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| The research program has been subdivided into three tasks:
(1) = numerical-model_ ' ;
(It) a stratospheric climatclogical data analysis

(1tf) the effect of trace constituents on heating rates

buring the first contract period less progress was made
Ethan was origiﬁally antici?ated because of the difficulty en-
countered in freeing researchers from prior committments and
because of the departure from M. i. T. of several researchv
personnel. At the present time a replacement for Dr. Boer-
who was to be involved with Task (II) - has not yet been
found; otherwise no cther personnel diffiéulties ére antici-
vated during the remainder of the current contract term.
The principal investigator has been working full time on the
prcject since June 1, 1972. As a result prbgress sufficient
to merit discussicn was confined to Task (I) and tc the de-
tails of the development of the numerical model. |
In preparation for the actual programming of.the numeri-
cal dynamical model by F. Alyea (Qho has begun work on Sept-
ember 1), the basié~framework of the mcdel has been written
in ccnsiderable detail. This write-up is enclosed as the
apvendix to this progress repért.. It includes the choice of
vertical levels, and the associated mean.state parameters,
the non-dimensional finite-difference equations, details of
the simplest photochemical model, and a new efficient proce-
dure for solving the spherical quasi-geostrophic equations

(Chapter 6 in the appendix).



An important change in ccmputétion'is represented by our
decision that, at each time step, the ozone and temperature
field will be first transferred to physical space, vhere
heating and chemical computaticn will be made, and then trans-
ferred back to spherical harmonic space. 7s mentioned else-
where this will allow more accurate computation cof ultra-
violet absorption and cof the temperature-~-dependent chemical
reactions. This has opened up the possibility. of more accurate
infrared heating computation than originally envisaged. It
is for this reason that the projected Chapter 5 on Heating is
incomplete at'the present time,

In August Dr. Cunncld attended the Arosa Symposium on
Atmospheric Ozone. At this meeting observations of the globzl
distribution cf czone in the natural stratosphere and tropo-
sphere were presented. Observatiocns such as these form a basis
agdinst which cur model.results will be'compared. Predictions
of the perturbing effects on the stratcsphere of a fleet of

SSTs were also made with the use of very simple dynamical

models and theliatest chemical reacticn schemes relating to the
atmospheric ozone Aistribution weré discussed.

During Sentember Drs, Cunncld and Llyea attended a CIAP -
workshop in Gaithersburg, Maryland. The interrelationships of
the varicus phases of the CIAF program were discusssd and tﬁé
type of results to be expected during the short fime space of

the program were cutlined.
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1. Basic dynamical'equations and coordinate syéfem.

The horizontal coordinate system will be longitude (positive eastwaré;
and latitude, den&téd by ;R and 90 « This dependence will be represented
;n spherical surface harmoﬁics, except that ceftain terms, such as part of
the heating and pﬁotochemistry will be evaluated point-wise at selected
values of ) ana 99 « In the vertical di;ection pressure (.fz) will be
‘used as a coordinate with finite-differences being employed, These
pPressure levels will be distributed at equal intervals of log P in order

to’give roughly equal intervals in height, We define’

P = ¥ ¥ (100 cbear)
L=t P) Pz e

From the hydrostatic relation 'dﬁ=_f; c/Z, and o = f/RT , we have

d7=—4dp _ > 1.2)
L.

The vertical levels will be separated by a uniform value of AZ . To the

Z (1.1)

extent that‘the temperature T is approximately uniform archange of one in
ZZ corresponds to a height change of the order of 7 km, Thg bottom of the
atmosphere will for simplicity be taken at Z =0 , ise. at 17 = 100 ¢b
instead of at the conventional sea-level pressure of 101,325 cb, The top
of the "atmosphere" will be aftificially set at Z = ;ZTzDP corresponding
tova geometric height of about 70 km.

The dynamical system not only assumes hydrostatic balance, but also a
"quasi-geostrophic balance" in the horizontal equations of motion, Because
we'mﬁst consider global processes over the entire sphere, this balance must

allow for complete variability of the coriolis parameter + .
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f=2n am o W

-

..j _
L2 = 7.292x10 " rad se”’

The quasi-geostrophic balance in question is obtained as follows (Lorenz,
' -
Tellus, 1960, P, 364), First, we divide the horizontal velocity ~U" into
P
a non-divergent part /4 XV % given by a stream function \// and a diver-
~gent part — VX , given by a velocity potential X :
, » _

V>

ar= hx9¢—UX
LY

If the eastward and northward components of. 72U are represented by .4t and .p )~

and @@ is the radius of the earth, this 1is equivalent to

d2 NI 2K

w = :“Pdt S T 4 ¢ awmé 22 (1.5)
. 2%
cC acnrg 2 ) 2F

The vertical component of relative vorticity, ; ’ ‘and the horizontal di-

vergence of /Di are related to ‘-,(/ and X by
3 - : 2 1.6)
{:/z,ch//U' ::VZ(///' JW;I—'V X ¢ )

where 77\ is the horizqn}:al Laplacian operator on the sphere,
The condition of quasi-geostrophic balance is ‘
V-f9¢ = ?‘Vzg, | (1.7)
wheré 3/ is gravity and ?, is the height of a constant pressure surface,
[Unless noted otherwise, all lﬁartial derivatives Qith respect to ﬂ s ‘f R
and 2~ (time) are carried out at constant pressure (orZ.)]. The hydrostatic

relation,



(1.8a)

?.’EZEP = - A - — _fiZT
2p 7 +
0 or |
* 9'—% = RT (1.8b)
enables (1.7) to be rewritten as
‘ 2 - vPRT @2
- f Vi v

Associated with this relation (which is a simplified form of the
equation obtained by taking the horizontal divérgence of the equations of

motion( is the "vorticity equation":

VR;_Z«{ — - Axw V(+9¢) + v-fUX + V- ( = x,’;) (1.10)

where f: is the horizontal frictional force per unit mass,

The continuity equation (conservation of mass) is

’}th) QP/ =~ Verr =\72X, | (1.11)

The upper boundary condition at L=7 ToP will be that C{ 4 /J‘(‘

vanishes there, Let us define

-..f")(dP y »)(_,:__22(_. (1.12)

T F .
Equation (1.10) can then be rewritten as

T2 - o961 9%) - V- £ 9(2 +‘7‘(§»"£) (19

If we use ;Zf= —'/h fg as the vertical coordinate, the appropriate

~vertical advection velocity 1is

dz _ _ 1 dP (1.14)
W = dt = P Jdt

The continuity equation (1.11) in terms of »V/ is:




. ' T4,

V‘ P/U‘ + 9(’9 VV) /’()Z_ =0 ' (1.15)
From (1.11), (1.12) and (1.14) we get 2 [ PW — VZX l/2P=0, or
PwW = VZX (1.16)

Boundary conditions on W are that W vanishes at ZT o and
that it is given b'fj/orogtaphic upslope motion at the bottom:
L2lr,oi W=zo (1.17)
Zz=o: W=z &L:Z— . Ve

where /%, is the orography and /USU is /ZXV(\L at the first interior

level for $D +» Here

H, = Rlo - 76 (1.18)

is a constant,
—

C

—

Friction will be represented by a vertical Austausch, F:z, =
-
:*ggt/af».'mus Ve Fo Z _*-—-[V"(.—&: "’X[z]
In the interior regions of the model (but not at the ground) we set

T,k 'a(/:xwf)/z; prving |
V-(~E Ex}) = .| ££7 2%

v\@t

! .
3 5

bs ™ >P
Replacing P by 'f /R T and replacing g,/,QT by //H o we get
& K v
e [ Zx ) ] H: — F ? ¢ .

At the ground, we can set 2‘ equal to 0,003 Fo / /u‘/ /U‘ » wWith //b:-/

a suitable mean anemometer speed (5 m/sec ) and the anemometer vector wind

N : -
/U equal to a rotated ( X = JA2.5 degrees) fraction (0.5) of kL XVf/’

at the lowest interior level at which ‘# is defined

Cornd = [a 003 p //u/ /0.5)]{00401 Exod —amna O{«]mﬁww)
(1.19

- [~ % E’XZLM: ;.,} i[.aw /L‘Tf/a,a’)maz]?vz P
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For Ha = 1, JarlsSwm gec™! and cog oL = J,925 , the
coefficient here has the value 1078 sec-l. |

The conventional quasi-geostrophic Taylor-Ekman theory (Charney and
Eliassen, Tellus, 1949, Vol, 1, Wo, 2, P, 38) gives a corresponding term

("Ekman pumping") of

‘"{ ,‘/K f WJX;V l// | (1.20)
-

For K”? = 5.)(/()40»1 5961 and -_F"~= 10

in this derivation is 1.6 x 10"6 sec-l. To summarize the friction term

S-ec.l » the coe.fficbient

we can write

- Ifxl: = 2*'(:"/:)

K 9(7\/’ ,
0: F=-LmP
L2 H 2L ‘ (1.21)

_ 2
Z=o: r—=*’ép V¢

where /ézp refers to the "surface drag-coefficient” in (1.19) or (1.20).

At L= ZTUP 3 F will vanish {(no stress).,

The next physical statement is the thermodynamic law d (entropy) / c/f' =

rate of heating = temperature, For our perfect gas system this would be

d P | R 2
C;, djg 4«./ / ’f’ / = _ﬁ . X = = = =
| 7/ r 7 (1.22)
vhere ? is the rate of heating per unit mass and 7_ the temperature., In

terns of T » this becomes

//zxm,t v{) VT_VI/QT XW7—+_C€¢_ (1.23)

2 lf‘ _
, 22 F
We will however use a simplified form of this, obtained by ignoring. VX-V T

and by replacing /7 in W3TMRZ and KW T by ~.:]:, where T

is the horizontal average:




Te Tlpt) + T (O, ¢ 4,2)

— /- '7/?. — (1.24)
e e—— | - o ) / — o
T ey ‘/lTa,," -' J¢/T¢(; / T - 0
[This definition of and _will be applicable to any variable.]

This greatly simplifies the computations,‘ and is reasonably accurate because -
\WWAT S X and 2T H7 +xT’ 'is generally small com-
pared to 97'/22 + X -'F « The result is
2T 7
o = RXVEUT - W{ +;<r) + f’/

However this simplification has the result that we can no longer interpret

(1.25)

(1.25) as forecasting 7T , the horizontally averaged T ; this is
because the horizontal average of (1,25) gives simply
T . 7
2.._—- = g/(‘
2t f

whéreaé the horizontal average of the exact equation (1.23) gives

et

o7
— :,__‘Z_ — K W7’/

o7 T 2, PpZ/PW T’) (1.26)

. showing the effect of vertical transports of entropy by the motion, We
expéct little change in 7 from the observed annual average T(2 )
however, either with season or with changes in the ozone chemistry.

[The effect of the latter will be investigated separately, as discussed later,]

In passing, we note that
g+}< T = [‘;— —ﬁ-’-)
- 2. al
- T@Z [’Zh(TT )] (1.27)
N®/RTYS
7 (%)

where /\/ g the basvancy . SNeTusnoYe.



7.
Finally, we describe the basic form of the equation for the (number

density) mixing ratio of a trace substance such as (o) 2 Define

— < 1,28
730 (O™ ¢ )

¢
where /)7‘ is the number density of the 4~ trace substance, /)Om is the
total number density, assumed to be equivalent to the "normal" constituents

A/Z , éz and Caz since /V/(: is very small,
m, = plhT

L -3¢, . -1 (1.29
A = Bé’/?‘gm;n (m”‘(gu'f = /.380 x/¢ /«’»(/OJda/ws c{ﬁg ¢ )

The equation for c(/}l"/‘!'f (the rate of change following the motion) is

d¢,  op 0 ey
r——— ——— (4 — o - - W <
e = 57 ¢t ( h xv¢ \71) v, + W

iy :/(/:) * f/fag/fo,(d’ 9,?)

where ( dm: / ¢I ,t ) is the net rate of local photo-chemical generation
of the substance (number per unit volume per unit time) and K o is the
vertical eddy-diffusion coefficient [with dimensions (lengt:h)2 = time]. K y,
will vary only with P .

The vertical diffusion term can be rewritten by using the hydrostatic

equafion as o

z
2. g Plox [ 2 d p 2 (1.30)
9P[Kd’[er 5,“5]” 2P /faz

where we have again absorbed the variation of density with Tinto H"o on

the recognition that KJ itself is not a precisely known quantity, l(o( (and

the momentum Austausch K/m ) will be prescribed functions of P « The

equation for /4, is now + 2 [ P9¢]
0

JM . DF 2 4
R (L xvg-0R ) V- W-- y =

o & dt) | (1.31)
c
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/L 2 .

4 %c- / >

A c(,tg )C‘( 94( (1.32)
J’mg/c?? A faP[ -

[having made use of (1.4) and (1.15) to obtain the last form].

St

The rate of change of /F% (the horizontal average) is obtained from

the horizontal average of (1.32):

L.

7 [PU] [ & )ZQP/QPWZ””

The rate of change of 4¢£‘ will however be obtained from a simplified
form of (1.31), much as was done in the thermodynamic equation (1.25):

’a%’ 2

_,c_-}zxw ve'-w 3 +

21 °2Z

P [ i’_{’c]/ L2 kpax (1.34)
M d T ] ,:(;i ¥

In contrast to | , where we are for the most part content to take T as

B / "
given, we must predict /K{ as well as ‘4€ . Equation (1.33) will

therefore be used as well as (1.34).

Presumably (1,33) need not be appiied every time step in the numerical

integration, /¥t being a slowly changing function of time, Ilowever, the

P
term W qe' must be put equal to zero at p=1 to ensure no net

creation of ?¢[ by the large-scale motion,

The form of ( ¢‘4ﬂ-//4t. Zc is discussed later, However, a special
treatment must be used for the lower boundary condition on the vertical'eddy

flux of ozone. Galbally (Quart, J, Roy, Meteor, Soc., 1971, P, 18) shows




. 9,
that in the very lowest layer the vertical flux (over land) of ozone is'

proportional to the ground concentration

v K _ 4,
d 3 ~ H, 2z grnd (1.35)

(the surface destruction of ozone being proportional to 03 ).. The coefficient
aé has a value of about 1 cm sec-l. We will apply this formulation to the
lowest layer in our model ( & L 2 £ A7) Values of ,£ are defined at

the top of the layer ( 7 = AZ} J‘;-_ J—[ ) and at the ground ( Z-‘:ﬂJ J'z T »

Thus (dropping the Z-subscript on ),

Ky oy K,
o =[—Z (A —#) = 4
(Ho 22/, \H 41 }J._,,z ") = ¥ e
whence
s = o - [/_,_ d H, AZ] (1.37)
7 T c 1<
o I*‘ I/l
and’ |
K c//%
° - = T
/ (% 43,) =

. It
H, 42 T4 [+ (a/ ”'o“/’(a) (1.38)
Galbally cites values of the vertical number flux of ozone molecules over
. ‘ - -
land in the range 1 to 6 x 10 mol cm 2 sec 1. Aldaz (J, Geo. Res., 1969,

it - -
P. 6943) estimates a global average of 1 to 1,7 x 10 mol cm 2 sec 1.

. 1 - ~ 4
Pichinga representative value of 2 x 10 mol cm 2 sec and equating

: 9 -
this to /¥ K 946/93/ , we find, for = ¢,55 X110 om 3

and K = ldfamz .;eci,'-' , that a vertical gradient of ozone number

mixing ratio of

? =13y A -8 1.39
2% 05Kt am = X (1.39)
10 R g

2y
is required. Galbally's data show a typical ground value for /£ of
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Sxl0 o - 7,5‘,”0/? “w O g o The typical inferred

dovnward flux of ozone observed near the ground is compatible then with a
tropospheric K of 105 cm2 sec-1 and a tropopause (10km) value for 1
of 6 x 108 or a /0 -kRmvalue for /1‘23 of (6% 1070) x (8 x 1018)‘

~ 50 x 1010 cm-s. This value is not greatly inconsistent with values of

‘1012 cm.3 which seem characteristic of the tropopause level in the meridional
cross section prepared by D, Wu from the data of ffering and Borden (1967).,

A special treatment of the ozone equation will be necessary at high

levels, At these heights, Lindzen and Goody (J, Atmos. Sci., 1965, P, 341)
show that ﬁﬁe photo-dissociation of ozone is extremély rapid, with a time
constant becoming less than 1 hour at heights above 45 km, (They pre-
sumably use typical values of incident solar radiationg) The conventiongl
methods of "time-stepping" equations such as (1.34) require a computational
time step no longer than the characteristic physical times associated with
terms on the right side of (1.34). Since the advective time scale is of the
.order of an hour or so, we must consider replacing (1.33) and (1.34) at

upper levels by the equilibrium condition.

(1.40)

dm;
¥ = (%) P;w/<7 de - °

For use 1in radiation computations, we need Ac' , the number of
molecules of /y? in the vertical column of unit cross~section above a

given pressure surface:

f’”“% J’”f" 1y - f

f_ﬁ” /yc//’

i

Q“g

where R = 287 IzJ‘ (™! cﬂaé - is the gas constant for air,




This gives numerically ‘ ' 11,

29 S
N;= 2,12 X0 f”’;c”’ 1 (meter)
- * (1.35)

as F -2
212 Xio j,y(.JP tie ()
o

]

In the case of molecular oxygen, /V‘f is taken as uniform and equal to 0,2096,

giving

i

". —
No = 0.499¢ X10 P oom™ ™ (1.36)
2



2. Choige of,ve:ticalrleveis.

We want the vertical domain to extend well above the actual ozone layer,
.Me also want it high enough that there is some opportunity for the damping
effects of ozone and radiation to absorb mechanical energy generated in the
baroclinic processes éf the lower atmosphere, On the other hand, we cannot
for practical reasons ggt involved in the more complicated processes of the
rupper atmosphere and lower thermosphere. An upper limit of about 70 km seems
reasonable,

We obtain e‘qual intervals in 7 = -/44 P ( P= pressure 3 100 cb)

by defining
2;..=- AZ (’JF‘J')

’ . e 2.1)
7 e
J‘z ! 1s at the "top" of our atmosphere, and J=JF at the bottom, whence .

A7 = 2 Zrer
T~/ J=1i

A convenient choice 1s obtained by choosing

Az |
e =2 A= 3/z

A2 =y = o905 97 2.2)
J = 26

so that

Z, = Z ., =(T-1) b = 0134675

p —{(J-1)

- -5 (2.3)
; — 2 ‘-‘—3,‘7605'/\’/0

Pl corresponds to a pressure of 39,605 Cly”v’s /ovn ® » typical of
the height :5 ~ 71,5 km., Successive pressure levels are separated by
(roughly) 72/25 ~ 2.9 km, The relations

~'[;r‘2f)
Pa - . . = Pa
ST J Fjw 2, (2.4)

are useful,
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At these levels, the following basic variables will be represented

J.:I)z}~«-.)3—: T})M{Ja)(/‘%‘:)d

together with the heating rate, the photo-chemical term , and the vertical
turbulent fluxes of .~ - momentum, - At the intermediate levels the

streamfunction 95- will be represented

S S A .
z, YT Z

. _ 3
J- o7 .
notation, however, ?9 will be labeled with an integer

/
For convenience in

subscript according to the convention
| =P, )
$(P="P,,

This results in, the following scheme,

]

/.

wesese TR Wz, @), () F
. Yo% ¢,
— 2 R A (% ) , 0 F,
— b ) % G,
— s R W, W, T 5
BNIDND s e
— J! ’3‘-: Zj-l Wi ( - T :;"
_— 4 5 o

;j P w. (%, ) I F

LL). 5, | ) G

JH T ZJ'*’ st (% )J'w T;“ 'j‘fl

N N NS NP AT ey
~ T~ PJ'—! 232; WJ’" (. ) T;-: E‘q

- 4/;_' ) gj -t %'4
Niacicd B ZJ Wy (%, ). T, F.

(F and G are defined on pages 17 and 18,)



The following table lists the values of the.more basic variables for the

choice 2= 3/2 , T=2¢( . Values of T
the 1965 CIRAS annual mean, values at lower elevation coming from data based

above 30 km were taken from -

on statistics gathered by the Planetary Circulation Project at M,I.T,

be precise, they were obtained from the latter as shown in a figure based on

them in the thesis by A, Hollingsworth,) The static stability parameter S

is defined later in equation (3,.20),

. | (km) =

-3
-?/ pJ ZJ' { 83 perox) T) Vo {om) SJ /A Z
1 .0000396  10.137 71,5 211 136x100>  137x007%
2 ,0000594 9.731 . 69.0 219 196 144
3 .0000891 9,326 66,3  226.5 285 154
4 ,000134 8,920  63.5 234 415 161
5  .000200 8,515  60.6  241.5 600 166
6 .000301 8.109  57.6  249.5  877x1003 167
7 .000451 7.704 54,5  258,5  126x10% 174
8  ,000677 7.298 51,4 267 184 217
9  .0010L 6.893  48.2  267.5 274 277
10 00152 6.488  45.1  261.5 421 302
11 ,00228 6.082 42,0  254.5  649x10™* 295
12 .00343 5.677 38,8  248,5  100x10%° 285
13 .00514 5.271  35.9  242.5 154 277
14 .00771 4,866 33,1 237 236 272
15 .0116 4,460 30,2 231 364 269
16 0173 4,055  27.5 225 557 261
17 .0260 3,649 24,8  219.5  855x10%° 251
18,0390 3,266 22,2 214,5  132x10%% 237
19 0585 2.838  19.6  211.5 201 217
20,0878 2,433 17.0  210.5 302 194
21 .132 2,027 14,4 213 449 155
22,198 1,622 11,8 222 646 125
23 .29 1.216 9.2 234 913x10°® 116
2 LJ4b4 0.811 6.6 248 130x10t’ 104
25 667 0.405 3.4 266 182 - 105
26 1,000 0.0 0.1 284 455x1007  122x107%
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3. lNon=-dimensional finite-difference equations,
In this section we write the basic equation in a non-dimensional form
(primarily to simplify the dynamical compui:at:ions) and simultaneously intro-

duce the vertical finite-differencé representation defined in section 2, Ve

define

o= i

G in) = 7 7 (mwon i)

&
Vi (dim) = 32 O (mm-dow)
G (diin) = 228> W (non- Lesw) (3.1)

X (diwm) = acza® X (nom-diiv)
¢ (diin) = 55 € (mem=-diin)
W (diw) = 2o Wnon-dews)
Tidwa) = Tez) + (27«4 AZ)T/W ~dim)

In the last expression 7T ( diw ) in the "total" temperaturé in absolute ‘
degrees, 7:( Z ) is the "standard atmosphere" t:emperéture (also in degrees) %

given in the table at the end of section 2, x&hile the quantity ( 4nlal/R /)2) ‘
T (non- ctawm ) is the variable T "appearing in (1.25), having a zero

horizontal average, [The total T ( dim ) is of course used in all

chemical computations.]

-~

= 7.392 X107 rad sec
o= 6,371 X10° metevs
R=agy) ky low" Seg™! (3.2)
C/: = (7/2) R

One day, (27/2 ) secs , corresponds to

u

v ( iT — ‘
At (non diin) = 32 (2L ) = 4T (3.3)

. (A
The non-dimensional WV operator is

2 2oe¥) 9/>j
V()‘-'-' 1.4 9_22 mtf 2¢ f (3.4)
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The relation

2
Pw = VX | (1.16)

between W and X can be used to eliminate )( in favor of W [in

equation (1.13)] by defining the inverse Laplacian operator
L = v* |
X= PX W | (3.5)
We also have;
5=V , ¥=X % (3.6)
A further convenient arrangement is useful for evaluating terns of the
form. 2(P F)a P ,. which appears in the vertical diffusion terms for

vorticity and trace substances and in the term

2% - afrirw]

2P
in the vorticity equation (1.13). We have
b E o _p —_
[é@f’(?f:)} = It e T e, f—.; ( )E i
? P;J"-o'/z ‘P //L“') J*IZ 2~ 3.7

where we have made use of (2.4).

The horizontal advection of a quantity I~ can be written as the

Jacobian

|
S
g
M
1]

B EXV¢.VF _RF2¢ ¢ oF
' ’\@w QAQ/M

= V(R o

The non-~dimensional form of the vorticity equation (1.,13), with regard to
the subscript labelling defined in sectiom 2, together with equation (1.21)

and (3,5) - (3.8) is as follows,

For gy e T

:}(/‘,*“5;‘)43‘)“ V‘f/ovﬁf[‘/fl) /.. (_)W](a 9
2R L F
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(3.10)
(3.11)

(3.12)

(3.13)
(3.14)
(3.15)

(3.16)

N -9/( o b)) T oo T e

- The non-dimensional form of the "thermal wind equation" (1.,9) becomes

anJ:;?)B/"' J-,s'

o

. , 2
v'/ﬂ/ V(ff.“fé__’) = -V 7;

(3.18)
The non-dimensional formvof the thermal equation (1,.25) becomes
dm j:'zjgr-*Qi—/f
rar / N [ RAZ
7 e YT I el
vhere |
S. - R AZ ‘> <i 1‘ K _rl]
/ 4.2ta*® (3.20)

is tabulated at the end of section 2 (but without the factor AZ ). fj)ihe
rate of heating per unit mass, is still in dimensional form in (3,19), It

is considered later in section 5,



The trace substance equation is

a v J - JO)Jofl)' -,

L.L"‘*"-J

GJ- = DJ' (4%}{'[’ qLJ.) ;9(}(’ J.;JO) 3" 1

= (Kg)., =(2aH, 4z) .
SERFS
[The vertical diffusion coefficient [} _g 1is defined at the ZJ'-—levels

corresponding to ;f =  intager plus 1/2, whereas the vertical exchange
coefficient f<AM for vorticity appearing in (3,14) is defined at integer

values of v{ «Jo At the bottom, the relation (1,38) gives

G - Fr_ |
J-1 2aH, 22HEAZ (323)
LT ,
(K‘,() 2_ .-

The integer ~;c; sets the level above which (3. 21) may be replaced by a photo~

chemical equilibrium statement, as discussed near the end of section one,
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4, Photochemistry. ‘

To begin with, the photochemistry will involve only oxygen and odd

nitrogen compounds, with the latter being specified as given functions of
(or possibly pressure and latitude). _
pressure/\ (Equations to predict the nitrogen compounds may be added later.)

The reactions involved are the four main Chapman reactions and reactions of
N 0 and /V 02 with oxygen, (The “following write-up is based on analysis

~ by R, Prinn,)

Reference:
(a) O, + hv » 20
' 2459 - X ’
J& - (o(f I@ zc{//‘ _SC’C
IR A A S -
(b) O =0+ ™ - 03 + ™ . (4.2)
| 3 | 3 . - ___Q‘?:_
,'/, = A )‘f'.//)_‘:J e oméSec—l
() o, +hv > O, +0
' A ’-/OZ\”_ — XO (4.3)
Ty = Jo, Te 1 sec
2 O 2
d .
@ O + ()3 > 20 o
/ L 2395 (4.4)
-1 3 -
A = 2x0" 2 T om” see
e NO +0. —> NI + O
3 F 2 %.5)
Oy - /.._._—3/0 3 *
- y
/g. = /.7 X/0 2 T L sec
(e) /Vﬂ?— O = NO + 0£

? -1/ - 2 (4.6)
A = 3.2 x50 & 7 g

3

—
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(£) /\/0Z 1—%» = N0 + O
3975 -X,, (4.7)
J = | 2 y
W, wo, [ e a/;] sec
g |

In the three radiation integrals the exponent X is
X e = d[ (2 ) /V(‘

‘ o ¢ (4.8)

vhere o ¢ ( A ) is the absorption cross-section, N “ is the number of ¢ -

molecules in the Cnozz' vertical column above the point [See equation (1,35)]
and 50 is the solar zenith angle. (The diurnal variation of HU' will be
averaged as described below,) lr is the incident solar radiation, a

function of the wavelength ) .

References:

(é) Kockarts, 1970: Proc. 4th Joint ESRO-ESRIN Symposium (ed, G, Fiocco).
D. Reidel, Dordrecht, 1971,

Ackerman, 1970: As for Kockarts.

(b) Johnston, 1971: Science, 173, P, 517. .

Schiff, 1969: Can, J. Chem., 47, P,1903,

( 'EI 1s an average of their values)

) Ackerman, 1970: As fof‘xackarcs.
(d) Schiff, 1969.' As above. o

(e) 'Schofield 1967: P%anet. Space Sci., 15 P 643.

() Hall and Blacet 1952. J. Chem. Phys. 20 P. 1745.
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NOTE ADDED Sept. 25, 1972: The CIAP newsletter dated Sept. 8, 1972

reports two revised rate constants (Davis, Herrom and Huie) as follows:

% (9/2*044/))(/0 ‘eon” sec!
‘ o S23*19
,Z/ = (649 rq,fa)m e o Fgec

with the result that ’égg is about twice as large and /gi half as large

as the values cited above on page 19. Use of these new values would

modify the ratio K defined?in (4.19) and (4.21) below. '
| ' S ’ ‘
. i.’
3 |
| ?
L i
b

G e e
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Typical Variation of rate coefficients with height

and from day to night based upon results in Crutzen (1971)

B Height (km) , Comments
Coefficient] 50 40 30 20 CGS units
3, 1072 310720 | 2x107Ml | axio”M day only
2
6 6 6 4
I [02] 4x10 5%10 1,6x10 1,4x10 day only(=0 at night)
2
fat0,11] 0.08 1.3 32 600 same day and night
3 8x1072 5,5%10> | 3x1073 1.3%1073 day only
3
3o 10,] “sx10® 3%10° 7x10° 5x10° day only
3 i .
[0] (day) | 9x10° 7x10° 4x107 1.3x10°
(night)] © 0 0 0
[0,](day) 7%1040 ex10t! 2.6x1012 | 3.8x10%?
(night)] 14x10't | ex10t? 2.6x1012 | 3.8x10%2
[N0](day) | 7x10° 2%10° 3x10° 4x10°
(night)] © 0 0 0
[¥0,](day) 2x107 1x10° 8x10° 1x10%0
(night) 5x10° 2x10° 6x10°. 1x100
J 721073 7x10™3 7%10™3 6x102 day only
Mo,
k,[0] x1073 | ssxao™® | 20x107 | 6.5x107® | (kgesx107t)
k(014 5x10™2 1x102 7%103 | 6x1073
No,
k,[0,] %10~ 6x103 2.6x10°2 | 3.8x1072 (k2=1o‘14)




K

[

Height (km) - Comments
Coefficient 50 40 30 20 CGS units
k., [0]+J
3777 7R0, | 49 2 0.3 .15 day only
i, 10,]
T 267 250 231 212
K 2.5x10°1° | 1.4x107°| o0.6x10°2°| o0.2x1071°
K, 0.44x10" 11 o.3sx10’li 0.32x10"Y  0.26x10711
| -4 -4 -4 -4
i, [0, 1+, [N0, 1) 19x10 65x10 240x10 270x10
2.4x10"% | sx1073 7x10™% 5x10™%
. -2 -3 -4 -4
- J, (0,153, [0,])0.8x10 1,7x10 2,3x10 2,8x10
0,!%24%0,103 _ ,
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The equation for (1, [03 /J /t (wé denote temporarily number densities /n‘:

by a square bracket) is

d [o] T . T
<z =G [0, ] Jaz + (4] Joj *[Noa]“ffval

~ (0] { 2(0,m) + 4, [0,]+k, [vo,T¢

(IM] 1is the neutral number density, equal to 7], in the table at the

(4.9)

end of section 2,) The term f , [ o, ] [ /"Iz increases with decreasing
elevation from a minimum of 10.-3 sec-':l at 70 km, and reaches a value as

large as 40 sec"1 at 30 km. We can therefore assume equilibrium for [ O1]:

—

2le 17T 0. 77 vo 1J° |
1= 2101%, 01 v ] 0,

L (1+1KK)

where

L= A [0,][m]

: (4.11)
K = %: [03] *”/43 [N-Ozz
4,00, ] [M]
A similar thing happens in the equation for [/Y(],
d [vo] - Y
*;R‘ = }23 [NO‘Z] [0_‘ +J;V02[N02} - [NO} § &2 [03]§
| (4.12)

where the product /é [ (93 ] is again large enough (10"'3 sec-l at 50 km,

.04 sec-l at 20 km) to allow us to assume d [NOJ /cf‘t =¢ , Thus

b [o]+ 3,
[No] = Z( T Y% {[/V%Y (4.13)
/g‘z [03]
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In the nightime [ V) ] vanishes according to this expression. In the daytime
the factor multiplying [ fV(%z ] in (4.13) has the typical values 70, 2,
0.3 and 0.15 at 50, 40, 30 and 20 km (see table), We may then argue that at
the levels of major [ O, ], the major portion of [ /VO */-/Vﬁ‘2 ] averaged

3
over a day is in the form of [ fYOQ ]. That is to say, an assumption that

[ NO +'A/C%1 ] is a given function of pressure can be replaced by an
assumption that [ fYéaZ 1 is an assigned function of pressure (possibly a
different function, of course).

Calculations by Johnston (1971; Science, 173, P, 517) and Crutzen (1971;

J. Geophy. Res.,, 76, P, 7311) suggest that the total odd nitrogen mixing

ratio ([ NO 1 + /YCZQ D) f} [{/~]] increases considerably with height,
These results do depend however on assumptions about the vertical eddy dif-
fusion coefficient and the set of assumed reactions and reaction rates; (see
Crdtzen, ibid plus 1972, AMBIO, in press). The calculations by Crutzen (1971),
which include H /Y 03 suggest that [ 02_ ] ;f— [M] is apprczimately
conétant above about 25 km while decreasing by a factor of about 10 from
25 km down.to 15 km.

For fhe moment then, we assume that [ NQZ ] or [ /Vég ] f-[ﬂﬂ] is a
prescribed function of'pressure, with [ /YO ] determined from (4.13),

The equation for ég ]vis

d14] .—.—/,[ﬂz][m]pj—g[&j]-/}l [o][0]-kvo]los]

d £ (4.14)

Substitution for [ @ ] and [/V0] from {4410) and (4.13) gives

4[07 1— I
T zlo]J A +:<([0 19, +[(v07 0)

jf[djd ~,,7/<([0]J +[0_7J—+[Nd] 415)f

/+I<

-~



The previous table shoi:s that i< and the ratio ( [0 ] J; ) T
2

( ):0 ] JO‘ ) are both equally small of order 10 ~2 or less, A case
can then be made for simplifying the above exptession to

Afis] x 219,79, "2'<(f”~’ -0 s )

(4.16)

where we have retained only the leading terms. In terms of the number

mixing ratios ¥/ )

¥ = [ ]im, = 0.209¢
Y o= [o. 7= .
7@3. [— 3_] . m/m (4.17)
¥ = [Naz] —:—»Mm'
we have |
[ — ifﬂs} 2(2096)Jd, —3K [ ¥ I+ J Z“"l‘”
L7 dE - . 03 % % N0, ,YOZ
A oy, +A4 % |
- t 1o Yo
K . 3 3 : K (/J)J T)
(.2096) 4, 7, (4.19)
‘ =1
At constant pressure the logarithmic derivative of /'7 with T is / ,

whereas the logarithmic variation of ( ’g / / ) and ( /Z / / ) with T

is 3445/ T'v—;—and 1580/ 1% ~ 27:‘ respectively. We therefore treat /W,m as

a known function of pressure ( = 19 //é s;see table at end of

section 2), but will compute the exact dependence of the rate constants on T.
A proper way to compute [{ 18 suggested as followe, using the particular

numerical values given in (4.2), (4.4) and (4.6). We define a scaled neutral

. A
number density /¥ :
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A -17 | “ - -3
w = /0 mf)‘r) (:0(3@ S L 455 cme ) . (4.20)

/wA is sfored for each J -level, Then - 539
,  -a345 ~11 T
- d .y
(050 r7 A
(0.2096) (1,6 510777 ) o 7 (1247 )
: (4.21)
a .‘_.? 7 =y (1Y~ 37‘/) (6~ /.‘fga)
= [5.9630 010 ¢ (e %, +[? SV ]4 %,
y 345 _ - /5‘8’0 ,
) (- T ) p -3 (¢ ) :
S 4603 e ¥, + 2.365x0 & .y
m 4 v,
The exponents have been chosen so that the exponent in both cases has an
a}emgé‘ value - considering variétions in T from 200. to 300 -~ which is

close to zero. They range from -3.5 to +3. 7 1itself is ‘computed from
the last equation in (3.1).

Temporarily denoting the exponent by /X

3 /580
# : - ¥
we can get & efficiently by interpretation in a stored table of =€ .
. P
f= e’

Moz o 418 42l -, 0= 375, 3

from the formula

44:/{&4‘%‘?/ o £ gécg

)., = it s A BE)] 4.22)

In'('fy

where A and B are constants depending only on S
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I J ( 43
A = —é—z[(é—;g)c.-(uc/s)] ORIy S

3 o . S $ B (4.23)
iy B:—(;—Bl;{f—g*(Q*S)e ]’b.—z_l—-{_ Tf- |
.‘F(fﬁ”‘ﬂa agrees with ‘F" aiid {:‘f-/ when § =0 and £= S
and has the same mean value as ‘F (#)
S , 4‘(17/
: - ‘ L - ¥
J “[},',,(- d 5§ = ﬁ'ﬂ {c' - f < Jy
o 4‘;

The percentage error is

é — w\-gh’lf' -‘f

i -£ | et
— = 1/+§/A+Gf)]c -/ A R-)Er(B-AAS )EF

- < (%4)1 s>

440 177

For <§ = 1/2, the percentage error is at most 0,00115:

£ : W05 1 W15 .2 W25 W30 W35 Wb S

10°¢s -89  -115 =98 =55 -3 45 79 88 64

In the photochemical radiation integralsJ— (and in the solar heating
integrals), we have the problem of averaging over a day, during which the

zenith angle varies, A

‘2 — X A7)
T(x) = f(2) e 0/;‘

{
Xa N ;;COQ— ‘P
N = vertical column number density (cm-z) [see (1.35)]
/= zenith angle B
q9 = Jlatitude
§ = solar declination
/Zp = hour angle
-7 X = cross-section
-F“ = function of )

, (4.24)
wheve
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Using the relation

m(/,:WK;Wg -;-w:tfaxz,c{ m/ﬂ (6.25)
we find sunrise and sunset at h = «H and h = +H, with
co = ~lond lan & (4.26)
| “‘-. )
Considering only the Northern Hemisphere ( (M qg © ) we have
| ZZM ¢ lom § < s - 4 H =o (Polar winter night)
|
| - - i
| < lau ¢ laud < O OLH LG
‘ —. _ I
| [&M,uf [M§ To t= 5 (Equinox)
o<land s < | —271_ <IT
< lang lan§
¢ H =1

(Polar summer day)

Using the relation L = c‘/éL/ c(,t , the 24-—hour ‘average of I is

frﬁ - Tdd

T4 alm an

Co [ /

ZH

Dividing the interval 0< /A < H into ten portions gives
10
N
I = H 5 T1(x=

29 0T £ oty

(con), = airdair S+ cngeas ca | 2)]“' -27)
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This results finélly in a function of latitude, declination and
and N‘o

T, - I(65,n) (4.28)

By symmetry, Scuthern Hemispheric values are given by

l_aq (~<{>,g., N) = Im <¢,—€, N) (4.29)

2n impertant practical problem is to represent the func-
tion (4,2?) at each of a series of selected latitudes as a
moderately simple functicn cf £ (i.e., time of year) and
N . Our current'approafh to this problem is ¢ construct
and store a2 table for I (X} ag a funchion of ¥ and then to use
expression (4.27) to value I. Now this technique will only
work provided that within ezch absorption band a single species
of atom is respcnsitle for the absorpticn of each in¢ident
solar photon.

Let us con51éer.each of the photcdissociatian rates 3;;
::53, and .S;o . There exists a2 small amount of overlap be-
tween the absor;tion bands of (32 and ()3and belween fVCL_and

Cg . Now the ahsorption by Nt;is sufficiently weak that it
does not significantly reduce the numker of photons available
for absorption at =zny altitude of ths atmosphere. Thus for
PJCE, I (X) may be written as = Iuncticn of the column concen-
tration cf 03 only., The absorption bands of O, and O3 over-

lap in the region 2000-2450 7. For ozone strong absorption also

cccurs in the region 2450-3200 2 3nd because there is more
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solar energy in this portion of the spectrum than in the over-
lap regicn, abscrption by O, only reduces '5‘0;3{,: any altitude
by a few % at mosf:. 'i‘herefofe I (%) for Oswili be cé.léula.{:ed
as a function cf the columnaf concentration cof 03 only. Fi-
nally considering the photcdissociati;on of' O, it is found
that at low altitudes at which absorption in the range 2000~
2450 ? is significant, phctodissociation of C)3 is a more effec-
tive source of 0 atoms by 3 crders of magnitﬁde. Therefore
for Oz , I () will be cé.lculated as a functicn of the colum-
nar concentratiocn of O7 a2toms only with the integration over

‘ .o
wavelength being truncated with an upper limit of 2000 A,



( 5. Heating

The heating of the atmosphere between the ground and 70
km ccnsists of latent héat rélease, the absorption of shert
wave solar enerqgy, and the absorption and remission of long
wave radlatlon. The absorption of short wave radiation by
ozone (including abscrption in the Chappiis band) and tHe small
contribution resulting from absorption by.moclecular oxygen may

be treated in a straightforward manner.
,7560§ v
Q. =0 o Tee %05 bt e
| 3 ©s
| choﬂ
where & is the energy of a photen. 2 similar expression may
be written down for heating by Cg - which makes a significant
contribution to total hesting only at altitudea above 50 km,
It is convendent - as it was in the discussion of photodisso-
ciation rates to construct a table of (Qaas a function of the
3 .
columnar concentraticn of (D:and similarly to aaiculate CQOZ
as a function of the C& cervmn concentration.  Sn these cases

also the daily averzge values ci theza hearting rates are needed

tantaneous values: thus, v analogy with

N

rather than +he in

(4.,27), the sverags vaiu C3 may he darived from
’ Ak

jo (N

CQ = ;tL_ A T R .E' >
<o e NN

N ) Cen \-P;_

with Ca‘JLP£= &M}sw?-r me)mgw % i—; (5.1)
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3Ca.

7 simple aigOrithm for representing infrared heating and
cocling is mére difficult to derive. Our current approach
which will be used in initial runs cf the computer model is
to separate the atmosphere intc two regicns - above and below
30 km - and to represent these terms slightly differently in
the two :egions. Above 30 km we plan to use a Newtonian cooling
approximation with differeht coefficients at each altitude of
the model. Kuhn and London have kindly supplied us with their
detailed results of infrared cooling by COl, H:lo' and 03 at
each létitude and each althtudevabove 30 km. We have plotted
total cooling versus temperiture at each altitude and have made
a linear fit to the resulting data. It has been found that
straight line representations on the éverage account for approxi-
mately 50 % cf the variance cof the data points. 2lthough ab-
sorpticon is the C?(,/u band of 03 is not the major cooling
source above 30 km, it makes a sufficiently large contributicn
that it appears desirable to relate this ccoling to the concen-
traticn of ozone molecules. Fossible ways of doing this are
under investigation at the present time.

‘Below 30 km we plan tc represent infrared heating and
latent heat release as Trenberth (M. T. T. thesis, 1972) d4did
by a single linear term of the form

he (TF-T)
3 3 ; .
Wheye ) refers to the aititude level A . The equilibrium
temperature distribution, T*, is obtained from calculations by

Manabe and Strickler (J. A. 3., 21, 361, 1%64) in which using

\



J

30b.

climatcgical distributions cf mincr constituents a value of
T* corresponding to zeroc net heating was derived. Hewell
et: al. (3 London, 1970) have made daily hesting rate cal-

culaticns including heundary layer heating and latent heat

ralease. These computations may be used to derive values of

hj.
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6, Determination of W in the dynamic equations, 31.
‘Defining | |
7L - Az
c = oy >/ (/L = e )
. (6.1)
-2
X= v .
S = Y. .
= VY
the basic equations can be written as
. 25
.J:I/-,'/J‘-l', 5_.._ _— .-—1)71[6 W-H (é‘l)W] (6.2):
=2 -~ J-l2 W{ .- <. ) = - V‘ZT (6.3)
J A g uT! J .
T
=2 --J-1: L =-S.W. +§. (6.4)
J ) 5T e Ei} )

where A:,’ and % ¢ gsymbolize the following ciuantities:

3/ (/é T S;'} (/; ) t+ € 5;+ I (e-1) f v(6.5) -

(6.6)

As boundary conditions we have

WJ': ’}(E/ ‘{/"-/) -

<

Note that I 1s not defined when it acts on a constant function. Consideting

A:’- s BJO and W... as known (at: a given time step), the problem is to solve

» ~ 28
for . and W . We propose to eliminate —— = in
25708 ma W; . e prr 7€ =9 5%
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. favor of W .. Having found W ; 95/21& is‘. geceminable from (6.2)

and can be use& to extrapolate 5 in time, -

In general we. will represent 5 T W as a series in spherical",":
harmonics\/

| Em A
5 ) Z 5’ ( f) P e

J ( )} /Lé—j t') Z_ (/4»)
For concreteness, let us focus attention on only one longitudinal wave

number M, and consider only those parts of & , T , W etc which are

proportional to mmﬂ « Thus

LY
2 S & BT
= = . Cp)
Vﬁé{ S =cam) o s
LA — "
7;' = cam) 7 | ?;\:MW Ii (/“) (6.8)
NEpS oy M LT
i Tz B B )
Aj = 1 TR AJ‘MM [
B = t “v N "
/] %mm

i‘he above sum limits hold for mi?,l". For 1 =¢ the sum will .be from
M=, 2 -~ L+! . Thus there will be L+ latitudinal modes for
each zonal wave number ~% =¢,/, -~ . o The discussion below is

given primarily for :>/ | » with occasional comments for 72 =Owhere

appropriate,

From Abramowitz and Stegun (pages 332-341) we have \I/

E (u)= %, . P () _, (6.9)
| )5 2
m [ @myi)(m=-m) .
A. £ =(-1) i T (6.10)

Trenberth uses J° and 7 in place of J3 P and [
” ” ”
used here.



m —m | i A= p

P '
P tp) E/,u)}( o it dm (6.11)

¢ 5

Grerom ) By = Comotfpe R mem B

5 d PM e Mz v/m~ o
2 / |
The AV _operator introduces a coefficient — M+ } inside each sum,

i

The/n? operafor is more complicated, however: |
~— - - - 2 __9_. F/
/= - F + ( S ) o (X |

Applying this to the W' sum in (6.8) we get, by using (6.9) ~ (6.14)
J A4

/‘-" I)C(P
77714/-— mmﬂz o PM""ﬁ;ﬂ/]

Cm/MﬂZ-W [,B P +j/ P (6.15)
N S |

(6.14)

My N=l e Nt

_ /m.-/)// Ve /R ] ) v
- ~ SYmé-1 (6.16)

where

vy . 2t p o
o , 1| A (6.1?) j
> © (6418)
- =
B/m/m J g;fh-—l/m Z



N 4 = ‘
ote that ﬁ/mm aud %‘/ O, so that 5"", does not appear
—m ‘
in (6.15). We also drop the P/\/w‘-l term, Thus we have (suppressing the
‘ ity

J -subscript)

MW = m/mﬂZ[y w - +/M4]

MN=lom V=1 Mttm - (6.19)
in which . Nt ,
n whic 9/ =0 VV | ' -
A~ s J Nt |

Combining this with (6,2) and (6.8), 'and' using the orthonormal properties of

Fﬂﬂ we have
M- '

2 o o~ - e

22 A -e]v w 3w, (6:20)

2X . - j’MM M-tm JtHIm-im MNtlwm S+ imtim M
JM/mv : v e 'y o

? )Y o ow +A 0w ]

| N-lm  Jm=lm HtHom ~ jmptom

Consi@er now the,m operator on 5’ in (6, 3). By similarity with 777 W

|

1

' we get /v » .
| _ | z

: % 5/ - é@/yﬂﬂ Z [Z/-,m‘?n /Z é/h‘/m Mt (g &

| in which again

o | .

/M- / Nt/

Combining (6.3) and (6.4) to eliminate 7’; gives

5 V W V -{—077 / % ) (;..22)

2T
— m
which in terms of the P " series gives
—m(m+1) S W, = — mimtl) B-
et s ymom S (6.23)
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Equations (6.20) and (6i23) together with the boundary conditions

Wim/w =2 , '
", = known | (6.24)
N : :
form a system of (f-l){L+l) + (f.g)(L+( ) a2 244  simultaneous

A

equations ( if \T——-Q(o and /= 5") for '25/9/{‘ and W ;
We want a less demanding solution than the straightforward mati‘ix inversion
of this syst‘em. The philosophy is buggested by the usual Cartesian "beta~

plane" approximations in which the /u, :M<’6’ appearing explicitly in

/)7): V}M,Voz is replaced by a constant /L-a so that % is simply/ébo .

If in that sfeten the horizontal variation is expressed by sines and cosines,
2 T
with V = — /&z, the 2 $/571 and W equations can be combined into

an operator on W alone

\V; W —;—%‘-‘L[ew T (AE-DW. + (1) W, ]

and, by considering each component ) }

| <Ay + 5

W e Wa e ¢
Joép

24 52 = kT

one gets

‘ A ‘ %25
- W + |Ré-1)+ J]W — (€~ /)l/l/
S JHlap | 2 | jup S48 (6.25)
- F S+
= Ts
The "elliptic" character of this one-dimensional system allows rapid inversion

~S
for W, by the method given in Richtmyer and Morton (Difference Methods for
J

“fp

Initial Value Problems, P, 199), About 3 J operations are needed inetead of

the 3- operations needed with a matrix inversion of (6.25). -;}At this point

it is convenient to change the 1 subscript to '
L= m—m L=0o1,--,L form>o (6.26)

',/:[,L) ~- L+l for m=o
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‘and suppress the /M subscript. We have y
‘ 2l
6 _-__':ﬂ - [{M'f-j) /m //-{—mq /
4" 1o an Yemed)*— 1 ,/-f/yn
| (6.27)

?9 Ea}/—m@ = “““/»?b/fz) @Zf‘l

o+
go:é} é:, :Q {00’ ’m>o; (3/:4))5::0 {ar/;”:a
We also define

4, = wimit) = Lrm )Lt t 1 ] (6.28)

Equation (6.20) yields (7 >0)

-, [RS] _ X - N
L=o: (5‘2 A, .—[;’,[ewm(e /)uﬁ,] |

1~~‘-'L-l"( ,/"'4/ /ﬂ/[ew [-/e I)Wj] (6.29).

" “ﬁj’w[ Waufu (e-1) /1“]
//.:L: .g/jL = AJ “?/ [ e (é 1) W’ 11 :Z

while (6.23) gives

Y, W 6 ﬂ[ I
zp. = S. , ==y U, | _
sz W‘IJJ_ g J o Qlel ’

- | A ~+3/,[?f_?_f‘ T
bty =Gy Wy =7 By T LT Pl
' (6. 30)
.I—ééfl ‘Q‘t /{_{ /‘C‘ , ]

~ o~ -2
L: -S 2 W =-v B o5  _ 23 ]
// J L‘J gl 1—« atJL" ('—IL/

Differencing (6,29) in 3 introduces the important operator

0& (‘)j = € ()ﬂ,f— (a?é—/)()J— {-/c-—/)()J-__,

6.31)




and results in the following equations:

Seor 28 E R 808 W)

JO J-lo

A=t -~ -7 4 Py A A -
’ ?“"‘g “‘?—-g },\/Z AJ "y Oﬁ(/—l le+@’W’/+l)

(6 32)
—) . @ 28 A~ A 4 ~
/—L —_— e — :A— "’A, "‘olg(j/ wi. )
‘_ 2C. 2C. JL  J-1 L RV RY RV S |
J L J-' &
' A
Using : these to eliminate 2 g /21' in (6.30) gives us the de~

Vo d

sired system in W alone:

// To; : : : -

ﬂ,oé)/af, Vl&ﬂ»ﬂ; WH)- J'Vov‘ﬁ'o = - %.0 +3 _/AW—AJ-_”) (6.33a) .

~ ¥ /A A’ ) (6.33b)\
/9[{’3/& +f,ﬂz)W +ﬂ J3j( J.?/’ MG’ = 9 Je "J-le .
+ﬂ'z (Afzmﬂjw 2')—-7./, BJ"

A=2,--,L-2: | , T (6433¢)

0(9[’37'2;?/" e +(1] é’+ K/M)W/ +/5/+/ﬁ/4z) //+27‘ J’%Mj‘/:

= s 4, hip, Ked) 8, (ot Brootir)

1. 3L-2 jo- '3

+4 S v W (6.33d)

2!-/ /—"‘-)J -l - =

= =Y B j/ /JL:; "LZ) ﬁL(A AJ “‘)

| o0 v s s
d=t: B8l Wy vt 8 W ] = S Wy = 6390

I

{

~>
K¢
O~
-

\
3’8

JL -}-‘_71.__, JL=1 J- l[_sl)
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(Note the eduatioh for ,/ =/ 1is not obtained from the equation for .
A ’ -\

= - -, L=2 = .o W, EVIR
_// by simply putting // L with AJ-H-I and 2 .)

Ar
We have .now a system of only ( JT-2) (L) = = (44 equations for Mj/

We éan gb farther, however,

Let us concentrate on the case of odd L « First note that equations

. A, ’
(6.33) divide into two independent sets for "W- , whether L. 1is even or
J .

odd. For ecd L. —

see1: A= o, 2, - -~ ,L-I //VVI>9)
(6.34)

Set II : //— -- , L (om>0)

Let us define //2

3?+/ ﬂ/H ﬂj{ 2 [(/m+,/+l) —M?][(/mt[,u,;)-m]?

G, -
4 7{/,#2 | 75/ [W/""*/H)z-'/][‘///nfh‘/ﬁ) l]j6 35)7///*_’
/L/‘/z ;}Zl ﬂ/ :;j_f_[ 6" - [(/f/m)z’/mz] [//7‘44)2—- 1_7 (6.36)
-1 [4Urm)*=1] (L+m)
Yy = (L) (Aromtl) (6.37)
sl .

s

7//{*/ | r 774 | (6.38)

By using the relation

_ ’f/f-(
?/// - é/f/

from (6.27), equations (6.33), after division by the 7//( appearing in each

of them, tan be rewritten as



' [:2}‘7-)1."2:

N

= - B_';'/ W-/ /A/'/—/‘ 4/»: ,/-/) W //l’;/f/’ﬁjl" /*')‘ = fj’{

A
/ L=13 ﬂ[ JL3+{HL_,+HL WJL—] __SJ,W.L:::

i

(6.394)

J
pig
= -6 J'L-i tfi-2 /A -2 s L"2)+/u-’ /ﬁ ‘~) = C'L"
A [GL-z Wit W ] -5 W JL

-:iJL

-~ ~ A
= -5 #ﬁ’/AJb.-JlL/) = Fj

If we now define an index /F{, common to both sets I and II, according to

f

(6.3%)

the following scheme (for M >0 ), ‘ . _
A ) 2 3 - - L.:‘l?i

541")/:‘&}1’2 : o 2 Y - =
Seb T, = al-) ) 3 y - - 6.40)
we can definé an (L+! ) /2 square matrix A/_L J:'with hon-zeto elements

only along the main and adjacent diagonals, These are, for the two sets I and II,

as lfollows:




s A

Set T(l=2k-2)  SetT(d=ak-1) *

H, g |
Al)l ' -‘_;/: | ;; (H,*’HZ)
A, G G
_ / o -l
Pk | QZ- ' G,
| g ) A-2 (6.41)
A ALAN AL )

M GG

Ay Lol G
2, 2 3 . L-2

: ‘Al[_-ppl L+! -J_ /HL"T—HL> : —L H
. e Y L
22 VL—I T

We also designate [~ L as the proper one of the F Y in (6.,39) according
J v '
to the scheme (6.40). Equations (6.39) can then be expressed as a single

matrix equation, of the same symbolic form for Set I and II:

(0@ A[v_w“ SJ ghlb ) Vlj,o/ = fi/:_ | (6.42)A

where 5}4 ~is the unit matrix, Ak/z, :I.é. symmetric and has a set of
2 :

(L.+ [ ) /2. real positive eigenvalues ?P and orthonormal eigenvectors

o |
Q [r=br ot pena-, it ]
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- | o o o
| Ah/;, Qf = 7? Qh . (6f§3a):

(L+1)/2 : .
ﬂ’ . ’ L R :
Z_ | Q @Z 51,5; ; (6443b)
We express W' a? a sum of ‘ @‘P
Let)fe ol L
w. = . wfot (6.4)
J p=1 S 4 7 .
insert this into (6,42), use (6.43a), multiply by Q and sum over ,z
and use (6.43b) to get > L+:
2, Bvi-s vi- 7 olF, - _3epf
4 J J U b= | £ (6.45)

For ease in applying the Richtmyer-Morton method we rewrite this by dividing

by ——) &  to obtain [Refer to the definition of o& in (6.,31)]:

f |
§  [ae-t S Fie- ¢ _ b
NV T ) T e

With A positive, this satisfies the requirements of the (Zf /V‘.mechod.

To use it we need for each Z, a pre~computed table of L'.' 5'
=1 EZ' = .
/ | s; § !
J=2,-5,7-1: ¥ . e 1‘[@"") *t =L —le- r)t (6.47)
v )6, J
Given these, we first compute IEJ: -
N B F g -0
J / f & / g
5 —_ ) & - F ' (6.48)
: 1 .::LT-[D-'/-{“")’_} .
J,:.Z/-'JJ I°FJ— J J € ! :
Then, in the reverse order J = J- ') J- 2} -7, L we get \.//‘
T Wy G
'é’ IL (6.49)

ke J
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5/__ ‘5’ f 5’ . Tl - - -

The required operations (multiplication pliuslv addition) are I (T -2 ) in
number ,
To compare the méttix inversion with the éiéenfhnééion method we have

( defining l"oper:at::l.on:'i as 1 'mtili:ip]'.icai:ioﬁ plus 1 Ad&itionj, for J=26 and

_L::b".:

o | ' . {
Matrix method: 2 sets of equations, each seét (J"—Z) (L—%—-) in number:

VerLr g o ',
2(T-2) (—Z—«) = /0, 368 aperm‘wu; (6.51)

Eigenfunction method:

For each function —-

: . 2
“Right hand side": (I——I)(L—;—-’) ' (1ncludes \{T}

Inversion by R.&M. method: J(J~2 )
. | .
For (L‘!‘ [ ) functions -~ (L+/)[(f—2)(3‘f %‘)"" *L"gt"]

(¢o€f\‘)2f;“"f af)
Reanalysis into (L + /) Legendre functions for /= 7, - -, I-{:

1\ 7
2 (&) (7-2)

fotals (L+/)[(I-2)(L+4)+ %‘] = 1,314 (6.52)

A factor of 7.9 ( g _ (T - 2)/3) is achieved in speed,
The eigenfunction method will also require storage of tite } fd_ and their -
associated eigenvectors. Eo: each /L value there are ( L +/) )/ 2 and
( L+ /) eigenvectors, each of the latter having (L+ l)/Z components,

Total storage required for each value of 4% is

)'4:\ {L+{) ) E/éf«veclovsé 'él"(}_-fl}z) Z'—'i"..' (L‘H)/J—‘l)
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The above analysis is for ML > 0, where M :‘—m/H-_// /: o,1,--, L.
For mN1 =0 we have instead the indices » :j = 1,4, - ~5 L+l . The
definitions and relations (6.34) - (6.50) are similar for m = O except

that ,Z i3 increased by one
Set I: ,é:. é?»é—/
~Set II: L= 24

The two sets for each 2 correspond to distributions of M./I which are either

//h?:&) |

even or odd functions of/u, (sine of latitude).
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It is useful at this point to consider the energy integral for a wave

number . . We expect the t:ime rate-of-‘change of the kinetic energy in a

figxeq zonal wave number m. to be proportional to the ~ -sum of
A

( 53% ’25’ /2 £ )¢ J“ - Pf ) + %, since
2 /1 ¢ 25
7 (309)) = oypo2t g2z
By introducing "y / Y
J'/M. R Z %m

and using the relation

e V‘fﬂ*/é"“"f: (P W P.WJ.)—E—(I%FF})

JH gt J

we can write the vorticity equation (6.20) as

Gtz o5 Gk i G -50)
Yo N R P v, ym =1 jm 30 JHim— /M/
e A 9, (6.53)
- P W
ké’ﬂ»l Lﬁm (E-fluj#[/u” J o ymtl’ e

[We suppress the zonal wave number index M ].

By defining

S =4 ¢,
J M %M~¥%4M “ .
J=1 ~ g
Piorl ) g "l
- jrt J '
- J= |
*" As

! ‘P‘ A
= 1)
ﬂ/n , T §

J '?:“' gm %ZZu ) ‘GZL B 4;

\)

r
and summing over ~/ « We obtain
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T ., Jg-t o
yew S g > Pw &
ﬁ{ =d + "3;4-4 Syt Im Ml T J Mt I
m o m " J=2 J -
(6.54)
The "thermal wind equation" (6,3) and equation (6,21) together give
v Y, =~
Gz S+ 5’”*' = =T,
7., Jym-! >, J m+/ J
or, usit;g the relation 7;4 3:' = )A/MII 5/}'7%/ from (6.18),
3 ~ o
. ’ e feod— T
())m_JM«l Tj:’n{m.u J - .
| (6.55)
We also have (6,4) in the component form [see also (6.23)]
{ ol >
W‘m. = - ; y m + 8!’,,,,
J J’ p‘t _S-!l
Defining also ‘ _ :
J_ . A J", P' ~ s
~..__J-—. = (g' — S J. . g'
/Vl —/ Z 5 %-/"" N ﬂ/nﬂ Z S Ej'/n.u ym
:2 . J:l J .
allows equat:lon (6.54) to be written as
?{ :.éz - B —/ ﬁ +' Z 5", _/""-* (6.56)
h '2 .
- where .
s A T
_ 2 1. I
Y S ? ’”".(.{g 2 //”*’
Jmo MM ST mil g 5T
(6.57)

We now sum (6.57) over - ( at fixed'/m/) from M = 47 to /\/ :

-~




N F o
X :
where we have recognized that | is zero for 7 = ./ —{( and N =M+(.
Using (6.55), with é),-m =0 for #=m (. and m = M/t /[ ,nov.
gives N N 5 ;T—
;% /7 - ;ZLR T el
J ' I 2T
N =00 N =0
Using this: result in the 71~ -sum of (6.56) finally gives
2 N 'T—/( P) )
5 PRI /5., )+ Z (T ) (6.58)
)t - ey 2/ .S“‘
m=gm | J-7 "~ _ J=z 7y

S (a8 + 3, )

U =41

" The left-hand side defines the time rate of change of the energy-— kinetic

.plus available. -~ associated with a single zonal wave number %, and the
right side (symbolically) represents the net addition of enmergy into this
wave number from'heating, friction, orography, and non-linear transfer from

other wave numbers,



