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AN ANALYSIS OF DIRECT ION-MOLECULE REACTIONS
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One of the major goals of the study of molecular

ccllision phenomena is to learn how to analyze or anticipate

the dynamics of an elementary reaction without engaging in

extensive numerical calculations,

importance in ion-meclecule chemistry, where often the reaction

This is of particular

dynamics are affecred by more than one potential emergy surface.

The accurate calculation of these surfaces, and their use to

investigate the exact classical collision dynamics, while

highly edifying, can be quite expensive and time consuming.

It is of interest, therefore, to 'explore the efficacy with

which simple models for the reaction process can be used to

understand and predict the energy and angular distributions

of products, isotope effects, and total reaction cross

sections.

It has proved convenient to describe the dynamic mechanism

of an elementary bimolecular chemical reaction as involving

either a short-lived, direct interaction of collision partners,
or a long-lived collision complex.
collision partners are close (within approximately an

equilibrium bond distance) for a time comparable to a

In the former case,

the

vibrational period, but less than z full rotational period.

In the latter case, the partners are close and str(mﬁzﬁQ ER
E:Ed.—

.



interacting for several rotational periaods. The dividing
line between the two classifications can be hazy, and it is
also unrealistic to believe that a reaction can proceed
exclusively via a long-lived collision complex. Examples of
ion-molecule reactions which fall in each extreme classifi-
cation are nwow Known (for reviews and references to tihe
original literature, see Dubrin and Henchman, 1572 and Mahan,
1974). Examples of intermediate behavior have also appeared
(Chiang, Gislason, Mahan, and Werner, 1971, and Mahan and
Sloane, 1973).

For reactions which proceed through a long-lived collision
complex, the interaction between all atoms may be strong
enough so that the accessible phase space of the complex is
explored fairly uniformly. 1In these cases, we can hope that
the statistical or phase space theories of chemical reaction
can reproduce and predict such things as the relative yields
of products, isotope effects, and energy partitioning. T[he
effectiveness of the present forms of statistical theory is
5till an open question, however.

For reactinns which proceed by a direct interaction
mechanism, there is also a relatively simple model available:
the classical trajectory calculation with Monte Carlo
sampling of a properly weighted set of initial conditions.

As mentioned above, thls approach can be expensive, and can
produce more information than can be readily assimilated.
In this paper we shall use a simple sequentizl impulse model

to analyze the dynamics of direct ion-molecule reactions.



The experimental studies which have prompted this analysis
have leen largely concerned with exoergic or thermoneutral
hydrogen atom transfer reactions. To illustrate the nature
of these Findings we shall summarize some of the recent
results obtained for the 0"’(!{_.5,11)(»{+ reaction (Gillen,

Mahan, and Winn, 1973 abcj.
Direct Hydrogen Atom Transfer Processes

Fipure 1 shows the velocity vector distribution of oi*
from the 0"(H2,H]0H+ reaction as measured in ion beam
scattering experimeats. This distribution has features which
are quite characteristic of the results obtained for a number
of exoergic hydrogen atom transfer reactions. The results
are displayed by plotting contours of comnstant intensity in
a polar coordinate system which has an origin which moves at
the velocity of the center-of-mass of the collision partners.
Thus the radial coordinate gives the speed of oi* relative
to the centroid of the 0+-HZ system. Small values of the
radial coordinate correspond to small values of the final
relative translational enevgy of the products, and therefore,
by energy conservation, to large product internal excitation.
The large labeled circles give the locations of two values
of Q, the translational exoergicity. By energy conservation,
Q can be written as

R} 2
QEE—(&—J—--EZE-=-AEC;—U (1)

.
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Here p 1is the reduced mass and g is the relative speed of
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the products (primed) and r=actants (unprimed), AEg is the
internal energy change for the reaction, and U 1is the
internal excitation energy of the products.

For reactions in which the products are an atom and a
molecule in their ground electronic states, Q is bounded by
the situations in which U 1is zero or te D, the dissociation

energy of the molecule:
o o
~AE°—D Q=< -AED. (#3]

The lower limit cam be violated (apparently) if either product
is in an excited electronic state, and the simplest way to

take this into account is to vecognize that for such processes,
AEg has a different value (Gillen, Mahan, and Winn, 1973a).
For the O0'(H,,H)OH" reaction,

-4.5 2 Q < +0.43 ev,

and the Q circles in Fig. 1 correspond closely to these
iimits. In effect, these circles define a "stability zone"
for OH' in its ground electronic state.

The angular coordinate 6 in Fig. 1 measures the direction
of the OH" product relative to the direction of the 0
projectile, Thus for a direct interaction process, it is a
qualitative (and eventually guantitative) representation of
the force exerted between collision partners. Product OH™
found in the small angle (6 < 45°) region in Fig. 1 was
formed in a way such that the net integrated force between

products was small during the collision. By analogy with



elastic scattering of structureless particles, this implies
formation of the products in the small angle region is by
grazing collisions. In a similar manner, we conclude that
in the formation of products at large scattering angles,
large forces are involved, and these are associated with nearly
head-on collisions between reactants. By using the impulse
model of direct reactions, we hopr: to delineate what is meant
by grazing and head-on collisions more clearly.

Figure 1 shows that there is a strong maximum in the
intensity of OH"  at the spectator stripping velocity: a
scattering angle of zero degrees and a spec! relative to the

centroid consistent with the general expression

u = () () ()

which applies to the reaction A(BC,C)AB. 1In Eq. (3) the
letters represent the masses of the atoms, and u and ug
are respectively the product and projectile speeds relative

to the centroid. Appearance of o*  at the spectator

stripping velocity implies that the reaction occurred witn

no net integrated force on the freed hydrogen atom. WKith one
exception, all exoergic hydrogen transfer reactions so far
investigated have displayed a very prominent intensity maximum

at or very near the spectator stripping velocity. The

exception is apparently the ground state reaction Kr+(H2,H]KrH*,
which may alsn be unique in having a potential energy barrier
between reactants and products (Henglein, 1972). Unfortunately,

the stripping peak is frequently so prominent that reacrfions



have often been rather carelessly described as "stripping
processes™, and the large angle scattering ignored or dismissed
as unimportant. Without question, the idea that atom B can

be transferred to A with no force being exerted on C is quite
rematkable. It is therefore of considerable interest to
determine in detail how this can occur, and how important it

is to the overall chemical reaction cross section.

The experimental determinations of the final relative
energy distributions of reaction products have been somewhat
limited by the low velocity resolution employed so far.
However, in most of the cases imvestigated, it is qualitatively
clear that in the intermediate to high range of init:al
relative energies (>3 eV), the products in the small angle
region are somewhat more excited internally than the products
scattered through large angles. In this energy regime, much
or most of the internal excitation of the products is supplied
by the initial translational energy of the reactants. In the
nearly head-on collisions which lead to large angle scattering,
the large forces that occur provide the mechanism for disposing
of some of this incipient product excitation as relative
translarional energy. There is less possibility for this
disposal in the grazing collisions which produce the very
small angle scattering. A more quantitative expression of
these ideas is possible in terms of the sequential impulse
model. as we shall see.

In thc regime of high initial translational energy, the

total reaction cross csection is greatly influerced by the



problem of stabilizing the product molecule against disseciation.
This can be illustrated most clearly for the product formed at
the spectator stripping velocity. The Q-value for this product
is

%, " - xoF (4
where E 1is the laboratory energy of the projectile ion A.
If E 1is made large enough, st will become more negative
than the lower limit given by Eq. (2), and the molecular
product in its ground electronic stacc will he unstable. In
the early work which demonstrated the importance of spectator
stripping in the reactions of Ar*, Nz+, and co* with H,,
it was anticipated (Henglein, 1966) that the intensity peak
at small angles would be lost entirely when E reached the

critical value

_ A+R a
Ec = (1 QE+D) (5)

at which the internal energy of the stripped molecular product
exceeds its dissociation energy. However, it wos observed
that for these systems, the forward scattered peak is not lost
at high initial relative energies, but instead decreases in
intensity and moves to specds greater than the spectator
stripping value. That is, some of the forward scattered
molecules are stabilized by -ecoil which can evidently occur
in grazing collision in these systems.

One reaction has been found that displays the loss of
forward scattered products at initial energies above the

critical value for spectator stripping. Figure 2 shows the



velocity vector distribution of oH* from the 0+(HZ,H)0H+
reaction at an imitial relative energy of 11.1 eV. At this
energy, the spectator stripping velocity (indicated by a small
cross) lies in the zone where OH* in its electronic ground
state is unstable. 1Indeed, the intensity peak so evident at
lower initial relative energies (cf. Fig. 1) has been lost.
Thus, the potential energy surface for the 0"(HZ,H)0H‘L
reaction lacks the features which allow stabilization by
product recoil in the small angle region. It would be

" valuable to know what these critical features are, and in
addition, to be able to understand the uccur}ence of the
intensity peaks located at approximately 45° in Fig. 2.
We shall find that the sequential impulse model illuminates

this problem considerably.
The Sequential Impulse Model

A number of simple models for the atom transfer process
have been proposed, and at least partially tested against
molecular beam scattering data (Bates, Cook, and Smith, 1964;
Light and Horrocks, 1964: Suplinskas, 1968; Kuntz, 1970;
Chang and Light, 1970; Hierl, Herman, and Wolfgang, 1970;
George and Suplinskas, 1971; Grice and Hardin, 1971; Marron,
1973). Even allowing for the necessity of using extremely
simple approximations to potential energy surfaces and
mechanical behavior, most of these models are lacking in
generality or rigor, and some have not been particularly

illuminating. The sequential impulse model proposed by Bates,



Cook, and Smith (1964) is conceptually simple, and has the
capacity for considerable refinement. In brief, the reaction
A(BC,C)}AB is viewed as an event in which A hits B
impulsively and elastically, B then hits € in a like
manner, and A then combines with B if their energy of
relative motion is less than the dissociation energy of the
product molecule. Suplinskas (1968} and George and Suplinskas
(1971} have el=borated the model, and have shown that it can
reproduce the major features of the Ar+-Dz reactive
scattering. Gillen, Mahan, and Winn (1973c) found that a
version of the model in which the atoms interact via hard
sphere potentials is consistent with the distributions of the
products of the reaction of 0" with D2 and HD in the
regime of high relative energies. These two sets of appli-
cations involved calculation of the final product velocities
from sampled initial conditions using large digital computers.
However, to better discern and analyze the nature of the
collisions which give products at various scattering angles
and speeds, it would be valuable if the product distributions
could be expressed apalytically and evaluated with a small
calcuiator. This proves to be possible, and the results will
be repo:rt.d in detail elsevhere. In what follows we shall
demonstrate that a number of conclusions can be drawn from
the model merely by using velocity vector diagrams.

First, let us review some fundamental features of elastic
collisions whichk are essential to the development and under-

standing of the sequential impulse model. Consider atom A



moving with an initial laboratory velocity Yl toward atom B,
which is initially stationary in the laboratory. The initial
relative velocity g is equal to Yl’ and the velocity of the
center-of-mass of the A-B system is Yl A/ (A+B). Regardless

of the nature of the two body collision, the center-of-mass
velocity is unchanged. Since the collision is assumed to be
elastic, the final and initial relative velocity vectors have
the same magnitude, but different direction. The final relative
velocity vector is obtained by rotating the initial vector

about the fixed center-of-mass velocity. The result, as is
<hown in Fig. 3, is that the final laboratory velocity yi
of particle A is a vector which terminates on a sphere of
radius Vl B/(A+B) centered at the centroid velocity.

Similarly, y;, the final laboratory velocity of B, lies on

a concentric sphere of radius V1 A/{A+B).

The scattering angle Xp» measured in the center-of-mass
svstem of A and B, is also shown in Fig. 3. From the geometry,
it is clear that the bisector of Y; passes through the
centroid velocity, and bisects the angle X1~ As a result,

we can wrice

- A LX)
VZ = 2 B V1 51n(Tr) (6)

'
for the .nagnitude of VZ. This relation and the construction
used te find it will be particularly useful later.

The vector relations just discussed give the possible

values of the particle velocities after an elastic collision.

The distribution of intensity is also important., and is expressed

10
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most compactly by the classical differential scattering cross

section I(x), where for a monotonic potential

b

1) = - (7Y
ERNESY

Here b is the aiming error or impact parameter. To evaluate
I(x), the relation between b and x must be found from the
intermolecular potential function. For hard spheres, the

result is particularly simple:

~

1w = & )
where d is the mutual collision diameter. Thus for this
model, the scattered intensity is independent of x. Fer
more realistic potentials, I(x) 1is large at small angle-
and drops rapidly as x increases. In the range of angles
from 60-180°, I(x) decreases rather slowly, and in the large
angle region, is pretty well represenied by a constant term
characteristic of hard sphere scattering. The hard sphere
differential cross section is therefore a good first approxi-
matioa to the intensity distribution, particularly feor high
energies and large scattering angles.

There is another feature of high energy ccllisions that
is of importance. Such collisions, particularly those that
produce large angle scattering, are impulsive. That is, the
time during which a large force is exervied between a pair of
atoms is small compared to the natural frequencies for nuclear
motion in molecules. For example, if atoms repell each other

according to the potential
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R

where L is a range parameter, then the force is greater than
10% of its maximum value for a period of 371, where 1 1is a

characteristic collision time defined by
T = 2L/g.

During this time, the relative velocity changes from app-oxi-
mately 90% of its initial value to 90% of its finmal value.
For typical values of L and energies in the electron-volt
range, T is of the order of 2 x 10—15 sec. This is shorter
than the vibratioaal period, and much shorter than the rotational
period of Hy. Thus for the case of a high energy atom A
hitting a diatomic molecule BC, it often may be quite
reasonable to describe the process as an elastic collision
between A and B, followed by an independent elastic collision
between B and C. The iritial condition fecr the second
condition is, of course, the final state of the first collision.
The primary object of a model for the reaction process
is to calculate the intensity of scattered product AB as a
function of the scattering angle & and speed relative to
the center-of-mass of the ABC system. Evaluating the
intensity as a function of Y;, the final velocity in the
laborateory system of the free atom C, is completely equivalent
to this, since by momentum conservation, each value of Y;
Currespnnds.tn a2 definite value of 8 and the final relative
speed. Finding the magnitude of Y; is a simple matter if

one knoews X1 and x,, the scattering angles for the A-B and



B-C collisions in their individual center-of-mass coordinate
systems. As indicated above, the magnitude of the laboratory

velocity of atom B after the A-B collision is
Yo, A X
\'Z =2 A8 s;n(T).

'
Now we simply regard V, as the initial velocity for the B-C

collision, and apply the analogous formula to get

n X X
vy = 4(;\-115) (FE—C) sin(—zl;) sin(—zg-). (9

Having found the laboratory volocity of atom C after
a particular sequence of impulses, we must ask whether or not
this constitutes a reactive collision. Our criteriom for
reaction is the simplest possible: the value of V; must
lie in the stability zone which corresponds to the intermal
energy of AB being less than its dissociation energy. This
is an important approximation, since it allows us to disregard
details of the trajectories such as the possibility of
additional collisions between C and B or A. However, it is
probably a good approximation, since for high energy collisions,
the size of the cross section is governed largely by product
stability considerations. Moreover, hard sphere trajectory
calculations (Gillen, Mzhan, and Winm, 1973b) have demonstrazed
the relative unimportance of additional impulses and other
details of the trajectories, and also the effectiveness of
this reaction criterion in reproducing experimental data.
However, the approximation dges restrict application of the

mode]l to reactions where the potential energy surface has very



simple properties: thermoneutral or nearly so, and no
substantial wells or barriers.

Equation (9) suggests that a variety of impulse sequences
can contribute to the product intemsity at y;. The angle Xy
may be large or small, as long as Xz has the appropriate
small or large value consistent with the selected value of V;.
However, there are limits to the range of Xy and X3 values
that can be involved, and these limits are connected with the
direction of y;, a'property which we have nct yet used.

To see how this limitation comes about, consider Fig. 4.

L]
Here we treat only those values of YZ which lie in the plane

v

3
1

possible values of YZ lie on a circle of radius V1 A/ (A+B)

defined by the vectors Yl and V As indicated earlier, the

centered on V, at this distance from the origin of the
laboratory coordinate system. The locus of all B-C center-
of-mass velocities in this plane plays a very important role.
It can be found by multiplying all possible Y; vectors by
the factor B/(B+C), and plotting the points. The result is

a circle of radius

R= (ap (i) V) (10)

centered on V1 at a distance R from the laboratory origin.
Let us call this the centroid circle.

Now consider an arbitrary centroid velocity for the B-C
system just before (and after) their collision. These centroids
must be on the centroid circle, and must also lie on the

perpendicular bisector of YS‘ As Fig. 4 shows, there are just

14
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‘two centroids which satisfy both these conditions for any given
!; vector. One of these corresponds to a large Xz (and

small xl)' the other to the values of X1 and X, being inter-
changed. These two angles are the extreme values of x; and

X2 that are consistent with a selected y;.

The origin of the intermediate values of X1 and x,
becomes obvious if we recognize that Y; need not lie in the
plane of vy and Y;. Thus the centroid circle is really part
of a centroid sphere of radius R, and the perpendicular
bisector of Y; is a plane. The intersection of this bisecting
plane with the centroid sphere is a circle - the “magic circle" -
perpendicular to the YI—Y; plane. As one moves along the
magic circle, all the X17%p pairs that can contribute to
scattering at Y; are encountered. Thus the product intensity
at y; can be found by surming the properly weighted contri-
butieons Dfrall allowed Xy7%z scattering pairs.

For the present purposes, the details of this weighted
summation are not needed, but it is useful to note that the
distribution wvver the various X17 Xy pairs is nearly uniform.
Tke departure from uniformity comes about because the angle
a between y; and the BC internuclear axis is distributed
with a weighting factor of sina. Consequently, the BC axis
is more likely to lie perpendicular to y; than parallel.

As a result, impact parameters for the B-C collision have
a relatively high probability of being near their maximum
allowed value of Tys the BC equilibrium bond distance.

Thus smaller values of y, are more probable than larger
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values, in contrast to the usual situation for hard sphere
scattering. However, while this can affect the details of
the product velocity distribution, it is not important in
determining the gross features of the distributions with
which we are concerned here.

A number of qualitative conclusions can be drawn directly
from Fig. 4. First, there will be certain y; vectors for
which the perpendicular bisector does not intersect the
centroid sphere. Even though these values of y; might be
consistent with the total energy and momentum conservation
laws, they can not be produced by a sequence of two elastic
impulses. For example, events in which !; is directed at
180° in the laboratory coordinate system can mot occur.
Thus, there can be no backward recoil of particle C, and no
corresponding forward recoil of the AB product.

A little reflection shows that tais forward recoil could
occur if, just before the A-B impulse, the vector yl were
increased in magnitude with the center-of-mass velocity held
fixed. This could occur in a real system if there were an
attractive potential between reactants, and this is in fact
the mechanism for forward product recoil proposed in the so-
called modified stripping model (Herman, Kerstetter, Rose,
and Wolfgang, 1967). In addition, one can see that forward
recoil could occur if, just prior to the B-C collision, the
vector Y; were increased in length, so that this collision
would appear to be super-elastic. This could come about if

there were a repulsive energy release between B and C as

the products separate. This is the basic idea involved in
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the so-called direct interaction with product repulsion ‘DIPR)
model for reaction dynamics (Kuntz, 1970; Marron, 1973). The
sequential impulse model thus clarifies the validity of either
reactant attraction or product repulsion as sources of forward
Tecoil.

It is evident that Y; vectors directed at angles other
than 180° are accessible only if the magnitude of V; is
small enough so that there is an intersection of the bisecting
plane and the centroid sphere. The condition for such an
intersection can be found readily from the analytic geometry
of the vector construction. The maximum values of V; lie

on a curve given by

"

v3)
3 ;ax = cose + 1 (11)
where € 1is the angle between Y; and yl' Equation (1il1)

represents a cardioid which has a cusp at the origin of the
laboratory velocity coordinate system. There is a corres-
ponding cardioid which gives the maximum values of the
velocity of the AB product in “he center-of-mass system,
and this is illustrated in Fig. 5. The minimum values of the
AB product velocity are just those given by the requirement
that the excitation energy of the product AB must be less
than its dissociation energy. Thus the zone in velocity
space that is allaowed is bounded from the inside by tae
stability circle, and from the outside by the limiting cardioid.
The size of the limiting cardioid is proportional to R,

and thus scales with Vl. However, the size of the stability
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circle is determined by the magnitude of Qmin' a fixed number
independent of Vl. Thus the size of the kinematically
allowed zone can be represented as a function of initial
relative energy by one cardioid, if the units of the diagram
are changed as the energy changes. However, in this case
there is a different sized stability circle for each initial
relative energy, as indicated in Fig. 5. As the initial
relative energy increases, the diameter of the stability
circle increases, and eventually it intersects the limiting
cardioid at the cusp. This corresponds to reaching the
critical projectile energy above which products formed by
spectator stripping are unstable. As the initial relative
energy is increased still further, increasing amounts of the
accessible small angle scattering region pass into the unstable
zone, and the outline of the product distribution assumes a
crescent-like shape. The experimentally observed distributions
for the 0+—H2 and 0*~DZ reactions have just this shape
when the initial relative energy is in the 11-30 eV range.
Moreover, the observed decrease of the total reaction cross
section with increasing energy can be in large measure attri-
buted to the concomitant diminution of the size of the product
stability zone.

The considerations just outlined provide an explanation
of why the spectator stripping peak and all small angle
scattering is lost at high energy in the 0+(H2,H)0H+ reaction,
but is stabilized by forward recoil in the reactions of NZ’,
CO+, and Ar® with H2 and Dy In the 0*-Hz case, the reaction
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is orly slightly exoergic {(AH = -0.43 eV) and t:zere is no

obvious mechanism for producing large amo ats of forward

recoil. In contrast, the reactions of Nz*, CO’, and Ar’ are
notably more exoergic (AH 5 -1.4 eV). If all of this exoergicity
were to be released as product repulsion in some of the grazing
collisions, forward recoil and product stabilization could

occur, as is observed.

Having delineated the general limits and energy dependence
of the product velocity vector distribution predicted by the
sequential impulse model, we can now turm to some of the
details of the intemsity variations. From Fig. 4 it is evident
that Y; vectors of small magnitude directed approximately
perpendicular to v, will kave bisecting planes which intersect
the centroid sphere to generate magic circles of large radii.
There is, therefore, a relatively large range of X317 X2 pairs
which can produce these events. The intensity in the small
angle scattering region will thus be large if the initial
relative energy is low enough to place the small angle scattering
Tegion in the stability zone. As V; increases in magnitude,
the size of the magic circle decreases, and the product
intensity goes down.

In order to see this effect develop systematically, in
Fig. 6 we have plotted the X1~X3 pairs that produce scattering
at various fixed values of the product scattering angle 6.

The calculations apply to the 0+(BZ,D]0D‘ reaction at an
initial relative energy of 20 eV, a situation in which the

very small angle scattering does not lie in a stable region



of velocity space. The solid lines refer to p-oducts formed
with the minimum allowed Q value of -5 eV (the correct
value, if the exoergicity is ignored), while the dotted lines
correspond to a Q value of -1 eV.

Figure 6 exposes the reason for the iitensity maximum
observed experimentally near 45° < 6 < 60°. For this region,
the range of X7 Xz pairs that can produce stable products
reaches a maximum. At smaller values of 8, the range of
arlowed X1 X2 pairs drops abruptly, and the observed product
intensity does also. At values of 6 greater than 90°,
the allowed range of X1~ Xz pairs again diminishes, and the
expected and observed product intensities diminish.

Notice that the values of Xy and Xz which produce
large values of @& are themselves large. This is consistent
with the idea that backscattered products do come from nearly
head-on collisions. In order to have both Xy and X3 large,
A must hit B nearly head-on, and B must hit € in a
like manner. This implies a nearly collinear ABC conformation
at th~ beginning of the collision. Similarly, we can see
that the values of X and Xz which contribute to small
values of 8 are of modest magnitude (~35-90°). Thus it is
moderately accurate to associate the region of small & with
vgrazing" collisions, although in some of the events that
contribute, substantial deflections of A by B oar of B
by C do occur. It is probably better tao think of 8 < 15°
as the grazing callision region.

Figure 6 also shows that the range of

X pairs that

X174z
can produce scattering at Q = -1 eV is smaller at any value



of 8 than the corresponding range for Q = -5 eV. Moreover,
the X;"X; Ppairs for a given value of B 1lie at slightly
larger values for Q = -1 eV than for Q = -5 eV. Thus,
principally because of a smaller allowed range of X1~ X3z pairs,
the intensity of the lesser internally excited products will
be less than that of the more excited products. In other
words, there is an intrinsic tendency for the internzl energy
distribution of the products to be inverted.

So far we have discussed the detailed events in which A

hits ™, and B has a hard sphere collision with C. 1In
1]

2
and the BC internuclear axis must be less than n/2. For

order for such events to occur, the angle o between V

a > /2, there will be no B-C collision, and thus no force
on C. If the AB product of these events is stable, it has
the velocity calculated from the spectator stripping model.
Thus, if A, B, and C are treated as hard spheres, spectator
stripping comes largely from events in which A strikes and
combines with the second atom it sees as it approaches BC.
Stripping processes are also pussible for values of a
somewhat smaller than =n/2 if the mutual hard sphere diameter
of the B-C pair is less than the impact parameter of the
second collision. In the limit of vanishing hard sphere
diameter for B and C, all collisions will be specrator stripping
processes.

These considerations help to make clear why spectator
stripping is so prominent in the product velocity vector

distributions of ion-molecule reactions. If the poteatial

Z1
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energy surfaces for these reactions have only a weak dependence
on the ABC angle, then trajectories are possible in which the
projectile A strikes and combines with the second atom without
exerting force on the free or spectator atom. Moreover, if
there are strong attractive forces between A and B, but not
between B and C, there will be trajectories of the stripping
type even when a 1is significantly less than n/2. Note

that if spectator stripping is described as involving grazing
collisions, it is the B-C interaction, and not necessarily the
A-B collision which is of the grazing type.

Spectator stripping resembles both the rainbow and glory
effects in atemic elastic scattering (Bernstein, 1966). Like
rainbow scattering, it appears that therc is in the reactive
situation a range of initial conditions (in this case, the
angle o) which gives product scattered at or very near to
one point in velocity space. The fact that this point is at
a scattering angle of zero degrees is also significant, since
just as in glory scattering, there is an integration over all
values of the azimuthal angle which is performed by the detector
only when 8 equals zero degrees. These two factors and the
relatively low apparatus resolution employed so far combine
to give spectator stripping a fame which it perhaps does net
fully deserve. After considering realistic potential energy
surfaces, it is very difficult to accept the fact that 8 and
C can separate with a truly zero force between them. In the
future, when product distributions are examined with high
resolution, some or all of the spectator peaks may be found

not at § = 0°, but at small but finite scattering angies.
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Even now it should be realized that to go from the intensity
contour maps of Figs. 1 and 2 to actual total reactiom cross
sections, one must apply a weighting factor of sin8, and
then integrate the intensity over angle and speed. Thus,
product at 6 = 0° is given zero weight, and that near

¢ = 90° contributes most heavily to the total reaction cross
section. In other words, most of the chemistry is done by
the type of events described at least approximately by the

sequential impulse model.
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FIGURE CAPTIONS

Figure 1. 1\ contour map of the specific intensity of on*
formed by the 0+[HZ,H)OH+ reaction at an initial
relative energy of 5.56 eV. The radial coordinate
is the speed of OH* relative to the center-of-
mass of the entire system. The angular co-
ordinate measures the deflection in the center-
of-mass system, of the 0" from the original
direction of the 0" projectile. The spectator
stripping velocity is indicated by a small cross.

Figure 2. A contour map of the specific intensity of o
formed from collisions at 11.1 eV iaitial relative
energy. Note the absence of an intensity peak at
0° and the appearance of peaks at +60°. The
spectator stripping velocity, marked by a small
cross, lies inside the Q = -4.5 eV circle, where
o’ in its ground state is unstable.

Figure 3. A velocity vector diagram for the elastic collision
of atom A with atom B. The circles marked Vi and
Yé are, respectively, the loci of all possible
final laboratory velocity vectors for atoms A and
B. The scattering angle in the center-of-mass
svstem is designated by x. Note that the perpen-
dicular bisector of any YE vector bisects y and

passcs through the A-B centroid velocity.



Figure 4. A velocity vector diagram for the sequential
impulse model in the plane of the initial projectile
velocity V, and the final velocity of atom C, \'_,;
The large Q circles indicate a part of the
stability zone for the reaction: the velocity
of atom C must lie in this zone if AB is to be
stable to dissociation.

Figure 5. The cardioid which gives the maximum velocities
of 00" from the 0+(DZ,D]0D’ reaction according to
the sequential impulse model. The maximum
velocity of o’ according to overall energy
conservation is the Q = 0 circle. The three
smaller circles give the minimum velocity of on”
consistent with product stabkility (i.e., the
Q = -5 eV 1imit) for the three values of the
initial relative energy indicated.

Figure 6. The X" Xa pairs that contribute to the intensity
at various values of the product scattering angle
8 for the reaction 0*(UZ,D)OD’ at 20 eV initial
relative energy. The solid lines pertain to
product at Q = -5 eV, the dashed lines to product

at Q@ = -1 eV.
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