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ABSTRACT 

The theory used for development of the REBAL computer program ser ies  
' for linear propagation of uncertainty in computer assisted engineering compu- 
tations i s  given. The approximations used in REBAL a r e  presented. Emphasis 
is placed on the interpretation of the input and output a s  calculated by REBAL. 
This report i s  written for engineers with only basic statistical background. 



SUMMARY 

REBAL is a computer program that establishes the statistical distribution 
of the output from engineering computations from the distributions of the para- 
meters input to the engineering computations. The input distributions can rep- 
resent randomly varying input o r  can be an expression of uncertainty in the input 
parameter. 

REBAL is based on the theory of linear propagation of variance and thereby 
the output distribution is calculated rather than estimated from a sample a s  it 
is in the Monte Carlo approach. To calculate the output distribution, the partial 
derivatives of the output- with respect to each distributed input parameter a r e  
required and a r e  determined by REBAL by the finite difference technique. 

From the output distribution, an interval estimate of the output i s  established. 
In the case of randomly varying input this interval estimate is interpreted a s  
an interval expected to contain the actual output a specified percentage of the 
time. For  the case for which the input is an expression of uncertainty in the 
input parameter, the interval estimate is expected to contain, with a specified 
probability, the model result that would occur if all the input parameters were 
precisely known, The term probability i s  interpreted in the latter case in a 
Bayesian sense. 
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THE REBAL COMPUTER PROGRAM SERIES FOR LINEAR 
PROPAGATION O F  UNCERTAINTY 

I. INTRODUCTION 

' ~ o d e r n  engineering calculations involve complex se t s  of equations that a r e  
generally solved using digital computers. The input parameters  used for the 
calculations a r e  rare ly  accurately known. The equations used for the calculations 
then a r e  t ransfer  functions for the uncertainty associated with the input para- 
meters ,  hence uncertainty is propagated through the calculations. Th2 result 
is uncertainty in the output of the computation. Analysis to determine this un- 
certainty i s  important because of cost and safety contingencies. Uncertainty 
analysis (in conjunction with experimental data) i s  necessary for verification 
of analytical models that have input parameters  that a r e  not accurately known, 

The REBAL computer program ser ies ,  Routines for E r r o r  Bounds Assum- 
ing Linearity, was written to quantify the output uncertainty that results  from 
uncertainty in the input parameters  of several existing computer programs. 
REBAL uses these existing, unmodified computer programs a s  subroutines; 
that i s ,  it cal ls  them a s  modules. Only two portions of .REBAL must be tailored 
to the computer program for  which uncertainty propagation analysis is to be 
car r ied  out; the remainder of REBAL remains unchanged. Thereby the effort 
necessary to extend the REBAL se r i e s  to include the analysis of output uncer- 
tainty of additional computer programs is minimized. 

Two types of situations can be analyzed by the techniques of linear propa- 
gation of variance that a r e  used in REBAL. One deals with the treatment of 
randomly varying input and, consequently, randomly varying output; the other 
deals with treatment of uncertainty associated with quantities that have fixed but 
unknown values. 
C. 
As an example of propagation of the effect of randomly varying input, a 

situation dealing with electrical res is tors  is given. A m ~ l i f i e r s  a r e  built using 
res i s to r s  taken from a lot of res is tors  that a r e  known to vary in resistance. 
For  this example the pertinent characteristics of all  other amplifier com- 
ponents a r e  assumed not to vary. The variation in resistance i s  determined 
by examining some, o r  al l ,  of the resistors ,  and the probability density funztion 
(pdf) for  the value of resistance of a resistor  from this lot is determined. The 
gain of an amplifier is dependent on the resistance of the res is tor  used for its 
construction and consequently varies  from one amplifier to another. Through 
use  of the mathematical model for determining the gain of an amplifier, the 
pdf for  the res is tors ,  and techniques of propagation of variance, the pdf for the 
gain of an amplifier built using res is tors  from the lot can be determined. Hence, 
a probability statement about the gain of a given amplifier can be made. This 
example is one of classical propagation of variance and can be analyzed through 
use  of REBAL. 

, The other type of situation that can also be analyzed by techniques of linear 
propagation of variance, hence REBAL, deals with the propagation of uncertainty 
associated with parameters  that a r e  input to engineering computations. A sub- 
jective assignment of uncertainty distributions for the input parameters  is 
often employed. The required distributions can, however;be based entirely on 
experimental results  o r  can result from a combination of experimental resul t s  



and subjective assignment. Subjective assignment of density functions i s  not new 
and i s  commonly used in uBayesianInference" techniques. The object of Bayesian 
methods i s  to use all available information whether it be sample information o r  
information of some other origin. If data a r e  to be used in conjunction with sub- 
jective assignment then the initial subjective distribution i s  called the "priorn 
distribution The prior distribution i s  then modified to reflect the information 
contained in the data. The result is a posterior distribution. IReferences 1 
and 2 give a more detailed treatment. 

For uncertainty propagation analysis the input parameters have fixed 
values; the analyst does not, however, know what these true values are. The 
associated uncertainty distributions a r e  an assignment of lack of confidence, 
o r  uncertainty, the analyst has in the input parameters. Based on these input 
uncertainty distributions, REBAL establishes the distribution of the computa- 
tional output. 

In Section 1 general concepts a r e  introduced and in Section I1 the methods 
used in REBAL a r e  given. The specific equations and the approximation used in 
HEBAL a r e  discussed in Sections 111, IV, and V. In Section VI the technique used 
to establish the certainty interval on the output of interest i s  put forth. Input 
and output interpretations a r e  discussed in Sections VII and VIII, respectively. 
Finally, in Section IX the conclusions a r e  presented and recommendations a r e  
made. 



11. METHOD OF  APPROACH 

REBAL is based on the theory of linear propagation of variance [3,4 ,51 

Another method of analyzing output uncertainty i s  the Monte Carlo technique, 
a s  described in Reference 6. A main difference between the linear and Monte 
Carlo techniques is that in the linear approach the assumption i s  made that the 
quantitative measures-of uncertainty; that i s ,  the standard deviation and mean of 
the associated distribution can be calculated whereas in the Monte Carlo 
approach these quantitative measures a r e  estimated from a sample. 

The assumptions and limitations inherent to linear propagation of variance, 
and hence, REBAL a r e  a s  follows: 

(1) The output of the calculation a s  a function of each input para- 
meter in question can be approximated validly in the vicinity 
of the output value that results from the mean input values, 
by the linear terms of a Taylor series expansion. 

(2) The uncertainty in the input parameters i s  distributed with 
known mean and standard deviation, 

(3) The uncertainty in the output of the computation i s  normally 
distributed. 

(4) The input parameters a r e  statistically independent. 

The first assumption is illustrated in Figure 1. Here the output is shown a s  
a function of one input variable. The term vicinity in the first assumption i s  
defined a s  the range of output values resulting from input values in a domain 
such that this domain encloses nearly all, say 9595, of the area under the dis- 
tribution This assumption is needed so that theoutput a s  a function of each input 
variable can be approximated by the linear terms of a Taylor series over the 
range of interest. If many input variables a r e  considered, the usual case, a 
hyperplane tangent to the surface generated by the range of the output is assumed 
to describe the output in the vicinity of the output value that results from the mean 
input values. In a detailed stady, Ku [51. has shown the uncertainty propagation 
equations resulting from this assumption a r e  accurate if (a) the percent un- 
certainty in the input parameter is small and @) the second and higher order 
partial derivatives of the mathematical model a r e  small when evaluated at  the 
respective mean values of the input parameters.. 

The second assumption allows the input uncertdnty distribution to be of 
any type (normal, lognormal, uniform . . .) so long as the mean and' standard 
deviations a r e  known. Determination of the uncertainty distributions for the 
input parameters is discussed in Section VII. 

Assuming the output is normally distributed i s  necessary for interpretation 
of the results. The output is indeed nearly normally distributed in cases of 
interest a s  has been validated in man cases by Monte Carlo analyses and in 

14( some cases by Lapunov's Theorem not to be confused with the standard 
central 1imit.theorem. Cramer, a s  stated by Ku [51, has shown for a large number 
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FIG. 1 ILLUSTRATION O F  T,HE ASSUMPTION O F  L I N E A R I T Y  USED I N  REBAL.  

of input para.meters that this distribution i s ,  indeed, approximately normal. In 
addition, KU [51 concludes that if conditions (a) and (b) given previously prevail 
and the input parameter distributions a r e  normally distributed, the distribution 
of the computational output i s  approximately normal. This assumption of normally 
distributed output is precisely valid, however, only if  all the input parameters 
a r e  normally distributed and the output i s  a .linear function of the input para- 
meter s. 

Within the framework of these assumptions, analytical expressions can 
be derived for calculating the mean .and the standard deviation of the output 
distribution (Section 111). Since the output distribution is assumed normally 
distributed, the distribution is completely described by its mean and' standard 
deviation REBAL solves these expressions for. the pa.rticular situation of 
interest and establishes the associated interval estimates, also called cer- 
tainty intervals, on the output (Section VI). The input to REBAL is described in 
Section VII and the output in Section VIII, These descriptions a r e  of a general 
nature because the specific format of the input and output depends on the par- , 

ticular computer-assisted calculation of interest. 



111. EQUATIONS USED IN REBAL 

Exact analytical determinatioil of a certainty distribution for the output of 
a computer program i s  not feasible in cases encountered in practice. If the 
function for the output i s  expanded by the use of a Taylor series and if  only the 
linear terms a r e  retained, an equation for the mean and the variance of the output 
distribution can be obtained. 

Any reasonably well behaved function of many variables can be expanded in a 
Taylor series about a point if the necessaryderivatives exist. The full expansion 
is given in Reference 7. If only the linear terms a r e  retained, the expansion of 
the function of interest, F ,  reduces to the following: 

where 

j = the number of input parameters 

F(%) = F(X1, X2, X3,. . .X ) 
th n .  

Xi = i distributed input parameter - 
(3 = (h, P29 P3, - * w J  
pi  = the mean of the distribution of theith input parameter 

All of the partial derivatives a r e  evaluated a t  themeansofthe respective input 
parameter distributions. 

- - 
The mean of .F(%), .F(X), i s  giv.en by 

where F,(Z) is evaluated for one random value of the ?l vector. By taking the . 

average value, the terms in Equation (1) become 



1 
since Fn(jI) = F(p) and i s  a constant and -x (X. - p.) approaches zero 
a s  K becomes large. K 1 ,n 1 n=l 

Therefore, to a first order approximation, the mean of the output distribution 
i s  given by the function evaluated at  the means of each input parameter dis- 
tribution. 

If Eqlation (1) is rearranged and an averagevalue of the sum of the squares 
i s  taken over K random observations, the following equation results. 

If the limit of this equation i s  taken a s  K becomes large and each input parameter 
is assumed statistically independentLa] from all other input parameters, the 
equation becomes 

where 

oi = the standard deviation of the ith input parameter 

% = the standard deviation of the output variable. 

[a] Statistical independence between input parameters implies that total or  partial 
knowledge of any parameter does not affect the uncertainty distribution of other 
parameters. Specifically, statistical independence exists if  the probability of 
Event A and Event B, P(AflB), equals thepi-obabj.lity of A times the probabilities 
of B; that is ,  P(AnBj = P(A) P(B) (Reference 8). 



IV. THE DERIVATIVE APPROXIMATION USED IN REBAL 

To calculate the standard deviation from Equation (3), the partial deri- 
vatives of the output with respect to each input parameter of interest a r e  
determined. These partial derivatives a r e  approximated a s  follows: 

where 
- 
F =,!the output value that results upon substitution of the means 

of all the input parameter distributions. 

- 
XiB = The mean of the distribution of the ith input parameter. 

A positive factor different than unity used to perturb 
Xi, and is called the perturbation factor. 

A J J  

Fi The output value that results upon substitution of k X i ~  
for XiB into a calculation otherwise identical to the c d -  
culation of F. 

Since i s  common to the determination of all the required partial derivatives 
of F ,  n+l calculations of F values a r e  required where n is the number of 
input parameters of interest. 

In numerical analysis, difference .equations in the form of Equation (4) 
a r e  referred to a s  forward difference quotients o r  backward difference quotients 
dependent on the selection of k. Other methods, such a s  the centered difference 
quotient[g], could have been used in REBAL but all of these methods require 
at  least 2n+l calculations of F. Since engineering computations a r e  generally 
expensive, performing n+l calculations is more appealing than performing 
2n+l calculations. 

If the result of Equation (4) i s  a strong function of the choice of k then the 
assumption of linearity given in Section I1 i s  surely violated in which case an 
alternative approach is to use Monte Carlo uncertainty propagation analysis. 
In any case, what i s  desired is the slope of a straight line that best approxi- 
mates F(Xi) over most i& the range of uncertainty of Xi and not necessarily the 
best approximation of - 

8Xi evaluated at the mean of the Xi uncertainty distri- 
bution (Figure 1). 



V. FRACTIONAL CONTRIBUTI0N.S O F  INPUT PARAMETERS 
. TO THE OUTPUT STANDARD DEVIATION 

The fractional contribution of each input parameter to the variance of the 
output i s  easily obtained from Equation (3): The fractional contribution to the 
standard deviation is, however, the quantity of interest here. As indicated 

- 

by Equation (3), the terms oi (2F ) combine t o  give o in a manner ideptical F 
to the addition of orthogonal iect'drs. This concept i s  illustrated in Figure 2 

aF for the case of two independent input parameters. The projection, @, of ol 

on the o~ vector gives the contribution to oF that results from uncertainti 
in Xi and is equal to the vector dot product divided by % 

where randT.are  unit vectors along the X and Y axes, respectively. 

The fractional contribution, fl of X1 to oF, i s  given by 

Therefore 

2 a~ - aF - . aF - 
1 ax, i ) . (  a  - i + a  - j )  

1 ax, 2 ax, 

This argument is applicable to any number of input parameters. The general 
expression for the fractional contribution of the ith input parameter i s  given by 

Therefore, the fractional contribution of each input parameter to the standard 
deviation of the output i s  the same as the fractional contribution to the output 
variance. 



F I G ,  2 VECTOR ADDIT ION O F  COMPLETELY INDEPENDENT UNCERTAINTIES.  



VI. ESTABLISHING THE CERTAINTY INTERVAL ON THE OUTPUT 

. The interval estimates, o r  certainty interval, on the output i s  automatically 
established by REBAL. A given percent, a,  that is specified by the RFBAL 
user ,  of the area under the output distribution i s  bounded and the certainty 
interval is  thereby established. As an example, if i s  set equal to 95% then 
the certainty interval i s  centered at  the mean of the output distribution and extends 
away from the mean to points that bound 95% of the output distribution. 

Since the output i s  assumed to be normally distributed, a factor Zcl can be 
defined such that F + Z,oF gives the desired certainty interval. A plot of 
Z, a s  a function of a is a v e n  in Figure 3. 

a ( % A N C -  A - 2 3 4 4  

F I G .  3 THE Z FACTOR AS A FUNCTION OF,. a 



VII. RE B A L  INPUT AND ITS INTERPRETATION 

Input to REBAL generally consists of the following: 

(1) The perturbation factor for each input parameter of interest 
(Section IV). 

(2) The standard deviation and mean of the distribution of each 
input parameter of interest. 

. (3) The value of a. (Section VI). 
(4) Miscellaneous input flags a r e  required to control printout, 

fractional contributions, and plotting options. 

The perturbation factor, k ,  should be chosen such that enough change i s  
realized in the output, F ,  so that the partial derivative estimate i s  not distorted 
by round-off error. However, a small change is often considered to give a 
better estimate of the desired partial derivative. At any rate, the changed input 
value should be within the bounds that contain, say, 95% of the input distribution 
in question. Another consideration in choosing k i s  that kXiB (Section IV) should 
not violate physical constraints on Xi or otherwise enter a range of Xi values 
that force F into a domain in which F behaves substantially different than it 
does in the neighborhood of F. This latter consideration in choosing k is usually 
automatically accounted for .if kXiB is within the bounds containing 95% of the 
distribution of Xi. Recommended values of k based on experience are [0.9 
or  (1 - 2oXi/xiB) whichever i s  larger] o r  [1.1 or (1 + 2aXi/xiB) whichever i s  
smaller]. Whether k i s  chosen greater than 1.0or less than 1.0 i s  determined by 
physical constraints on 3. 

The value of a used i s  subjectively chosen by the user. The larger a is 
chosen, the larger the e r ro r  bands. Conventional values of a a r e  90% and 95%.. 

Determination of the standard deviations and means of the distributions of 
the input parameters depend on whether the inputs a r e  random variables o r  a r e  
fixed but unknown quantities. These determinations a r e  dealt With in Sections 
WI-1 and ViI-2, respectively. 

1. INPUT QUANTITIES THAT ARE RANDOM VARIABLES 

If the input quantities a r e  random variables, such a s  the resistance of the 
resistors in the example given in Section I ,  the input distributions a r e  deter- 
mined by standard statistical techniques. A random sample i s  taken from the 
population of each input variable and the distribution characteristics a r e  deter- 
mined. For example, if the distribution is assumed normal, then the estimate of 
the mean, x, and the estimate of the standard deviation, s ,  a r e  given by 



where Xi is the ith value of the random sample. Further information about 
determining distributions from a sample is given in Reference 10. 

The resulting distribution input to REBAL can be interpreted by the classical 
frequency interpreta.tion. The probability, P, that a randomly chosen sample 
value will l ie in a specified interval is. equal to the a rea  under the distri- 
h t i o n  bounded by that interval. If a large sample of N values is taken, 100 P% 
of the values a r e  expected to fall within the specified interval. 

2. INPUT QUAWTIES THAT HAVE FIXED BUT UNKNOWN VALUES 

If the' input quantities have fixed but unknown values, the uncertainty dis- 
tributions input to REBAL ,are  determined subjectively o r  from experimmtal 
data o r  both. 

If experimental data alone a r e  to be used to determine the uncertainty ' 

distribution and a large sample has been taken, that i s ,  more  than 30 samples, 
and the population is normally distributed, then the mean, 1-1, and standard 
deviation a a r e  given by . 

and a* is estimated by s a s  given in 'section VII-1. For smaller sample sizes 
the "student's tm distribution can be used[2]. Otherwise the uncertainty dis- 
tributions a re  assigned subjectively, which i s  usually the case. The f i rs t  steps 
a re  to: 

(1) Obtain a nominal value (value estimated to be the most likely 
t rue  value) for the parameter 

(2) Determine the physical bounds for the parameter 

(3) Subjectively obtain an appropriate distribution type (riormal, 
uniform, . . .) for the parameter 



(4) Estimate a certainty h te rva l  for the parameter (for example, 
the. chance the t rue  parameter value l ies  within a specified 
interval i s  0.95). 

To obtain a nominal value, the analyst should seek the best possible estimate 
of the t rue  value of the parameter and not a L6conservative" value. This best 
possible estimate usually serves  as' the mean of the input certainty distribution. 

Physical bounds for the parameter  can normally be determined. As an 
example, a reactor  fuel pellet length may be constrained between 0.90 and 1.10 
inches, with other fuel pellets having been discarded. (This constraint is not 
to be confused with engineering tolerances for the fuel pellet which in this 
example might be 1.00 * 0.002 inch. ~ i m e n s i o n s  a r e  not necessari ly constrained 
a t  the engineering tolerances.) 

F o r  most uncertainty propagation analyses the input parameters  a r e  assumed 
to be normally distributed. The assumption of normality must be considered 
a s  simply an assumption regarding the form of a mathematical model which, 
a t  best,  is an approximation to a r ea l  situation. 

Many things about the normal approximation a r e  pleasing. The distribution 
is symmetrical about the mean. The uncertainty in- the parameter is entirely. 
described by the standard deviation. The probability of a random value being 
selected is greatest for the mean value and is monotonically decreasing a s  a 
function of distance from the msan. Values further than 3 0  from the mean have 
a very small probability of occurring (~0.3%).  The distribution also has 'nice" 
mathematical features and is well tabulated. If another distribution is used, the 
mean, E(X), and the standard deviation, a, must be determined by standard 
techniques. These determinations can become tedious but they a r e  alwiys 
given by 

where 

g(y) = the probability density function of y. 

If the uncertainty distribution is assumed to be normally distributed then 
the mean is generally assumed to be the nominal parameter value. An approx- 
imation of a can be obtained in almost any situation. The f i rs t  technique to be 
discussed requires values a and b to  be estimated -- the value, a ,  being a 
lowest parameter  value and b being a highest parameter value such that a 99.7% 
chance exists that the actual parameter l ies  between a and b. Then 



If a and b a r e  chosen. such that a 95% chance exists that the actual parameter 
is included in the interval, a to b, then 

where Max [X,Y] denotes that the maximum value of X orY i s  chosen. The 
maximum value i s  necessary because, whereas the normal distribution is 
symmetrical, the analyst may not select values a and b that a r e  equidistant 
from the mean. By choosing the maximum distance from the mean, a degree 
of conservatism i s  factored into most cases because ultimately the uncertainty 
baunds on the output parameter will be somewhat larger. 

Another approach that is conceptually equivalent to the estimation kchnique 
presented is to estimate the percent uncertainty in the parameter from ex- - 

BJJ perience. In this case a = where 100 BB i s  the maximum percent uncertainty 

in the parameter expecte$ with confidence a. -Z, i s  the factor in Figure 3 
corresponding to a. 

A similar estimate for a can be obtained for other distributions. Expressions 
for these estimates a r e  given for several simple distributions in Figure 4. 

D i s t r i b u t i o n  
S t a n d a r d  

D e v i a t i o n  
Approx imat ion  

b - o  
4.9 

a  ' b 
A N C - A -  2 3 4 5  



The analyst responsible for establishing certainty intervals can solicit 
uncertainty distributions from those persons qualified to subjectively assign 
these distributions. To aid in obtaining the distribution, forms can be used 
such a s  the one given in Figure 5. To use the form shown in Figure 5 the 
analyst first fills in the parameter description (1) and often the best point 
estimate, p, (not conservative) of the parameter (3). The qualified individuals 
then select an appropriate distribution type (2) with uncertainty bounds, a (4) 
and b (5) with an estimate of the chance P that the true parameter lies between 
a and b (6). Details of establishing. these "priorn distributions a r e  given in 
Reference 1. . 

Often an input parameter will be input to the computation a s  a correla- 
tion,' W(X), that i s  a function of an output parameter X As a case in point, the 
thermal conductivity of a material can be considered a s  a function of temperature 
in a calculation to determine the temperature. Such correlations a r e  replaced 
by pW(X), where p is a constant that "corrects" the correlation to give the true 
value. The correct value of p is not known. An uncertainty distribution i s  
assigned to p and the uncertainty in W(X) is thereby transferred to p. 



EST1 MATE OF PARAMETER UNCERTAINTY 
BASED ON ENGl NEERING JUDGEMENT 

(0  P a r a m e t e r  D e s c r i p t i o n :  

Dl STRlBUTl ONS CHARACTER l STlCS 
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VII I .  REBAL OUTPUT AND I T S  INTERPRETATION 

The output from REBAL can consist of the following: 

(1) The most probable output value with certainty intervals 
specified 

(2) The partial derivative of the ouQut with respect to each input 
parameter 

(3) The fractional contribution of each input parameter to the 
output certainty interval. 

If the normal computational output is a function of one or  more variables, 
then all of the REBAL output i s  obtained a s  a function of these same variables. 
For example, if the normal computational output i s  temperature and the temper- 
ature i s  obtained a s  at  various rnesh points and time steps, then the certainty 
intervals, partial derivatives, and fractional contributions can be obtained at 
these mesh points and time steps. 

1. OUTPUT QUANTITIES THAT ARE RANDOM VARTABLES 

If the parameter distributions input to REBAL a r e  for random variables 
(Section VII-l), then the output distribution is .a probability density function for 
a random variable; hence, a classical probability statement can be made. For 
example, if a = 0.95, then the probability that the actual value lies between - 
X 1.960 is 0.95. 

2. OUTPUT QUANTITIES THAT HAVE FIXED BUT UNKNOWN VALUES 

If the parameter distributions input for REBAL a r e  an expression of un- 
certainty about the true value of the parameter, then the output distribution is 
the distribution of the true result of the computation. The true result of the 
computation is defined a s  the computational output that results i f  the exact true 
value of each parameter input to the computation were used. The true result of 
the computation, Y', is a fixed but unknown quantity. The interval estimate of, 
Y, the model output, i s  an interval that is expected to contain Y'. The output 
distribution and, consequently, the interval estimate of Y then cannot be inter- 
preted in a frequency, or  classical, sense because regardless of the interval 
chosen, the true result of the computation either lies in the interval all the time 
o r  it never does. Consequently, a classical, or  frequency, probability statement 
cannot be made about a certainty interval, but rather the interval i s  interpreted 
in a Bayesian sense a s  described by Hays and Winkler [I]. The distribution of 
Y i s  defined as a certainty distribution and is interpreted analogously to the 



uncertainty distributions for input parameters. If an interval, .a  to b, i s  estab- 
lished that bounds a percent of the output distribution, then an a percent chance 
exists that the true result of the computation lies in the interval a to b. The 
interval a to b i s  called the certainty interval. For example, if  u =  95%, the 
probability that Y' lies in the interval Y * 1.96ais 0.95. The word "prob- 
abilityn is interpreted here in a Bayesian sense [I]. 



IX. CONCLUSIONS 

REBAL is  a computer program capable of establishing uncertainty bounds 
on the output of computer assisted engineering computations. These uncertainty 
bounds that result from uncertainty in the input parameters can be determined 
for a wide variety of types of computations. REBAL requires that the computer 
program normally used for the computations be available. Although REBAL 
is intended for immediate application to uncertainty propagation analysis, 
it is also applicable to analysis of the effectssof randomly varying parameters 
on predicted output. 

The main limitations to REBAL a r e  having to: 

'(1) Express the computational output a s  a linear function of each 
input parameter over the range of uncertainty associated with 
the respective input parameters 

(2) Subjectively assign the uncertainty distribution 'to the input 
parameter of interest in some cases 

(3) Assume the uncertainty distribution of output of the compu- 
tations is normally distributed 

(4) Assume the input parameters a r e  statistically independent. 

To improve the theoretical basis of REBAL, development of the following 
, i s  recommended: 

(1) Techniques to mitigate the preceding limitations with regard 
to linearity, independence, and distributions 

(2) Methods to reduce the cost of determining the necessary 
partial derivatives. 

The output fimom REBAL i s  useful not only a s  an expression of confidence 
that an interval estimate of the output contains . the true value, but also a s  
input to statistical tests used for verification of the computational model based 
on experimental results a s  well. Establishing a certainty distribution on the com- 
putational output allows the computational analytical model to be free from the ' 

responsibility, during the model verification tests, for output e r rors  that result ' 

from er ror  in the input parameters. 



X. REFERENCES 

(1) W. L. Hays and R. L. Winkler, Statistics, Probability, Inference, and 
Decision, Vol. 1, Holt, Rinehart and Winston Inc., New York (1970). 

(2) M. G. Kendall, -- The Advanced Theory of Statistics, Vol. 11, 3rd Edition, 
New York: Hafner Publishing Comnany (1973). 

(3) Y. Beers, Introduction to the Theory of Error ,  Reading, Massachusetts: 
Addison Wesley Co., Inc. (1958). 

(4) C. R. Ra.o, Tinear Statistical Inference and Its  Applications, .- New York: 
John Wiley and Sons, Inc. (1965). 

(5) H. H. Ku, "Notes on the Use of Propagation of Error  Formula", Journal 
of Research of the National Bureau of Standards - C. Engineering and 
Instrumentation, Vol. 70C, No. 4, October - December 1966. 

(6) G. J. Hahn and S. S. Shapiro, Statistical Models in Engineering, John 
Wiley and Sons, Inc., New York (1967) pp 236-251. 

(7) D. V. Widder, Advanced Calculus, Second Edition, Prentice-Hall, Inc., 
Englewood Cliffs, N. J. (1961), p 45. 

(8) A. H. Bowker and G. J. Lieberman, Engineering Statistics, Prentice-Hall, 
Inc., Englewood Cliffs, N. J. (1959). 

(9) E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John 
Wiley and Sons, Inc., New York (1966). 

(10) A. Hald , Statistical Theory with Engineering Applications, John Wiley ' 

and Sons, Inc., New York (1952). 






