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Despite my title, I shall say very little about inelastic scattering. It
can be used, of course, in the standard spectroscopic way to extract reduced
transition probabilities. Further, by studying the interference between the
nuclear and Coulomb excitation contributions, important things can be learnt
about the former; Broglia will talk about that.

I think we all know that heavy ion interactions are dominated by the fact of
strong absorption and that to a considerable degree they- can be understood in
semi-classical and simple optical terms. Rather than attempt a review of these
things (several good reviews are already available; see, for example, [1,2] and
references given there), I will attenpt to discuss some specific points of what
we may hope to learn from elastic scattering studies. It seems to me to be im-
portant to know about these "entrance" conditions before we evaluate other, more
complicated, processes that may occur when two ions collide. These conditions
are revealed to us not only through elastic scattering but through other peripher-
al processes such as inelastic scattering and one or more nucleon transfer re-
actions. These various processes may, and usually do, probe different regions of
the ion-ion interaction and it is important to consider them all together in
order to get a full picture [3,4].

2. General Properties

The collision process may be divided into three spatial regions:

r, separation of ion centersO
strong absorption

ingoing only

peripheral

tail of
nuclear potential

asymptotia

only Coulomb
potential MASTER

The outer region is of no interest. We are not likely to be able to describe the
inner region in detail, but fortunately it seems that all we need to know is that
it is essentially "black". The interesting peripheral region, where the ion sur-
faces interact, may be quite narrow ( 2 fm) and allows us to define nuclear radii
or, better, interaction radii [1,2,5,6], This is obvious from the data when cross
sections are plotted against the distance of closest approach, D, of the corres-
ponding classical (Rutherford) orbit. Figure 1 presents a nice example [7]. The
cross sections remain close to Rutherford until a fairly well defined value of
D • D_ is reached, then decrease exponentially as absorption sets in. Further,
this value is almost independent of energy and varies with the ion masses like

TH|s DOCUMENT! £__*"

Research sponsored by the U. S. Atomic. Energy Commission under contract with
Union Carbide Corporation.



2.0

1.0

0.5

0.1

0.05

0.01
2.0

1.0

0.5

0.1 r

0.05 -

TT' 'Id.-1.68 fm ~l

"•'Co, 49 MtV

«0* •• "CO. " T i , » C r , " F t , " N i ,
60 MtV

A " 0 * " N i , 60 MlV

1.0

4

|d.-1.68fm

_J

A, "O*"Zr, 80,8$ MtV

A "C*"Zr, 3« MtV

O '«0*MZr, 47, (9 MtV

• "O*"Sr, "Zr. 60 M«V

i I i t i : 1 i i i i I i i i ] 1 t i i i I i

1.5 2.0 2.5 3.0 3.5

( J ^ ) D O roughly
corresponds to the outer
limit of the peripheral
region above. The falloff
allows one to define an ab-
sorption probability for
the region D < D ,

abs
- exp((D-Do)/A),

with AS? 0.55 fm.

To go further, let me
remind you of some defini-
tions. The scattering
cross section for two spin-
less ions (or where spin
effects can be neglected)
is da/dto = |f(6)|s where
the scattering amplitude
consists of a Coulomb and a
"nuclear" part,

Figure 1

f(8) = fc<6)
2io,

~ PL(cose), (1)

where HL is the partial wave scattering amplitude. The so-called transmission
coefficient is TL = 1 - |nLI

2* I n t n e strong absorption situation, the depen-
dence on L is [1]:

1.0- l.o

Z~9

Figure 2



A critical L1/2 is defined for which TL » 1/2 (some people prefer to define L1/2
for which Ren^ " 1/2; Li/2 is usually about one unit less than L1/2). Through the
classical (Rutherford) orbit relations,

L - n cot(0/2) , D - (n/k)(1 + /I + (L/n)z), (2)

where n is the usual Coulomb parameter and k is the wave number, we can obtain the
corresponding critical scattering angle 9\/2 and distance of closest approach,
Dl/2» f o r t n e orbit with L - Li/2.

When the scattering is Coulomb dominated (as it usually is, except for the
lightest targets or for very high energies), the angular distribution has the form
of fig. 3, characteristic of Fresnel diffraction [2]. This suggests another

critical angle, 0i/t«, at which
do/dog = 1/4, and the corres-
ponding Li/t, and D}/^. It
turns out that Dj/^ __ Dj/2,
L l A Ll/2* Approximately,
the data show that

._ 0.25 1/2
1

Figure 3

which is of the order of 1 fm
smaller than the radius (fig.
1) at which absorption begins
to set in. Further, it is of
the order of 2-3 fm larger
than the sum of the radii of
the two ions at which their
densities reach 1/2 the

4./0** V central value. This situation
is further illustrated in fig.
4 for the example of 72 MeV
160 on 28Si. The full circles
have the half-density radii,

the dotted circles show where the density is 10% of the central value and the
separation of their centers represents the classical distance of closest approach
at that L. Even when the absorption is almost complete, only the low (S 10%)
density regions of the two ions overlap (classically). (Remember that "ab-
sorption" means removal from the entrance or elastic channel into some non-elastic
channel.) We return to fig. 4 later.

The almost universal behaviour of 0L with L (figs. 2, 4) has led to the (very
successful) use of parametrized functional forms for n(L) [1,6] which thereby in-
corporate gross physical information like strong absorption, nuclear size and sur-
face thickness. However, it is possible that one's guesses for the form of n(L)
may overlook or obscure (or even violate) some physical implications which a more
dynamic approach might Include. These analyses have been reviewed in detail else-
where [1,6].

The parametrized form of n(L) has been generalized in the spirit of postula-
ting Regge poles, which can Introduce kinks into the smooth curve [8]. This still
remains a parameterization, albeit perhapB a useful and suggestive one.

3. The Optical Model

The main alternative to these descriptions is given by the optical model
which postulates a complex ion-ion potential which, usually, depends only upon
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the separation of
the centers of
mass of the two,
undisturbed, ions.
(An exception
occurs when the
generalized model
is used which in-
cludes coupling to
inelastic channels
and requires so-
lution of a set of
coupled equations.
Of course, it is
the coupling to
other channels
which gives rise
to the imaginary
part of the opti-
cal potential.
Coupling to one
specific channel
may become impor-
tant, in the
sense that its ef-
fects cannot be
represented by a

simple absorptive potential, when the cross section for that channel becomes com-
parable to the elastic cross section. I don't have any statistics on that, but I
think it is most likely to occur for inelastic scattering to a strong collective
state.)

Traditionally this kind of optical potential has met with considerable scep-
ticism, because clearly it has no direct meaning in the strong absorption region
where the two ions overlap. Fortunately, however, this usually does not matter;
the important region is the peripheral one where the two densities overlap very
little and there is good reason to believe that a simple potential concept could
be meaningful. A further advantage of the optical potential model is that it en-
ables us to generate wavefunctions throughout all space, which the parametrized
phase shift models cannot do. These wavefunctions can then be used in other re-
action calculations (e.g. the DWBA). Again one treats these wavefunctions with
considerable reservation in the strong absorption region, but again it is the
peripheral region which is Important and within which there jLs some hope that the
wavefunctions are meaningful. (An alternative procedure which perhaps does less
violence to one's physical prejudices is to define the potential only in the
peripheral region; at the entrance to the strong absorption we simply impose an
ingoing-wave boundary condition [9J. This bl«ek-hole model has not been ex-
ploited very much; it may have some computational advantages when high angular
momenta are involved.)

Various attempts have been made to calculate the real parts of ion-ion po-
tentials (usually for the 160+160 system) [10]; sometimes these lead to strongly
repulsive potentials when the ions overlap (sudden approximation), sometimes to
weakly attractive ones (adiabatic limit). Sometimes, too, these approaches intro-
qualitatively new features into the optical model, such as an explicit dependence
of the mass parameters on the distance between the two nuclei [11]. A common
feature of these calculations is that asymptotically the potential goes over to
the "folded" form I shall discuss later. Attempts have also been made to calcu-
late the imaginary, absorptive, potential [12].

It is worth mentioning at this point that the optical model is a very



general concept; Indeed It Is not unique, except Insofar as it is defined to gen-
erate the save wavefunction beyond the region of interaction (i.e. the same
elastic scattering) as the true many-body problem. There are various ways of ex-
trapolating into the interior and the associated wavefunctions will have different
meanings. This possibility must be kept in mind when the wavefunctions are used
for other purposes, such as in a DtfBA calculation of some reaction. For example,
the wavefunction resulting from the potential given by, say, a two-center shell
model calculation is really a different object in general from that given by the
usual phenomenological optical potentials.

The optical models used in practice obey another constraint that they must be
simple enough to be useful. The conventional form used for the phenomenological
optical potential is the local Woods-Saxon (WS) one,

U(r) « -VCe^l)" 1 - i W(ex'+1)"1, (3)

whjere x • (r-R)/a, x1 « (r-R')/a'. For convenience, the radii are usually parame-
1/3 1/3

trized like R - r (A^ +A2 •) Most often the four-parameter form, R = R* and

a • a', is used. (There does seem to be evidence [13] that the potentials for
6»7Li scattering require r^ appreciably larger than ro. This is reminiscent of
the behaviour of deuterons and 3He; in that case it is attributed to the easy
breakup of the weakly bound projectile.) Of course, all the parameters can be ex-
pected in general to depend upon the bombarding energy and, as has been emphasized
recently [12,14], upon the angular momentum. The latter dependence usually has
only been considered for the absorptive strength, W - W(L). If the ions' wave-
length is sufficiently small so that the orbits can be fairly well localized, an
effective L-dependence of the absorption can be induced by reducing ImU(r) in the
surface region (e.g. by making R1 and/or a* smaller than the corresponding R or
a). It is not clear to me at this moment whether one can then distinguish be-
tween these two prescriptions, or indeed whether there is much physical differ-
ence between them.

11 208

4. Ambiguities and X B + u Pb

A well-known feature of optical model fitting to elastic data for strongly-
absorbed particles is the tremendous ambiguity; many sets, and often continuous
distributions, of parameters will give equally good fits [1]. The most familiar
of these is known as the Igo ambiguity and occurs because the scattering is mostly
determined by the tail of the real potential [IS]. At large radii,

Re U(r)s» -(V exp(R/a)) exp(-r/a),

so for a fixed value of a, any pair of V, R which keep Vexp(R/a) constant will
give the same tail even though the potentials in the interior may be very differ-
ent.

However, the data do not necessarily determine the value of a, and hence the
shape of the tail, at least in the cases I have looked at. Rather, what is deter-
mined is the value of the real potential at the critical radius r - V\/2 discussed
above. As an example, fig. 5 shows typical fits to cross sections for " B on
20ePb [16] with 4, 5 or 6 parameter potentials, with real depths ranging from 20
to 200 MeV and with imaginary strengths W/V***0.1 to 0.4. The "best" fit (i.e.
minimum x2) obtained is that shown on the right. The theoretical curve manages to
reproduce the two data near 50°; the wiggles are real and not the result of numer-
ical inaccuracy. This case is an example of the dangers of pushing for minimum x2

when only limited data are available; it turns out that this potential is quite
unacceptable when used in calculations of inelastic scattering or transfer
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reactions [17]. (This example therefore also stresses the value of considering
these other kinds of data as well as elastic scattering.) Figure 6 shews some of
the corresponding real potentials (including the unacceptable one) at large radii.
Clearly the one unambiguous thing these data tell us is the value of the potential
near 12.15 fm (the critical distance in this case is D1/2 • 12.0 la, for L1/2 be-
tween 37 and 38), whereas the slope can vary widely. (The imaginary potential is
also poorly determined.)

In passing we might note that this value of the potential is very small com-
pared to the Coulomb barrier in that region which is about 50 MeV. Indeed this is
almost invariably the case; if we take,a "typical" nuclear optical potential [6]

charges on projectile and/or target increase.
only 2% of U^ at this radius.

for
[L./UQ decreases rapidly as the

For example, for 16O+508Pb, UN is

5. Folding Models

At these large radii the two ion densities scarcely overlap at all (figs. 4
and 7) and this suggests an approximation [2,17] in which the densities are as-
sumed to be unperturbed and the real optical potential is simply the expectation
value of a nucleon-nucleon interaction v averaged over the two densities,

Re U(r) - d3r2 (5)

(The coordinates are indicated in fig. 8.) I call this the double folding pro-
cedure.

The densities may be obtained from electron scattering studies, etc. As
usual, the interaction v is an "effective" one; however, only the low density



10'

i
i 10°

10"

V

\
\

VA

\ \

\
\

V

— l/=40, ^=15
—1/= 200
-r6<ro
— 1^=40, ^ = 4
— l/=21

i

a

208f

V\
'\

3 b + HB

72.2 MeV

e £/ = - 1 .
ot r

V

w\\\
Vs

02 ± 0.0
= 12.15 fi

s
%A

5 MeV
n

1) 12 13
/•{fm)

Figure 6

203 12Figure 7* Densities along line of centers for Pb+ C for r =



Figure 8. Left, double fold; right, single fold.

regions contribute to the integral (5) for the large separations r which are of
interest, so v need not be the same as the effective interaction required for
nuclear structure calculations. Indeed, one might guess that one of the simple
potentials which fit low-energy nucleon-nucleon scattering would be a reasonable
choice. A recent application [19] of this model has used a zero-range approxi-
mation for v so that

U(r) = constant * I P1(r1)p2(|r-r1|)d
3r. (6)

These authors take the constant to be complex so that the real and imaginary parts
of U have the same shape.

The finite-range form (5) has been used successfully [20] for the scattering
of alphas, which shares many of the characteristics of heavy ion scattering [1].

If we consider just one of the integrations in eq. (5), we get a nucleon-
nucleus potential, e.g.

UN2 ( r12 )

so the ion-ion potential can now be written

Re U(r)

(7)

(8)

(The expression (7) has been used successfully for the potential for proton scat-
tering from nuclei [21]; however, protons are not strongly absorbed and their
cross sections are not sensitive to the extreme tail of the potential but rather
to its overall properties like the volume integral and mean square radius.) We
may reinterpret eq. (8) by using for Uj^ the real part of a phenomenological
nucleon-nucleus optical potential determined by fitting nucleon scattering for an
energy A""1 times the heavy ion bombarding energy [22,23]. (One should not use
these prescriptions for the imaginary potential.) I call this the single folding
procedure. (Of course there is an alternative procedure in which the roles of
ions 1 and 2 are interchanged in eq. (8).)

Using a phenomenological nucleon potential in eq. (8) immediately implies



some energy dependence of the Ion-ion potential. However, the energy dependence
(or non-locality) of the latter is very much reduced compared to the former [23].

Obviously there are corrections to the prescriptions (5) or (8); e.g.
Mclntosh, e£ al_. [22] considered the polarization of the density of one ion by the
attractive potential of the other. However, for the present we consider how suc-
cessful they are as they stand, only allowing for a renormalization in strength as
a measure of higher order effects (and to compensate for our errors in choosing
the effective interaction v in eq. (5)).

1 o 9f)R

6. Folding and C+ Pb

Figure 9 shows a double folded potential for 12C+208Pb, using independent
particle model densities and a Gaussian interaction that fits low energy nucleon-
nucleon interactions [24]. To fit the data (fig. 10), it has to be multiplied by

100 — — » — . . ^ ^
„ COULOMB

12 16 r(fm)

£cm=110MeV

20

Figure 9. tL,(r) is the sum of nuclear, Coulomb and centrifugal potentials.

0.59, and then has a depth of nearly 500 MeV in the interior. (This fitting was
done by simply adding a W-S imaginary term with W * 15 MeV, rQ = 1.31 fm, a =
0.45 fin,) The right side of fig. 9 shows the sum of the potential plus centrifu-
gal barrier for the (interpolated) L value for which the transmission T^ = 1/2.
(One might expect [25] the transmission to be 50% for the energy which just
equals the maximum of the barrier. However this would be true for a real barrier;
the potential used here is complex and there is absorption in the barrier itself.)
The turning point at 12.25 fm is very close to the turning point of the corres-
ponding Rutherford orbit because the nuclear potential is only about 2% of the
Coulomb potential here, being about 1 MeV. That is, the important part of the
potential is very small compared to the interior part. To dramatize the relative
importance of these two regions I cut off the real potential at 10 fm, either
putting it to zero for r < 10 fm or taking it equal to -18.5 MeV, as shown in fig.
9. The effects of these two truncations are shown in fig. 10. Eliminating the
potential has no effect until a/a- is 1% or less, while leveling off at 18.5 MeV
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produces no change until
a/cjR < 10~3. (The abrupt
change at r = 10 fm in the
former case does produce some
reflection.) Very similar re-
sults are obtained if the bom-
barding energy is raised to
200 MeV. If the absorption is
reduced by reducing W from 15
to 5 MeV, the scattering be-
comes a little more sensitive
but still very good data would
be required to distinguish the
cases; besides, the data defi-
nitely seems to require a
larger W than this. Also
shown is the scattering from
the imaginary potential by
itself.

Consequently it is clear
one will not learn much about
the potential for radii much
inside the critical distance

r = Dj/2> so» e>g>» it is i-r~
relevant whether or not we be-
lieve the folded potentials in
the interior. Figure 11 shows
various double and single fold
potentials, which fit the
data, near the critical
radius. For the former we
used also the long-range part
of the Hamada-Johnston po-
tential (HJ) and the zero-
range approximation of eq.
(6); the latter potential is
about 1400 MeV deep for small
radii. For the single folding
we used 3 different choices of
nucleon-208Pb potential. Also
shown are the renormalizing
factors needed to fit the
data; in each case it is nec-
essary to reduce the predicted
potential to something like
one half its value. All the
folded potential curves cross
at i s 11.85 fm. (Curiously,
various W-S potential fits to
the data coincide at a
slightly larger radius, as
shown. I have not yet dis-
covered the origin of this
difference.)

11 12 13
Mfm)

14

Figure 11
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7. Lighter Targets: Of Si

All the results so far have been for a heavy target. Let us turn now to
160+28Si at 72 MeV [26], for which a fit has been obtained using a 100 MeV deep
W-S potential. This potential is shown in fig. 12; the imaginary part had the

-100

c rT | = 45 .6 MeV

\Z

Figure 12

same shape with W = 61.5 MeV. Again the critical distance is way out in the tail
and corresponds to L ~ 31; the potential here is about 1 MeV, still much less than
the Coulomb barrier of about 20 MeV. I played the same game here; I put the whole
potential (real and imaginary) equal to zero, or leveled off, for r < 5 fm and
6 fm. Figure 13 shows the effect on the scattering. The 6 fm cut-off does pro-
duce some effects at the a/aR — 10% level while the cut-off at 5 fm is not felt
until a/oR < 10"*̂ . When the potential is leveled off instead of being put to
zero, no noticeable effect is seen over 5 orders of magnitude in O/OR. Again we
see that the interior does not play an important role and its characteristics
would be difficult to extract from the scattering. Further light is thrown on
this by fig. 4 which shows the effect on the m, amplitudes when the potential for
r < 6 fm is put to zero. Only partial waves with L < 25 are affected and these
correspond classically to Rutherford orbits which approach to r < 7 fm.

The ambiguity problem has been looked at by Goldberg and Smith [27] from a
different point of view; they take a set of W-S wells which satisfy the Igo ambi-
guity and which give equally good fits to the data and consider under what condi-
tions they could be distinguished. Figure 14 shows some results for a 200 MeV
bombarding energy. A choice could be made if data were available at angles where
°/°R < .i.0~2. They interpret the differences here in terms of differences in the
rainbow scattering for the various potentials and draw a parallel with recent de-
velopments in the measurement and analysis of alpha and 3He scattering. (However,
the potentials used for fig. 14 do have the same diffuseness a; it is not clear
what would happen if this constraint were relaxed. We shall see that the slope of
the potential, and hence a, are not well determined by the current data.) They
also study these effects as a function of energy and target mass. It is clear



10'

FOLDED POTENTIALS
(FIXED WS IMAG)

WS POTENTIAL

FULL POTENTIAL

U=0, r<5fm
U=0,r<6fm
U= -36.5 -22.4/ ,
r < 6fm
IMAG ONLY

GAUSS (X0.51)
ZERO RANGE

if =7.60)

10

(0 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Figure 13

0 •28Si
E=200 MeV

100
50

„ on

MeV
MeV
MeV

Well

Well

Well

100 120

Figure 14

that the lighter the target
and/or the higher the energy,
the more likely is one to re-
solve these ambiguities.

For amusement I also re-
duced the absorptive po-
tential to half the value
used in fig. 13, keeping all
the other parameters fixed.
The predicted angular distri-
bution (fig. 15) shows more
marked oscillations than in
fig. 13 but the data are
fitted almost as well. This
emphasizes that we have to
work very hard to pin down
some of these things by ob-
taining very complete and
very precise data.

Calculations were also
made for the 160+28Si system
using the double folding ap-
proach for the real po-
tential, eq. (5). Yukawa and
Gauss potentials which fit
low-energy nucleon-nucleon
scattering were used, as well
as the long-range part of the
Hamada-Johnston potential and
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the zero-range approximation
of eq. (6). The densities
used are in accord with
electron scattering measure-
ments and were generated from
the independent particle
model. Some results are shown
in the right half of fig. 13,
for which the same W-S imagi-
nary potential was used as be-
fore (the Yukawa results are
similar). The fits to the
data for the finite-range in-
teractions are comparable to
those obtained with the W-S
real potential and are im-
proved further if the imagi-
nary potential is also ad-
justed. Again the predicted
potential has to be reduced by
one half in order to fit the
data. The zero-range approxi-
mation (6) results in oscilla-
tions and a poorer fit to the
data; allowing the imaginary
potential strength to vary or
giving it the same shape as
the real did not remove these
oscillations.

The corresponding real
potentials near the critical
radius are shown in fig. 16.
They cross just inside
r = D]/2» except for the zero-
range potential which is
0 are also shown; the zero-steeper than the others. The values of U(r) at r

range potential (with f = 7.6 MeV fm3) is extremely deep.

These ambiguities persist for even lighter targets. I have not explored this
region much, but fig. 17 shows an example for 168 MeV 160 on 12C [28]. The solid
curve is a 4-parameter W-S potential fit obtained by Bassel [29]; it is a rela-
tively shallow potential (V = 30.6 MeV, W = 17.2 MeV, R = 5.64 fm, a = 0.65 fm).
Now Charles, £t al_. [22] had found that a single-folded potential could reproduce
the main features of I60+12C scattering at 24, 42 and 51 MeV over the whole angu-
lar range up to 170°. I used their folding model parameters, with Bassel*s W-S
imaginary potential unchanged, to produce the curve labelled "fold" in fig. 17;
the real potential was reduced in strength by 20% to improve the fit to the data.
The fit is seen to be comparable in quality and could be improved further by re-
adjusting the imaginary potential. This folded potential is 380 MeV deep in the
interior but coincides with Bassel's W-S potential for radii beyond 6 fm. Already
by 5 fm the folding gives twice as strong a potential, so the scattering in this
case will not tell us much about the potential at distances less than 6 fm.

8. Inelastic Scattering

Many of the remarks made about elastic scattering also have analogues for in-
elastic scattering. In particular, a study of the interference between Coulomb
and nuclear excitation gives a sensitive measure of the transition potential at
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large separations in heavy ion reactions may mean
important than for light ions [32].

some large radius which is
similar to, but not necessarily
the same as, the critical
radius determined from elastic
data [4]. In order to relate
this to the optical potential
one has to assume some rela-
tionship between the diagonal
elastic potential and the off-
diagonal transition potential.
This is usually done through
the collective model by simply
deforming the optical po-
tential [4]. However it must
be recognized that this is an
additional assumption. An at-
tractive possibility is that
an approach analogous to the
double folding (5) would work
and in that way a unified de-
scription could be obtained.
The transition densities could
be obtained phenomenologically
or microscopically from
nuclear wavefunctions. The
latter approach has had some
success with proton scat-
tering [30]. Alternatively
the single fold procedure
might be used. At least one
application of the latter has
been made to heavy ion scat-
tering [31]. The emphasis on

that exchange effects are less

9. Concluding Remarks

We have seen that a characteristic of heavy ion scattering is to determine
the value of the real part of the ion-ion potential at a critical radius of sepa-
ration which is close to the distance of closest approach Dj/2 for the Rutherford
orbit which has a transmission coefficient T^ • 1/2. It is the value at this
point, not the slope (or surface diffuseness a), which is well determined, at
least in the cases I have looked at. Within this context it would be good if
authors making optical model analyses would quote the values of these physically
significant quantities Lj/2* ^i/i and ReU(r )

A more complete picture of the ion-ion potential (although still only of its
surface aspects) is obtained by studying other peripheral events like inelastic
scattering and transfer reactions. With the sorts of energies currently avail-
able (say 4 10 MeV/nucleon) it is difficult to obtain more detailed information
from elastic scattering. The data for heavy targets are dominated by the Coulomb
effects. Light nuclei minimize these but then one encounters strong-coupling
fluctuations [33], exchange processes and other special structural features. In-
termediate nuclei, such as the s,d shell and perhaps p,f shell nuclei would seem
to be the most favourable targets at present. Even then one has to work hard by
measuring small cross sections at small enough angular intervals that the distri-
butions are well defined. At that point one has to worry that inelastic scat-
tering to some particular state has become strong enough that its effects have to
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be taken into account ex-
plicitly rather than being in-
cluded in an average way in
the usual simple potential
model. (Of course that par-
ticular worry is not experi-
mental but. is simply concerned
with the complexity of the
theoretical analysis required.)

The important interaction
region is where the ion densi-
ties are very low, so one is
encouraged to explore simple
models of the real potential
such as the folding procedures
of eqs. (5) and (8). These
give very deep potentials in
the interior, several 100 MeV,
but this is no drawback since
these are not experienced by
the scattering process. They
give one the hope of relating
the ion-ion potential to other
quantities such as the
nucleon-nucieus optical po-
tential or nucleon-nucleon ef-
fective interactions. (How,
ver, one should not expect
these procedures to work, ex-
cept by "accident", for the
imaginary potential.)

(deg)

Figure 17

For the examples examined
here, as well as some
16O+208Pb calculations I have

done, the simple folded potentials need renormalizing to roughly half their pre-
dicted values in order to fit the data. (The results of Brink and Rowley [22]
seem to support this conclusion. They adjust UN2 of eq. (8) to fit the heavy ion
elastic data; the UJJ2 they obtain are smaller than might be expected from nucleon
scattering data and this is consistent with my need for renormalization. In ad-
dition the densities they use have rather small radii; larger radii would de-
crease their UN, even further.) The reason for the renormalization is not under-
stood at present. I believe exchange effects are small but in any case would tend
to make the discrepancy larger. Distortion of the surface density of one ion in
the field of the other has been neglected; the effect of the attractive nuclear
field [22] is to increase the density and hence the potential, but the much larger
repulsive Coulomb field would reduce it. Estimates of this effect are being made.

The zero-range form (6) gives very deep potentials. For example, a rela-
tively light projectile of mass A on a heavy target results in U(r-O) fs 40 A f
MeV, where f is the strength parameter of Vary and Dover [19]. Typically Ref as 5
so ReU(r-O) » 200 A MeV or ~3000 MeV for an l60 projectile. More importantly it
may give a more rapid decay of U(r) in the tail region than does folding with a
finite range interaction. Its decay length is about the same as one obtains with
the Gaussian potential [24], but appreciably smaller than with Yukawa-type po-
tentials which include a range like the OPEP. Fits to scattering data for heavy
targets (including 16O+208Pb at 192 MeV) and 60 MeV 160 on medium weight tar-
gets [19] can be obtained which are as good as those using finite range inter-

160 from 28Si is appiactions, but the scattering of 72 MeV
13).

appreciably different (fig.



References

(The references chosen are intended to be representative rather than comprehen-
sive.)

[1] J. S. Blair, tn Proc. conf. on nuclear reactions induced by heavy ions, ed.
W. Hering and R. Bock (North-Holland, Amsterdam, 1970).

[2] W. E. Frahn, Ann. Phys. (N.Y.) 72 (1972) 524;
R. A. Broglia and A. Winther, Phys. Reports 4C (1972) 153.

[3] B. Nilsson, R. A. Broglia, S. Landowne, R. Liotta and A. Winther, Phys.
Lett. 47B (1973) 189;
M. C. Lemaire, M. C. Mermarz, H. Sztark and A. Cunsolo, Phys. Rev. C, to be
published.

[4] P. R. Christensen, I. Chernov, E. E. Gross, R. Stokstad and F. Videbaek,
Nucl. Phys. A207 (1973) 433.

[5] M. C. Bertin, S. L. Tabor, B. A. Watson, Y. Eisen and G. Goldring, Nucl.
Phys. A167 (1971) 216;
B. C. Robertson, J. T. Sample, D. R. Goosman, K. Nagatani and K. W. Jones,
Phys. Rev. C4 (1971) 2176;
A. M. Friedman, R. H. Siemssen and J. G. Cuninghame, Phys. Rev. £6_ (1972)
2219;
H. H. Gutbrod, M. Blann and W. G. Winn, Nucl. Phys. A213 (1973) 285.

[6] W. E. Frahn and 3. H. Venter, Ann. Phys. (N.Y.) 24 (1963) 243;
R. Anni and L. Taffara, Riv. Nuovo Cimento 2_ (1970) 1.

[7] P. R. Christensen, V. 1. Manko, F. D. Becchetti and R. J. Nickles, Nucl.
Phys. A207 (1973) 33 and A2O3 (1973) 1.

[8] K. W. McVoy, Phys. Rev. C3 (1971) 1104;
R. C. Fuller, Nucl. Phys. A216 (1973) 199;
R. C. Fuller and Y. Avishai, Nucl. Phys. A222 (1974) 365;
R, C. Fuller and 0. Dragun, to be published.

[9] G. H. Rawitscher, Nucl. Phys. 85 (1966) 337.

[10] U. Mosel, T. D. Thomas and P. Reisenfeldt, Phys. Lett. 3£B (1970) 565;
W. Scheid and W. Greiner,, Z. Physik 226 (1970) 364.

[11] U. Mosel, Particles & Nuclei 3. (1972) 297;
P. Lichtner, D. Drechsel, F. Manlier and W. Greiner, Phys. Rev. Lett. _2£
(1972) 829,

[12] G. Helling, W. Scheid and W. Greiner, Phys. Lett. 36B (1971) 64.

[13] P. Schumacher, N. Ueta, H. H. Duhm, K< I. Kubo and W. J. Klages, Nucl. Phys.
A212 (1973) 573.

[14] R. A. Chatwin, J. S. Eck, D. Robson and A. Richter, Phys. Rev. Cl (1970)
795;
D. Robson, _in Heavy ion scattering, Argonne National Laboratory Report
ANL-7837 (1971).

[15] J. Orloff and W. W. Daehnick, Phys. Rev. C3 (1971) 430.



[16] J. L. C. Ford, Jr., K. S. Toth, D. C. Hensley, R. M. Gaedke, P. J. Riley and
S. T. Thornton, Phys. Rev. C8 (1973) 1912.

[17] J. L. C. Ford, Jr., K. S. Toth, G. R. Satchler, D. C. Hensley, L. W. Owen,
R. M. DeVries, R. M. Gaedke, P. J. Riley and S. T. Thornton, Phys. Rev. C,
to be published.

[18] Y. Eisen, Phys. Lett. 37B_ (1971) 33.

[19] J. P. Vary and C. B. Dover, Phys. Rev. Lett. 31 (1973) 1510.

[20] C. J. Batty, E. Friedman and D. F. Jackson, Nucl. Phys. A175 (1971) 1;
A. Budzanowski, A. Dudek, K. Grotowski, Z. Majka and A. Strzalkowski,
Particles & Nuclei 6. (1973) 97.

[21] D. Slanina and H. McManus, Nucl. Phys. A116 (1968) 271;
G. W. Greenlees, W. Makofsky and G. J. Pyle, Phys. Rev. Cl (1970) 1115.

[22] J. S. Mclntosh, S. C. Park and G. H. Rawitscher, Phys. Rev. 134 (1964)
B1010;
P. Charles, M. Dost, B. Fernandez and J. Gastebois, Ja CEN Saclay annual
report (1972);
L. West, S. Cotanch and D. Robson, contribution to Munich Conference (1973);
D. M. Brink and N. Rowley, Nucl. Phys. A219 (1974) 79.

[23] D. F. Jackson and R. C. Johnson, Phys. Lett. 49B (1974) 249.

[24] I. Reichstein and Y. C. Tang, Nucl. Phys. A139 (1969) 144.

[25] K. W. Ford, D. L. Hill, M. Wakano and J. A. Wheeler, Ann. Phys. (N.Y.) T_
(1959) 239.

[26] J. G. Cramer, R. M. DeVries, M. S. Zisman, K. G. Nair, K. L. Liu and
Y. D. Chan, contribution to Munich Conference (1973).

[27] D. A. Goldberg and S. M. Smith, Phys. Rev. Lett. Z9 (1972) 500 and to be
published.

[28] J. C. Heibert and G. T. Garvey, Phys. Rev. 135 (1964) B346.

[29] R. H. Bassel, G. R. Satchler and R. M. Drisko, Nucl. Phys. 89 (1966) 419.

[30] G. R. Satchler, Comments on Nucl. & Part. Phys. 5, (1972) 39;
Z. Physik 26jO (1973) 209.

[31] L. West, S. Cotanch and D. Robson, contribution to Munich Conference (1973).

[32] G. R. Satchler, Phys. Lett- 39B (1972) 495.

[33] H. J. Fink, W. Scheid and W. Greiner, Nucl. Phys. A188 (1972) 259.


