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RELATIVISTIC CHARGED-PARTICLE BALLISTICS IN CONSTANT,

UNIFORM ELECTROSTATIC AND MAGNETIC FIELDS

by

C. J. Everett and E. D. Cashwell

ABSTRACT

The trajectory of a charged particle with arbitrary initial
position and velocity is completely determined in the presence
of constant uniform fields of the following types: (1) pure
electrostatic, (2) pure magnetic, (3) electrostatic and magnetic
fields superimposed, in parallel, perpendicular, and arbitrary
orientation. The treatment, which is relativisric throughout,
was motivated by recent Monte Carlo studies of electron trans-
port, involved in laser design, and is supplemented by computa-
tional methods, "jdiation losses are not considered.

I. DEFINITIONS, NOTATION, AND UNITS

A particle of rest mass :u > 0 and velocity V =

(v , v , v ) has mass
x y z

M = my; Y = (1 - e V 1 / 2 , 6 = v/c, v = |v| .

Its energy, rest energy, and kinetic energy are re-

spectively

E = Me e = me k = E - e = e(y - 1)

The momentum P = MV satisfies the equation

P2 = c V - m2)

from which it follows that P • P = cTIM = ME = Mk ;

hence,

k = P • V

The force acting on a particle is

F = P

which implies the relation

k = F • V

Thus, if F • V = 0, k, y, 6 are constant on the

trajectory. Moreover, for a force such that

F • V = [- grad <(>(R) ] • V = - $

one has k = - 4>, and k - k = fy - §

We adopt the convenient notation

V =• V/c = (vx/c, vy/c, vz/c) H (Sx,6y,62);|v| = 8

and the parameters

x = YB X, Y = '8y, z

which satisfy the identity

The independent variable T = ct is also used, in

terms of which

S = dx/dT, S = dy/dT, 3 = dz/dT
X y z

Finally, the variable

A = / df/Y; Y > 1

o

adopted in place of T, greatly simplifies much of

the analysis. No use is made of the Lor^ntz trans-

formation.

In the derivations, the cgs-esu system of units

is used exclusively. The basic relations appear in



the schematic equation

qt = F = q ? x ^

where q is the charge (±) in esu, and

£ electrostatic field (dyne/esu = volt/cm)

(>. magnetic field (gauss)

qt electrostatic force (dyne)

qV x ^ Lorentz force (dyne)

We also introduce the constants (both in cm )

e = qS/e; & = \t\ V = qH/e; H = K|, (e erg) .

In computation, these may be evaluated numerically,

in terms of fi' in MV (million Volt)/cm, and e' in

MeV, by observing that

e - qfi/e - qS1 lo6 (108/c)/e' 106(q 108/c) - S'/e'

U >= qH/e - qH/e1 106(q 108/c) - 3 x 1O"4 H/e'

(H gauss) .

Also, we note that an equation of form

k - kQ » q£(x - X Q )

dX/dT - e dY/dt = 0 dZ/dT = 0

where

X 2
 + Y

2
 + Z

2 = Y 2 - 1

Integration of (4) yields

X = £ T + X Y = Y Z = Z
o o o

and hence from (5), we obtain

Y = {(ex + X o ) 2 + W 2 } 1 / 2

2 2 _ 2 , _ 0 2,
ro o " Yo U l i V '

(A)

(5)

(6)

(7)

Thus v, x, and k are known as functions of x, from

(7), (3), (2), as is also the velocity, since (6)

implies

(ex + X o ) / Y , = Yo/Y, . (8)

Since 6 • dy/dx, e t c . , we find from (8) and

(3) the trajectory

y-yo (9)

implies k - kQ - e(q£/e)(x - X Q ) - e(S'/e')(x - X Q )

and hence

k' - k' - S'(x - x )
o o

with k1, k' in MeV.
o

Computational methods for parts II, III, IV

are given in Appendix A.

II. MOTION IN CONSTANT ELECTROSTATIC FIELD

Suppose a particle of rest mass m > 0 (e " me ;

and charge q starts from R - R at time t « 0 with

velocity V « (v°, v°, v°), and is subject there-

after to an electrostatic field 5 « (S 0,0), 6 > 0

constant. Its trajectory is then determined by the

law

P - F - (qfi.0,0) - - grad <j>; <(> - - q8x • (1)

Since k • F • V » [- grad $] • V • - <j>, we have at

all times

k - k = q £ ( x - x ) (2)

Y - Y Q - e(x - x o ) ; e = q£/e . (3)

In the notation of I, we may write (1) in the

\ = f dt/Y + X ) + Y]/(X + Y )o o o

This is a curve in the plane of £ and V , with

y, z monotone as indicated by (8). If 0° S 0, x is

increasing without bound, However, for 0 < 0, y

and x f i r s t decrease to their minimal values at X =

T* - - Xo/e, the turning point of the trajectory,

at which

Y U - (B°)
O X

(10)

0,

)"1(2s)"1 to {(1 - 8°)/(I + 0°)}

Thereafter, Y and x increase toward + <*>.

III. MOTION IN CONSTANT MAGNETIC FIELD

A particle of charge q and velocity V in a

field H obeys the law

form

P - F - q V x ^ - ; V - V / c (11)

where F is the Lorentz force. Since k = F • V = 0,



all scalar parameters preserve their initial values

on the resulting trajectory. Thus

k-v ^ - v (12) sin 9 = a /A, cos 9 = a /Ao y o z

For a field \ = (- H,0,0), H > 0 constant,

(11) may then be written as

= 0, dBy/dT = - uBz, d3z/dx (13)

V » qH/e

Thus we have at once

From (13), we also obtain

d2S /dx2 = - o)26 d28 /dx2

and therefore

8 - (5 cos ux - Sz s i n OJX>

S • B cos ojx + 8 s i n WT .z z y

(15)

The first constants are obviously necessary, and

the second ones are obtained by substitution in

(13), with x - 0.

From (14) and Integration of (15) we obtain

the trajectory

x ~ xo " W
y - n - u y S (a° sin UJX + a° cos u>x) ,o o o y z

n » y - v y 6 a°'o 'o H 'o o z

(16)

z - C Q » u Yo6o(a° sin ux - a cos oox) ,

C « z + u Y 3 a°
'o o o o y

where u) - u/Y , and tp » (a , a , a ) i s the Initial
direction.

Moreover, from (14), (15), the direction I/J at
X has components

(17)a - a 0

x x

o o
a = a cos art - a sin ux

a » a0 cos U)X + a0 sin MX

If 41 = (± 1,0,0), the trajectory is the l ine

x - x ± g x , y » y , z - z , parallel to S- • For
00 o o

>PQ i (± 1 , 0 , 0 ) , we define A, RQ, 9 o by

and write the trajectory (16) in the form

y - n = R cos (OJX - 8 )
00 o

z - zg = RQ s i n (uix - 9 Q )

(18)

If a = 0 , this is a circle in the plane x =

x . Otherwise, it is a uniform circular spiral, the

time of rotation being given by uix = 2TT, namely

t - 2TTYO/UC, U = qH/e (19)

and the (cyclotron) frequency by

f » 1/t - iac/2trY (20)

IV. MOTION IN SIMPLY ORIENTED, SUPERIMPOSED FIELDS

A charged particle in superimposed fields t

and \ is governed by the law

P - F - q f +qVx-t>. . (21)

For the constant field < » (2,0,0), S > 0, con-

sidered here, we have q t m - grad $, <j> " ~ q^x,

and therefore k » F " V « q E • V • - <J. Hence,

the relations

k - k
o

Y - Yo

(x - x )
o

(22)

(23)

apply, just as in II. We obtain next the trajec-

tories when a constant uniform field ^ acts in

directions parallel to, or perpendicular to €

Equations (21-23) are valid throughout this secf.ion

and the next, where arbitrary orientations are stud-

ied.

A. Parallel Case

'h - (- H.0,0), H > 0 constant. (The case

(4H,0,0) is obtained by changing H to -H, and \x to

-u throughout.) In the present case, (21) may be

written in the form

dX/dx - e, dY/dx - - vy^Z, dZ/dx - vy'h. (24)

E - qS/e u - qH/e



From (24) it appears that

X = ex + x (25)

and moreover, YdY/dx + ZdZ/dx = O. Hence, Y 2 + Z 2

= Y 2 + Z 2 (constant), and therefore y2" 1 = X 2 + Y2

+ z2, giving

Y = {(ex + X Q )
2 + W 2 } 1 / 2 , W 2 = Y2fl - (B°)2} . (26)

It follows from (22), (23), (25), (26), that

k, x, 6 , and y are unaffected by the field % ,

being the same functions of X as in II.

To determine y and z, we change independent

variable from x to

X = X(x) = / dx/y(x); y>i, X(o) = o (27)
j

o

thus obtaining from (24) the system

dY/dX - - UZ dZ/dX - MY

and therefore

(28)

d2Z/dX2 - - U2Z . (29)

The solution of (28), (29) is

Y - Yo cos yX - ZQ sin yX, Z » Z Q COS yA + VQSin yX

(30)

the second constants being obtained by substitution

in (28) , with X « 0 (x = 0) .

Since y(t) is known explicitly (26), so is the

velocity from (25), (30), namely

(£T + X Q)/Y, By = Y/Y, (31)

The functions y(x), Z(T) are obtained by inte-

gration in (31). For example, y - y ~fo ¥dT/y *

X, YdX - y-1(Y sin yX + Z cos uX) - \TXZ . Inu o o o
this way we arrive at the trajectory

x - X Q - E " 1 ( Y - Yo)

y - n « u y 6 (a° sin yX + a° cos yX);o o o y z

z - Co - V~ Y0BQ(a° sin yX - a° cos yX);

(32)

y - {(ex + X Q )
2 + W o}

1 / 2
; w2 - Y 2U - (B°)2}

X = e"1 An{[(ex + X Q) + y]/YoU + 6°)} .

• Defining A, R , 8 just as in (18), the pres-

ent trajectory becomes

x - X Q = e"
1 (y - Yo> (33)

y - no = RQ cos (yX - 6Q)

z - C = R sin (yX - e )
0 0 O

and the curve Is seen to be a spiral on the same

circular cylinder as in the absence of t , but now

of nonuniform pitch, the x-displacement being just

what it was in the absence of i}.

From (30), (31) , the direction l|J at X is

found to be

V / B

a » {a° cos yX - a° sin yX}/B

a « {az cos yX + a sin yX}/B

(34)

B - X Q ) ]
2 + (a°)2 + (a°)

B. Perpendicular case

"*> » (0,H,0), H > 0 constant. The analogue of

(24) is now

dX/dx - e - yy^Z, dY/dx = O, dZ/dx = yy^x .(35)

From the Y relation we see that

- y0
(36)

q£/e U = qH/e

Changing variables from T to X, we obtain from (35)

dX/dX = EY - yZ dZ/dX - uX (37)

and therefore

d2X/dX2 + (y2 - e2)X - 0 d2Z/dX2 + y2z - yeY(X).

(38)

Note here that we have used (23) to evaluate

dy/dX = (dy/dx)(dT/dX) - (edx/dx)(y) - eX . (39)

It can be shown, by the method of "variation

of parameters," that the general solution of an

equation of form



2 2 2
d Z/dA + u Z = yf(A), U > 0 constant (40)

such as that in (38), is

Z = Z Q cos yA + B2 sin uA + J

f X
3=1 f(A') sin y(A - \')dX'

J a

(41)

Hence, from (41),

Z = {Z + UX A + UB.A II) + (B- - X )sm \i\
o o 1 2 o

and substitution in (42) shows that B~ = X .
i. o

Collecting these results, we find

where Z = Z(0), and B, is an undetermined constant.

We must consider separately now the three cases

y = e, i.e., H = £, which have quite different solu-

tions. Our method, in all three, consists in the

steps: (a) Solution of (38a) for X(A), determining

its constants from X(0) = X , and substitution in

(37a), with A = 0; (b) Determination of x(A> by

integration of X(A); (c) Finding y W from (23),

and, in passing,

•A

- Z )A
o

(48)

• / :

T = f Y(A>dA = T(A) ;
o

(d) Solving (38b) for Z(A) by (41), determining B 2

by substitution in (37b); (e) Integration of Z(A)

for z(A). The essential dependence or A on T is

inherently of an implicit kind, as indicated in (c).

(cf. Appendix B ) .

1. (y = e). Here, (37), (38) become

dX/dA » u(Y - Z) dZ/dA - yX (42)

d2X/dA2 » 0 d2Z/dA2+ V
2Z - \i\ . (43)

Following the above steps, we find

X = X_ + B.\; B. - y(Y, - ZJ (44)

XdT/Y
o J o

XdA - X A + B..A /2 (45)
o 1

Y » Y + yX A + yB1 A /2 (46)

T - Y A + uX A2/2 + uBn A
3/6 E T(A) . (47)

o o 1

Y = Y

Z = Z + yX A + y2(y - Z )A2/2 = YBo o o o z

from which g , 5 , (3 may be found, via (46), (47).

The trajectory is then given by

x - x - X A + y(y - Z )X2U (49)
0 0 0 0

y - y - Y A
o o

z - zo - ZoA + yxo A
2/2 + y2(YQ - Z Q)A

3/6

- T - (YO - Zo)A .

2. (y > e). We have to solve (37), (38),

namely

dX/dA = ey - uZ dZ/dA - uX (50)

(51)d2X/dA2 + 62X - 0 d2Z/dA2 + y2z

6 = (y
2 - c 2 ) 1 / 2 > o .

Following our strategy shows that

X - X Q cos SX + Bx sin 6Aj Bĵ  - 6-1(£Y - yZ ) (52)

x - x « 6"^, + 6" (X sin 6X - B cos <SA) (53)

e6"1(Xosin <SA - B1 cos SX)

(54)

- S 6 " 2 ( X Q C O S

To obtain Z from (43), (41), we require

• / :

K') sin y(A - A')dA

Under the substitution w » y(A - A 1 ) , this becomes

- X(A)w + B1w
2/2y} sin wdw

(55)

For (41), we now require J « e

y(A - A')dA' for the Y of (54), and this turns out

to be

_2
J - 6 e(uY0 - eZo) - ZQ COS yA - X sin uA -

{Z Q + uXoA+pB1A /2} - ZQ cos yA - XQ s in uA
B, cos fiA - X sin SA) .

1 o



Substitution in (41) yields

Z = &~ e(UYo ~ e
z
o) + (B2 " XQ) sin uA - 6~ u (B. cos <SA - XQ sin <5A)

and from (50) we find B, = X .

Hence we have obtained

X = X cos 6,\ + B, sin 6A; B, = 6~ 1(EY - yZ ) (56)
o 1 l o o

Y - Y
o

Z - 6~2 £(UY - EZ ) - 6~1y(B, cos 6A - X sin <5A)
o o 1 o

so the trajectory is given by

x - 5 = fi (X sin 6A - B. cos 6A); ̂  = x + 6 B.

(57)

y - yQ - YQA

z - C - 6"2e(MY -eZ )A - (S"2p(B.sin 6A + X cos 6A);
O 0 0 1 O

C - z + 5~2 pXo o o

Defining A, 9 , a, b by

A - ( X ^ B j ) 1 " , s i n e o - B l /

a - 6~2 MA > b => S'1 A

we may write (57) in the form

A, cos 8Q - XQ/A (58)

x - £ - b s in (6A - 9 )o o (59)

y - y o

z - C " <So
- eZ )A - a cos (6A - 6 )o o o

This may be visualized as an elliptical spiral with

axis in the direction of \ (i.e., Y), undergoing a

"drift" in the Z direction, indicated by the first

term of z - c .
o

3. (u < e ) . In this case, we solve the equa-

tions (37), (38) in the form

dX/dA - ey - uZ dZ/dA = MX

d^/dA2 - 62X - 0 d2Z/dA2 + u

6 B (c2 - P 2 ) 1 / 2 > 0 .

Following the standard method, we obtain now

X - A e 6 X + B e"6X

Al " <*o
+Dl)/2« Bl = ( Xo-V / 2' "i" 6' 1^,, "

(60)

(61)

(62)

1 ^ 6 1 - B i e ' S X ) (63)

+ 6"1e(A1e<SX - B^"651) (64)

- PYO)X + e ( A i e
W + B i e

6 A ) ]

= T(A) . (65)

In (41) , we need the J i n t eg ra l for f(A') =

') as given by (64). Making the subs t i t u t i on

w = y(A - A') we find

J = - UYO)

and hence, from (41),

Z - 6

- Z cos uA - X s in \i\o o

- B

+ (B2 - X ) s in uA

where again Bo • X from (60b).
I o

We now know that

Y = Y
Z = 6 2 £ ( E Z - UY )

o o

and we infer the t ra jec tory

x - t =

z - c = 6"'2E(EZ - UY )X + 6"2p(A.e(SX +o o 'o 1

(66)

6"2yC = z - 6"2yXo o o

V. MOTION IN ARBITRARILY ORIENTED FIELDS

Having considered in §4 the parallel and per-

pendicular cases, it is clear that all other orien-

tations are included if we study the motion (21)

where t= (S .0 ,0 ) , & > 0; \= (HC, HS, 0 ) , H > 0,

C = cos 9 + 0, S = s in 6 ^ 0



The relations k - k = qS(x - x ) and y - Y =o o o
E(X - x ) of (22), (23) are still valid, and (21)

o
now reads

~\idX/dx = e - Y~\iSZ( dY/dT =

Y" 1VdZ/dT = Y" 1V(SX - CY) . (68)

Denoting by primes differentiation with re-

spect to

• / :

A = / dT/y
o

we obtain

X* = ey - MSZ, Y* = UCZ, Z' = y(SX - CY) (69)

x" = Axx + BjY, A1 = e
2 - p2s2, B X = y

2sc * 0,(70)

cx = - u
2c2 < a Y" = B ^ + CjY

2 2 2 2
A = A C - B* = -y E C < 0 (70)

z" + y2z - yeSy(A) . (71)

The solution of (70) is found to be of the form

X - U + V Y « c U + d V (72)

Explicitly, we find

- dXQ)/(d - c),

- CX Q) + (Y^ - cX(!))]/2L(d - c)

[L(YQ - CX Q) - (Y^ - cX^)]/2L(d - c) .

From Y in (72) we obtain

y - n = cK (U. sin KX - U2 cos KX)

Similarly, we find

x - £ » K~1(U1 sin KA - U cos KX)

" V

- c)

(74)

(75)

Xo + V Xl

- V2e"
U) (76)

" V
From (76) and (23), it follows that

U = l^ cos KX + U2 sin KX, i K,L > 0

c = -(

where

K2 = -| [R + (U2 - £2)] > 0

L2 =-| [R - (U2 - e2)] > 0

0, d

+ K2 > 0 > A - L2

The constants U., V. are determined by the

initial conditions:

U, + V, + Vo = X (73)

cU, + dV_ + dVo = Y
1 1 £• O

the determinant here being

A 2KL(K2 + L2)2/B2 # 0 .

Y = £K 1(U1 sin KX - U2 cos KX) + EL
 X(.V±e

LX - V2e~
hX)

(77)

T - e[K~2U, -L~2(V, + V.) - K~2U(X) + L~2V(X)]E F(A)

(78)

To obtain Z from (71) and (41) requires

J = / ESY(X') sin y(X - X*)dX'

"* o

for the Y(A) in (77). Evaluation of J involves

nothing new and we find that

J = J1 cos yX + J2 sin yX + J, cos KX + J, sin KX

(79)

, T LA . . -LA
+ J,e + J e

J o

J1=£
2yS[U2/K(y

2-K2) - (Vx-V2)/L(y
2 + L2) ] = - Z Q

J 2 = -E 2 S [U1/(y2 - K2) + (vx+ v2) / (y 2 + L2) ] = - z'jv

J3 = -£2ySU2/K(y2-K2), J4 = E2ySU1/K(y2 - K2)

J 5 =e2ySV1/L(y2 + L2) , Jg» - s2ySV2/L(y2 + L2)



Hence from (41), *- ?o = e\iS [-U(X) /K2(y2 -K2) + V(X) /L2(y2 + L2)] (81)

Z = (J2 + B2) sin yX + J cos KX + J sin KX

. T LA , T -LA
+ J5e + J6e

and substitution in (69) shows that B = - J-.

Thus we obtain

T _ 7 . 7 7?Q --2Q + Z.^ ^

=£
2yS[U1/K2(y2-K2) - (V 1+V 2 ) /L 2 (y 2+L 2 ) ]

= - Y

Z = J3 cos KX + J4 sin KX + J e
Lk +

and by integration,

APPENDIX A

Computational routines for computing, at T = ct, II. V = (~H,0,0)

position R =•= (x.y.z), direction t() = (ax> a , aj ,

and kinetic energy k (MeV), given arbitrary initial

values of these parameters. The configurations of

II, III, IV are provided for. The case of perpendic-

ular fields (IV) involves numerical solution of

the equation T = T(A) for X in terms of T. This is

discussed in Appendix B, only the case n " e being

completely treated.

a. Y Q = 1 +• (k^/e
1), BQ = (1 - Y~ )~ )

(p = 3 s 10 H/e')

, w

. gO
' x

g 0
po x'

gO _ . O
py " co y'

g O
po z

C = cos (OT, S - sin art

d. Ax 6xT, x = x + Ax

a. YQ - 1 + (kQ/e')

-2 1/2
b. B - (1 - Y O ) g. a

x
a0, ax ' y

a°C - a°S, a
y z ' z

Az

a°C + a°S
z y

c

d. T = T/A

e 6 = e a

III. ^ = (-H.0,0), (S.0,0)

f. R = [1 + T(28° + T)] 1 / 2

g. Ax = A(R - 1), x + Ax, k' = k1 + £'Ax b. A £, T = T/A

(U = 3 x 10"4 H/e')

(e = S'/e1)

h. L = In [(T + B° + R)/(l + B°)] 60a°, 8° f»oa°. B°

i. Ay = Ab°L, yQ + Ay d> R + T(2B° + T)] 1 / 2

j. Az = Ab°L, z = zQ + Az

k. B = [(T + B°)2 + ( p 2
+ (S°)2]1/2 =

e. Ax = A(R - 1), x = X Q + Ax, k' =

f. B

sinyX

+ £"Ax

(T B°/B _ c ) Ay

i. Az = [B°S + B°(l - C) ]/n), z = Z Q + Az
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j . B = IB + T(2g + T)J h. B = BXC + B

u
s » Bz = B 1 2 - y (B

k. ax - (T = 6 x ) /B, ay - <e»C - B°S)/B ._ B - [B* + <B°)2 + B * ] 1 ' 2

a z = ( 6 z C + S y S ) / B j . ax = Bx/B, ay = 8°/B, a z = Bz/B

IV. %= (O.H.O) 6 - (£,O,O) V I > % m ( 0 > H > Q ) g . ( £ > 0 ) 0 )

H = £ H < 8

a. Y o - i + a ; / e 0 , eo (1 - Y ~ 2 ) 1 / 2 S tore : 6 = ( E 2 - U 2 ) 1 ' ' 2 , Eĵ  - e /6 , V^ - y /6 ,

b . 6° = S a 0 , 8° = S a 0 , 6° = 6 a0 U,, - u /« 2

x o x y o y* z o z 11

c. A = T~ (T) (Eq. (47) cf. APP. B) a. Yo = 1 + ( k ^ e 1 ) , BQ = (1 - Y~ )

d. Ax = YoA[B° + y ( l - B°)A/2], x - xo + Ax, b. 8° = S oa° , 6° = Boa°, 6° = Boa°, D u - z± - 1^8°

k' = k1 + 8' Ax

e. Ay = YOB°A, y = y o + Ay c # x . r - l ( T ) (Eq. (65) . Cf. APP. B)

f. Az = x - Y 0 ( l - B°)A, , - ZQ + Az d_ c . e5Af g . 1/Q

g. B = 6° + u d - B°)A

Bz - 8° + UA[B° + uA(l - p ,,*i x m x + A]£ k , , k , + £ , A x

o o
h. B = [Bx + (6°) + Bz] f > A y . ^ g o ^ y . yQ + A y

X X y y ' Z Z s * D12 = £ l ( e l 6 z " V '

V. •*> = (0,H,0) t = (£,C,0) Az = Y CD A + u (A C + B S - g 0 ) ] ,
H > £ o 12 11 11 1 x

Store : 6 = (p2 - e 2 ) 1 / 2 , E± = e/S, ^ = p /6 , z - zQ + Az

p n , = p / 5 2 h. B = A C + B ^ S , B - D, , + p / A ^ C - B ̂ S )
1 1 X IX XX Z i-i. X XX XX

o o o o x y z

Bx/B, ay = 0y /B,

c. A = r X(T) (Eq. (55). Cf. APP. B)

d. C = cos SA.S = s in 6A

e. Ax = Y0C3xS + B u ( l - C)] /6 ,

x = x + Ax, k' = k' + 6'Axo o

f. Ay = Y0B°A, y = yQ + Ay

Az = Y0(B12A + y n [ S ° ( l - C) - B U S]}

z = z + Az



APPENDIX B

The routines for the perpendicular case require

solution of an equation

x = T(X); X> 0

for X in terms of T, the function T(X) being strict-

ly increasing, with I"(X) = y > 1, and I*(0) = 0.

This can be done explicitly in

Case I. The equation (47),

T = Y X + viXX/2 + )jB.X/6; B. • VI(Y - Z )

may be written in the form

£3 + b£2 + c£ + d - 0; £ = nX

b - 3a/6, c - 6/6, d - -6T/8

8° > 0, T = UT/Y_a =8°, 6 =

For 5 - n - (a/8), this becomes

n + pn + q " o

p - 3(26 - a2)/62, q - -6T/6 - 2a(36 - a2)/63 .

Note that p > 0. For, 2(1 - 8°) > (8°)2 follows

from (6°)2< 62 - (8°)2 - - (1 - 82) + 1 - (8°)2 <

1 - (6°)2 < 2(1 - 6°). Hence W - (p/3)3 + (q/2)2 >

0, and such a cubic has just one real root, namely,

n - H + J; H -(- q/2 + V ) 1 / 3 , V- W1/2, J - (- p/3)/H.

One may therefore obtain X from T by the fol-

lowing method:

a. a - 8° 6 • 1 - 6°, T • UT/Y
X Z O

b. A = 88 - 3a2, B - a(38 - a 2 ) ,

R - [A + T(6B + 9B2T)]1/2

c. S - (B + 382T + 8R) 1 / 3 , H« S/8, J - ( a 2 - 28)/8S

d. n - H + j , e = n - i f ) , x - £/M .
W

In cases II, III, solution of T = T(X) for X

requires approximation methods not discussed here.

We make only the following observations.

Case II. Equation (55) may be written in the

form

<5T/Y O sin Q H F(£);

5 = 6X , ex - e/6, ux - y/6. u
2 - e2

El6z el "

1/YO. F'(0)

The function F(£) is strictly increasing, with

F(0) - 0, F'(£) - Y/• ̂

F"(0) - e ^

Case III. Equation (65) may be written as

6T/Y O - - = F(£) ,

£ - <SA, e 1 - e/5,

Cll " elBz " yl

2 2

"11

11

The function F(£) is strictly increasing, with

F(0) - 0, F'( , F'(0) -

F"(0) -

It can be shown* that B-. < 0 < A^, and there-

fore F"(Q - e1(A11e
? + Bne-S) - 0 for e

2C -

- BJJ/A,, > 0. Moreover, - B11/A11 > 1 iff A ^ +

B,. = 6° < 0. Thus F (£) Is concave up for all

£ > 0 if 8X ̂  o, and has a single inflection point

at

if 8^ < o.

C - (1/2) Za (-Bu/An)

c2, = - [62 - (8°)2J<

K'f/ml: 325 (50)
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