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Abstract 

Potential-energy surfaces for heavy-ion collisions. J. R. Nix and 

A. J. Sierk (Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.). 

Physica Scripta (Sweden). 

We calculate the nuclear potential energy of deformation for the collision 

of two heavy nuclei by means of a macroscopic-microscopic method. The 

nuclear macroscopic energy is calculated in terms of a double volume 

integral of a Yukawa function, and the microscopic shell and pairing 

corrections are calculated by use of Strutinsky's method from the single-

particle levels of a realistic diffuse-surface single-particle potential. 

The time evolution of '..he system after the point of first contact is 

determined by solving the classical equations of motion for incompressible, 

irrotational hydrodynamical flow. The effect of nuclear viscosity on the 

fusion path is to slow down the formation of the neck and to inhibit 

the excitation of collective shape vibrations. For nuclear systems in which 
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the fission saddle point lies well outside the contact point it is possible 

to interpret experimental fusion cross sections at relatively low bom­

barding energies in terms of a one-dimensional interaction barrier, as is 

customarily doue. For heavier nuclear systems and higher bombarding 

energies, where the larger Coulomb and centrifugal forces tend to deform 

the fusing nuclei and lead to immediate fission, only those dynamical paths 

that pass inside the fission saddle point contribute significantly to 

fusion. 

1. Introduction 

Thus far in this symposium we have been concerned primarily with the 

nuclear potential energy of deformation in connection with fission, shape 

isomeric states, and nuclear ground-state masses and deformations. We 

would like now to turn to the potential energy for the collision of two 

heavy nuclei, which leads to different nuclear shapes and the possibility 

of larger nuclear systems than are encountered in these other areas. But 

otherwise they are all part of a common discipline associated with the 

shape dependence of the nuclear Hamiltonian and can be treated in a 

unified way. 

As we have seen throughout the symposium, there are two general 

approaches for calculating the nuclear potential energy of deformation: 

selfconsistent microscopic methods and the macroscopic-microscopic method. 

We have learned this morning of the considerable progress that has been 

made recently in the former methods, and perhaps soon the potential energy 

-2-



calculated this way will be sufficiently accurate to reproduce experimental 

observations. Buc our considerations here are based on the latter 

method [1-6]. In addition to being computationally simpler and more 

accurate, the decomposition of the energy into a smoothly varying macroscopic 

part and a fluctuating microscopic correction term permits a qualitative 

interpretation that is often lacking in the selfconsistent microscopic 

methods. 

2. Macroscopic energy 

The macroscopic energy is calculated frequently by means of the liquid-drop 

model or the droplet model [7,8], which are expansions of the nuclear energy 

-1/3 2 

in powers of A and [(N-Z)/A] . However, all such expansions break down 

for two nearly touching nuclei and for shapes with small necks. In these 

cases the finite range of the nuclear force leads to an additional reduction 

in energy that must be taken into account. This we do by calculating the 

nuclear macroscopic energy by means of a double volume integral of a 

Yukawa function [9], in analogy with the calculation of the Coulomb energy 

by means of a double volume integral of the Coulomb interaction. 

To lowest order in the Yukawa range this method yields the surface 

energy of the liquid-drop model. For a finite Yukawa range the resulting 

nuclear interaction energy for two separated nuclei is similar to that 

calculated in other approaches [10-1?]. The primary advantage of the 

present method is that it can be used to calculate the nuclear macroscopic 

energy for any conceivable shape. Its primary disadvantage is that the 
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effective two-nucleon interaction that is used does not contain any aspects 

of nuclear saturation. 

To be specific, the nuclear macroscopic energy relative to the 

spherical shape is given by [9] 

where 

and where 
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is the value of E for a sphere. The integration in eq. (2) is over the 
nm 

4ir 3 
volume of the shape, whose magnitude is held fixed at — r. A as the 

nucleus deforms. 

-1/3 
For small deformations an expansion of E in powers of A leads 

nm 
1 2/3 

to an A term that remains constant with deformation and to an A term 

that is proportional to the surface area. Because the effective two-nucleon 

interaction that is used is nonsaturating, the magnitude of the volume-energy 

term is incorrect, but this term cancels when eqs. (2) and (3) are 

subtracted to give the energy relative to a sphere. The constant that 

defines the strength of the Yukawa function is chosen so that the surface 
2/3 

energy of a spherical nucleus is c A ; the dependence of c upon nuclear 
3 S 

-1*-



composition i s taken to be 

c = a 
s s 

/N - Z 1 - «pr-. («) 

where a is the surface-energy constant and K is the surface-asymmetry 
s 

1/3 constant. The A term, which represents the curvature energy, is identically 

zero, which agrees with a recent determination of the value of the curvature-

energy constant from experimental fission-barrier heights [8]. The A term 

and the exponentially small term are strong functions of deformation and 

contain effects associated with the finite range of the nuclear force; these 

terms would be zero if the Yukawa range a were zero. 

The macroscopic energy calculated in this way contains four constants, 

whose preliminary values are 

rQ - 1.16 fm, (5a) 

a - 1.4 fm, (5b) 

and 

a - .24.7 MeV, (5c) 

4.0. (5d) 

The value of the equivalent sharp-surface nuclear-radius constant ir„ was 

taken from an analysis of electron-scattering experiments [18], and the values 

of the remaining constants were determined [9] from adjustments to experimental 

fission-barrier heights and heavy-ion interaction-barrier heights. Because 

we use a shape with a sharp surface, the Yukawa range a is somewhat larger 

than the actual nuclear-force range in order to simulate the diffujeness of 
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the surface. Although the individual values of a and K are determined 
s 

poorly, the value of the effective surface-energy constant c appropriate 

to heavy nuclei is determined more accurately. Our value for c is somewhat 

larger than the value obtained in the liquid-drop model when experimental 

fission-barrier heights are used in its determination [19], but is approximately 

equal to the value determined from nuclear ground-state masses alone [20]. 

The incorporation of finite-range effects into the nuclear macroscopic 

energy leads to several important consequences [9]. First of all, higher-

multipole distortions do not increase the energy as much as in the liquid-

drop model. The calculated ground-state hexadecapole moments for the lighter 

actinide nuclei are therefore larger [21] than those calculated with the 

liquid-drop model. For light nuclei, where the range of the nuclear force 

becomes a substantial fraction of the nuclear radius, the stiffness with 

respect to low-multipole distortions is also reduced. This lowers the fission 

barriers of nuclei near silver by about 10 MeV relative to those calculated 

with the liquid-drop model and shifts the critical Businaro-Gallone point 

2 2 
(where stability against mass asymmetry is lost) from Z /A • 19.6 to Z /A = 23.0. 

40 

For Ca and certain other light nuclei the reduced stiffness also makes it 

possible for single-particle effects to create a secondary minimum in the 

potential energy as a function of deformation. Finally, the effective 

nuclear-radius parameter that frequently is used to characterize experimental 

interaction-barrier heights decreases for heavier nuclear systems because 

of the increase in the relative importance of the Coulomb interaction energy 

compared to the nuclear interaction energy. Each of these predicted effects 

is supported by some experimental data. 
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3. Potential-energy surfaces 

An example of the potential energy calculated in this way is shown in Fig. 1 

84 
for the head-on collision of two spherical Kr nuclei. The potential energy 

is plotted as a function of the distance r between the centers of mass of 

the two halves of the system, for a specified one-dimensional sequence of 

shapes. These shapes are generated by assuming that after the nuclei ccme 

into contact the nuclear density remains constant throughout the shape and 

that the displaced matter simply fills in the neck region. The shape of the 

neck is described by a q'ladratic surface of revolution that joins smoothly 

with the two end nuclei [22], which are assumed to remain spherical with 

constant radii. The limiting shape generated in this way is a slightly 

prolate spheroid, and pure spheroids are used to describe the shapes to the 

left of this point. 

Our potential-energy surfaces apply only when the relative velocities 

after contact are small co>7rpared to the nuclear sound speed, for which the 

assumption of constant nuclear density sltould be approximately valid. At 

higher incident energies, the increase in density in the neck region [23-25] 

would le^d to an increase in potential energy as the nuclei come together 

[10, 17, 25, 26]. At still higher energies, other phenomena such as meson 

and baryon production, nuclear hot spots, and nuclear vaporization should 

also become important [24]. 

When the angular momentum is nonzero, there is an additional effective 

repulsive potential, as illustrated in Fig. 2. The discontinuities in the 

curves arise from the assumption that after the two nuclei come into contact 

the system begins to rotate as a rigid body. (The system is assumed to 
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remain axially symmetric about a line that rotates in space.) This increases 

2 2 

the moment of inertia from yr prior to contact to yr + I + I. after conta 

where y is the reduced mass and I. and T„ ere the rigid-body moments of 

inertia of the two halves of the system for rotation about their centers of 

mass [15, 16, 27-30]. 

When the target and projectile are equal spheres, the moment of inertia 

immediately after contact is -=• its value immediately before contact, which 

reduces the total rotational energy after contact to — its value before 

5 25 
contact. This •=• decomposes further into rr associated with orbital 
angular momentum i<lus T Q associated with the spin of the two halves about 

2 
their centers of mass,. The remaining •=• of the original rotational energy 

is dissipated into internal single-particle excitations through viscous 

forces. These forces are idealized here as infinitely strong, which leads 

to the abrupt transitions shown in Fig. 2. In an actual nucleus, the forces 

are of course weaker and the reduction in energy takes place over a small 

finite region of deformation [28, 29]. 

In Fig. 2 we are showing the effective potential energy corresponding 

to the total angular momentum because the systems's equilibrium configurations 

are given in terms of this quantity [31, 32], However, for determining the 

system's stability against center-of-mass separation r near the contact 

point, the effective potential energy corresponding to the orbital angular 

momentum is more relevant [28, 29]. The reduction in orbital angular momentum 

by viscous forces can convert such an effective potential that is initially 

repulsive into one that is attractive. 

-8-



Therefore, even at the level in which we are considering only one-

dimensional interaction barriers, the determination of the fusion cross 

section must involve at least two considerations: First, only those 

angular-momentum states for which the total effective potential prior to 

contact lies below che center-of-mass bombarding energy will lead to fusion 

with appreciable probability. The critical distance at which the system 

becomes committed to fusion [33-36] shifts from outside the contact point 

for the lower states of angular momentum to the contact point itself for 

the higher states. (In practice this point lies somewhat inside the contact 

point because of the gradual rather than instantaneous reduction in 

rotational energy.) Second, after contact the effective potential corresponding 

to the orbital angular momentum must be attractive in order for fusion to 

occur. However, it should be noted that the point at which the system begins 

to rotate as a rigid body is roughly the same point at which the neck is 

sufficiently large to permit the transfer of mass from one nucleus to the 

other. Mass transfer can of course take place even though after contact the 

effective potential corresponding to the orbital angular momentum is repulsive. 

Existing experimental fusion cross sections are described approximately 

in terms of the first consideration alone [33-36]. But these data cover 

a fairly limited region of bombarding energy and nuclear systems. At higher 

bombarding energies, where higher angular-momentum states are accessible, 

the second consideration should reduce the fusion cross section somewhat 

relative to that calculated from the first consideration. For heavier nuclear 

systems, the possibility of additional deformations (to be considered later) 

should reduce the fusion cross section even further. 
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Although most of our studies here are restricted to the macroscopic 

4"&art of the energy, we have also calculated the microscopic shell and 

pairing corrections for the fusion of a few selected nuclei. These corrections 

are calculated by use of Strutinsky's method [1-6] from the single-particle 

Levels of a realistic diffuse-surface single-particle potential of the folded 

Yukawa type [2-4]. As illustrated in Fig. 3, when the proton and/or neutron 

numbers of the colliding nuclei are near closed shells, the potential energy 

near the contact point is reduced substantially by single-particle effects. 

Hie distance required for a reversal of single-particle effects is much larger 

near the contact point than near the ground state. For two Xe nuclei the 

potential energy contains a local minimum inside the contact point as a 

function of this one-dimensional sequence of shapes. However, this minimum 

is probably unstable against elongation of the two halves of the system, 

which would prevent the existence of a nuclear molecule. But such nuclear 

•olecules possibly exist for lighter nuclear systems. We plan to explore 

these points in the near future. 

As we proceed from light nuclear systems to heavy ones, there are 

several qualitative changes in the potential energy, as illustrated in Fig. 4. 

Because the repulsive Coulomb force grows faster than the attractive nuclear 

force, the. nuclear surfaces must be brought closer together in heavier 

systems before the nuclear force overcomes the Coulomb force. This increases 

the height of the interaction barrier at a faster rate than when it is 

calculated by use of a constant effective nuclear-radius parameter. It also 

aovss the maximum in the interaction barrier to smaller distances (when 

•easured in units of the radius R-. of the spherical final nucleus). For 
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very heavy nuclear systems there is no maximum at all in the interaction 

barrier near the contact point—the energy simply continues to increase until 

the sphere is reached. The local oblate minimum that occurs for these cases 

is unstable against axially asymmetric (gamma) deformations. 

150 
In the case of two Nd nuclei, the energy is relatively flat between 

the contact point and the sphere as a function of this one-dimensional 

sequence of shapes. However, we should not jump to the conclusion that if 

these nuclei are brought together at an energy slightly above that of the 

contact point they will fuse to form the superheavy nucleus 120. As we 

see in Fig. 5, the path between the contact point and the sphere is 

actually on the side of a steep hill with respect to the elongation of the 

two halves cf the system. The fragment-elongation coordinate a shown in 

the figure is defined as the sum of the root-mean-square extensions along 

the symmetry axis of the mass of each half about its center of mass. 

The use of the two central moments r and a as generalized deformation 

coordinates provides a convenient way of projecting out of the multidimensional 

potential-energy surface the two most important symmetric degrees of freedom 

[4, 37, 38]. Near the sphere r and a are related by an orthogonal 

transformation to the coefficients a„ and a, in an expansion of the radius 

vector in Legendre polynomials, and for two equal separated spheroidal nuclei 

r is simply the distance between their mass centers and a is proportional 

to their major semiaxis. (The generalization of these moments to asymmetric 

shapes presents the classic problem of where to divide the two portions of 

the system, which we are investigating but have not solved.) 
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For describing the variety of possible shapes in fission, different 

parametrizations are better suited for different regions of deformation. 

For most regions we have used the three-quadratic-surface parametrization [22], 

eliminating one of its three symmetric coordinates in some way. In particular, 

shapes corresponding to the liquid-drop-model saddle points and most-probable 

dynamical paths for values of the fissility parameter x between 0 and 1 

are used in the region that is accessible in this way. Inside the spiral 

defined by the liquid-drop-model saddle points, the shapes are determined by 

holding fixed the ends of the shapes along the right-hand portion of the 

spiral and filling in the neck region as the ends are brought together. 

Shapes below this region are determined in an analogous way by starting with 

two tangent oblate spheroids. Two equal separated spheroids are used to 

describe postscission (or precontact) shapes in the binary valley. In the 

region above the most-probable liquid-drop-model dynamical path we use shapes 

described by a pure spheroid and by a cylinder with spherical ends. The latter 

sequence of shapes passes between the ternary and quaternary valleys, which 

are not accessible in the parametrization of three smoothly joined portions 

of quadratic surfaces. Postscission shapes in these valleys are described 

by, respectively, three and four equal separated spheroids. Finally, positive 

hexadecapole (diamond-like) shapes are described by the two coordinates £ 

and e, in NilssonTs perturbed-spheroid parametrization [1]. 

The potential-energy surface as a function of r and O" depends strongly 

upon the nuclear system. For systems heavier than 120 the energy decreases 

even more rapidly in the directions of the ternary and quaternary valleys 

than in Fig. 5. Although a consideration of dynamics is necessary to decide 
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the outcome, fission into three or four (or even more) fragments should 

predominate over binary fission for sufficiently heavy systems [39]. As 

we proceed from 120 to lighter nuclear systems the saddle point moves 

from the vicinity of the sphere to locations that ultimately lie well outside 

the contact point. The transition from saddle points that lie inside the 

contact point to those that lie outside occurs roughly for the fusion of 

110 220 

two Pd nuclei, which forms the final nucleus U. For nuclear systems 

lighter than this the forces near the contact point are directed toward the 

sphere, whereas for heavier systems the forces are directed toward the 

fission valley. 

4. Dynamics 

Although potential-energy surfaces are useful for many purposes, the dynamics 

of nuclear motion must also be considered in order to determine the time 

evolution of the system. This we do by solving the classical equations of 

motion for incompressible, irrotational hydrodynamical flow. Nuclear viscosity 

(the transfer of energy of collective motion into internal single-particle 

excitations) is introduced by means of Rayleigh's dissipation function [3, 40]. 

For a given set of initial conditions, Hamilton's modified equations of motion 

are solved numerically for the time evolution of the six coordinates and six 

conjugate momenta that appear in the three-quadratic-surface parametrization[22]. 

What is our rationale for treating nuclear dynamics in this way? First 

of all, the de Broglie wavelength for motion in a given direction is small 

compared to the distance over which the potential changes appreciably so 
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long as the kinetic energy in that direction exceeds about 1 MeV. Therefore, 

except for barrier penetration or for motion very close to the barrier, 

classical mechanics can be used for describing at least the motion along the 

fission or fusion directions. Of course, quantal zero-point vibrations lead 

to a distribution of values of the coordinates and momenta in the transverse 

directions that must be taken into account in some way. 

As far as incompressibility is concerned, we noted earlier that the 

nuclear matter should be approximately incompressible when the relative 

velocities after contact are small compared to the nuclear sound speed, but 

it will becotia compressed at higher incident energies. 

It is well known that nuclear flow is not irrotational for ground-state 

vibrational motion and for the adiabatic penetration of the fission barrier 

in spontaneous fission [1, 3, 5, 6]. However, at larger distortions the' single-

particle levels do not vary as rapidly with deformation, and at higher internal 

excitations the energy denominators in the cranking formula for the inertia 

[3, 5, 6, 41] are no longer all of one sign. Both of these effects reduce 

the size of the calculated inertias, and for these cases the assumption of 

irrotational flow should be somewhat better. Provided chat the flow is initially 

irrotational it will remain irrotational as a function of time even in the 

presence of viscosity. (An important case for which this does not apply is a 

heavy-ion collision with angular momentum, where some curl is generated upon 

impact.) As an approximation to irrotational flow we use the Werner-Wheeler 

method, which determines the flow in terms of circular layers of fluid [22], 

The coupling between the collective and internal degrees of freedom is of 

course also a function of the single-particle structure, but at least for large 
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distortions and moderate excitation energies it should be possible to treat 

this coupling approximately in terms of an average coefficient of nuclear 

viscosity. 

For nonviscous nuclei in the liquid-drop model such dynamical calcula­

tions were performed several years ago for fission [22, 42] and more 

recently for the fusion of two nuclei [38]. Up to now the effect of nuclear 

viscosity on the dynamical path has been studied only for the postscission 

motion of spheroidal fission fragments [38], although for small values of 

viscosity the energy dissipated along the nonviscous path from saddle to 

scission has also been calculated [43]. Te have now carried out calculations 

that include viscosity and also the finite range of the nuclear force in 

both fissior* and fusion. 

For fissioning nuclei the finite range of the nuclear force increases 

somewhat the rate at which the neck is formed, which leads to a somewhat more 

constricted scission configuration and consequently a larger final fission-

fragment kinetic energy than in the liquid-drop model. The calculated 

kinetic energy is increased even more because the nuclear radius constant 

that we are now using [see eq. (5a)] is 5% smaller than the value used in 

previous calculations [19, 22]. 

The effect of viscosity on the fission path is to decrease the rate at 

which the neck forms, which leads to a more elongated scission configuration 

and consequently to a smaller final fission-fragment kinetic energy. Loosely 

speaking, viscosity causes the system to deviate from its nonviscous path 
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so as to lessen the energy dissipation. The large gradients in the hydro-

dynamical flow pattern during neck formation lead to a large dissipation 

for this mode, which is therefore hindered. 

Although it is impossible to speak precisely about valleys in 

multidimensional potential-energy surfaces, it is hard to resist imagining 

a fission valley in a contour diagram such as Fig. 5. The calculated most 

probable fission path for zero viscosity lies somewhat above this valley, 

and the effect of viscosity is tc displace the path even farther above 

the valley. This presents a new difficulty for the so-called statistical 

theory of fission [44], which is founded on the idea that a viscous system 

would follow the bottom of the valley on its slow descent from saddle to 

scission. 

From a preliminary comparison of the experimental most-probable fission-

236 
fragment kinetic energy for U with values calculated as a function of 

viscosity, we estimate that the value of the coefficient of nuclear viscosity 

12 
is approximately 0.01 TP. (Note that 1 TP = 1 terapoise = 10 poise = 

12 2 

10 dyne sec/cm .) For idealized heavy nuclei this value is roughly 0.1 

times the value that is required to critically damp quadrupole oscillations. 

The value determined for the viscosity coefficient is unfortunately sensitive 

to certain details, such as the value used for the nuclear-radius constant, 

the possibility that the neck may rupture before its radius goes to zero, 

the method that is used for treating postscission motion, and the effect of 

single particles on the experimental kinetic energies. Until these points 

are resolved and nuclei throughout the periodic table are considered, the 

value 0.01 TP should be regarded as preliminary, even though it agrees 
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approximately with other recent estimates [43]. 

In the collision of two nuclei the dynamical path depends strongly 

upon the location of the fission saddle point relative to the contact point. 

For nuclear systems in which the saddle point lies well outside the contact 

point, the path proceeds in the general direction of the sphere once it has 

passed the maximum in the interaction barrier. However, when the saddle 

point lies inside the contact point, the path is deflected toward the fission 

valley unless the incident kinetic energy is large enough to drive the system 

toward the sphere. This is illustrated in Fig. 6 for the collision of two 

Nd nuclei, which corresponds to the potential-energy surface of Fig. 5. 

Even for zero nuclear viscosity at least 50 MeV of additional kinetic energy 

appears necessary to drive the system from the conf guration of two 

touching spheres to a single sphere. 

For two colliding nuclei the finite range of the nuclear force decreases 

the rate at which the neck grows and permits the development of nuclear shapes 

whose ends flatten even more quickly than in the liquid-drop model [38]. 

However, the amount of energy that goes into collective excitations is less 

than in the liquid-drop model, which means that less additional kinetic 

energy is required to bring the system to a spherical shape. 

The effect of viscosity on the fusion path is to slow down the 

formation of the neck, which in turn slows down the flattening of the ends. 

Consequently, the amount of energy that poes into collective excitations is 

not as large as for zero viscosity, which compensates somewhat the dissipation 

of energy into internal excitations. It appears that nuclear viscosity 

is not as harmful to fusion as had been feared [45] both because its 
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magnitude if relatively small and because for viscous flow the dynamical 

path readjusts itself in order to decrease the amount of energy dissipated. 

We arc: now attempting to calculate fusion cross sections for heavy 

systems based on the idea that those dynamical paths that lead inside the 

fission saddle point have a high probability for fusion, whereas those 

that lead outside have a low probability. This entails calculating both 

the saddle points and the dynamical paths as functions of angular momentum. 

As the angular momentum increases, the saddle point moves toward the 

sphere [32], whereas the dynamical path is pushed away. (Several of the 

approximations that we are using grow worse as the angular momentum 

increases.) The critical angular momentum at which the fusion path first 

passes outside the fission saddle point determines approximately the fusion 

cross section. 

5. Summary and conclusion 

We have found that the macroscopic-microscopic method that was developed 

in connection with fission and nuclear ground-state masses and deformations 

is equally useful for calculating potential-energy surfaces for heavy-ion 

collisions. In this case it is necessary to take into account the finite 

range of the nuclear force, but this can be done in a simple way by 

calculating the nuclear macroscopic energy in terms of a double volume 

integral of a Yukawa function. 

Up to the point at which the nuclei come into contact the one-dimensional 

interaction barriers calculated in this way are similar to those calculated 
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by other methods» These barriers are useful for understanding experimental 

fusion cross sections at relatively low bombarding energies for systems in 

which the fission saddle point lies well outside the contact point. However, 

predictions based on these barriers are expected to break down at higher 

bombarding energies and for heavier nuclear systems, where the deformations 

of the fusing nuclei become important. In these cases a promising method 

for calculating fusion cross sections is to determine the critical angular 

momentum above which the dynamical path in a multidimensional space ceases 

to pass inside the fission saddle point. 
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Figure captions 

Fig. 1. Individual Coulomb and nuclear contributions and the total 

macroscopic potential energy for the system Kr + Kr •> Hf. The 

energies are calculated for the sequence of shapes illustrated at the 

bottom of the figure and are plotted as functions of the distance r 

between the centers of mass of the two halves of the system, in units of 

the radius Rn of the spherical final nucleus Hf. The point at which 

the equivalent sharp nuclear surfaces first come into contact is indicated 

by the dashed vertical line, and the sphere is indicated by the solid 

vertical line. The arrow gives the maximum in the interaction barrier. 

Fig. 2. Effective macroscopic potential energies corresponding to the 

indicated amouncs of angular momentum t (in units of ft) for the system 

Kr + Kr -*• Hf. The discontinuities arise from the assumption that 

after contact the system rotates as a rigid body. 

Fig. 3. Two examples of the effect of single particles on the potential 

energy. The dashed curves give the macroscopic contributions, and the 

solid curves give the total potential energies (which have been calculated 

thus far only inside the contact point). The solid points indicate what 

the total potential energies at the contact point would be if the single-

particle corrections were calculated for nuclei at infinity. 

Fig. A. Dependence of the macroscopic potential energy upon the nuclear 

system. For the Nd + Nd •*• 120 system the dashed curve near the 

sphere gives the total potential energy including single—particle effects. 
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300 
Fig. 5. Potential-energy contours for 120, in units of MeV. The 

separation coordinate r is the distance between the centers of mass of 

the two halves of the systeir, and the fragment-elongation coordinate a 

±s the sum of the root-mean-square extensions along the symmetry axis of 

the mass of each half about its center of mass. Single-particle corrections 

are included near the ground state, which would be unstable without these 

corrections. Dashed lines indicate that the results are affected noticably 

by discontinuities in the families of shapes that are used. 

Fig. 6. Calculated dynamical paths for the system Nd + Nd -»• 120. 

The nuclear viscosity is zero, and the finite range of the nuclear force is 

taken into account in calculating the nuclear macroscopic energy. Each path 

corresponds to starting the system from the contact point with the indicated 

amount of center-of-mass kinetic energy relative to this point (in units 

of MeV). Because of deficiencies in the shape parametrization the dynamical 

calculations break down at the points indicated by the arrowheads. 
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