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RELATIVISTIC CHARGED-PARTICLE BALLISTICS IN CONSTANT,

UNIFORM ELECTROSTATIC AND MAGNETIC FIELDS

C. J. Everett and E. D.

by

Cashwell

ABSTRACT

The trajectory of a charged particle with arbitrary initial
position and velocity is completely determined in the presence

of constant uniform fields of the following tynpes:

(1) pure

electrostatic, (2) pure magnetic, (3) electrostatic and magnetic
fields superimposed, in parallel, perpeundicular, and arbitrary

orientation.

The treatment, which is relativistic throughout,

was motivated by recent Monte Carlo studies of electrun trans-
port, involved in laser design, and is supplemented by computa-

tional methods.

maidiation losses are not considered.

I. DEFINITIONS, NOTATLON, AND UNITS
A particle of rest mass . > 0 and velocity V =
(vx, vy, vz) has mass
- -1/2 - -
M=my; vz -89"Y2 8zvie, vz |y

Its energy, rest energy, and kinetic energy are re-

spectively

2 2

E = Mc e = mc k =E - =e(y - 1)

The momentym P = MV satisfies the equation

P2 = cz(M2 - m2)
from which it follews that P P = czMﬁ = ME = Mk B
hence,
k=P-v .

which implies the relation

kK=F-V

Thus, if F + V = 0, k, Y, 8 are constant on the
for a force such that

trajectory. Moreover,

F.Vs=([-grad ¢(R)] * V= -3

one has k = - $, and k - k2o, -¢ .
We adopt the convenient notation
Vo= vie = (v /e, vole, v [e) 2 (B .8 ,8);[V] =8
and the parameters
X=v8, Y= rBy. zZ=YB, ,
which satisfy the identity
x2+Y2+22=v282=y2—1 .
The independent variable T = ct is also used, in

terms of which

Bx = dx/dt, By dy/dt, B = dz/dr .

Finally, the variable

.
A= dt/y; v 1

o
adopted in place of T, greatly simplifies much of
the analysis. No use 1s made of the Lor=ntz trans-
formation.

In the derivations, the cgs-esu system of units

i1s used exclusively. The basic relations appear in



the schematic equation
q¢t =F = qv x5

where q is the charge (%) in esu, and
4 electrostatic field (dyne/esu = volt/cm)
f magnetic field (gauss)
q¥ electrostatic force (dyne)

qV x 4 Lorentz force (dyne) .

We also introduce the constants (both in cm_l)

€ =qfe; &= |8] p=qlife; H = |4|, (e erg) .

In computation, these may be evaluated numerically,
in terms of &' in MV (million Volt)/cm, and e' in

MeV, by observing that
e = g&fe = &' 106 (108/c)/e' 106(q 108/c) = 8'/e’

u = qii/e = gli/e’ 106(4 108/c) =3 x 1074 n/e’
(R gauss) .

Also, we note that an equation of form

>

k - ko = q8(x - xo,

implies k - ko = e(qb/ed(x - xo) = e(8'/e")(x - xo)

and hence
k' = k' = &'"(x - x))
o [
with k', k; in MeV.

Computational methods for parts II, III, IV

are given in Appendix A,

II, MOTION IN CONSTANT ELECTROSTATIC FIELD

Suppose a particle of rest mass m > 0 (e = mc%
and charge q starts from R = Ro at time t = 0 with
velocity Vo - (v:, v;, v:), and is subject there-
after to an electros:atic field € = (8 0,0), & > 0
constant. Its trajectory is then determined by the

law
P=F=(q8,0,0) = -grad ¢; ¢ = - qx + (1)

Since k = F + V = [- grad ¢} - V = - é, we have at
all times

k - ko = qé(x ~ xo) (2)

Y - Y, = e(x - xo); e = qB/e . 3)

In the notation of I, we may write (1) in the

form

dX/dt = € dy/dt = 0 dz/dt = 0 (4)

where

x2+Y2+22=y2=1 . {3)

Integration of (4) yields

X =et+X Y=Y =12 (6)

_ 2 2

Yy = {(er+x°) +w°} @)
2 _ 2 _u2 22 2942
WosYo 4z o+ 1=y -X o=y {1-(8)%.

Thus v, x, and k are known as functions of T, from
(7, (3), (2), as is also the velocity, since (6)
implies

Bx = (e1 + xo)/v, By = Yo/v, 8, = ZO/Y . (B

Since By = dy/dt, etc., we find from (8) and

(3) the trajectory

A, z-z_ = ZOA 9)

-1
=x, = e (YY), yoy, =¥ °

o

2 2,1/2
y = {(eT + xo) + wo}

T -
A 5/ di/y = ¢ 1v.n{[(er + X))+ y]/(xo + YO)} .

o

This is a curve in the plane of ¥ and v, with
y, z monotone as indicated by (8). If B: 20, x is
increasing without bound, However, for Bz <0, v
and x first decrease to their minimal values at T =
™ = - Xo/e, the turning point of the trajectory,
at which

*

2,1/2
Be =0 U

Y=y, - 8 1 (10)

* -1, % * * * *
- = - < - = - = 7
X xo e “(y yo) 0, vy yo YOX , 2 =2 Z A

=207 tn (- B/ + 8D .

Theréafter, Y and x increase toward + =,

III. MOTION IN CONSTANT MAGNETIC FIELD
A particle of charge q and velocity V in a
mugnetic field | obeys the law

P=F= qV xh; V= vc (11)

where F is the Lorentz force. Since k=F-V= 0,



all scalar parameters preserve their initial values

on the resulting trajectory. Thus

B=8B (12)

[o] [a]

For a field % = (- H,0,0), H > O constant,

(11) may then be written as

de/dT =0, dBy/dT = = mBz, de/dT = wBy (13)

w = u/Yo u = qi/e .
Thus we have at once
= -y = 4
B B X = X BXT . (14)

From (13), we also obtain

2 2__ 2 2 2__ 2
d By/dT =-u Sy d Bz/dT = - w Bz

and therefore

cos wl - B: sin wt, (15)
o
cos wtr + By sin wt .

The first constants are obviously necessary, and

the second ones are obtained by substitution in

(13), with T = O,
From (14) and integration of {15) we obtain

the trajectory

o
X ~x = Boaxr (16)

-1 ] o
y~-n =y YoBo(ay sin wT + a, cos WT)

n

-1 o
o ™ Yo T W Y B2

00 2

-1 o o
z - Co = | YOBO(az sin wtT -~ ay cos wt) ,

4

-1 o
o zo +u"yYBa

0"0"y
h =u/y , and p_ = (a>, a°, a°) 1is the initial
where w = u/y_, an ¢o < 3y a,
direction,

Moreover, from (14), (15), the direction ¥ at

T has components

a = a (17)

o

a
y

a

< o X

o
cos wt =~ az sin wT

a = a° cos wt + a® sin wt f
z z y

If wo = (+ 1,0,0), the trajectory 1s the line
X=X + 601, Y=Yy 2= 2, parallel to % . For

wo # (+ 1,0,0), we define A, Ro’ 60 by

2.1/2 -
1 / » R =u 1

0,2 o
A= {(ay) +(a) 5

_ .0 _ .0
sin 80 = ay/A, cos 60 az/A

and write the trajectory (16) in the form

_ Q
X - x = Boaxr (18)
y - no = Ro cos (WT - Bo)
z-2 =R sin (wt - 6)

(o] o o

1f a: = 0, this is a circle in the plane x =
X, Otherwise, it is a uniform circular spiral, the

time of rotation being given by wt = 2w, namely

t = 2my_/uc, u = gl/e (19)

and the (cyclotron) frequency by

f=1/t = uc/2nvo . (20)

IV. MOTION IN SIMPLY ORIENTED, SUPERIMPOSED IIELDS
A charged particle in superimposed fields €
and % is governed by the law

PauF=gqf +qVx+ . (21)

For the constant field ¥ = (&,0,0), & > 0, con-

sidered here, we have q¥ = - grad ¢, ¢ = - qéx,

and therefore k = F « V = qf « V = - §. Hence,
the relations
k - ko = g6(x - xo) (22)
Y=Y, " e(x - xo) (23)

apply, just as in II. We obtain next the trajec-
tories when a constant uniform field % acts in
directions parallel to, or perpendicular to £ .
Equations (21-23) are valid throughout this section
and the next, where arbitrary orientations are stud-

ied.

A. Parallel Case

h = (- H,0,0), H > 0 constant. (The case
(44,0,0) 1s obtained by changing H to -H, and p to
-it throughout.) In the present case, (21) may be
written in the form

azfdt = py Y. (24)

dx/dt = €, dY/dt = - py iz,

g = g&/e p = qi/e



From (24) 1t appears that

X=¢1+ X, (25)
and mcreover, YdY/dT + 2dZ/dT = O. Hence, 22 + Z2
= Yg + Zg (constant), and therefore YZ— 1= X2 + Yz
+ Zg, giving

_ 2 2,1/2 2 2 0,2

y={et+x)%+w}, wo= vy {1-(B)7 . (26

It follows from (22), (23), (25), (26), that
k, X, Bx’ and Y are unaffected by the field ! »
being the same functions of T as in II.

To determine y and z, we change independent
variable from T to

T

A= A(T) =f dt/y(t); y=21, A(0) =0 (27)

o

thus obtaining from (24) the system

dy/dx = - uz dz/d\ = py (28)
and therefore
avian? - o aZzralia-u% L @29

The solution of (28), (29) is
Y = Yo cos uA - Z, sin yA, Z = Zo cos YA + Yosin HA

(30)
the second constants being obtained by substitution
in (28), with A =0 (1 = 0).

Since Y(T) is known explicitly (26),so is the
velocity from (25), (30), namely

B, = (T +X)/y, B =Yy,

v B, = 2/y . (3D

The functioms y(1), 2z(T) are obtained by inte-
gration in (31). For example, y - v, -_Ef Ydt/y =
S | -1

Sy ¥dA = u (¥, sin Uk + 2 cos W) - W Z,. In

this way we arrive at the trajectory
x-x =e Xy -v) (32)
<] Y=Y
=1L o o .
y - no u yoso(ay sin uA + a, cos uA);
-1 [
Mg ™ ¥~ M YoBoaz

z - ;o = “-lYoBo(aZ sin ux - ag cos UA);

-1 [
zy + U YoBoay

14

o

€ = g&/e v = gH/e

{(et + xo)2 + wo}llz; wg = Yz(l - (B:)Z}

Y =
A= el an{icer + X)) +y1/y (1 + 89}
(<] YilY, X '

Defining A, Ro, 60 just as in (18), the pres-

ent trajectory becomes
_ -1

x =X =€ (Y -v) (33)
y - no = Ro cos {(UA - 60)
z - QO = Ro sin (uh ~ 6&

and the curve is seen to be a spiral on the same
circular cylinder as in the absence of f, but now
of nonunifoxm pitch, the x-displacement being just
what it was in the absence of B.

From (30), (31), the direction Y at T is

found to be
-1,-1

a =Y, Bo (eT + Xo)/B (34)
o o

a {ay cos uA - a, sin uAr}/B

a_ = {az cos pA + a; sin uA}/B

2}1/2

-]
]

-1 =1 2 0,2 o
{[Yo B, (€T +X)1% + (ay) +(a)

B. Perpendicular case

% = (0,H,0), H > O constant. The analogue of
(24) is now

dR/dT = € - wy "'z, dv/dr =0, dZ/dT =y K .(35)

T
)\Ef dt/y. (36)

o]

From the Y relation we see that

Y=Y, y-y, =Y

Changing variables from T to A, we obtain from (35)

dX/dX = gy - uZ d2/dx = pX (37)

and therefore

el
/v 02 -edx=0 %t + vz = pey).

(38)

Note here that we have used (23) to evaluate
dy/dXx = (dy/dT)(dt/dX) = (edx/dT)(Y) = X . (39)

It can be shown, by the method of "variation
of parameters,” that the general solution of an

equation of form



dZZ/d}\2 + uZZ = uf(A), L > O constant (40)

such as that in (38), is

Z =2, cos WA + B, sin uA + J - (4D

2
A
J =J/ﬂ £QA") sin (A - ANar'
o

where Zo = Z(0), and B2 is an undetermined constant,

We must consider separately now the three cases
u%e, i.e., H % &, which have quite different solu-
tions. Our method, in all three, consists in the
steps: (a) Solution of (38a) for X(A), determining
its constants from X(0) = Xo, and substitution in
(37a), with A = 0; (b)
integration of X(A); (¢)

Determination of x(A)} by
Finding y(A) from (23),

and, in passing,

.
T =/ Y(A3dA 2 TN

o

(d) Solving (38b) for Z(A) by (4l1), determining Bz
by substitution in (37b); (e) Integration of Z(A)
for z(A).
inherently of an implicit kind, as indicated in (c).
(cf. Appendix B).

The essential dependence of A on T is
1. = ¢g). Here, (37), (38) become
dX/dX = u(y - z) dz/dX = X (42)
a%/ar? = o eZzrand+ vz = 0% . 43

Following the abaove steps, we find

X=X + Blk; B, =uly, - 2) (44)
T A 2
N .f xdt/y =f xah = X ) +BA%2 (45)
a [o]
2
Y=y, + BX A + uB; A%/2 (46)
T=yA+uX A2+ B, A6 = () 47
o ° 1 - :

To obtain Z from (43), (41), we require

A
J =f Hy(A") sin u(A - A")dA .

(4]

Under the substitution w = u(A - A'}, this becomes

uA 2
J =f y(d) - X(A)w + Bw /2u} sin wdw
o

2
= {z°+ UX A +uB, 2 /2} - 2, cos A - X sin 1Y

Hence, from (41),

2
Z = {z0 + uxox + unlx /2} + (52 - X )sin uh

and substitution in (42) shows that B, = Xo.

Collecting these results, we find

X=X +uly, - 2z)X = v8, (48)

Y = Yo = YBY

2 2
Z=2 +WXA+u(y, -2)r/2= Y8,

from which Bx, By, Bz may be found, via (46), (47).
The trajectory 1s then given by

H]
[}
®
)

2
XA+ uy, - z2 A< (49)
y-y_ = YOA
- 2 2 3
z -z ZOA + uxo A°/2 + (Yo - ZO)A /6

=T - (Yo - ZO)A .

2, > £). We have to solve (37), (38),

namely

dX/dA = gy - uZ aZ/dA = px (50)

aZxar? + 6% =0 a%z/an? + 1%z = wev(h) 5L

2 21/2

) o .

8§ = (u

Following our strategy shows that

- . . - a1 _ -
X Xo cos 6A + Bl sin 6A; B1 [ (ey° uzo) (52)

x - x = 5'131 +67L (X, sin 8% =~ B, cos §1)  (53)

1

cos JA)
(56)

-2 -1
y=46 U(UYO - eZo) + ed (Xosin SA ~ By

~
[ ]

-2 -2 -2
eé x°+6 u(uyo- eZo))\—sé (xocos 8 +Blsin6A)

rea) . (55)

For (41), we now require J = ij/ﬁAy(A')sin
: o
u¢A - A'ydA' for the v of (54), and this turas out

to be

-2
J=26 e(uyo - EZO) - Zo cos A -~ xo sin ul -

é-lu(Bl cos §A = X sin 8A) .
o



Substitution in (41) yields

-2 -1
Z=26 e(uY0 - ezo) + (82 - X)) sin A - & (B1 cos dX - X, sin SA)

and from (50) we find B2 = Xo'

Hence we have obtained

-1
A . = -
Xo cos 8\ + Bl sin 8A; Bl § (EYO uZo) (56)

>
(]

Y=Y
o

-2 -1
Z [ E(UYO - EZO) -8 U(B1 cos 8A - XO sin 6A)

so the trajectory is given by

X - Eo = 6'l(xo sin 86X - B1 cos 6A); Eo =X, + G—IBl

(57
¥y -y, =Y

2

-2 -
z - Co § E(UYO-EZO)A -8 u(Bluin Gki-xocos SA);

- -2
qo z + 6§ uxo .
Defining A, eo, a, b by

2,1/2

2
A= (xo + Bl) , sin 80 = BllA, cos_eo = XO/A (58)

1

-2 VA>b =& A

a=34§

we may write (57) in the form
x - E =b sin (86X - 60) (59)

Y-y, = YOR

-2
z-7 =6 e(uyo - eZO)A ~ a cos (6A - BO) .

This may be visualized as an elliptical spiral with
axis in the direction of % (i.e., Y), undergoing a

"drift" in the Z direction, indicated by the first

term of z - co.

3. _(u<e).
tions (37), (38) in the form

In this case, we solve the equa-

dX/dA = gy - pZ dz/dA = X (60)

dZX/dA2 - sz =0 dzz/dx2 + uZZ =pey(A) (61)

5z (2o )2,

Following the standard method, we obtain now

N SA -8\
X Ale + Ble (62)

<1
Al = (Xo'+Dl)/2, B1 =(Xo— Dl)/Z, Dl =4 (EYO - UZO)

1

- -1
X =-x =- § D, + § “(a e ) (63)

o a2 _ -1 S _ -8Xx
) u(ez0 uyo) + & e(Ale Ble ) (64)

-2 2 A
§ [-exo + u(ezo - uyo)x + E(Ale + Ble )]

~
il

=T() . (69

In (41), we need the J integral for f(x') =
ey(2') as given by (64).
w=U(A = A") we find

Making the substitution

=2 -1 SA ~6A
J =246 E(EZO - uyo) + & u(Ale - Ble )

- Zo cos UA =~ XO sin uA

and hence, from (41),

-2 -1 SA -8
2 [ E(eZo - uyo) + & u(Ale - Ble )

+ (52 - xo) sin uA

where again B, = XO from (60b).

2
We now know that

X = Ale + D e (66)

-2 -1 SA -8A
[ e(ezo - UYO) + 6 u(Ale ~ Ble )

3]
[}

and we infer the trajectory

x-£ = G_I(AleGA - Ble—6A); 50 X, 6—1Dl (67)

a2 -2 SA ~8A, .
z-7 =248 e(ezo - UYO)A + 6 u(Ale + Ble )

_ -2
bo = 2% ~ § ux, .
V. MOTION IN ARBITRARILY ORIENTED FIELDS

Having considered in §4 the parallel and per-
pendicular cases, it is clear that all other orien-

tations are included if we study the motion (21)

1.’=F=ql‘+q_\;x“;

where = (&,0,0), & >0; % = (HC, HS, 0), H > 0,

C=cos 0#0, S=sin8£0 .



The relations k - ko = q8(x - xo) and Yy - Yo =
e(x - x) of (22), (23) are still valid, and (21)

now reads

dX/dt = ¢ - Y-luSZ, dy/dt Y_lucz,

dzfdt = v lu(sx - c¥) .  (68)

Denoting by primes differentiation with re-

spect to
T
>\=f dt/y
o
we obtain
X' = ey -usz, Y =ucZ, z' = u(sx - Cy) (69)
" 2 2.2 _2
X' =AX+BY, A e -, By = usc # 0, (70)
_ 2.2 "o
C1 = pec <0 Y = le + ClY
- 2 222
a=aC -8B =-uec <o (70)
" 2 .
Z° 4+ p°z = uesSy(d) . . (71)
The solution of (70) is found to be of the form
X=U+V Y =cU+dV (72)
LA ~LA
U=U1 cos K}\+U2 sin KA, V=V1e +V2e 3 K,L >0
K2 ='% [R + (u2 - 52)] >0
=2 r-al-eHiso
1/2
R = [(u2 - 52)2 + 4 uzezczl

2 _ 2
c=-(a +K)/B #0, d=-(a -1/B #0

where

2 2
Al +K >0> Al - L .

The constants Ui’ v, are determined by the

initial conditions:

U1 + V1 + V2 = Xo (73)
cU1 + dV1 + dV2 = Yo
L -
KU2 + LV1 - LV2 = Xo =ey, - USZo

cKU2 + dLV1 - dLV2 = Yo = uCZo

the determinant here being

A" = mL? + L2)2/Bi £0 .

J

Explicitly, we find

Uy =-(Y, - dX)/(d - ¢), U, = —(Y; - dx;)/K(d - ¢)

(74)

- c¢X ))/2L(d - ¢)

V1 =[L(Yo - ch) + (Y° o

v, = [L(Y_ - cX) - (Y; - cx;)]/ZL(d - .

From Y in (72) we obtain

y=n, = cK-l(Ul sin KA - U2 cos KA)
+ar e - ve™ s
=y +Y,Y =ty -ar v, - v.)
Mo "% i1 h 2 17 7%2
= (ez_ - uSYo)/UEC .
Similarly, we find
x - £ =K YU, sin KA - U, cos K\)
o] 1 2
e - v e
£ =x +X,X, = k. -, - v ) = -y /e
o " %o T A & 2 17V Yo

From (76) and (23), it follows that

cos KA) + EL_l(VleLA -V e-L)‘)

<
]

-1
€K (U1 sin KA =~ U2

7)
T = e[x'zul-L‘Z(vl +V,) = K2 + 1)1z 1y
(78)

Tc obtain 2 from (71) and (41) requires

by
J =f eSY(A') sin u(h - ADdA'

o

for the y(A) in (77). Evaluation of J involves

nothing new and we find that

cos KA + J, sin KA

J=J, cos WA + J 3 4

1 sin uA + J

2
9

2 2 .2 2 2., _
J=¢ uS[UZ/K(u -K%) - (V- VZ)/L(u +19] = -2

2 2 2 2 24 ot
Jy=-€ S[Ul/(u -K )4—(v1+ vz)/(u +L9]= zolu
2 2 2 _ 2 2 2
Jy=-€ uSUz/K(u -K9, J, =€ uSUl/K(u - K9
s=ehusv /el + 1D, gg- Al +1h .



———

Hence from (41), 2- ¢ =e2us o A% kD +voo Ll +1h] (8D
Z = (J,+ B, sin Pk + J, cos KA + J, sin KA L =2, + 2, 2,
LA -LA
. 2 2, 2 2 2
+Jge + Je =e"us{u; /K (u” -K%) - (V1+V2)/L2(u +1%))
and substitution in (69) shows that B, = - J,.
2 2 = - Y_juc
Thus we obtain o
_ . LA =LA
Z= J3 cos KA + JA sin KA + Jse + J6e (80)
and by integrationm,
APPENDIX A
Computational routines for computing, at T = ct, II. Q = (-H,0,0)

: -2.1/2
position R = (x,y,2), direction § = (a , a , a), a. vy =1+ (ki/e), B = (1-7v9) 2, 4= w/y,
and kinetic energy k' (MeV), given arbitrary initial
values of these parameters. The configurations of (W=3x 107 H/e')
II, ITII, IV are provided for. The case of perpendic-

b. B2 =8.al, B0 =8al, B =8 a’
ular fields (IV) involves numerical solution of X o x’ y oy’ z oz
the equation T = I'(A) for A In terms of T. This is c. C =cosuwl, § = sinur
discussed in Appendix B, only the case U = € being
completely treated, d. Ax = B:T, X =x + Ax
_ a0 o - -
I. = (8,0,0) e, Ay = [ByS Bz 1~0)/w, vy v, * Ay
1]
. =1+ '
a Y, =1k /el £ 0z = [BS 4B (L= O, 2=z, +4z
-2,1/2
b. B =1 ~-v°) = .0 = 2% _ .° = .© o

o o g ax ax, ay ayC azS, a, azC + ayS

- - ' v
c. A=vyle (e =8&/e") ho k' o=k
d. T=r1/A

111. % = (-4,0,0), ¥ = (&,0,0) ;
. -2.1/2
o _ [+] o _ o o _ o = 4 = - =
€. Bx = Boax’ By = Boay. Bz = Boaz a. ¥, 1+ (ko/e ) Bo 1 Y, ) » W A/Yo
-4
f. R = [1+T(ZB:+T)]1/2 (M =3 x 10  H/e")
g dx =AR-1), x=x +2ax, k's= kc',+8'Ax b. A=YD/8, T=1/A (e =&'/e")
o o o _ o L0 _ 0 a0 _ o
h. L= % [(T + Bx + R)/(1 + Bx)] c. Bx = Boax, By = Boay, Bz Boaz
o.
i. Ay=AbyL, y =y, +by . d. R = [1+T(ZB:+T)]I/2
o .
i. Az=Asz, z=zo+Az e. Ax=A(R—1),x=x°+Ax, k'=k;+5'Ax

_ 0,2 0,2 0,2 1/2 _ _

ke B=UT+BY"+ B+ (B = £ A =€l 2al(T + 82 + RI/(L + 8D)]
2 o 1/2
[Bo + T(st + 1)) g. C = cos ux, S = sin ur
l.a =(T +B8)/B, a_ =8°/B, a_ =B8/B o5 _ g°
% x/'7? y y' o z z . h. Ay =[BS-B(1-Cllu,y=y +Aby
y z o
Az = [BOS +8°QL - 0)1/w, z=2z +Az
1. 2 y » o



x =x_ -+ Ax, k' = k' + 8'Ax
o (¢

5. B = (82 + 1282 + ;)12
- _ [o] . o - o
k. a = (T = Bx)/s, a, = (syc st)/B
_ ,p0 -0
a, = (B3¢ + B05)/B
. %= (0,H,0) f=(&,0,0)
H==8&
a v =Ll (e, B, = -y HY?
o _ o ,0 _ 0 ,O _ o
b- Bx - BOaX’ By = Boayp BZ = BOaZ
e A=Y (Eq. (47) cf. APP. B)
d. Ax = YOA[B: + u(l - B:)A/ZJ, X = x_ + fx,
k' = k' + &' Ax
o
= o =
e. Ay = YoByk, y =y, +4ay
- — - o =
£, Az=T Yo(l Bz)k, z =z + Az
o) o
g- B = Bx + u(l ~ Bz)k
o o o)
B, =8, + HA[B, + UA(L - B,)/2]
2 o2 . .2.1/2
h. B = [Bx + (By) + Bz]
= = o =
i. a = BX/B, a, By/B, a, Bz/B.
v. %= (0,8,00 %= (&6G,0)
H>&
Store: & = (u2 - 52)1/2, g = el/8, by = /s,
Hyq = n/é
av Y. =1+ (k'/e"), B = (1 -~y D2
[ o)
o _ o L0 _ o Lo _ o - o
b. Bx N Boax' By N Boa‘y’ Bz - Boaz’ B11 =& uIBz
e A=rTLm) (Eq. (55).
d. C = cos 8A,$ = sin S§A
- o -
e. Ax=vy [BS+ 311(1 C)1/8,
f. Ay =Y B8, y=y +4A
c by =Y BN Y =y + Ay
_ o
g Byy, = e (- g8,

Az

z =2z + Az

C£. APP. B)

o
Yo By A + uy,[8.(1 - ?) - BllSJ}

3.

B, = B,C+B )5, B, =B, -1 (B),C~ £
B =)+ D7+ 54172
a, ~B./B, a = Bg/n, a, =B_/B
vi. % = (0,H,0) €= (&,0,0)
H<&

Store: 6§ = (¢2 - u2)1/2, €, = e/é, e u/8,

h.

i.

Y, = L+ (ke B = (1

o _ 0 L0 _ o L0
8, = Boax, By Boay. Bz

2
My n/é
-2.1/2
-5
= o = -
= B3, Dy =€ -8

o _ o _
A =B+ D11)/2’ Bi1 = (Bx Dll)/z

P i Te)) (Eq. (65).
C = edA, S = 1/C
Ax = YO(—Dll + Allc - 3115)/5

cf. APP. B)

x=x_ + Ax, k' = k' + &'Ax
o o

By = Y 80X, ¥ = v, * by

= o _
Dy = (€48, = 1P

Bz = Y [D) A + up (A} C + ByyS - BD],

C+B

B = A 118> B, =D

a2 0,2 , 2.1/2
B = (B, + (B))" +B,]

z =

12 ¥ 8y,

O -
3. a8 = Bx/B, 3, By/B, a, = Bz/B

z_ + Az
(<]

Cc - Blls)

[s]
z



APPENDIX B

r =11

The routines for the perpendicular case require
solution of an equation

t=T(A); A2 0

for A in terms of 7, the function ['(A) being strict-
ly increasing, with I''(}) =y 2> 1, and ['(0) = 0.
This can be done explicitly in

Case I. The equation (47),

2
= yh ka2 w36 By = ueyg - 2)

may be written in the form
3 2 -
ET+bE" +cE+d=0; & = ur

b= 3u/8, c=6/8, d=-6T/B

{1}

- 50 -
=8, B=1- e: >0, T=utly,

For £ = n - (a/B), this becomes
n3 +pn+q=0
p = 328 - 0®)/8%, q = -6T/8 - 20(38 - aD) /8> .

Note that p > 0. For, 2(1 - BZ) > (B:)2 follows
from (8% < 82 - 897 =~ (1 - 8D +1- (8D <
1- (892 < 201 - 6. Hence W = (o/3)° + (/2% >

0, and such a cubic has just one real root, namely,
ne=H+J; B=(- /2 + 03, vawl/2 Jap/3)/m.

One may therefore obtain A from T by the fol-

lowing method:

o o
a. o Bx Bg=1- Bz’ T = UT/YO

b. A=88 - 302, B = a(38 - a?),

[A + T(6B + 962'1')]1/2

-]
L]

c. s =(B+38%T +80)Y3, u=s/8, = @%- 28)/88
d. n=H+J,E=n -(%), A=E .

In cases II, III, solution of T = I'(A) for A
requires approximation methods not discussed here.

We make only the following ovservations.

10

" Case II. Equation (55) may be written in the

form
sthv, =515: +1,C) & —el(B: cos £+B,, sin £) = F(&);

£E=8\, e, =¢/§, Hy = u/é, ui - ei =1

1

o o
- 5132 >0 B,, = € = ulﬁ .

¢ 11 z

11"
The function F(£) is strictly increasing, with
Hm-o,w@)-w%21mwpwm-1.
11} - o
F"'(0) elex .
Equation (65) may be written as

Case III.

- 0 g -g:
st/ €18 168 g,(A e” +Byje ?) = F(E),
2 2
£ = 8A, e, = el/s, HoT u/é S 1,

o
PR L U

C
o ]
Ay = (By +D))/2, By, = (B) =D )/2,

o
D z

1" & T HB
The function F(£) is strictly increasing, with
F(0) = 0, F'(§) = v/y_ 21/v,, F'(0) = 1,

F'(0) = €80 .

It can be shown® that B,, < 0 < A, ., and there-
3 1% 11 2
" - e -
fore F"(&) €1(A11e + Blle ) = 0 for e
- BlllAll > 0., Moreover, - Bu/Al1 > 1 iff All +

Bll = B: < 0. Thus F (£) is concave up for all

£ >0 if B: 2 0, and has a single inflection point

at
z = (1/2) %n (-B,,/A)))
o
if 8 _<oO.
-2 2 2 2 0,2 2 0,2
() o<y " +cCy, =D}, - (B - (B)ISD), - (B

K'/ml: 325 (50)



