A. 356

UCRL-51420

SOLUTIONS OF THE SCALAR HELMHOLTZ EQUATION IN THE ELLIPTIC CYLINDER COORDINATE SYSTEM

13,421

R. Jeff Lytle Darrel L. Lager

July 3, 1973

Prepared for U.S. Atomic Energy Commission under contract No. W-7405-Eng-48

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NOTICE

"This report was prepared as an account of work sponsore? by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, not any of their confractors, subcontractors, or their employees, makes any warrenty, express or implied, or assumes any legal lability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infilinge privatelyowned rights."

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy \$____; Microfiche \$0.95

*Pages	NTIS Selling Price
1-50	\$4.00
51 -1 50	\$5,45
151-325	\$7.60
326-500	\$10.60
501-1000	\$13.60

A)

TID-4500, UC-32 Mathematics and Computers

LAWRENCE LIVERMORE LABORATORY University of California/Livermore, California/94550

UCRL-51420

SOLUTIONS OF THE SCALAR HELMHOLTZ EQUATION IN THE ELLIPTIC CYLINDER COORDINATE SYSTEM

R. Jeff Lytle

Darrel L. Lager

MS. date: July 3, 1973

NOTICE

This report was propred as an account of work sponnored by the United States Government, Neither the United States anor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal itheilly or responsibility for the accuracy, com-pleticuous or usefulness of ary information, apparatus, product or process discload, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Contents

Abstract	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Introduction			•	•		•	•	•	•	•	•		•	۲	•	•	1
Solutions of	the l	Scala	ar H	elmh	oltz	Equa	ation	•	•	•	•	•	•		•	•	3
Determination of Eigenvalues and Eigenfunctions																	
Sample Num	eric	al R	esul	ts	•	•	•		•	•	•	•	•	•			9
Remarks	•	•	•	•	•	•	•		•	•	•		•	•		•	17
References			•	•	•	•	•	•	•	•	•		•	•	•	•	18
Appendix A.	Us	eful	Rep	rese	ntatio	ons	•		•	•	•		•	•	•	•	19

Ċ,I

SOLUTIONS OF THE SCALAR HELMHOLTZ EQUATION IN THE ELLIPTIC CYLINDER COORDINATE SYSTEM

Abstract

In this paper we describe a method for determining the eigenvalues for the scalar Helmholtz equation in the elliptic cylinder coordinate system. Complex expansion parameters are considered so that numerical results for physical problems involving energy dissipation as well as energy flow can be obtained. Sample numerical results are presented for the eigenvalues, radial eigenfunctions, and angle eigenfunctions. Applications of these results are discussed.

Introduction

Elliptic cylinder functions are encountered in a large number of problems in mathematical physics.¹⁻¹⁶ Examples of problems involving elliptic cylinder functions are solutions of the diffusion equation and the scalar wave equation in the elliptic cylinder coordinate system. Problems in acoustics, thermal flow, gravitation, electromagnetics, and optics (among others), can thus involve elliptic cylinder functions.

The damped scalar wave equation for ϕ can be expressed as

$$\nabla^2 \phi = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} + \frac{1}{h^2} \frac{\partial \phi}{\partial t}$$
(1)

where in electric problems, ϕ represents the electric potential (volts); in magnetic problems, ϕ is the magnetic scalar potential (ampere-turns); in thermal problems, ϕ represents the temperature (degrees Kelvin); in gravitation problems, ϕ is the gravitational potential (joule/kilogram); in vibration problems, ϕ represents the displacement (meters); and in hydrody-namics and acoustics, ϕ is the velocity potential (meter²/second).

The diffusion equation

$$\nabla^2 \phi = \frac{1}{h^2} \frac{\partial \phi}{\partial t}$$
 (2)

and the undamped scalar wave equation

$$\nabla^2 \phi = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$$
(3)

are of course special cases of the damped scalar wave equation [Eq. (1)]. The quantities c^2 and h^2 are physical quantities dependent upon the properties of the medium.

By assuming ϕ is of the form

$$\phi = R(spare) T(time),$$
 (4)

-1-

substitution of ϕ into Eq. (1) yields

$$\nabla^2 \mathbf{R} + \gamma^2 \mathbf{R} = \mathbf{0}, \qquad (5)$$

and

$$\frac{\mathrm{d}^2 \mathrm{T}}{\mathrm{d}t^2} + \frac{\mathrm{c}^2}{\mathrm{h}^2} \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}t} + \gamma^2 \mathrm{c}^2 \mathrm{T} = 0 \qquad (6)$$

where γ^2 is a separation constant. Using the general solution of Eq. (6), we can express ϕ via Eq. (4) as

$$\Phi = R(\text{space}) \exp\left[-\frac{c^2}{2h^2}t\right] \pm \left(\sqrt{\frac{c^4}{4h^4} - \gamma^2 c^2}\right)^{1/2} t \left[. \quad (7)\right]$$

For the special case of the diffusion equation,

$$\phi \neq R(\text{space}) \exp \left[-\gamma^2 h^2 t\right]$$
 (B)

and for the undamped wave equation, Eq.(3),

 $\phi \in \mathbf{R}(\mathbf{space}) \exp[\pm j\gamma \mathbf{ct}].$ (9)

It is thus seen from Eqs. (7) through (9) that solutions of the diffusion, the undamped scalar wave, and the damped scalar wave equations can be expressed as a product of a spatial variation R(space) and a characteristic time variation T(time).

For the transient response, the separation constant γ is determined by spatial boundary conditions. For problems where the interest is directed towards the steady-state response to a forced sinusoidal variation of exp [+jwt], the separation constant γ is determined by the temporal variation, Eq. (6). This leads to the results

$$\gamma^2 = \frac{\omega^2}{c^2} - \frac{j\omega}{h^2}$$
(10)

for the damped scalar wave equation,

$$\gamma^2 = -\frac{j\omega}{h^2}$$
(11)

for the diffusion equation, and

$$\gamma^2 = \frac{\omega^2}{c^2} \tag{12}$$

for the undamped scalar wave equation. From Eqs. (10) through (12), it is seen that γ^2 can be either pure real, pure imaginary, or a complex number, dependent upon the particular problem of interest.

It is helpful to provide examples of the above equations applied to physical problems. In heat flow thermal problems, the diffusion equation is pertinent, and the parameter h^2 is defined as

$$h^2 = \frac{k_t}{c_s \delta}$$
(13)

where h^2 is the diffusivity (m²/sec), k_t is the thermal conductivity (watt/meter/ degree), c_s is the specific heat (joule/kg/ degree), and δ is the density (kg/m³) of the medium.

In acoustical problems, the undamped scalar wave equation is pertinent, and the parameter c^2 is defined as

$$e^2 = p \frac{\gamma_t}{\delta}$$
 (14)

where c is the velocity of propagation (m/sec), p is the equilibrium pressure (newton/m²), γ_t is the ratio of the thermitivity (joule) at constant pressure to the

- 2-

thermitivity (joule) at constant volume, and δ is the equilibrium density (kg/m³) of the mediun.

In electromagnetic wave propagation problems, the damped scalar wave equation is sometimes applicable. The parameter c^2 is then defined as

$$c^2 = \frac{1}{\mu\epsilon}$$
(15)

where c is the velocity of propagation (m/sec), μ is the permeability of the medium (henries/m), and ϵ is the permittivity of the medium (farals/m). The parameter h^2 is actined via

$$h^2 = \frac{1}{\mu\sigma}$$
(16)

where h^2 is the diffusivity of the medium (m²/sec), and σ is the conductivity of the medium (mh σ /m).

The temporal response of ϕ for both transient and forced sinusoidal responses has been discussed above. For those interested in more detailed examples, representative references have been listed. The remainder of this report is concerned with the spatial response, R(space), governed by Eq. (5). This equation is the scalar Helmholtz equation.

Solutions of the Scalar Helmholtz Equation

This section is concerned with solutions of the scalar Helmholtz equation [Eq. (5)] in the elliptic coordinate system. The elliptical coordinate system consists of:

- The system of confocal hyperbolas and ellipses comprising the twodimensional elliptic coordinate system (see Fig. 1),
- The cylindrical coordinate system obtained by translating the elliptic coordinate system perpendicular to its plane of definition.

We assume that the reader is familiar with this coordinate system; if not, refer to the list of references.

The spatial variable R in the scalar Helmholtz equation [Eq. (5)] can be represented as

$$R(space) = U(\xi)V(\eta)Z(z)$$
(17)

where ξ , η , and z are the elliptic coordi-

nate system coordinates. Substituting Eq. (17) into Eq. (5) yields

$$\frac{d^2 Z}{dZ^2} + k_z^2 Z = 0$$
 (18)

$$(\xi^{2} - 1) \frac{d^{2}U}{d\xi^{2}} + \xi \frac{dU}{d\xi} - \left[b - \varepsilon^{2} (\gamma^{2} - k_{z}^{2}) \xi^{2}\right] U = 0 \quad (19)$$

$$(1 - \eta^{2}) \frac{d^{2}V}{d\eta^{2}} - \eta \frac{dV}{d\eta} + \left[b - \ell^{2} \left(\gamma^{2} - k_{z}^{2}\right)\eta^{2}\right]V = 0. \quad (20)$$

The separation constants, k_z^2 and b, are associated with the z and elliptic cylinder variations, respectively.

The solution of Eq. (18) is

 $Z(z) = \exp [\pm jk Z].$

(21)

- 3-

Fig. 1. The elliptic coordinate system $(x = l \xi \eta = l \cosh u \cos v, y = l [(\xi^2 - 1) (1 - \eta^2)]^{1/2} = l \sinh u \sin v, z = constant, l = semifocal length). Note: <math>\xi$ describes the system of confocal hyperbolas. $\eta = \cos v, \xi = \cosh u, -1 \le \eta \le +1, 0 \le v \le 2\pi, \xi \ge 1, u \ge 0.$

-4-

Solutions of Eqs. (19) and (20) are solutions of Mathieu's equation, as they are both of the form (letting $m = \xi$ or η and y = U or V)

$$(1 - m^2) \frac{d^2 y}{dm^2} - m \frac{dy}{dm} + [a + 2q - 4qm^2]y = 0$$
(22)

where

$$4q = \ell^2 \left(\gamma^2 - k_z^2 \right) \tag{23}$$

$$b = a + 2q.$$
 (24)

The quantity a in Eq. (22) is commonly denoted as the characteristic value (eigenvalue) of differential Eq. (22), and q is the expansion parameter of this equation. The quantity k_z in Eq. (21) is determined by the forcing function governing the Z(z)variation of the physical phenomena.

The sequence by which we determine the eigenvalues and eigenfunctions for a steady-state problem (the approach followed for a transient problem is not discussed further herein) is as follows:

- 1. determine k_z for the Z(::) variation,
- 2. determine γ^2 from Eqs. (10) through (12),
- 3. determine q from Eq. (23),

- determine the characteristic value (eigenvalue) a, as described below,
- 5. determine b from Eq. (24),
- generate the eigenfunctions [the angle function V(η) and the radial function U(ξ)] for the values η and ξ of interest.

Determination of Eigenvalues and Eigenfunctions

The eigenvalue a, the angle eigenfunction $V(\eta)$, and the radial eigenfunction $U(\xi)$ are intimately connected as can be seen by examining Eqs. (19), (20), (22), and (24). The angle function $V(\eta)$, where $\eta = \cos v$ (see Fig. 1), can be expressed as the sum of an even function in η as well as an odd function in η . The variable η (see Fig. 1) satisfies $-1 \le \eta \le 1$. Because $\eta = \cos v$, the variable v can have a period of $0 \le v \le \pi$ or $0 \le v \le 2\pi$.

This means that there are four sets of solutions to the angle differential equation [Eq. (20)]. These four solutions are:

- Even solutions of period π in v,
- Even solutions of period 2π in v,
- Odd solutions of period π in v,
- Odd solutions of period 2π in v.

These four cases each have their own set of eigenvalues. For each of the four cases of eigenvalues there are associated angle and radial functions. That is, there are four cases of angle functions and an associated set of four radial eigenfunctions.

Methods exist for determining the eigenvalues, but they are complicated to apply except for small values of q. If q is small, power series expansions have been determined for the eigenvalues. For larger values of q, no simple and accurate riethod has been available for determining the eigenvalues. A simple and accurate (although approximate) method by which we can determine the eigenvalues for larger values of q follows. Note that the quantity q is in general complex, as can be seen by referring to Eqs. (10)-(12), and (23).

There is an infinite number of eigenvalues for each of the four angle functions. The sequence of eigenvalues is denoted by the integer number r, where $r \ge 0$. The notation used for the eigenvalues is a_r —to represent the even periodic solutions in v (with r = 0, 1, 2, ...), and b_r —to represent the odd periodic solutions in v (with r = 1, 2, ...). This notation is consistent with that used in Ref. 7.

For each eigenvalue a_r and b_r , there is an associated angle function $V_r(\eta)$, where

$$V_r(\eta) = ce_r(v,q) = \sum_{m=0}^{\infty} A_m^r \cos mv \quad (25)$$

 $V_{r}(n) = se_{r}(v,q) = \sum_{m=0}^{\infty} B_{m}^{r} sin r_{nv}$ (26)

- 5 -

for solutions of period π in v (r and m even);

$$V_r(\eta) = ce_r(v,q) = \sum_{m=1}^{\infty} A_m^r \cos mv \quad (27)$$

$$V_{r}(\eta) = se_{r}(v,q) = \sum_{m=1}^{\infty} B_{m}^{r} \sin mv \qquad (28)$$

for solutions of period 2π in v (r and m odd). The interrelationship between the eigenvalues a_r and expansion coefficients A_m^r , and also the eigenvalues b_r and expansion coefficients B_m^r , is determined by substituting Eqs. (25) through (28) into Eq. (20). The results are:

$$a_{r}A_{0}^{r} - q A_{2}^{r} = 0$$

$$(a_{r} - 4)A_{2}^{r} - q \left(2A_{0}^{r} + A_{4}^{r}\right) = 0$$

$$(a_{r} - m^{2})A_{m}^{r} - q \left(A_{m-2}^{r} + A_{m+2}^{r}\right)$$

$$= 0 \text{ for } m \ge 4 \qquad (29)$$

for even solutions of period π in v (r and m even);

$$(b_r - 4)B_2^r - q B_4^r = 0$$

 $(b_r - m^2)B_m^r - q(B_{m-2}^r + B_{m+2}^r)$
= 0 for $m \ge 4$ (30)

for odd solutions of period π in v (r and m even);

$$(a_{r} - 1)A_{1}^{r} - q(A_{1}^{r} + A_{3}^{r}) = 0$$

$$(a_{r} - m^{2})A_{m}^{r} - q(A_{m-2}^{r} + A_{m+2}^{r})$$

$$= 0 \text{ for } m \ge 3 \qquad (31)$$

-6-

for even solutions of period 2π in v (r and m odd); and

$$(b_r - 1)B_1^r + q(B_1^r - B_3^r) = 0$$

 $(b_r - m^2)B_m^r - q(B_{m-2}^r + B_{m+2}^r)$
 $= 0 \text{ for } m \ge 3$ (32)

for odd solutions of period 2π in v (r and m odd).

Alternately, Eqs. (29) through (32) can be represented in matrix form as infinite tridiagonal matrices as below:

Equations (34) through (36) are infinite, symmetric, tridiagonal matrices whereas Eq. (33) is an infinite, nonsymmetric, tridiagonal matrix. The eigenvalues of symmetric, tridiagonal, finite matrices are easy to generate. The eigenvalues of nonsymmetric, tridiagonal, finite matrices are more complicated to generate. However, numerical solutions are feasible¹⁰ for each of the Eqs. (33) through (36), as long as one truncates the infinite matrix to finite order.

The truncation process, of course, introduces errors into the solutions for a_r and b_r for infinite matrices. However, this error can be made very small. It can be shown that for small q and large r,

$${}^{a_{r}}_{b_{r}} = r^{2} + \frac{q^{2}}{2(r^{2} - 1)} + \frac{(5r^{2} + 7)q^{4}}{32(r^{2} - 1)^{3}(r^{2} - 4)} + \dots$$
(37)

Thus, for $r^2 >>> |q|$, an approximate value for a_r and b_r is r^2 . This is just the term on the diagonal of Eqs. (33) through (36) for large r. Thus, for this large r, one may assume that there is very little coupling of the diagonal term of the matrix with any off-diagonal terms.

This means that the higher order terms are decoupled from the lower

order terms, and thus one can truncate the matrices to a large but finite size without significantly affecting the numerical results for a_r and b_r . The criterion for generating accurate results for the lower order a_r and b_r is that the finite matrices include terms up to $r^2 >>> |q|$.

After using matrix eigenvalue methods to evaluate a_r and b_r , one can determine the relative values of the expansion parameters A_m^r and B_m^r through the use of Eqs. (33) through (36). The normalization of the A_m^r and B^r coefficients is governed by

$$2(A_{0}^{r})^{2} + (A_{2}^{r})^{2} + (A_{4}^{r})^{2} + \dots = 1,$$

$$\sum_{s=0}^{\infty} A_{s}^{r} > 0$$

$$(A_{1}^{r})^{2} + (A_{3}^{r})^{2} + \dots = 1, \sum_{s=1}^{\infty} A_{s}^{r} > 0$$

$$(E_{1}^{r})^{2} + (B_{3}^{r})^{2} + \dots = 1, \sum_{s=1}^{\infty} sB_{s}^{r} > 0$$

$$(B_{2}^{r})^{2} + (E_{4}^{r})^{2} + \dots = 1, \sum_{s=2}^{\infty} sB_{s}^{r} > 0. \quad (38)$$

By using these expansion parameters, we can now generate the angle functions of Eqs. (25) through (28). For each angle function, there is an associated radial function U(ξ) governed by Eq. (19). Radial functions $U_r(\xi)$, for the <u>rth</u> eigenvalue, analogous to the angle functions of Eqs. (25) through (28) are

-7-

$$U_{\mathbf{r}}(\xi) = Ce_{\mathbf{r}}(u,q) = \sum_{m=0}^{\infty} A_{\mathbf{m}}^{\mathbf{r}} \cosh mu \quad (39)$$

$$U_r(\xi) = Se_r(u,q) = \sum_{m=2}^{\infty} B_m^r \sinh mu$$
 (40)

for solutions of period π in v (r and m even);

$$U_{r}(\xi) = Ce_{r}(u,q) = \sum_{m=1}^{\infty} A_{m}^{r} \cosh mu$$
 (41)

$$U_r(\xi) = Se_r(u,q) = \sum_{m=1}^{\infty} B_m^r \sinh mu$$
 (42)

for solutions of period 2π in v (r and m odd), where $\xi = \cosh u$ and $\mu = \cosh^{-1} \xi = \ln[\xi + (\xi^2 - 1)^{1/2}]$.

A general solution of the scalar Helmholtz equation expressed in terms of the ce_r , Ce_r , se_r , and Se_r eigenfunctions is

$$R(\text{space}) = Z(z) \begin{cases} \sum_{r=0}^{\infty} \left\{ E_r Ce_r(u,q) ce_r(v,q) \right\} \end{cases}$$

+
$$\sum_{r=1}^{\infty} \left\{ G_{r} Ce_{r}(u,q) ce_{r}(v,q) + H_{r} Se_{r}(u,q) se_{r}(v,q) \right\}$$
 (2.)

where the coefficients E_r , F_r , G_r , and H_r are determined by the spatial boundary conditions of the physical problem of interest. The radial function expansions expressed in Eqs. (39) through (42) are useful for problems of interest where $\xi \le 5$ and q is of small or moderate size ($|q| \le 2$). If the physical problem involves radiation to infinity ($\xi \rightarrow \infty$), a choice of radial eigenfunctions $U_{\mu}(\xi)$ other than Eqs. (39) through (42) is desired. The reason is that the asymptotic expansion of the Ce_r and Se_r functions do not individually follow a radiation field behavior for $\xi \rightarrow \infty$ of exp($-j\kappa\xi$)/($\kappa\xi$)^{1/2}.

A set of linearly independent radial eigenfunctions $U_r(\xi)$ that can satisfy the radiation field behavior for $\xi \rightarrow \alpha$ is the set $U_r(\xi) = Mc_r(u,q)$ associated with even angle functions, and $U_r(\xi) = Ms_r(u,q)$, associated with odd angle functions. By definition,

$$U_{\mathbf{r}}(\xi) = Mc_{2\mathbf{r}}^{(j)}(u,q) = \sum_{k=0}^{\infty} (-1)^{\mathbf{r}+k} \\ \times \frac{A_{2k}^{2\mathbf{r}}}{A_{2}^{2\mathbf{r}}} \left[J_{k-1}(u_{1}) Z_{k+1}^{(j)}(u_{2}) + J_{k+1}(u_{1}) Z_{k-1}^{(j)}(u_{2}) \right]$$
(44)

$$U_{\mathbf{r}}(\xi) = Ms_{2\mathbf{r}}^{(j)}(\mathbf{u},\mathbf{q}) = \sum_{k=0}^{\infty} (-1)^{r+k} \times \frac{B_{2k}^{2r}}{B_{2}^{2r}} \left[J_{k-1}(\mathbf{u}_{1}) Z_{k+1}^{(j)}(\mathbf{u}_{2}) - J_{k+1}(\mathbf{u}_{1}) Z_{k-1}^{(j)}(\mathbf{u}_{2}) \right]$$
(45)

for solutions associated with angle variations of period π in v;

-8-

$$U_{\mathbf{r}}(\xi) = Mc_{2\mathbf{r}+1}^{(j)}(\mathbf{u},\mathbf{q}) = \sum_{k=0}^{\infty} (-1)^{\mathbf{r}+k}$$
$$\times \frac{A_{2k+1}^{2\mathbf{r}+1}}{A_{1}^{2\mathbf{r}+1}} \left[J_{k}(\mathbf{u}_{1}) Z_{k+1}^{(j)}(\mathbf{u}_{2}) \right]$$
$$\div J_{k+1}(\mathbf{u}_{1}) Z_{k}^{(j)}(\mathbf{u}_{2}) \right] \quad (46)$$

$$U_{r}(\xi) = Ms_{2r+1}^{(j)}(u,q) = \sum_{k=0}^{\infty} (-1)^{r+k}$$
$$\times \frac{B_{2k+1}^{2r+1}}{B_{1}^{2r+1}} \left[\tau_{k}(u_{1})Z_{k+1}^{(j)}(u_{2}) - j_{k+1}(u_{1})Z_{k}^{(j)}(u_{2})\right] \quad (47)$$

for solutions associated with angle variations of period 2π in v, where $\xi = \cosh u$, $u_1 = \sqrt{q} \exp(-u)$, $u_2 = \sqrt{q} \exp(+u)$, $Z_p^{(1)} = J_p$, $Z_p^{(2)} = Y_p$, $Z_p^{(3)} = H_p^{(1)} = J_p + jY_p$, $Z_p^{(4)}$ $= H_p^{(2)} = J_p - jY_p$. J_p and Y_p are cylindrical Bessel and Neumann functions of order p. For a time variation of exp (+jwt), use of the above radial eigenfunctions with j = 4 yields a radial variation (as $\xi \rightarrow \infty$) of exp $(-j\kappa\xi)/\sqrt{\kappa\xi}$, which is the required radiation condition for $\xi \rightarrow \infty$. A general solution of the scalar Helmholtz equation in the elliptic cylinder coordinate system can thus [in addition to the Eq. (43) expansion] be represented as

$$R(\text{space}) = Z(z) \left\{ \sum_{r=0}^{\infty} \right\}$$

$$\times \left[E_r M c_r^{(j)}(u,q) c e_r(v,q) + F_r M s_r^{(j)}(u,q) s e_r(v,q) \right]$$

$$+ \sum_{r=1}^{\infty} \left[G_r M c_r^{(j)}(u,q) c e_r(v,q) + H_r M s_r^{(j)}(u,q) s e_r(v,q) \right], \quad (48)$$

where the coefficients E_r , F_r , G_r and H_r are determined by the spatial boundary conditions of the problem of interest.

Semple Numerical Results

From the general expression for q given in Eq. (20), it is seen that physical problems can lead to a wide variety of q values of interest. The quantity q can be small, moderate, or large in magnitude, and can be a complex number if the medium is dissipative. Some sample numerical results for the eigenvalues a_r and b_r (obtained using the matrix method described herein) are given in Table 1. Sample numerical results for the expansion coefficients A_m^r and B_{rn}^r are given in Table 2. Three-dimensional plots of the angle and radial eigenfunctions are shown in Fig. 2. These results have been compared with available tabular and qualitative results. ³, ⁴, ⁷, ¹⁶

-10-

Fig. 2 (continued)

Table 1. Eigenvalue Results.

. q = 0,1				q = 0 .1			
r	ar	^b r	r	^a r .	^b r		
1	1.0987343130	0.8987655570	0	-0.0049945438	0.		
3	9.0006406853	9.0006094414	2	4.0041611598	3,9991667028		
5	25.0002083348	25.0002083347	4	16.0003333834	16.0003332966		
7	49.0001041668	49.0001041668	6	36.0001428575	36.0001428576		
9	81.0000625000	81.0000625000	8	64.0000793651	64.0000793651		
11	121.0000418667	121.0000916667	10	100.0000505050	100.0000504051		
13	169.0000297619	169.0000297619	12	144.0000349650	144.0000349650		
15	225.0000223214	225.0000223214	14	196.0000256410	196.0000256410		
17	289.0000173611	289.0000173611	16	256.0000196077	256.0000196078		
19	361.0000138889	361.0000138639	18	324.0000154798	324.0000154799		
			20	400.0000125312	400.0000125313		
	q =	1.0		q =	1.0		
r	a	b_	r	a_	b		
1	1 8591080725	-0 1102488170	0	-0 4551706041	n 1:		
2	9.0783688472	9.0477392508	2	4 371 3009827	7 6170247730		
5	25 0208543454	25.0208408233	с Л	16 0339323403	16 0729700016		
7	49 0104192504	49 0104182494	т а	76 0142900480	36 0162800106		
å	81.0062503266	81,0062503266	R	64 0079371992	6L 0079171002		
11	(2) 00w1667613	121 0041667613	10	100 0050506751	100 0050506752		
13	169 0029762245	169.0029762245	12	144 0034965599	144 0034965690		
15	225 0022721571	225 0022321571	1.1	195 0025641241	106 0025641242		
17	289.0017361178	289.0017361178	16	256.0019607937	256.0019607939		
19	361.0013888923	361.0013988923	18	324.0015479922	324.0015479923		
•			20	400.0012531352	400.0012531353		
	q	= 5	_	q =	5		
r	^a r	^o r	Г	^a r	^c r		
1	1.8581875415	-5.7900805986	0	-5.8000460208	0.		
3	11.5488320363	9.2363277137		7 4401007705	2.0994604455		
5	36 6400717600		4	7.4491097395			
7	29.9499/1/900	25.5108160463	4	17.0965816843	16.6482:99372		
•	49.2614549086	25.5108160463 49.2613831113	2 4 6	17.0965816843 36.3608999793	16.6482:99372 36.3588668480		
9	25.5455717500 49.2614549086 81.1564549921	25.5108160463 49.2613831113 81.1564549559	4 6 8	17.0965816843 36.3608999793 64.1988423870	16,6482:99372 36,3588668480 64,1988405393		
9 11	49.2614549086 81.1564549921 121.1042258933	25.5108160463 49.2613831113 81.1564549559 121.1042258933	4 6 8 10	17.0965816843 36.3608999793 64.1968423870 100.1263692161	16.6482:99372 36.3588668480 64.1988405393 100.1263692156		
9 11 13	49.2614549086 81.1564549921 121.1042258933 169.0744260495	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499	4 6 8 10 12	17.0965816843 36.3608989793 64.1988423870 100.1263692161 144.0874473134	16.6482:99372 36.3598668480 64.1988405393 100.1263692156 144.0874473135		
9 11 13 15	25.5455/1/500 49.2614549086 81.1564549921 121.1042258933 169.0744260495 225.0558124767	25.5108160463 49.2613031113 81.1564549559 121.1042258933 169.0744260499 225.0558124767	4 6 8 10 12 14	17.0965816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133	16.6482:99372 36.3598668480 64.1988405393 100.1263692156 144.0874473135 196.0641161135		
9 11 13 15 17	49.2614549086 81.1564549921 121.1042258933 169.0744260495 225.0558124767 289.0434069445	25.5108160463 49.2613031113 81.1564549559 121.1042250933 169.0744260499 225.0558124767 289.0434069445	4 6 8 10 12 14 16	17.0955816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255	16.6482:99372 36.358866460 64.1988405393 100.1263692156 144.0874473135 196.0641161135 256.0490256258		
9 11 13 15 17 19	49.2614549086 81.1564549921 121.1042258933 169.0744260495 225.0558124767 289.0434069445 361.0347243474	25.5108160463 49.2613831113 81.156454555 121.1042258933 169.0744260499 225.0558124767 289.0434063445 361.0347243474	4 6 8 10 12 14 16 18	17.0965816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377	16,6482:99372 36,3598569400 64,1988405333 100,1263692156 144,0874473135 196,0641161135 256,0490256259 324,0387026379		
9 11 13 15 17 19	49.2614549086 81.1564549921 121.1042258933 169.074250495 225.0558124767 289.0434089445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474	4 6 8 10 12 14 16 18 20	17.0955816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792	16.6482:99372 36.359866440 64.1989405393 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0387026379 400.0313298794		
9 11 13 15 17 19	49.2614540086 81.1564549921 121.1042258933 169.0744260495 225.0558124767 289.0434069445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434063445 361.0347243474	4 6 8 10 12 14 16 18 20	17.0965816843 36.3608999793 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792	16.6482:99372 36.3598569400 64.1988405333 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0367026379 400.0313298794		
9 11 13 15 17 19	49.2614549086 81.1564549921 121.1042259933 169.074260495 225.0558124767 289.0434069445 361.0347243474 Q =	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474	4 6 8 10 12 14 16 18 20	$\begin{array}{l} 17.0965816843\\ 36.3608999783\\ 64.1988423870\\ 100.1263692161\\ 144.0874473134\\ 196.0641161133\\ 256.0490256255\\ 324.0387026377\\ 400.0313299792\\ q = \\ a_r \end{array}$	16.6482:99372 36.359866440 64.1984905393 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0367026379 400.0313299794		
9 11 13 15 17 19 r	49.2614549086 81.1564549921 121.1042259933 169.074260495 225.0558124767 289.0434069445 361.0347243474 Q = ^a r	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474	4 6 8 10 12 14 16 18 20 r	$\begin{array}{r} 17.0965816843\\ 36.3608999783\\ 64.1988423870\\ 100.1263692161\\ 144.0874473134\\ 196.0641161133\\ 256.0490256255\\ 324.0387026377\\ 400.0313299792\\ q = \\ a_{r}\\ -13.9369799566 \end{array}$	16.6482:99372 36.359866440 64.1984905393 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0367026379 400.0313299794		
9 11 13 15 17 19 r	49.2614540086 81.1564549921 121.1042259933 169.0744260495 225.0558124767 289.0434069445 361.0347243474 Q = a _r -2.3991424000 15.5027843697	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434063445 361.0347243474 10 br -13.9365524792 7.9866691447	4 6 8 10 12 14 16 18 20 r 0 2	17.0965816843 36.3608999793 64.1968423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 q = a _r -13.9369799566 7.7173698498	16.6482:99372 36.3598669400 64.1988405393 100.1263692156 144.0874473135 196.0641161135 256.0490256258 324.0367026379 400.0313298794 10 br 0. -2.3821582360		
9 11 13 15 17 19 r 13 5	49.2614549086 81.1564549921 121.104258933 169.0744260495 225.0558124767 289.0434089445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474 10 br -13.9365524792 7.9860691447 26.7664263605	4 6 8 10 12 14 16 18 20 r 0 2 4	17.0955816843 36.3608999793 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 q = a r -13.9369799566 7.7173698498 21.1046337096	16.6482:99372 36.359866460 64.198405393 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0387026379 400.0313298794 10 br 0. -2.3821582360 17.3813806786		
9 11 13 15 17 19 r 13 5 7	49.26114549086 81.1564549921 121.1042259933 169.0744260495 225.0558124767 289.0434069445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474 510 br -13.9365524792 7.9860681447 26.7664263605 50.0541572136	4 6 8 10 12 14 16 18 20 r 0 2 4 6	17.0955816843 36.3608999783 64.1988423870 100.1263692161 104.0874473134 196.0641161133 256.0490256255 324.0397026377 400.0313299792 q = a _r -13.9369799566 7.7173698498 21.1046337086 37.5336063380	16.6482:99372 36.359866460 64.198405393 100.1263692156 144.0874473135 196.0641161135 256.0490256258 324.0367026379 400.0313299794 10 br 0. -2.3821582360 17.3813806786 37.4198587767		
9 11 13 15 17 19 r 13 5 7 9	49.2614549086 81.1564549921 121.1042259933 169.074260495 225.0558124767 289.0434069445 361.0347243474 Q = a _r -2.3991424000 15.5027643697 27.7037687339 50.0626715473 81.6283311587	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474 = 10 b _r -13.9365524792 7.9860691447 26.7664263605 50.0541572135 81.6283131844	- - - - - - - - - - - - - - - - - - -	17.0955816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 q = a _r -13.9369799566 7.7173698498 21.1046337086 37.5336063380 64.8008910104	16.6482:99372 36.359866460 64.1984905393 100.1263692156 144.0074473135 196.0641161135 256.0490256259 324.0367026379 400.0313298794 10 br 0. ~2.3821582360 17.3813806786 37.4198587767 64.8004402930		
9 11 13 15 17 19 r 13 5 7 9 11	49.2614549086 81.1564549921 121.104258933 169.074260495 225.0558124767 289.0434069445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474 10 br -13.9365524792 7.9860691447 26.7664263605 50.0541572136 81.6283131844 121.4176193426	4 6 8 10 12 14 16 18 20 r 0 2 4 6 8 10	17.0955816843 36.3608999793 64.1968423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 q = ar -13.9369799566 7.7173698498 21.1046337086 37.5336063380 64.8008910104 100.5067700246	$16.6462:99372$ 36.3598568460 64.1988405393 100.1263692156 144.0674473135 196.0641161135 2566.0490256259 324.0367026379 400.0313298794 10 b_{T} $0.$ -2.3921582360 17.381306786 37.4199587767 64.6004402930 100.5667694629		
9 11 13 15 17 19 r 13 5 7 9 11 13	49.2614549086 81.1564549921 121.104258933 169.074260495 225.0558124767 289.0434069445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474 10 br -13.9365524792 7.9860691447 26.7664263605 50.0541572136 81.6283131844 121.4176193426	- - - - - - - - - - - - - - - - - - -	17.0955816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 q = a r -13.9369799566 7.7173698498 21.1046337086 37.5336063380 64.8008910104 100.5067700246	16.6482:99372 36.359866460 64.198405393 100.1263692156 144.0874473135 196.0641161135 256.0490256258 324.0387026379 400.0313298794 10 br 0. -2.3821592360 17.3813906786 37.4198587767 64.8004402930 100.5067694629 144.3502080085		
9 11 13 15 17 19 r 13 5 7 9 11 13 15	49.2614549086 81.1564549921 121.1042259933 169.074260495 225.0559124767 289.0434069445 361.0347243474 4 4 -2.3991424000 15.5027843697 27.7037687339 50.0626715473 81.6283311587 121.4176193567 169.2979605465 225.2233569750	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0558124767 289.0434069445 361.0347243474 10 br -13.9365524792 7.9860691447 26.7664263605 50.0541572136 81.6283131844 121.417613426 169.2979605465 225.2233569750	4 6 8 10 12 14 16 18 20 r 0 2 4 6 8 10 12 14	17.0955816843 36.3608999783 64.1988423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0397026377 400.0313299792 q = a _r -13.9369799566 7.7173698498 21.1046337086 37.5336063380 64.8008910104 100.5067700246 144.3502080087 196.2566274613	16.6482:99372 36.359866440 64.1984905393 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0367026379 400.0313299794 10 br 0. -2.3821592360 17.3613906786 37.4199597767 64.6004402930 100.5067694629 144.3502080085 196.2566274615		
9 11 13 15 17 19 r 13 5 7 9 11 13 15 7 9	49.2614540086 81.1564549921 121.1042259933 169.0744260495 225.0558124767 289.0434069445 361.0347243474 9 9 9 9 9 0.0526715473 81.6283311587 121.4176193567 169.2979605465 225.2233569750 289.1736778363	$\frac{25.5108160463}{49.2613831113}$ $\frac{9.2613831113}{91.1564549559}$ $\frac{121.1042258933}{169.0744260499}$ $\frac{225.0558124767}{289.0434063445}$ $\frac{361.0347243474}{361.0347243474}$ $= 10$ $\frac{b_{r}}{-13.9365524792}$ $\frac{7.98606911447}{26.7664263605}$ $\frac{50.0541572136}{81.6283131844}$ $\frac{121.4176133426}{169.2979605465}$ $\frac{225.2233569750}{289.1736778363}$	4 6 8 10 12 14 16 18 20 r 0 2 4 6 8 10 12 14 16	17.0955816843 36.3608999793 64.1968423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 -13.9369799566 7.7173698498 21.1046337086 37.5336063380 64.8008910104 100.5067700246 144.3502680087 196.2568274613 256.1961748237	$16.6482:99372$ 36.3598668460 64.1988405393 100.1263692156 144.0874473135 196.0641161135 256.0490256259 324.0367026379 400.0313298794 10 b_{r} $0.$ -2.3821582360 17.3813806786 17.3813806786 17.498587767 64.8004402930 100.5667694629 144.350208085 196.2566274615 256.1961749240		
9 11 13 15 17 19 r 13 5 7 9 11 13 15 17 19	49.2614549086 81.1564549921 121.104258933 169.0744260495 225.0558124767 289.0434069445 361.0347243474	25.5108160463 49.2613831113 81.1564549559 121.1042258933 169.0744260499 225.0556124767 289.0434069445 361.0347243474 510 br -13.9365524792 7.9860691447 26.7664263605 50.0541572136 81.6283131844 121.4176193426 169.2979605465 225.223569750 289.1736778363 361.1389229098	4 6 8 10 12 14 16 18 20 r 0 2 4 6 8 10 12 14 16 18 20	17.0955816843 36.3608999793 64.1968423870 100.1263692161 144.0874473134 196.0641161133 256.0490256255 324.0387026377 400.0313299792 q = a r -13.9369799566 7.7173698498 21.1046337086 37.5336063380 64.6008910104 100.5067700246 144.350208087 1256.1961748237 324.1548459537	$16.6482:99372$ 36.3598568400 64.1988405393 100.1263692156 144.0674473135 196.0641161135 256.0490256259 324.0387026379 400.0313298794 10 b_{T} $0.$ -2.3821582360 17.3813906786 37.4198587767 64.8004402930 100.5067694629 144.350280085 196.2566274615 256.1961748240 324.1548459540		

Table 1, (Continued)

į,

	q =	20		q = 20			
r	a _r	^b r	r	ar	b _r		
1	-14.4913014252	-31.3133861669	0	-31.3133900703	0.		
3	15.3958109128	1.1607056792	2	1.1542828852	-14.4910632560		
5	36.6449897341	28.4682213251	4	27.5945781546	15.4939775770		
7	53.8644587232	53.1064751308	6	44.0629486460	40.5896640505		
9	83.3602284647	83.5521975422	8	67.3458752414	67.2522407940		
I	122.6822608110	122.6022337507	10	102.0489160243	102.0483928609		
3	170.1959983656	170.1959983252	12	145.4076588968	145.4076577532		
5	225.8951534162	225-9951534162	14	197.0291432786	197.0291432775		
7	289.6955157232	289.6955157232	16	256.7858628380	256.7858629382		
)	361.5561010752	361-5561010752	18	324.6199521768	324.6199521770		
			20	400.5016530065	400.5016530068		

				a =	0.1		
	r	.m. ≈ 0	m = 2	m = 4	m = 6	m = 8	m = 10
A ^r m	0 2 4 6 8 10	D.9987550058 -0.0498832563 0.0003116784 -0.000008657 0.0000000014 -0.0000000000	0.0249653683 0.9996535808 -D.0083335534 0.0000250459 -0.000000434 D.0000000000	0.0029520938 0.0083335763 0.9999527737 -0.0049999993 9.0000104165 -0.000000124	0 0000000434 0.0000156250 0 00+9999478 0.9999911225 -0.0035713993 0 000055803	0.0002000000 0.0000000122 0.0000073335 0.035714001 0.999997644 0.022777651	- 9. 0000000000 - 0. 0000001157 - 0. 00000110418 0. 0000041668 0. 0027777675 0. 9999935532
				q =	0.1		
	r	m = 1	m = 3	m = 5	m = 7	m = 9	m = 11
Ar m	1 3 5 7 9 11	0.9999199100 -0.01265585657 0.0000529510 -0.9000001105 0.000000001 -0.900000000	0.0126559404 0.9999003790 -0.0052497253 0.0000155246 -0.000000217 0.000000000	0.000261500 0.0062+99057 0.9999717802 -0.0041666163 0.0000074404 -0.000000078	0.000000217 0.000104151 0.001666355 0.99986+367 -0.0031249814 0.000043403	-0 000000023 -0 000000023 0 000005770 0 0031249863 0 999319922 -0 0024999910	-0.0000029185 -0.0034992393 -0.000035614 0.000035671 0.002495775 0.9999885825
				q ≈	0.1		
B ^r m	r 2 4 6 8 10	m ≈ 0 0. 0. 0. 0. 0. 0. 0.	m = 2 0. 0.9999552823 -0.0883326824 0.000260391 -0.0800000334 0.0000000000	m = 4 0. 0.0093327084 0.9999527823 -0.0049998933 8.0000104165 -0.0000000124	m = 6 a. 0.0000156248 0.004599940 0.9999011225 -0.0035713933 0.0000055803	m ≈ 8 0. 0.0000000124 0.000074379 0.0035714085 0.9999097544 -0.002777651	m = 10 0. -0.0000000022 -0.0000020766 0.00003370 0.002777560 0.9999935593
				q =	0.1		
	r	m ≈ 1	m = 3	m = 5	m = 7	m = 9	m = 11
B _m	1 3 5 7 9 11	-0.000000000 0.000000000000000000000000	0.0123435686 0.9999042838 -0.0062497375 0.0000156240 -0.000000217 0.0000000217	0.000274330 0.0062499044 0.99997177882 ~0.0041666163 0.0000074404 ~0.040000078	0.000000217 0.000104171 0.0041665355 0.9999864367 -0.0031249814 0.0000043403	-0.00000023 -0.000018552 0.000055770 0.0031249863 0.9999919922 -0.0024999910	-0.000023136 -0.0034992393 -0.000036414 0.000034671 0.0024999775 0.9999885825
				q =	1.0		
	r	m. ≈ 0	m = 2	m = 4	m = 6	m = 8	m = 10
A _m	0 2 4 6 8 10	0.9098735393 -0.414185726 0.0252085608 -0.0006917899 0.0000107345 -0.0000201069	0.222195229 0.9713884187 -0.0837615713 0.0026496827 -0.00044442 0.0030004648	0.0052120752 0.0835695398 0.9952376807 ~0.0498963199 0.0010405399 ~0.0010405399	0.0000433964 0.0015628927 0.0499480927 0.99917251 -0.0356750160 0.0005577836	0.000001937 0.000124009 0.007437825 0.036991822 0.9989765513 -0.0277651155	0.000000005 0.0000005023 0.000050235 0.0004339200 0.0277680472 0.9993560245
				q =	1.0		
	r	m = 1	m = 3	m = 5	m ≠ 7	m = 9	m = 11
^r m	1 3 5 7 9 11	0.9902020594 -0.1395114768 0.0050343187 -0.0001280404 0.0000016101 -0.000000136	0.1396156546 0.9902511001 -0.0521675551 0.0015577825 -0.0000216621 0.000001936	0.0027 10963 0.0624117524 0.9971784986 -0.4416162475 0.0007435625 -0.000077477	0.0000221476 0.0010411694 0.0416354746 0.9986439092 -0.0312313515 0.0004339818	0.000000981 0.0000077473 0.0005578674 0.0312363120 C.9991993551 -0.0249909897	-0.000000020 -0.000002345 0.000036136 0.003471529 0.0249928391 0.9994705498

-14-

Table 2. (Continued)

				q =	1.0		
B ^r m	r 2 4 6 8 10	• m = 0 • • • • • • • • • • •	m = 2 0. 0.985719155 -0.0826907809 0.0025787418 -0.0000429271 0.0070004458	m = 4 0. 0.0827162783 0.9953225020 0.0499004144 0.0014405646 -0.0000123937	m = 6 0. 0.0015601770 0.0499479581 0.9991127370 -0.0456950163 0.0005577835	m = 8 0. 0.0000123944 0.0007437640 0.0356941823 0.9389765313 -0.0277551155	m = 10 0. 0.000000538 0.0000051641 0.00043338222 0.0277680472 0.9993560249
				q =	1.0 -		
B _m	r 1 3 5 7 9 11	m = 1 0.9939679614 -0.1095837919 0.0043676499 -0.000089579 0.000010969 -0.000000091	m = 3 0.1096424733 0.9320165102 0.0622843334 0.0015595117 -0.000216769 0.000001936	m = 5 0 0024938544 0.623983320 0.9971798039 -0.0416162827 0.0007435530 -0.0000077477	m = 7 0.0000212+3+ 0.0010+1+67 0.0+163+736 0.9986+31893 -0.031231:515 0.000+338918	m = 9 0.000007473 0.0005576674 0.03:2365120 0.9391993551 -0.0249909997	m = 11 -0.0000000019 -0.0000002345 0.000000: /15 0.0003471529 0.0249928231 0.9994705498
				q :	= 5		
A ^r m	r 2 4 6 8 10	m = 0 0.6426133230 -0.7454373703 0.7454373703 -0.0212155710 0.0015249055 -0.0000721795	m = 2 0.4682368471 0.7273659705 0.4747068670 0.0844473289 0.0075023959 0.0004061161	m = 4 0.1243133778 0.4250657636 0.6647575626 0.2354113027 0.0252591037 -0.0015269776	m = 6 0.0054072967 0.0393228351 0.2436688734 0.3510261927 -0.1749004469 0.0137919259	m = 8 0.0001207521 0.001550484 0.0145252946 0.1750651469 0.9745413710 -0.1373091204	m = 10 0.000035788 0.000356194 0.000429250 0.0107048072 0.1376751206 0.9835555403
				q =	= 5		
A ^r m	r 3 5 7 9 11	m = 1 0.762+636873 -0.6315953199 0.1395848058 -0.0149155962 0.0003448418 -0.0000397019	m = 3 0.6423435017 0.712512402 -0.2769558861 0.037605555 -0.0027165265 0.0001242660	m = 5 0.0776857977 0.3037510302 0.9277203962 -0.2017061403 0.0182745792 -0.0009590377	m = 7 0.025772523 0.0257760531 0.2044501910 0.9662917648 -0.1539218460 0.0107593250	m = 9 0.000564;247 0.000553877; 0.0138458660 0.1545430732 0.9800556098 -0.1238758418	m = 11 0.0000007+3 0.000201277 0.0004504179 0.00653728+4 0.1241065237 0.9868019280
				q -	5		
B _m	r 0 2 4 6 8 10	m = 0 0. 0. 0. 0. 0. 0.	m = 2 0 0.933*29**15 -0.35*8039150 0.052863729* -0.00*2958855 0.000219795*	m = 4 D. 0.3567820594 0.9025315914 -0.2397742651 0.0254801772 -0.0015320845	m = 6 0. 0.0375991648 0.2432332734 0.9531907779 -0.1749189852 0.0137930144	m = 8 0. 0.0015301923 0.018*231607 0.17606*30*9 0.97*5*15108 -0.1373091330	m = 10 0. 0.0000334443 0.0006429762 0.010784865 0.13751205 0.9839556404
				q =	5		
^B m	r 1 3 5 7 9 11	m = 1 6.9400190217 -0.3365419626 0.0554775287 -0.005995533 0.0002938790 -0.0000116023	m = 3 0.3373722391 0.6931139037 -0.2951587257 0.0374431813 -0.0026169523 C.0001172395	m = 5 0.0503824F20 0.2973655134 0.9315669962 -0.2021936395 0.0183057221 -0.0009602770	m = 7 0.0024115254 0.02568884364 0.2044372579 0.9662979910 -0.1539224690 0.0107593577	n1 = 9 0.000565635 0.009633498 0.0138458185 0.1545430664 0.9900656125 -0.1239758420	m = 11 0.000000043 0.000201248 0.0004504177 0.0086372844 0.1241065237 0.9868019280

-15-

q = 10

				-			
	r	m = 0	m = 2	m = 4	m = 6	m = 8	m = 10
	0 2	0.5587543782 -0.7787348569	0.4488731290 0.3464119952	D.3193743630 0.6740278965	0.0426353061	0.0019159361	0.0000534271
Ar	4	D.2793063957	-0.7689721074	0.5141513002	0.9513532021	0.0716550883	0.0050753501
m	6 8	-0.0574241400 0.0074524172	0.2904991609	-0.4115724907	-0.3268396210	0.3372677788	0.0423531673
	10	-0.0006577+87	0.0057496706	-0.0126669723	0.0531260697	-0.2652111208	0.936507+299
				q =	10		
	r	m = 1	m = 3	m = 5	m = 7	m = 9	m = 11
	1	0.5693674530	D.7552688875	0.3236196051	J.0256671596	0.0010762912	0.0000289359
-	3	-0.7629035580	0.3406812942	0.5405667041	¢.1002627824	0.0076016653	0.0003195032
A'	57	0.3002771766	-0.5341213551 0.1671852740	0.6874438568	0.3860386105	0.2989463772	0.0035628433 0.0340325633
	9	0.0072446841	0.0259027624	0.0679287438	-0.2938780903	0.9212788043	0.2428930233
	11	-0.0005898897	0.0024706074	-0.0073368313	0.0419271930	-0 2410595593	0.9476831925
				q =	10		
				-			
	r	m = 0	m = 2	m = 4	m = 6	m = 8	m = 10
	0,	0	D. D. 8339073560	0. 0.5354554495	0.0332191982	0.0117623066	0. 0.0005257650
$\mathbf{B}^{\mathbf{r}}$	4	0.	-0.5322120700	0.7165133206	0.4452166791	0.0715153422	0.0050739979
- m	6	0.	0.1444147632	- 0. 43647768 15 0. 1961 478631	0.8204286409	0.3372357122	0.04235295!1
	10	a.	0.0021713753	-0.0117503789	0.0533334266	-0.2652170288	0.9365074665
				q =	10		
	r	m = 1	m = 3	m = 5	m = 7	m = 9	m = 11
	1	0.8962865333	0.4323950133	0.1419460131	0.0165053111	0.0008350136	0.0000244677
$\mathbf{B}^{\mathbf{r}}$	3 5	0.1177626067	-0.5068651077	0.5076901625	0.0979431569	0.0075675971	0.0003191020
² m	7	-0.0190323724	0.1279076300	-0.373+350510	0.8679248320	0.2989+50215	0.0340325773
	9 11	0.0020205838	-0.0177343616	0.0702415951	-0.2940191430	0.9212800835	0.2428930221
				q =	20		
				4			
	r	m = 0	m = 2	m = 4	m = 6	m = 8	m = 10
	0	0.4940158162	0.3691394076	-0.30+3275920	0.2396717615	0.0296684691	0.0016730519
۵r	4	0.3776528089	-0.7413101535	0.1430828231	0.5783828747	0.2570834714	0.0085366569
¶m.	6	-0.1199362352	0.5289594767	0.6132171237	0.2835242194	0.5501063415	0 1571264101
	10	-0.0040327457	0.0375584040	0.1163479515	0.1790959312	0.620/677038 -0.4562557770	0.4803970596 0.7568029588

q = 20

	r	m = 1	m = 3	m = 5	m = 7	m = 9	m = 11
	1	0.4277390314	-0.5791210090	0.6584943820	0.2184031892	0.01850+5899	0.0009759944
	3	-0.7590507447	0.1622751820	0.5151068925	0.3588851298	0.0578825685	0.0049620659
r, ۲	5	0.4638154606	0.6310150786	0.0535118555	0.5866561655	0.1972022869	0.0272289+90
ⁿ m	7	-0.1567830634	-0.4652945883	-0.4839496420	0.4877805038	0.5197622207	0.1280271992
	9	0.0339025763	0.1507772882	0.2+5+4828+2	-0.4680143269	0.7008727680	0.4444377251
	11	-0.0050869930	-0.0292864981	-0.0603934163	0.1472006005	-0.4300425002	0.7982312593

q = 20									
	r	m ≈ 0	m = 2	m = 4∙	m ≈ 6	m = 8	m = 10		
	0	٥.	۵.	٥.	0.	Ο.	٩.		
	2	0.	0.7010247403	0.6214050277	0.3407965465	0.0700448220	9.0078174893		
pr	4	D	-0 6481346408	0.3571207727	0.6234815574	C.2493555834	0.0383246130		
^b m	6	Ο.	0.2070909763	-0.6304+05836	0.4257635553	0.5601567981	0.1570710783		
	8	υ.	-0.0766417914	D.2892706645	-0.5257759732	0.6259521735	0.4803900015		
	10	0 .	0.0136939087	-0 0711278033	0.1896660530	-0.4593694394	0.7568322968		
				q =	20				
	r	m = 1	m = 3	m = 5	m = 7	m = 9	m = 11		
	1	0.8329637590	0. 1755658677	0.2692495399	0.0858000811	0.0108495563	0.0005931970		
	3	-0.5128425347	0.4793971745	0.6390398375	0.3093370706	0.0556322918	0.0099103311		
nr	5	0.2007371983	-0.6634687255	0.3527989097	0.5963083096	0.1955259241	0.0272177234		
^B m	7	-0.0523670336	0.3114441364	-0.5778606024	0.5287815889	0.5197189448	0.1280250598		
	9	0.009551+915	-0.0814946599	0 2404263899	-0,4979158973	0.7013456582	0.4444372483		
	ń	-0.0012709838	0.0138796704	-0.0536+06920	0.1515650350	-0.+302203115	0.7962327939		

Table 2. (Continued)

Remarks

While this technique of generating Mathieu eigenvalues was being implemented, the authors became aware (through R. L. Pexton) of two reports concerning elliptic cylinder eigenfunctions and eigenvalues. One of these⁹ presents an eigenvalue determination procedure based upon similar ideas as discussed herein. The other report⁸ presents another method of generating eigenvalues. This method is valid for all values of q. It is especially useful for large values of q (i.e., $q > 10^4$).

References

- 1. E. Mathieu, "Memoire sur le mouvement vibratoire d'une membrane de forme elliptique," J. Math. Pures Appl. 13, 137 (1868).
- 2. J.A. Stratton, P.M. Morse, L.J. Chu, and R.A. Hutner, <u>Elliptic Cylinder and</u> Spheroidal Wave Functions (John Wiley and Sons, Inc., New York, 1941).
- 3. P. M. Morse and H. Feshbach, <u>Methods of Theoretical Physics</u>, Part II (McGraw-Hill Book Co., Inc., New York, 1953).
- A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, <u>Higher Transcendental</u> <u>Functions</u>, Vol. 3 (Bateman manuscripts) (McGraw-Hill Book Co., Inc., New York, 1955).
- E.T. Kirkpatrick, "Tables of Values of the Modified Mathieu Function," <u>Math.</u> Comp. 14, 118 (1960).
- 6. P. Moon and D. E. Spencer, <u>Field Theory Handbook</u> (Springer-Verlag, Berlin, 1961).
- Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun, Eds., Applied Mathematics Series, <u>55</u> (National Bureau of Standards, March 1965) ch. 20.
- J. Canosa, <u>Numerical Solution of Mathieu's Equation</u>, IBM Data Processing Division Rept. 320-3275 (June 1970).
- D. B. Hodge, <u>T1.3</u> Calculation of the Eigenvalues and Eigenfunctions of Mathieu's Equation, NASA Rept. CR-1937 (January 1972).
- 10. R.P. Dickinson, Jr., F.N. Fritsch, R.F. Hausman, Jr., R.F. Sincovec, Internal Report, Nun. rical Analysis Group, Computations Department, Lawrence Livermore Laboratory (1972). Readers outside the Laboratory who desire further information on LLL internal documents should address their inquiries to the Technical Information Department, Lewrence Livermore Laboratory, Livermore, CA 94550.
- J. E. Burke and V. Twersky, "On Scattering of Waves by an Elliptic Cylinder and by a Semielliptic Protuberance on a Ground Plane," <u>J. Opt. Soc. Amer.</u> <u>54</u> (6), 732 (June 1964).
- C. Yeh, "Backscattering Cross Section of a Dielectric Elliptical Cylinder," <u>J. Opt.</u> Soc. Amer. <u>55</u> (3), 309 (March 1965).
- W. S. Lucke, "Electric Dipoles in the Presence of Elliptic and Circular Cylinders," J. Appl. Phys. 22 (1), 14 (Jan. 1951).
- 14. J. R. Wait, "Scattering of Electromagnetic Waves from a 'Lossy' Strip on a Conducting Plane," Canadian J. of Phys. 33, 383 (1955).
- P. M. Morse and P.J. Rubenstein, "The Diffraction of Waves by Ribbons and Slits," Phys. Rev. <u>54</u>, 895 (Dec. 1, 1938).
- 16. E. Jahnke and F. Emde, Tables of Functions (Dover Publications, 1945).

Appendix A Useful Representations

Because many problems concern either plane wave excitations or line source excitations, it may be helpful to present the elliptic cylinder coordinate system representation of the ^fields of a plane wave and of a line source.

Plane Wave Representation

$$\exp\left[+j\vec{k}\cdot\vec{\rho}\right] = \sum_{m=0}^{\infty} \epsilon_{m} j^{m} \left[ce_{m}(v,q)ce_{m}(v',q)Mc_{m}^{(1)}(u,q) + se_{m}(v,q)se_{m}(v',q)Ms_{m}^{(1)}(u,q) \right]$$

and a second second

with

$$\epsilon_{m} = \begin{cases} 1 & \text{if } m = 0 \\ 2 & \text{if } m \ge 1 \end{cases}$$

The wave is assumed to be incident from the angle φ^{\dagger} (with v^{\dagger} = cos φ^{\dagger}).

Line Source Representation

The solution of the equation

$$\nabla^2 G + k^2 G = -\delta(|\vec{\rho} - \vec{\rho}|)$$

នេ

$$G = -\frac{i}{4} H_0^{(2)}(|\mathbf{k}| \vec{\rho} - \vec{\rho}||) = -\frac{i}{2} \left\{ \sum_{m} ce_m(v,q)ce_m(v',q) \begin{bmatrix} Mc_m^{(1)}(u',q) & Mc_m^{(4)}(u,q) \\ Mc_m^{(4)}(u',q) & Mc_m^{(1)}(u,q) \end{bmatrix} \right\}$$

+
$$\sum_{m} se_m(v,q)se_m(v',q) \begin{bmatrix} Ms_m^{(1)}(u',q) & Ms_m^{(4)}(u,q) \\ Ms_m^{(4)}(u',q) & Ms_m^{(1)}(u,q) \end{bmatrix} \right\} \text{ for } \begin{bmatrix} u \ge u' \\ u \le u' \end{bmatrix}.$$

The source location is at $\xi' = \cosh u'$ and v'. The observation location is at $\xi = \cosh u$ and v.