Anyone interested should contact one of the authors.

11. Running the program at outside installations

The program, in one version or another, has been successfully run on 7090's and 7094's at Brookhaven National Laboratory, Oak Ridge National Laboratory, and Wright-Patterson Air Force Base (before the Direct Couple System), as well as at G.E.-Evendale.

Two items should be noted when not running under the Evendale system.

(a) Tape assignments

At Oak Ridge, logical-physical tape correspondences may be specified on control cards. Elsewhere, patches to the IOU table may be necessary, depending on the local system.

- 20 -

(b) Evendale library subroutines

Care should be taken that the Evendale library subroutines which are not part of the FORTRAN Monitor System as distributed by IBM, are included in the binary deck.

SATURATION link: FNBTP DING ERROR (FPT) UNLOAD CASCADE link: ATAN ERROR EXP (3 DING (FPT) SQRT UNLOAD (FPT) FNBTP UNLOAD DING ERROR FNBTP (FPT) SQRT UNLOAD.

- 21 -

EDIT link:

CLUSTER link:

The mathematical subroutines (ATAN, EXP (3, SQRT) must be in the deck to insure uniformity of results to all decimal places, independent of where the program is run.

12. Running time

The approximate total running time on the 7090 for CASCADE-CLUSTER together is given below. The table is for copper, but other metals are of the same order, depending on such parameters as ejection energy and potential.

It is assumed that a collision history is to be printed out, which increases the running time. For the lower energies, it is assumed that there are many cases per run.

In some metals, particularly iron, the possibility of channeling makes the running time more unpredictable.

$\underline{\mathbf{E}}(\mathbf{keV})$	Min:sec/case
0.5 1.0 2.5 5 10 15	0:15 0:20 0:35 1:15 2:30 4:15
20	(÷)0

- 22 -

V INPUT DATA

This chapter is a self-contained set of instructions for running CASCADE and CLUSTER.

The input data is loaded by DING from tape 2.

Consider the simplest possible case, in which a single cascade is to be simulated in an initially perfect crystal, followed by the removal of unstable configurations and analysis of the damage pattern.

The required data items are discussed in sections V.1 and V.2. An example of the deck setup is given in V.3, and the numerous options and extensions are discussed in V.4.

1. Minimum Data (CASCADE)

(a) Case identification

Symbols: ID1 (10 words), ID2 (10 words)

Two lines of Hollerith identification. They appear on the first page of the CASCADE printout and on every page of the CLUSTER printout.

(b) Atom identification

Symbols: TYPE 1 (2 words), TYPE 2 (2 words), TYPE 3 (2 words) Hollerith names of type A atom, type B atom, and primary atom, respectively.

(c) Crystal structure identification

Symbol: CRYSTL (one word)

Hollerith name of crystal structure. Either "BCC" or "FCC".

(d) Atom parameters

Symbols: PCHG, PMASS, ED, (3 words each: type A, type B, and primary)

PCHG = atomic number

iron: 26 copper: 29

tungsten: 74

PMASS = mass number

iron: 56

copper: 63

tungsten: 184

ED = ejection energy (electron volts)

ED is approximately equal to twice the sublimation energy.

iron: 8 copper: 7 tungsten: 18

(e) Crystal and potential parameters

Symbols: CLATT, PMAXX, RELAX, XLMDA

CLATT = lattice constant (angstroms)

iron: 2.8665

copper: 3.6147

tungsten: 3.1650

PMAXX = potential cutoff (angstroms)

2 is used for iron and copper

RELAX = relaxation parameter (coordinate units squared)

- 24 -

The number of coordinate units an ejected atom must travel from its original lattice site in order to be considered displaced by CASCADE is $(RELAX)^{1/2}$. RELAX = 5 is used for iron and copper.

XLMDA = 0 except when Bohr potential is used.

(f) Starting point for primary atom

Symbols: XO, YO, ZO

Coordinates are in angstroms. If a is the lattice constant in angstroms and (i,j,k) are the coordinates of the starting lattice site, then

 $XO = \frac{a}{2} (i - \frac{1}{2})$ $YO = \frac{a}{2} (j - \frac{1}{2})$ $ZO = \frac{a}{2} (k - \frac{1}{2})$

(g) Energy of primary atom

Symbol: EO (electron volts)

(h) <u>Direction</u> <u>cosines</u> <u>of</u> <u>primary</u> <u>atom</u>

Symbols: COSA, COSB, COSG

Cosines for the initial direction of motion. NMPO Program number 769 will select directions randomly from an isotropic distribution, and punch the appropriate data cards.

(i) End of record

(j) End of file

- 2. Minimum Data (CLUSTER)
 - (a) Number of intervals

Symbol: NTVAL

Number of intervals for the distance histograms. NTVAL \leq 100

(b) Interval endpoints

Symbol: TVALS

In lattice coordinate units. There are NTVAL entries. TVALS(I) is the right-hand endpoint for the Ith interval.

(c) Random number generator

Symbol: RGEN (2 BCD words)

Octal bit pattern to initialize random number generation, specified in BCD.

(d) End of record

(e) End of file

Omission of the CLUSTER data will not cause the program to stop. Instead, it will use the following values:

NTVAL = 64

280,300,350,400,450,500,600,700,800,900,1000.

RGEN = 235317167400

3. Deck Setup Example

The deck setup (Evendale) for a 5 keV copper run, based on the preceding two sections, is the following:

1ID 1STOP 1(5) A-6 REEL XXXX -- RING IN 1(5) B-4 REEL 3219 -- RING OUT 1(5) B-5 SCRATCH TAPE 1 SL 3) FORTRAN *(5) XEQ

*(5)CHAIN (1,B2)

CASCADE binary deck (same for b.c.c. and f.c.c.) (5) CHAIN (1,B3) EDIT binary deck (same for b.c.c. and f.c.c.) *(5)CHAIN (2,B3) CLUSTER binary deck (different for b.c.c. and f.c.c.) ***(**5)DATA 5 ID1, 10, 5 KEV COPPER 5 ID2, 10, DIRECTION AL 5 TYPE 1, 2, COPPER 5 TYPE 2, 2, COPPER 5 TYPE 3, 2, COPPER 5 CRYSTL, 1, FCC 3 PCHG, 29, 29, 29, PMASS, 63, 63, 63, ED, 7, 7, 7, 3 CLATT, 3.6147, PMAXX, 2, RELAX, 5, XLMDA, 0, 3 XO, 362.3737, YO, 362.3737, ZO, 362.3737, 3 COSA, .58862761, COSB, .07788382, COSG, .86333006, 3 EO, 5000 8 4 NTVAL, 40, 3 TVALS, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3 TVALS, 20 = ,21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 3 TVALS, 35 = ,150, 200, 250, 500, 1000, 5 RGEN, 2, 235217167400 8

4. Options

There are 17 optional deviations from the "minimum" or "standard" case. Instructions for specifying data for these options are given in this section.

(a) Change cases

One job may consist of an arbitrary number of cases. Each record of CASCADE data represents one case. All data carries over from one record to the next, except that which is explicitly changed.

CLUSTER reads only one record of data from tape 2, regardless of the number of cases. The defect lists will have been written on tape 7 by CASCADE, and CLUSTER reads and processes them successively until an end of file is reached.

- 27 -

(b) Print collision history

Control word: KPRINT (CASCADE data)

The results of each individual collision [ref [8], pp. 31-32, 50-52] are printed out, 50 collisions per page, if KPRINT is set equal to one.

(c) Run CASCADE alone

Control word: KLUSTR (CASCADE data)

If KLUSTR = 3, the program will rewind and unload tape 7 after CASCADE processing is complete, and call EXIT without loading CLUSTER.

(d) <u>Run</u> <u>CLUSTER</u> alone

Control word: KLUSTR (CASCADE data)

If KLUSTR = 1 in the first record of CASCADE data, control goes immediately to CLUSTER. Or else CLUSTER may be executed as a selfcontained program without the presence of the other chain links.

(e) Potential data on cards

The potential data, or collision matrix [18] may be read in with the other data cards via tape 2, rather than on a binary data tape. The symbols are as follows:

NE: number of entries in energy table (NE \leq 30)

NIP: number of entries in impact parameter table (NIP ≤ 30)

- E: energy table (NE entries). The table is in ascending order, and must cover the range of possible energies. (electron volts). E(1) = 0. $E(NE) \ge E0$.
- P: impact parameter table (NIP entries). The table is in ascending order, and must cover the range of possible impact

- 28 -

parameters (in angstrom units). P(1) = 0, $P(NIP) \ge PMAXX$ COSINE: scattering angle table. NE x NIP entries. COSINE (I,J) is the cosine of the center-of-mass scattering angle for a collision described by (P(I), E(J))

ETRA: transfer fraction table. NE x NIP entries. ETRA (I,J) is the fraction of energy transferred in a collision described by (P(I), E(J))

If the potential data is omitted from the data deck, it will be .read from tape 10.

(f) Bohr potential

Symbol: XLMDA (CASCADE data)

If XLMDA $\neq 0$, the program does not expect to find potential data as input. Instead, it computes the results of each collision using a hardsphere approximation to a Bohr screened coulomb potential with screening parameter λ equal to XLMDA (ref [6], pp. 11-17).

XLMDA = 0 signals the program to use a collision matrix.

(g) Omit defect list printout - CASCADE

Control word: KFRINT (CASCADE data)

If KPRINT = 3, the defect list printed by CASCADE is omitted. In this case, the collision history is also omitted.

(h) <u>Omit defect list printout</u> - CLUSTER Control word: KPRINT (CLUSTER data)

If KPRINT = 1, CLUSTER does not print out the defect list it uses for input.

- 29 -

(i) Trace primary atom only

Control word: KPRIM (CASCADE data)

If KPRIM = 1, only the collisions of the primary atom are traced. This option was provided in order to save machine time in channeling studies. Since in this case the damage pattern is not the object of interest, one should set KLUSTR = 3.

(j) Cut-off energy

Symbol: ECO (CASCADE data, 3 entries)

Atoms of the Jth kind (J = 1: type A, J = 2: type B, J = 3: primary)are traced until their energy falls below ECO (J) electron volts. If ECO (J) is not specified, it is set equal to ED (J).

(k) Subtraction energy

Symbol: ESUB (CASCADE data, 3 entries)

When energy E is transferred to an atom of the Jth kind, ejecting it from its lattice site (E > ED (J)), the energy of the ejected atom is taken to be E-ESUB (J). If ESUB (J) is unspecified, it is set equal to ED (J).

(1) Replacement collisions

Control word: KREPL (CASCADE data)

If KREPL = 1, replacement collisions are counted as such only when the moving atom and target atom are of different types. Otherwise, all replacement collisions are counted.

(m) Defect list input from cards - CLUSTER
Control word: KTAPE (CLUSTER data)

If KTAPE = 1, CLUSTER will read from tape 2 all the data normally on the defect list tape (section IV.4).

- 30 -

(n) <u>Defect list input from specified records on tape 7</u> - CLUSTER
 Symbols: NRECRD (one entry), KRECRD (NRECRD entries)

If NRECRD \neq 0, CLUSTER will read NRECRD records from tape 7, NRECRD \leq 10. The sequential numbers of the records (counting from the beginning of tape) are given by KRECRD (1-NRECRD).

If NRECRD = 0 or is unspecified, CLUSTER will process all records on tape 7 until an end of file is reached.

(o) SATURATION - first pass

Control word: KSATUR (CLUSTER data)

If KSATUR = 1, CLUSTER will write its input defect list, minus the unstable pairs, on tape 13. Tape 13 will then be available as the initial crystal state for a subsequent CASCADE run.

(p) <u>SATURATION</u> - nth pass, $n \ge 2$

Control words: KSAT (SATURATION data and CASCADE data) KSATUR (CLUSTER data)

If a cascade is to be run against a damage pattern computed earlier, the following changes should be made to the standard setup:

- (i) The binary deck for the SATURATION link must be included physically preceding the CASCADE link. The control card is
 * CHAIN (2, E2).
- (ii) One record of data for the SATURATION link precedes the data for the CASCADE link. This data includes KSAT = 1, and it includes identification ID1 (10 words) and ID2 (10 words), and a value for CRYSTL (BCC or FCC). Do not use an end-of-file (8) card to terminate the SATURATION data. The end-of-record (=) card is sufficient. The CASCADE data follows immediately.

- 31 -

- (iii) Set KSAT = 1 in the CASCADE data and KSATUR = 1 in the CLUSTER data.
- (iv) Mount the saturation tape (section IV.6) written by a previous job, as tape 13.

(q) SATURATION - nth pass, $n \ge 2$, defect list from cards

If it is desired to specify a particular initial damage state which is not available on a binary tape, the setup is the same as in paragraph (p) with the following exceptions:

- (i) KCAT 3 in the SATURATION and CASCADE data.
- (ii) Include NVAC, NINT, KVACX, KVACY, KVACZ, KINTX, KINTY, KINTZ with the SATURATION data.

- 32 -

VI PRINTOUT INTERPRETATION

1. CASCADE

The printout corresponding to the sample data of section V.3 is reproduced in Chapter VIII.

The first page of the CASCADE printout is a listing of the input data. The input values for the following parameters are listed under appropriate descriptive labels: CRYSTL, IDl (1-10), ID2 (1-10), TYPE 1 (1-2), TYPE 2 (1-2), PMASS (1-2), PCHG (1-2), ED (1-2), TYPE 3 (1-2), PMASS (3), PCHG (3), EO, XO, YO, ZO, COSA, COSB, COSG, CLATT, XLMDA, PMAXX, RELAX.

THETA and PHI are the azimuthal and polar angles, respectively, corresponding to the given set of direction cosines. THETA = 0 lies in the XZ plane and PHI = 0 lies in the XY plane.

The values of control words are listed under the heading "output options." Control words are set equal to 2 by CASCADE unless specified in the input data. KPLAT and KRLAT are left over from an earlier version of the program, and have no meaning.

The collision history, if requested, appears next. It is omitted from this example, but an example and description appear in ref. [8]. If requested in this case, it would require 22 pages of printout.

The defect statistics appearing on page 2 are self-explanatory. Since the calculation is for a monatomic material, only the "TOTAL" row is relevant.

"Range" refers to the straight-line distance between the starting

- 33 -

- 6.

point of the primary and its terminal position which, in this case, is a lattice site.

The lists of vacancies, interstitials, and replacements appear on the succeeding pages. The occurrence of two lists on each page reflects the provision for binary materials.

The primary knock-on energies are the energies (after ESUB is subtracted) of all atoms (there were 6 in this case) which were ejected by being struck by the primary atom.

The final page of the CASCADE printout is a message describing its normal termination. If there was a premature termination due to error, a message indicating that fact appears here.

2. CLUSTER

The first page of the CLUSTER printout is an input listing, including the CASCADE defect list, which is read from tape 7.

Page 2 is a list of the unstable Frenkel pairs and the type of each (section II.2). Except for the interstitials in types 0 and 1 pairs, the interstitials have now been assigned to lattice sites.

Page 3 gives the number of "stable" vacancies remaining after the unstable pairs have been deleted. The number of single vacancies, and the number of vacancies occurring in each size cluster from 2 on up is printed, and their coordinates are listed on page 4. Similar information about interstitials is given on page 5.

The remaining pages of the CLUSTER printout consist of distance tables,

- 34 -

the first two of which are reproduced.

The table labeled "distance between single vacancies" is interpreted in the following way:

There are 13 single vacancies, as seen from page 3. The number of distances between single vacancies is therefore $\frac{13!}{2! 11!} = 78$.

The average of these distances is labeled "average distance", and is given in three different systems of units. If one assigns to each of the 13 single vacancies a number equal to the distance from it to the nearest single vacancy, the average of these numbers is given under "average minimum distance."

Column I shows that 2 of the 78 distances lie between 2 and 3 units, 4 lie between 3 and 4, etc. Each interval is identified by its right-hand endpoint and includes the right-hand endpoint.

Column II shows the fraction of the total no. of distances in each interval, and Column III gives a cumulative distribution based on Column II.

Column IV normalizes the histogram to a unit volume. Since there were 4 distances in the interval (3,4], Column IV for the 4th interval is $\frac{4}{\frac{4}{3}\pi(43-3^3)}$ = .02581. Column V is the same as Column IV, but in units of no./cubic coordinate unit.

Columns VI-X correspond to columns I-V respectively. The distribution refers to the 13 "minimum" distances rather than all 78 distances.

The table labeled "distance between single and divacancies" is similar, with the major differences arising from the fact that unlike defects are

- 35 - -

being considered. The distribution of columns I-V refers to all single vacancy-divacancy distances, of which there are $13 \times 3 = 39$. The distribution of columns VI-X is the one which results from assigning to each of the 13 single vacancies a number representing the distance from it to the nearest divacancy.

In this case, the program prints 13 more similar distance tables, each for a different pair of defect types. These tables are interpreted in a manner similar to either the first or second table, according as the pair of types is like or unlike. VII REFERENCES

- J. R. Beeler, Jr., and D. G. Besco, "Knock-on Cascades and Point Defect Configurations in Binary Materials" in <u>Radiation Damage in</u> <u>Solids</u>, Vol. I, p. 43, International Atomic Energy Agency, Vienna, (1962).
- J. R. Beeler, Jr., and D. G. Besco, "Defect Configurations in Heavy-Atom Bombarded BeO," Proc. Int. Conf. Crystal Lattice Defects, J. Phys. Soc. Japan 18, Suppl. III, 159 (1963).
- J. R. Beeler, Jr., and D. G. Besco, "Range and Damage Effect of Tunnel Trajectories in a Wurtzite Structure," J. Appl. Phys. <u>34</u>, 2873 (1963).
- J. R. Beeler, Jr., and D. G. Besco, "Effects of Channeling on Damage Production in Iron," Phys. Rev. <u>134</u>, A530 (1964).
- J. R. Beeler, Jr., "Primary Damage State in Neutron Irradiated Iron,"
 J. Appl. Phys. 35, 2226 (1964).
- D. G. Besco and J. R. Beeler, Jr., "Computer Programs Describing Collision Cascades in Binary Materials - Part I: Square Planar Lattice," GEMP-192 (1963).
- 7. Part II: "Wurtzite Structure GEMP-200 (1963).
- 8. Part III: "Body-Centered Cubic and Face-Centered Cubic Structures" CEMP-243 (1963).
- 9. J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, "Dynamics of Radiation Damage," Phys. Rev. 120, 1229 (1960).
- R. A. Johnson and E. Brown, "Point Defects in Copper," Phys. Rev. <u>127</u>, 446 (1962).
- 11. G. H. Vineyard, "Dynamics of Radiation Damage: a Report on Recent Results at BNL," Proc. Int. Conf. Crystal Lattice Defects, J. Phys. Soc. Japan 18, Suppl. III, 144 (1963).

- 37 -

- 12. C. Erginsoy, G. H. Vineyard, and A. Englert, "Dynamics of Radiation Damage in a Body-Centered Cubic Lattice" Phys. Rev. <u>133</u>, A595, (1964).
- 13. R. A. Johnson, "Interstitials and Vacancies in α -Iron," Phys. Rev. <u>134</u>, A1329 (1964).
- 14. G. H. Vineyard, "General Introduction," Disc. Faraday Soc. 31, 7 (1961).
- 15. Janet Lee Heikkinen, "FORTRAN Binary Tape Program" Evendale Computations Operation Subroutine Manual - FSR61-18, (1963).
- 16. IBM 7090/7040 Direct Couple Operating System: Programmers' Guide. Form C28-6382-1, International Business Machines Corporation, White Plains, New York, (1964).
- 17. Mark T. Robinson, "Tables of Classical Coattering Integrals for the Bohr, Born-Mayer, and Thomas-Fermi Potentials," Oak Ridge National Laboratory Report ORNL-3493 (1963).

5 KEV COPPER DIRECTION AS 1 COPPER 2 COPPER MASS 63. CHARGE 20. EJECTION ENERGY 7. PRIMARY ATOM COPPER MASS * 63. CHARGE 20. PRIMARY ATOM COPPER MASS * 63. CHARGE 20. PRIMARY ATOM ENERGY S000.0 ELECTRON VOLTS TARE-OFF POINT (ANGSTROMS) X * 362.37370 Y = 362.37370 X * 362.37370 Z * 362.37370 COS ALPHA = 0.58662761 COS BETA = 0.07788382 COS ALPHA = 0.58662761 COS BETA = 0.07788382 COS ALPHA = 3.6424130 PHI =, 7.537266 Lattice CONSTANT = 3.6147 ANESTROMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE ISQUARED) = 5.00 COORDINATE UNITS DUTPUT ORIIONS			-	·	
CRYSTAL ATOMS 1 COPPER NASS 63. CHARGE 29. EJECITION ENERGY 7. PRIMARY ATOM COPPER MASS = 63. CHARGE 29. PRIMARY ATOM COPPER MASS = 63. COPPER MASS = 63. CHARGE 29. PRIMARY ATOM COPPER COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM S000.0 ELECTRON VOLTS X = 362.37370 X X = 362.37370 X X = 362.37370 X X = 362.37370 X COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS ALPHA = 0.58862761 CCS BETA = 0.07788382 LATTICE CONSTANT = 3.6147 ANGSTROMS<	5 KEV COPPER Direction A5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
L COPPER MASS 63. 63. CHARGE 29. 29. EJECTION ENERGY 7. 7. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM ENERGY S000.0 ELECTRON VOLTS S000.0 TAKE-OFF POINT (ANGSTROMS) X S 362.37370 S 362.37370 Y 362.37370 S 362.37370 S 362.37370 Z 362.37370 S 362.37370 S 362.37370 L S 362.37370 S 362.37370 S 362.37370 Z S 362.37370 S 362.37370 S 362.37370 L S 362.37370 S 362.37370 S 362.37370 L S 362.37370	CRYSTAL ATOMS				
MASS 63. 63. CHARGE 29. 29. EJECTION ENERGY 7. 7. PRIMARY ATOM	1 COPPER	2 COPPER	·		<u></u>
CHARGE 29. 29. EJECTION ENERGY 7. 7. PRIMARY ATOM	MASS 63.	63.	·		
EJECTION ENERGY 7. PRIMARY ATOM COPPER MASS = 63. CHARGE = 29. PRIMARY ATOM ENERGY SODO.0 ELECTRON VOLTS TAKE-OFF POINT (ANGSTROMS) X = 362.37370 Y = 362.37370 Z = 362.37370 COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS GAMMA = 0.80464381 THETA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 SCREENING PARAMETER = 0. PDIENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS	CHARGE 29.	29.	· · · · · · · · · · · · · · · · · · ·		
PRIMARY ATOM COPPER MASS = 63. CHARCE = 29. PRIMARY ATOM ENERGY S000.0 ELECTRON VOLTS TAKE-OFF POINT (ANGSTROMS) X = 362.37370 Y = 362.37370 Z = 362.37370 TAKE-OFF DURECTION COS ALPMA = 0.58862761 CCS BETA = 0.07788382 COS ALPMA = 0.58862761 CCS BETA = 0.07788382 COS ALPMA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTRCMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTRCMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS	EJECTION ENERGY 7.	7.			
COPPER HASS = 63. CHARGE = 29. PRIMARY AIDM ENERGY 5000.0 ELECTRON VOLTS TAKE-OFF POINT (ANGSTROMS)	PRIMARY ATOM				
PRIMARY ATOM ENERGY 5000.0 ELECTRON VOLTS TAKE-OFF POINT (ANGSTROMS) X = 362.37370 Y = 362.37370 Z = 362.37370 Image: Constraint of the state of th	COPPER MASS = 63. CHARGE	= 29.			
FRIMART ADDR ENERGY 5000.0 ELECTRON VOLTS TAKE-OFF POINT (ANGSTRUMS). X = 362.37370 Y = 362.37370 Z = 362.37370 COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS GAMMA = 0.80464381 THETA = 36.424130 PHI = 7.537266 Lattice CONSTANT = 3.6147 ANGSTRUMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTRUMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS					
TAKE-OFF POINT (ANGSTROMS) X = 362.37370 Y = 362.37370 Z = 362.37370 TAKE-OFF DIRECTION COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS GAMMA = 0.80464381 THETA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTROMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS					
TAKE-OFF POINT (ANGSTROMS). X = 362.37370 Y = 362.37370 Z = 362.37370 TAKE-OFF DURECTION COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS ALPHA = 3.58862761 CCS BETA = 0.07788382 COS ALPHA = 3.58862761 CCS BETA = 0.07788382 COS GAMMA = 0.80464381 THETA = 36.424130 PHI = 7.537266 Lattice CONSTANT = 3.6147 SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS			<u>_</u>		
X = 362.37370 Y = 362.37370 Z = 362.37370 TAKE-OFF DJRECTION COS ALPHA = 0.58862761 CGS ALPHA = 0.6147 SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTI	TAKE-OFF POINT (ANGSTROMS)		· · · · · · · · · · · · · · · · · · ·		
Y = 362.37370 Z = 362.37370 TAKE-OFF DIRECTION COS ALPHA = 0.58862761 COS BETA = 0.07788382 COS ALPHA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTRCMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS	X = 362.37370				
Z = 362.37370 TAKE-OFF DIRECTION COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS ALPHA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTREMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS	Y = 362.37370	·	· · · · ·		
TAKE-OFF DIRECTION COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS GAMMA = 0.80464381 THETA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTREMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT OPTIONS	ζ = 362.37370		<u></u>	· · · ·	
COS ALPHA = 0.58862761 CCS BETA = 0.07788382 COS GAMMA = 0.80464381 THETA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTREMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT OPTIONS	TAKE-OFF DURECTION	·			<u> </u>
THETA = 36.424130 PHI = 7.537266 LATTICE CONSTANT = 3.6147 ANGSTREMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT OPTIONS	COS ALPHA = 0.58862761 CCS BET	A = 0.07788382 COS GAMMA	= 0.80464381		
LATTICE CONSTANT = 3.6147 ANGSTREMS SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS	THETA = 36.424130 PHI = 7.5372	266		<u> </u>	<u> </u>
SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT ORTIONS	LATTICE CONSTANT = 3.6147 ANGSTREMS	• • • • • • • • • • • • • • • • • • • •	······		
SCREENING PARAMETER = 0. POTENTIAL CUTOFF = 2.00 ANGSTROMS RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS OUTPUT OPTIONS					
RELAXATION DISTANCE (SQUARED) = 5.00 COORDINATE UNITS	SCREENING PARAMETER = 0. POTENTI	AL CUTOFF = 2.00 ANGSTROMS	· · · · · · · · · · · · · · · · · · ·	<u></u>	
OUTPUT ORTIONS	RELAXATION DISTANCE (SQUARED) = 5.00 (COORDINATE UNITS	······································		
	OUTPUT OPTIONS				
KLUSTR= 2 KPRIM= 2 KPRINT= 2 KRLAT= 2 KPLAT= 2 KREPL= 2	KLUSTR= 2 KPRIM= 2 KPRINT= 2 KF	LAT= 2 KPLAT= 2 KREPL= 2	· · · · · · · · · · · · · · · · · · ·		· ·
		······································			
	· · ·				

. . .

							·
······································		•					•
CEFECT STATISTICS				· · ·			- 120 · 120 · 420 · 440
	`						
INTERSTITIALS	VACANCIES REPLA	ACEMENTS					
COPPER 44	53	6.2					
COPPER 70	60	88		· · ·	•	<u> </u>	
TOTAL 114	113 1	150 .					
BANGE OF PRIMARY ATOM							
12.02 ANGSTRUMS				•			
COORDINATES OF PRIMARY ATOM A	T END OF CASCAD	DE					
203 204 206			· .				
			•				•
		······					
							-
	<u> </u>			·			
· · · · · · · · · · · · · · · · · · ·							
· · ·							
		<u></u>		·			
							-
		· · · · · ·					
	·						
		<u> </u>	•	•			
		· ·					
	·		•		• 		
						·	
· · · · · · · · · · · · · · · · · · ·							-
		······	<u> </u>				· · · · ·

•

.

•

.

÷

÷

	<u></u>			<u> </u>			•	
				·	•			
COPPER	VACANCIES	· ·						
205 199 197	209 199 197	206 202 197	206 200 199	209 199 201	206 200 201	207 197 203	206 200 203	
190 204 203	209 199 205	202 202 205	205 203 205	192 204 205	208 204 205	209 205 205	204 202 207	·
205 202 207	198 206 209	206 208 209	204 204 207	209 205 207	204 200 209 209 209 209	207 201 209	211 201 213	
202 202 213	201 203 213	199 195 215	209 195 215	212 198 215	203 199 215	209 199 215	201 201 215	
<u>198 202 215</u> 203 199 221	201 197 217	202 198 217	209 199 217 -	200 196 219	202 198 219	208 198 219	201 201 219	
								·
COPPER	VACANCIES				·	<u>.</u>		
208 197 196	207 198 198	206 199 198	206 201 198	206 199 200	207 196 202	203 200 202	205 200 202	
202 201 202	204 201 202	207 198 204	191 204 204	196 205 204	208 197 206	207 200 206	210 201 205	•
201 202 206	203 202 206	200 203 206	206 203 206	208 203 206	193 204 206	197 204 206	201 204 206	·
204 201 210	204 203 210	205 204 210	203 204 212	207 206 212	206 199 214	203 200 214	205 200 214	
207 200 214	211 200 214	202 201 214	208 201 214	201 202 214	207 202 214	209 208 214	209 196 216	
204 197 216	203 198 216	209 198 216	211 196 218	200 197 218	199 198 218	203 198 218	203 198 222	. <u> </u>
							······································	
			•		· •			
			•			<u> </u>	······	
			·			·	· · · · · · · · · · · · · · · · · · ·	
			. •					
	<u></u>	. <u></u>			•	, <u> </u>		<u> </u>
		· · · · · · · · · · · · · · · · · · ·						
			·					<u> </u>
				•				
	··· ###				•		·	
			-			· · · · · · · · · · · · · · · · · · ·		
····.,		· · · · · · · · · · · · · · · · · · ·	·				······	
•		<u></u>			<u>_</u>			<u>.</u>
		,	·····		<u>·</u>		<u>_</u>	······································
							·	
<u> </u>	······		<u></u>				.=	
	· · · · · · · · · · · · · · · · · · ·		· · ·		<u></u>	·		
	-		•					
		•						

•;

.

•

•

CUPPER	INTERSTITIAL	S	•	······································			· · · · · · · · · · · · · · · · · · ·	
206 197 195	202 199 197	210 201 197	206 205 197	206 205 199	208 204 200	192 204 202	195 205 202	
195 207 202	207 194 203	204 196 204	207 199 204	207 203 204	204 201 205	199 204 207	204 206 207	
208 207 207	209 208 207	207 197 208	198 204 210	212 204 210	204 198 211	207 203 211	208 203 211	
205 201 212	197 205 212	196 195 213	199 202 213	209 202 213	197 200 215	203 200 215	213 200 215	
198 203 215	200 202 216	210 196 217	200 196 218	198 196 220	212 196 220	197 200 221	203 197 222	
209 208 229	208 204 224	208 204 228	204 200 232		·			
COPPER	INTERSTITIAL	s						
206 201 193	206 199 195	209 197 196	207 191 198	207 196 199	206 192 200	203 197 202	188 204 202	
	209 198 203	209 200 203	205 204 203		209 201 204	208 197 205	213 199 205	
203 206 207	208 209 207	210 194 208	211 201 208	184 204 208	198 208 208	200 199 209	204 198 210	
198 208 210	210 199 211	211 200 211	203 202 211	211 202 211	206 209 211	199 205 212	201 207 212	
207 207 212	211 196 213	193 204 213	203 204 213	208 192 214	204 194 214	211 195 214	203 197 214	
205 203 214	208 208 214	210 210 214	195 204 215	200 192 216	203 193 216	207 193 216	209 197 215	
201 201 216	206 198 222	206 196 218	210 196 218	203 198 218	201 203 218	210 201 219	200 194 225	
							,	
		· · · · · · · · · · · · · · · · · · ·						
				-				
	•		·				·	
			· ·		,			
			۰.			·····		
	·		··· -		·····			
				• • • • • • •	•	•		
			· · · · · · · · · · · · · · · · · · ·		•			
					<u> </u>			
	•							
		•		· ·				
		· .		•			· · · · · · · · · · · · · · · · · · ·	<u> </u>
		· · ·	·					
<u> </u>				•	·		,,,,,,,,,,,,,	
				·				
			-			•		
		//						

.

	u b						• · · ·
							_
							· · · ·
<u>.</u>							
CUPPER	REPLACEMENTS					•	
203 199 197	210 200 197	206 204 197	206 202 199	206 204 199	208 204 201	209 198 202	208 201 202
204 197 206	212 207 206	200 204 203	208 204 203	204 199 208	201 200 208	208 203 208	210 205 208
207 208 208	193 204 209	206 201 210	208 201 210	193 204 210	195 204 210	195 207 210	206 209 210
204 198 211 198 195 214	210 195 214	212 197 214	203 198 212	203 202 212	211 202 212	200 205 212 200 193 216	208 193 214 209 200 218
201 202 218	199 197 219	201 197 219	200 195 220	207 198 220	198 200 221	206 201 222	208 204 223
204 200 225	201 203 225	204 200 227	208 204 227	204 200 229	204 200 231		
C()005.8	DEBLACEMENTS	· · · · · · · · · · · · · · · · · · ·					
· ·	REPLACEMENTS			•	·		_
206 201 194	207 197 195	209 198 196	206 199 196	206 201 196	207 192 198	207-194-198	207 196 198
196 206 203	208 197 204	189 204 204	205 204 204	204 196 205	207 199 205	212 199 206	211 200 205
210 203 206	211 203 206	191 204 206	202 205 206	212 205 206	214 205 206	203 206 206	208 207 205
210 195 208	210 201 208	185 204 208	187 204 208	189 204 208	191 204 208	198 207 208	207 207 207 207 211 205 209
204 199 210	195 204 210	205 201 211	208 202 211	196 204 211	211 200 212	193 204 212	195 204 212
202 205 212	201 206 212	197 195 213	200 202 213	208 202 213	205 194 214	206 195 214	206 197 214
207 194 216	203 196 216	206 197 216	208 197 216	210 196 217	199 196 218	205 196 218	204 197 218
210 197 218	197 198 218	212 196 219	205 198 222	205 204 222	209 205 223	203 198 224	209 202 225
			- <u>.</u>				
		· · · ·		<u> </u>			
							· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · ·			
· · ·						· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · · _ · · _ · · _ · · _ · · _ · · _ ·		·	· · · · · · · · · · · · · · · · · · ·
•				. <u> </u>			
			•				
				 -		<u></u>	
							······································
							•
		_					
	•	•					· · · · · · · · · · · · · · · · · · ·
		·					
		•		•			

• •

PRIMARY KNOCK-ON ENERGI	ES (EV)		·		·	_
COPPER	2 COPPER	4				-
10.44	4.50			,	· · · · · · · · · · · · · · · · · · ·	-
0.	1093.89					-
	3,47.50	·	. Magna a sa a sa a		· · · · · · · · · · · · · · · · · · ·	
NUMBER OF COLLISIO	NS RECORDED = 1080	:				_
VOLUME OF DAMAGED	REGION = 3.872+04 5.4.	· · · · · · · · · · · · · · · · · · ·				
MAXIMUM PERMITTED	/OLUME = 5.658+05					-
, <u></u> ,,,		·				_
	· · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·			-
<u></u>	· · · · · · · · · · · · · · · · · · ·				- <u> </u>	
	······································				·	-
¥				······································		<u>-</u>
	· · · · ·				·······	
۱		<u> </u>				
الك ــــــــــــــــــــــــــــــــــــ	• .					-
	• • • • • • • • • • • • • • • • • • •					-
			· · · · · · · · · · · · · · · · · · ·			-
	•	·				-
					· ·	_
					· · · · · · · · · · · · · · · · · · ·	
						-
•		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u></u>	_
	,	•				_
		·				_
	· · · · · · · · · · · · · · · · · · ·				• 	-
	· · ·					-
	• •	• •	. <u></u>	·		-
	······	·				_
					<u></u>	

CASCADE PROGRAM RAN ALL CASES TO COMPLETION . WILL NOW WRITE END OF FILE ON 7, REWIND, AND CALL CLUSTER -. 1 ,5-. . . • . ۰. • .

2

ð

۴.

.

7,

FCC VACANCY CLUSTER SIZE DISTRIBUTION AND DEFLOYMENT PROGRAM, NMP779

5 KEV COPPER DIRECTION A5

	PANDOM N														
	KANDO A P	WBER	GENERAT	OR = 2	235217	1167400)								
	CONTROL	VORDS	- KTAPE	= 0, K	PRINT	[=_ 0 ,	KODE= 0,	KRECRD= 0,							
	DEFECT	SITES,	LISTI				-	DEFECT	SITES,	LIST 2		•			
	VACANO	CIES -	53	INTER	STITI	IALS -	44	VACAN	CIES -	60	INTERSTIT	ALS -	70		
	205	199	197		206	197	195	208	197	196	206	201	193	•	
	209	199	1.97		202	199	197	207	198	198	206	199	195		
	206	202	197		210	201	197	206	199	198	209	197	196		
	206	200	199		206	205	197	206	201	198	207	191	198	•	
	209	199	201		206	205	199	206	199	200	207	196	199	·	······
	206	200	201		208	204	200	207	196	202	206	192	200		
	207	197	203		192	204	202	203	200	202	203	197	202		
	206	200	202		105	205	202	205	200	202	199	204	202		
	100	200	203		105	207	202	203	200	202		204	202		
•	200	100	205		207	104	202	202	201	202	. 204	100	202		
	209		205		201	194	203	204	201	202	209	190	203	··················	
	202	202	203		204	100	204	207	7.40	204	. 209	200	203		
	205	203	203	_	201	133	204	191	204	204	205	204	203		• · · · · · · · · · · · · · · · · · · ·
	192	204	205		207	203	204	196	205	204	188	204	204		
	208	204	205	-	204	201	205	208	197	206	209	207	204		
	209	205	205		199	204	207	207	200	206	208	197	205		
	204	202	207	· · · · · · · · · · · · · · · · · · ·	204	205	207	210	201	206	213.	199	206		
	206	202	207		208	207	207	201	202	206	211	203	206		
. —	207	203	207	_	209	205	207	203	202	206	211	203	206		
ь -	196	204	207		207	197	208	200	203	206	190	204	206		
ნ	198	204	207		198	204	210	206	203	206	215	205	206		
1	209	205	207		212	204	210	208	203	206	213	207	206		
	204	200	209		204	193	211	193	204	206	208	208	206		
	207	201	209		207	203	211	197	204	206	203	213	206		
	194	204	209		208	203	211	201	204	206	196	205	_207		
	205	205	209		205	201	212	210	205	206	203	206	207		
	1.98	206	209		197	205	212	209	206	206	208	209	207		
	206	208	209		196	195	213	208	201	208	210	194	208		
	204	200	211		199	202	213	193	204	208	211.	201	208		
	206	204	211		209	202	213	195	204	208	184	204	208		
	209	199	213		197	200	215	198	205	208	198	208	208		
	204	200	213		203	200	215	205	206	208	200	199	209		
	211	20 ľ	213		213	200	215	206	207	208	204	198	210		_
	202	202	213		198	203	215	204	201	210	198	208	210		
	201	203	213		200	202	216	204	203	210	210	199	211		
	199	195	215		210	196	217	205	204	210	211	200 -	211		
	209	195	215		200	196	218	203	204	212	203	202	211		
	212	198	215		198	196	220	207	206	212	211	202	211		
	203	199	215		212	196	220	206	199	214	206	_209	211		
	209	199	215		197 ·	200	221	. 203	200	214	199	205	212		
	201	201	215		203	197	222	205	200	214	201	207	212		
	198	202	215	•	209	206	223	.207	200	214	207	207	212		
	201	197	217		208	204	224	211	200	214	211	196	213		
	202	198	217		208	204	228	202	201	214	193	204	213		
	209	199	217		204	200	232	208	201	214	203	204	213		
	200	196	219		0	0	0	201	202	214	208	192	214		
	202	198	219		0	0	0	207	202	214	. 204	194	214.	;	
	208	198	219		0	0	0	209	208	214	211	195	214	· · · · · · · · · · · · · · · · · · ·	
)	201	201	219		0	0	· 0	209	196	216	203	197	214		
	203	199	221		0	0	0	204	197	216	205	203 -	214		
	200	200	221		0	0	0	203	198	216	208	208	214		
•	200							A A A							
<u> </u>	209	203	221		0	0	U	209	198	216	210	210	214		

.

2

7

. .

.

ι. Σ

		ī ģ		,					a j	·
									,	
	205 201 0 0	223	0 Ó 0 0	0	200 1 199 1	97 218 98 218	200 192 203 193	216 216		
	0 0 0 0	ວ ວ ວ	0 0 0 0 0 0	0 0 0	203 1 203 1 204 1	98 218 98 222 99 222	207 193 209 197 201 201	216 216 216		
		<u> </u>	0 0 0 0 0 0	0 0	205 2 209 2 208 2	02 222 04 222 03 226	<u> 198 196</u> 206 196 210 196	218 218 218		
	0 0 0	0 0	0 0	0	0	0 0 0	196 198 201 203	218 218 218		
	<u> </u>		0 0 0 0	<u> </u>	0 0	0 0 0 0	200 194 207 198	219 220 221		
	0 0 0 0 0 0	<u>ຄ</u> ວ	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	<u>206 198</u> 207 201 205 205	222 222 222 222		
- <u></u>	0 0	0 0	0 0 0 0	0	0 0	0 0	203 198 209 201	225 226		
<u> </u>	•							;;		
					······································		· · · · · · · · · · · · · · · · · · ·	·		
			· · ·					· · · · · · · · · · · · · · · · · · ·		
				···			· · · · · · · · · · · · · · · · · · ·			
		· · ·				· · · · · · · · · · · · · · · · · · ·			·	
- 47										
						·				
·										
	<u> </u>								- <u>,</u>	
			;		<u></u>		· · · · · · · · · · · · · · · · · · ·		· · ·	
				······································	• • •					
	. ·			· 						
							,*=			
	· · ·		· · · · · · · · · · · · · · · · · · ·						······	
			·	· · · · ·	. <u>.</u> .					
	· · · · · · · · · · · · · · · · · · ·		·····	· · · · ·						
						·				

ī ģ,

. .

FCC VACANCY CLUSTER SIZE DISTRIBUTION AND DEPLOYMENT PROGRAM, NMP779

5 KEV COPPER DIRECTION A5

UNSTABLE FRENKEL PAIRS - 52

•

		VACAI	NCLES	IN	TERSTI	TIALS	TYPE		VACA	NCIES	INT	ERSTE	TIALS	TYPE			
	207	198	204	207	199	204	1	198 -	204	207	199	204	207	1			
	203	199	215	203	200	215	1	198	202	215	198	203	215	1			
	200	196	219	200	196	218	1	203	198	222	203	197	222	1			
	208	197	196	209	197	196	1	208	197	206	208	197	205	1			
	196	204	207	196	205	207	1	207	206	212	207	207	212	1			
	203	204	212	203	204	213	1	209	208	214	208	208	214	1			
	209	196-	216	209	197	216	1	201	201	215	201	201	216	. 1			
	211	196	218	210	196	218	1	209	199	197	210	200	197	2			
_	190	204	203	191	204	202	2	205	206	208	204	206	207	2			
	209	206	206	209	207	207	2	198	206	209	198	205	210	2			
	206	204	211	207	203	211	2	208	201	214	209	201	213	2			
	209	204	222	209	205	2.23	2	205	203	205	205	204	204	2			
	210	205	206	211	204	206	2	204	201	210	204	202	211	2			
	204	200	211	204	198	211	3	204	201	202	204	203	202	3			
	209	199	201	209	199	203		206	200	203	208	200	203	3	•		
	210	201	206	210	203	206	3.	211	201	213	211	201	211	3			
	205	200	214	. 205	202	214	3	196	205	204	194	205	202	4	•		
	207	196	202	207	194	204	4	202	202	205	204	200	205	4			
	206	208	209	208	208	207		205	204	210	205	202	212	4		•	
	201.	202	214	199	202	212	-4	211	200	214	213	200	216	4			
ı	208	203	226	208	205	224	4	206	207	208	208	207	206	4			
4	205	205	209	203	205	207	.4	209	195	215	211	195	213	4			
°	204	197	216	206	197	218	4	206	201	198	206	198	195	5			
1	207	200	206	207	203	203	5	199	195	215	196	195	212	5			
	206	202	197	206	199	194	5	207	200	214	210	200	211	5			
	207	202	214	210	202	211	5	208	198	219	208	201	222	5			

.

.

. .

 \sim

2

•

-

.

•

		_					•									
FCC VACANCY CLUSTER SIZE D	ISTRIBU	TION A	ND DE	PLOYM	ENT PR	JGRAM,	NMP779									
5 KEV COPPER					<u> </u>											
DIRECTION A5						<u> </u>										
NUMBER OF INPUT VACANCIES	113															
NUMBER OF UNSTABLE PAIRS NUMBER OF STABLE VACANCIES	52 61															
	OF CLU	STERS	`													
												٠				
3-VACANCY 4						····			-			· · · · · · · · · · · · ·				
5-VACANCY 2 6-VACANCY 1																
7-VACANCY																<u>.</u> .
SINGLE VACANCIES														<u></u>		
207 197 203 20	1 201	205)	209	205	207	204	200	209	197	204	213				
198 205 208 20	203	210)	206	199	214					•					
VACANCY CHUSTERS									•							
	205	100	107											<u> </u>		
I-VACANCY CLUSIER	205	200	197										······			
· · · · · · · · · · · · · · · · · · ·	206	200	201 198												· · ·	•
	207	198	198													
·	205	200	202													. ·
3-VACANCY CLUSTER	192	204	205		•											
· ·	191 193	204 204	204									•				٠
6-VACANCY CLUSTER	208	204	205													
	209	205	205							•						<u> </u>
	207	203	207										·			
	208	203	206						··· -							
2-VACANCY CLUSTER	204	202	207										····			
	203	202	206	•												
2-VACANCY CLUSTER	207	201	209													
	208	201	208												·	
3-VACANCY CLUSTER	194	204	209							•	_					
and an and	195	204	208		_											
5-VACANCY CLUSTER	204	200	213													
	202	202	213					. ·								P.A
	203	200	214													
	202	201	214													
3-VACANCY CLUSTER	209	199	215													

209 198 216

7-VACANCY CLUSTER 201 197 217	
203 198 216	<u>.</u>
203 198 218	
199 198 218	
E-VACANEY CLUSTED 202 100 221	
204 200 223	
205 201 223	
204 199 222	
205 202 222	
2-VACANCY CLUSTER 203 200 202	~~_
202 201 202	
3-VACANCY CLUSFER 201 202 206	
201 204 200	
	· · · · · · · · · · · · · · · · · · ·
	<u>u</u> .,
	<u>.</u>
	· · · · · · · · · · · · · · · · · · ·
	·····
	· · · · · · · · · · · · · · · · · · ·
	<u></u>

											<u> </u>		•						
	5 KEV C	OPPER ON A5												:					•
		05 IN			5 114														
	N	UMBER	OF UNST	ABLE PAIR	114														
	NUMBER	OF STA	BLE INT	ERSTITIAL	<u> </u>														
	TYPE OF	CLUST	ER	NUMBER OF	CLUST	ERS											-		
	1-INTE 2-INTE	RSTITI	AL Al	52										•					
.——															. <u> </u>			-	
		199	196	206	206	197	207	205	199	209	204	200	194	207	202			<u> </u>	<u> </u>
	204	196	205	207	197	207	212	203	210	209	203	211	198	200	215				
	208	204	229	204	200	231	206	202	193	207	191	197	206	196	199				
	207	192 204	200	203	196	202	208 203	207	204	213	199 209	205	190 211	203 194	206				
	211	200	208	184	204	209	197	208	208	199	199	209	205	198	210				
	203	197	210	206	209	212	195	206	212	194	192	213	198	195	214		-		
	. 196	197	218	201	204	218.	210	. 202	219	200	194	219	204	205	222				
		171	223	209	200	220													
	INTERST	ITIAL	CLUSTER	s															
																			
۲ <u>ـــــ</u>	2	-INTER	STITIAL	CLUSTER	19	8 205	211												
·		TNTED	CTITIAL	TINCTER	1.0	8 204	202												
					18	B 205	204												
	2	-INTER	STITIAL	CLUSTER	20	8 192	215												r.
					20	7 193	215					<u></u>							
	2	-INTER	STITIAL	CLUSTER	20	4 194	215			· · · · · · · · · · · · · · · · · · ·									
	··			·	20	4 193	216					<u></u>		<u> </u>		÷			
	2	-INTER	STITIAL	CLUSTER	20	7 199	221											=:	
					20	4 190							•			_			
	- •	-				_	.—	_											
													<u> </u>						
				•										. •					<u> </u>
														, • 					
														 	<u>. </u>				
			· · · · · ·																

FCC VACANCY CLUSTER SIZE DISTRIBUTION AND DEPLOYMENT PROGRAM, NMP779

5 KEV COPPER DIRECTION A5

DISTANCE BETWEEN SINGLE VACANCIES

	COORD. UNITS	ANGSTREMS	LATTICE CONSTANTS	
AVERAGE DISTANCE	1.0799+01	1.9518+01	5.3996+00	
AVERAGE MINIMUM DISTANCE	3.6652+00	6.6243+00	1.8326+00	

.

TOTAL OF COLUMN 1 7.8000000+01 TOTAL OF COLUMN IV 13

	INTERVAL	ł	II	111	L N	V	VI	IIV -	VIII	IX	X
	1.0	0	0.	0.	0.	0.	0	0.	0.	0.	0.
	2.0	0	0.	0.	0.	0.	0	0.	0+	0.	0.
	3.0	2	0.2564-01	0.2564-01	0.2513-01	0.4257-02	4	0.3077-00	0.3077-00	0.5026-01	0.8513-02
	4.0	4	0.5128-01	0.7692-01	0.2581-01	0.4372-02	7	0.5385+00	0-8462+00	0.4517-01	0.7650-32
	5.0	0	0.	0.7692-01	0.	0.	0	0.	0.8462+00	0.	0.
	6.0	2	0.2564-01.	0.1026-00	0.5247-02	0.8887-03	Ó	0.	0+8462+00	0.	0.
	7.0	6	0.7692-01	0.1795-00	0.1128-01	0.1910-02	1	0.7692-01	0-9231+00	0.1880-02	0.3184-33
	8.0	6	0.1692-01	0.2564-00	0.8476-02	0.1436-02	0	0.	0.9231+00	0.	0.
	9.0	8	0.1026-00	0.3590-00	0.8801-02	0.1491-02	1	0.7692-01	1.0000+00	0.1100-02	0.1863-33
	10.0	7	0.8974-01	0.4487-00	0.6167-02	0.1045-02	0	0.	1.0000+00	0.	0.
	11.0	6	0.7692-01	0.5256+00	0.4327-02	0.7330-03	0	0.	1_0000+00	0.	0.
	12.0	4	0.5128-01	0.5769+00	0.2405-02	0.4074-03	- 0	0.	1-0000+00	0.	0.
	13.0	9	0.1154-00	0.6923+00	0.4581-02	0.7760-03	0	0.	1_0000+00	0.	0.
·	14.0	8	0.1026-00	0.7949+00	0.3492-02	0.5914-03	0	0.	1.0000+00	0.	0.
52	15.0	4	0.5128-01	0.8462+00	0.1513-02	0.2563-03	0	0.	1.0000+00	0.	0.
· ·	16.0	1	0.1282-01	0.8590+00	0.3311-03	0.5609-04	0	C.	1.0000+00	0.	0.
	17.0	2	0.2564-01	0.8846+00	0.5844-03	0.9899-04	0	0.	1.0000+00	0.	0.
	18.0	4	0.5128-01	0.9359+00	0.1039-02	0.1760-03	0	0.	1.0000+00	0.	0.
	19.0	2	0.2564-01	0.9615+00	0.4649-03	0.7875-04	0	0.	1.0000+00	0.	0.
	20.0	3	0.3846-01	1.0000+00	0.6277-03	0.1063-03	0	0.	1_0000+00	0.	0.
	21.0	0	0.	1.0000+00	0.	0.	0	. 0.	1.0000+00	0.	0.
	22.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	23.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	24.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	25.0	0	0.	1.0000+00	0.	0.	0	0.	1_0000+00	0.	0.
	30.0	0	0.	1.0000+00	0.	0.	0	0.	1=0000+00	0.	0.
	35.0	0	0.	1.0000+00	0.	0.	0	0.	1-0000+00	0.	0.
	40.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	45.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	50.0	0	0.	1.0000+00	0.	0.	0	0.	1-0000+00	0.	0.
	60.0	0.	0.	1.0000+00	0.	0.	0	0.	1_0000+00	0.	0.
	70.0	0	0.	1.0000+00	0.	0.	0	0.	1-0000+00	0.	0.
	80.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	90.0	0	0.	1.0000+00	0.	0.	0.	0.	1.0000+00	0.	0.
	100.0	0	0.	1.0000+00	0.	0.	0	0.	1_0000+00	0.	0.
	150.0	0	.0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	200.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	250.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	500.0	0	0.	1.0000+00	0.	0.	0	0.	1_0000+00	0.	0.
	1000.0	0	0.	1.0000+00	0.	0.	0	0.	1-0000+00	0.	0.
	INFINITY	0	0.	1.0000+00			0	0.	1.0000+00		

-

•

FCC VACANCY CLUSTER SIZE DISTRIBUTION AND DEPLOYMENT PROGRAM, NMP779

.

5 KEV COPPER DIRECTION A5

.

DISTANCE BETWEEN SINGLE AND DIVACANCIES

·	COORD. UNITS	ANGSTROMS	LATTICE CONSTANTS
AVERAGE DISTANCE	9.5061+00	1.7181+01	4.7530+00
AVERAGE MINIMUM DISTANCE	7.2420+00	1.3089+01	3.6210+00

TOTAL OF COLUMN I 3.9000000+01 TOTAL OF COLUMN IV 13

	INTERVAL	ŀ	11	III	IV.	v	. VI	VII	VIII	1X	X
	1.0	0	0.	0.	0.	0.	0	0.	0.	0.	0.
	2.0	0	0.	0.	0.	0.	0	0.	0.	0.	0.
	3.0	0	0.	0.	0.	0.	0	0.	0.	0.	0.
	4.0	3	0.7692-01	0.7692-01	0.1936-01	0.3279-02	2	0.1538-00	0.1538-00	0.1290-01	0-2186-02
	5.0	-3	0.7692-01 /	0.1538-00	0.1174-01	0.1989-02	2	0.1538-00	0.3077-00	0.7827-02	0-1326-02
	6.0	2	0.5128-01	0.2051-00	0.5247-02	0.8887-03	2	0.1538-00	0.4615-00	0.5247-02	0.8887-03
	7.0	6	0.1538-00	0.3590-00	0.1128-01	0.1910-02	3	0.2308-00	0.6923+00	0.5639-02	0.9552-03
	8.0	4	0.1026-00	0.4615-00	0.5650-02	0.9571-03	0	0.	0.6923+00	0.	0.
	9.0	4	0.1026-00	0.5641+00	0.4401-02	0.7454-03	1	0.7692-01	0.7692+00	0.1100-02	0-1863-03
	10.0	2	0.5128-01	0.6154+00	0.1762-02	0.2984-03	0	0.	0.7692+00	0.	0.
	11.0	1	0.2564-01	0.6410+00	0.7212-03	0.1222-03	0	0.	0.7692+00	0.	0.
	12.0	1	0.2564-01	0.6667+00	0.6013-03	0.1019-03	0	0.	0.7692+00	0.	0.
	13.0	6	0.1538-00	0.8205+00	0.3054-02	0.5173-03	2	0.1538-00	0.9231+00	0.1018-02	0.1724-03
	14.0	0	0.	0.8205+00	0.	0.	0	0.	0.9231+00	0.	0.
5	15.0	1	0.2564-01	0.8462+00	0.3783-03	0.6408-04	1	0.7692-01	1.0000+00	0.3783-03	0.6408-04
. —	16.0	2	0.5128-01	0.8974+00	0.6622-03	0.1122-03	0	0.	1.0000+00	0.	0.
	17.0	1	0.2564-01	0.9231+00	0.2922-03	0.4950-04	0	0.	1.0000+00	0.	0.
	18.0	1	0.2564-01	0.9487+00	0.2598-03	0.4400-04	0	0.	1.0000+00	0.	0.
	19.0	0	0.	0.9487+00	0.	0.	0	0.	1.0000+00	0.	0.
	. 20.0	1	0.2564-01	0.9744+00	0.2092-03	0.3544-04	0	0.	1.0000+00	0.	0.
	21.0	1	0.2564-01	1.0000+00	0.1893-03	0.3207-04	0	0.	1.0000+00	0.	0.
	22.0	0	0.	1.0000+00	0.	0.	Ó	0.	1.0000+00	0.	0.
	23.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	. 0.
	24.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	25.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	30.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
•	35.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	40.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	45.0	0	0.	1.0000+00	0.	0	0	0.	1.0000+00	0.	0.
	50.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	60.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	70.0	0	Q.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	80.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	90.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
_	100.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	150.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	200.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	250.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
_	500.0	0	0.	1.0000+00	0.	0.	0_	0.	1.0000+00	0.	0.
	1000.0	0	0.	1.0000+00	0.	0.	0	0.	1.0000+00	0.	0.
	INFINITY	0	0.	1.0000+00			0	0.	1.0000+00		

1 · · · ·

•

.

• •