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and in the f nal stage tho ring is muintained at a con-

stant major dius

An electron ring compressor is being designed for
the purpose of obtaining very highly-stripped, high-Z
jons, This effort may constitute a necessary step for
development of a possible heavy ion accelerator, is
expected to lead to useful basic ion-source information,
and independently will psrmit obtaining interesting
spectroscopic information concerning such ions. The
primary design objective is the achievement of a ring of
high el--tron density that must retain this density and
remain stable for a sufficient time to develop the de-
sired hxgh]y-strip?ed ions. A density-time product in
the vicinity of 107? electron-sec/cm? may be required.
Vacum requirements become tndesirably stringent if the
time interval exceeds 1 sec. Synchrotron radiation over
such time periods plays a dominant role in the design,
and a proper shaping of the magnetic field is presented
which employs synchrotron radiation to enhance ring
quality while avoiding both single particle resonances
and the onset of negative-mass instability.

The attainment in an electron ring device of high
electron density extended over a time of order 1. sec.
requires the following two conditions, Firstly, the
electron beam from a linac mist be formed into a large
radius ring in a magnetic field, and pulsed to small
major radius in order to obtain a necessary degree of
adiabatic damping of the minor ring dimensions. Second-
ly, the magnetic and electric environment of the beam
must be such that the beam amplitudes are stable, and
remain small, against both transverse and longitudinal
instabilities for several tens of synchrotron radiation
time constants. Specifically, the radial and axial beta-
tron tunes must not lie near, nor Cross, strong resgnant
values. The requirement that the beam be stable with
respect to longitudinal (negative-mass) instability de-
mands that, at all times, the beam maintain an energy
spread in excess of a few percent (FWM), In the pre-
sent design, we choose to limit the number of circulat-
ing electrons only by the brilliance of the injector,
and adjust the energy spread in the beam so that the
limit imposed by longitudinal stability is always larger.

The long confinement time makes it impractical to
support the magnetic field of this device with air-core
coils as previously done in the ERA program at LBL. We
envision the use of ferromagnetic pole tips to shape
the field, and 1limit the flux density at 3.0 cm radius
on the median plane to 15. Kgauss,

We have investigated the performance of such an''
electron ring device by dividing the entire cycle into
three sequential stages of operation. The first is
pulsed field compression with

B¥r = constant (Stage 1)

along the compression trajectory, Familiar cases are
m= 0 (betatron}, m = & (Scaling field B ~ r™} compres-
sor), and m = 1 (statiC magnetic field compressor). The
second is synchrotron radiation by the ring in a static
magnetic field

B(r,z,t) = constant, (Stage 2),

®
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. L) = constant, (Stage 3).

The general differential equations governing r,z
motions of an e’~ctron in a cylindrical magnetic field

are
3B 3B, 3B, 1]
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U, is the rate of electron emergy loss by synchrotron
rxdintio.n,
c.p*
y -,
Y rt

2

with Cy an electromagnetic constant
rC
Cy = é o
(mec?)?
g

It is convenient to define a quantity & as the fraction-
al rate of change of momentum,

U
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whose negative inverse is an instantaneous decay time
constant for the radiation process.

S .04223655 (cn?/MeV? sec).

(3)

During stages 2 and 3 we consider the possibiﬁty of
employing a flux bar through the ring such that B
on the equilibrium orbit, If we define f to be Fhe
fraction of momentum lost to radiation which is restored
by the flux bar (FB) on the equilibrium orbit,

A
£z-52, (4a)
then the flux change at a radius r is
[
Al = - £58,2)", ()

where the subscript (o} refers to the equilibrium orbit,
and a =1 if all flux succeeds in tiireading the orbit.
During stage 3 a magnetic field varylng at a rate

‘A_, B

F-)\F')\E (5a)

will produce a flux change at r given by
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pwhere the lower limit Ry refiects the deviation from
an rD field at small T, We estimate that Ry & 1.0 em,

Pulsed Fleld Compressor

: A compression scheme in which the relationship
betueen ring radius r and axial magnetic field B is
‘specified to be B¥r = constant along the coppression
‘trajectory yields the following scaling laws* for the
-beam momentum synchrotron (as) and betatron (a 1bg)
amplitudes. Let subscript i denote quantities ng
injection; then for compression from radius 1§ to r

RO
s
ag = 2y, ('IT (F; (&)
v B
e
8" Dy, ('nl) [rll) (6c)
1
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P = pi(;’i—] m 60

“The injected electron current and the initial betatron
smplitudes are taken to be those realized in tbe present
ERA-compressor at LBL.

. Radiation in a Static Magnetic Field

i The median plane symmetry of the compressor and the
; static field maintained in stage 2 requires, respective-
ly. that

, =B =o0. Q)

z= 0,
and from (la) we are left with
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where we have substituted the n-value, n = - B— 3: N

aBnd errployed the curl condition VxB=0 to obtam
¢ 2
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The rate of change of momentum 1is
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C. Radistion at Constant Ring Radius
Applying the same symmatry requirement to (ia) as
before, we obtain
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The total ﬂuxdmngeﬁisduewboththeﬂmbar
and the time-varying magnetic field in the ferramagnet,

Amhgg + Apym £8P + %EP = P(-£ *é*). an
Noting that we have defined A such that g = Ag,
Z
T..&
F ﬁ{l-f*i’-k}, (12)
which {s zere as desired if
1-£) (2-n; as

A = ’
& - (1~ (3]
and wheve we have employed the definition of % in
(5b). Pinally, we have in stage 3 that

§.5+é-;{1~f+ﬂ

a4
on the equilibrium orbit,
D. Radiation Damping of the Betatron Oscillations

e axial betatron rh.splm:ulend:i:w:r,1 la;::;ux_:mg to

Bruc.k‘Eh {eqn. 23. ﬂ). satisfies the
oscillator equation

U,
+[€-+§]0 truwlz=0,

where E is the total energy, U, the rate of energy
loss, and the bracket is to be evz.luated on the equili-

5)

brium orbit, The amplitude of these oscillations damps
u .
by = exp { 1 {[—QH E}o d:} . (s
so that in the absence of radiation (UY-O)
hxexp{-z-[ L mEat) L (165)
There is additional danpmg due to changes .m the
oscillation frequency mz = pev,/r, so that for
v; = /A = constant
1
bg =5 (16c)
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Thent the axial betatron amplitude has a time-dependence

b y
1 198 1 138
Bt z['&*nﬁ]n'z [Eo - Ea_:]' an
This reduces to I‘%- 529- » 88 roquired in A constant

field betation (A = 0) with RF cavity flux compensation
(f=1,a=l),

The radiel displacement is similarly governed by
the equation (Bruck 23.12)

X+[;I+%]Di4mx2x--ik.

where X expresses the shrinkage of the orbit due to
radiation and also possibly flux change acceleration.

We calculate the radial acceleration in the following

manner, From Bruck egns. 23,16 and 23.17, we have

s
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where P and P, are the rates of momentum loss on,
respectively, a Betntron excursion of amount x and
the equilibrium orbit. The above expressioy gives the
radial velocity due to the differential rates of azimu-
thal momentum loss, Since B = Pog,, P and B, are for
small excursions from the equllibrgun orbit

B =P (-2 %) - £8Pl - 0 ) + kEOPo[l * (l-n]ﬂ
o

= £P [(1 - £4%) + [-2n + fo + A(1-0)) ;"-] (208)
0,

and
Po = £ B[ - £+ 4], (20b)
Substitution into (19) yields

. Eo[u sfvg) e fas m-n)] 5 @

where the entire bracket is a constant so that % « X.
Finally the radial equation becomes

« *[U-E- . ”ﬂg{u-fm SIEEL m-n)} . ]f_] :

+p2xm=
w® x a.

(22}
Hence the damping rate for the radial betatron amplitude

is
éB 1 f(l-a) - 2x + lﬁ‘ 1 3B
BoIfey T F | @
which reduces to
% _% n
a;, 2z Tn

8
as required for the usual betatrcn with RF cavity
(f = 1, a = 1) in a static magnetic field (A = 0).

E. Radiation Damping of the Momentum Spread in the Beam

Consider an electron on the equilibrium orbit r,
with momentun P,. An achromatic electron of momentum
P has an equi]igrim orbit at

' P-p
rsro[ul%ﬁ %ﬁ]-ro[1~ﬁ;(-1,2]].(z4)

‘The rate of change of momentum spread is just
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Hence (glefining € & AP/P) the damping rate for momentum

spvead is
£ Q+(etl)) - (3+fn | 1
" % n v
Quantum fluctuations are negligible in our domain of
interest. The time-d d of the hrotron
amplitude in a constant n field is
I O
a T €

For the usual betatron case (f =1, q= 1, A = 0), we
obtain

8s 3-4n
a; "% T

which is twice the rate in a batatron. Our case, how-
ever, differs from a batatron in that the electron
trajectory is the envelope, rather than en oscillatory
trajectory within the envelope. The usual sum rule for
rediation damping ratus does not maintain in the present
case. .

F. Llongitudinal (Negative-mass) Instability

The number of c’irculating electrons allowed for
longitudinal stability has been calculated by L.J,
Laslett to be

a? .
Ne < 1,57 x 1022 y(1-n) Zﬁ; . (28)
where y = Efm,c? for the electrons and is the
axial displacement of electric side plates t the

beam. We have chosen ARy = bg at injection, and
taper the side-plates according to ) .
1 02
a=—ar”é, (29)
ARy 5

As previously stated, we have chosen the energy spread
of the injected beam so that the quantity of eqn, (28}
is just larger than the brilliance 1imit of.the injector
A smaller value of (28} at any time will limit the num-
ber of circulating electrons whereas a larger value of
(28) implies an imnecessarily large value of ag, and
a consequent reduction in electron density.. The most
favorabie circumstance is where the limit (28) always.
remains slightly larger than the mmber injected. The
conditions under which the limit (28) is constant are
straightforward to obtain u} a constant n field, In
stage 2, Ny = yag®/ARy « p3 205/2:2, sp that
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using (8), (9), and (28).

Thon the number of circulating alectrons allowed for
lmziﬁudiml stability is constant if n is a "critical
value",

10 + f(4a-2) - 4/y?
n, = Stage 2)
¢ 15 + £ - 4/y? ¢ !
which reduces to n; = 2/3 in the absence of a flux

‘bar and for y large. Similarly for stage 3,
N, = yag? « Pe? and

] ’ (30)

31
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The stage 3 condition that r = constant roquires that
we take

2-n
R
a-9 1|4
= Ry 1200

en - [1-(3"]
‘The resulting equation for n. is complicated if
Ry #0and £ #1, The critical n-value in stage 3
ranges from nc = 3/4 (f=1) down to n; ¥ 0.48
(f =0, R, » 1,5 cm). Figure 1 displays the dependence
of nc on strength of the flux bar, £, during stages
2

. (33)

G. Compressor Design

The above solutions have been employed to calculate
the psrformance expected of an eleci.on ring device with
the intent of maximizing the density-time product

1.
! V(—’Nleﬁ dt = figure-of-merit (FM},
L]

where the volume is calculated from the ring parameters
as

= 2
Volume = 2n rba 'Gs!*“g! .

It will be convenient, and probably necessary in an
operational device, to maintain a constant n-value at
the orbit radius everywhere during stages 2 and 3. The
ring will then never cross a betatron resonance line
where the growth rates are mich larger than the typical
rates of change ~f in this device), and the rates of
change (30) or (32) of the longitudinal stability 1imit
can be kept very near zero for the duration of the stage
by an appropriate choice of f.

Two cases have been considered: case A without use
of a flux bar, and case B with a flux bar. A case
without a flux.-bar is attractive experimentally due to
its simplicity. In regard to cass A, it is evident
from Figure 1 that if f = 0 at a2ll times, one cannot
have the rate (30) zero in stage 2 and the rate (32)

zero in stage 3 without the ring crossing a single parti- strength, f, for stages Z and 3,

cle resonance at n = 0.64. Hence we choose a case A
with only stages 1 and 3, and an n-value everywhere

constant awl equal to ne = 0,526 (for the choice Ry, =
0.75cm). Results of thls calculation are tabulated in
Table I and displayed in Figure 2, The figure-of-merit
for this case is 2.59 x 10*% ¢-sec/cm’.

A case employing a flux bar during stage 3 onl,
;f it :s h:o mh\tg}g It,he( ;;)te (%(;') 1:’1"2“ dlixriggfstngey'
nust have n = y spection of Figure
: s demands that £ ¥ 0,625 during stage 3 so ggut
the rate (32) is zero. This is case B, from which
relevant quantities are listed in Table II and displayed
in Pigure 3. The figurn-of-merit for case B is 3.97 x

10%% ¢ sec/cm?

Finally, there are many possible cases of intersst
in which a flux bar is employed during both stages 2
and 3. The operating n-value would then be chosen in

the range 2/3 < n < 3/4 for this device.

The successive fonization of Argon, for example,
in a ring described by case B of this paper is displayed
in Figure 4, The Argon gas was injected into the com-
pressor at the beginning of stage 2, The calculgtion of
the ionization progression is given by A, Salap.
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Table I. Case A

(no flux bar)

-5.

Table II, Case B(with flux bar)
...—Stlje—l_——__._ .S_t!‘e_z. L’-'M Stlla 1 N Stlge F3 Stnge 3
Injection Connsgo:fion Injection 204 of
J Compression
t(sec) 0. 001 1,0 t(sec) 0. . +, 001 .0202 1.00
r(cm) 40. 3.0 3.0 r(cm) 40, 4,999 3.000 3.00
B(Kg) . 0842 15,0 3.396 B(kg) 167 10,678 15,009 4,978
KE (MeV) .621 12.96 2.536 KB (MeV) 1.5§3 15,50 12,997 3,995
n-value 5/9 525 .526 n-valua 2/3 2/3 2/3 2/3
ag(cm) 1,350 .095 .200 ns(cm) © 2,100 - 262 .262 457
ag(cm) 1,495 .110 .074 ag(cn) 1.607 .201 .162 .090
bg(cm) 1.115 .085 .029 bs(cm) 1.066 .133 .103 029
g .015 .015 0316 % L0175 L0175 .029 .051
ple/cm®) 6.09x10°  1.42x10}2 2.80x10'%  p(e”/cm®) 1.75x10° B,.98x10%!  2,07x1072  4,84x10%?
20 r T
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Fig. 2 - Ring parameters for Case A. (a) equilibrium t(seconds) -
orbit radius, r(cm), magnetic field at r, B(kg), and
kinetic energy of electrons at r, T(MeV); -
tron, a, radial betatron, ag, and axial betatron, bB'
ampli s; and (c) electron density as funct:Lon of Fig. 3 -

time, The figure-of-merit for this case is & 2.59 x

1012 e”sec/cu’.

ec/an’,

_Ring pavameters for Case b; the figure-of-
merit is & 3.97 x 1012 e7s
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