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Abstract
--1

A system consisting of an electromagnetic field interacting

minimally with a massive Rarita-Schwinger spin-3/2 field is quan-

tized to all orders in the coupling constant.  The generators of

the Poincar& group are identified and the field (anti)commutators

are used to explicitly verify that the independent fields trans-

form in accordance with the action principle. Because we have

quantized the electromagnetic field in the (non-manifestly co-

variant) Coulomb gauge this strongly suggests, but does not prove

covariance.  The spin-3/2 field anticommutator is not positive

definite and is in fact identical to the expression obtained when

the electromagnetic field is taken to be external.  While the non-

linear constraints which appear are relatively simple in compari-

son with many systems obeying such constraints, the constraint

structure is sufficiently rich to illustrate some of the basic

techniques required to quantize the fields and construct the

Poincar& generators.

„

Work supported in part by the U.S. Atomic Energy Commission

DISTRIBUTION OF THIS DOCUMENT
UNLIMIT D

.V/1

1 I.



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



2

:

Introduction

The original interest in a massive spin-3/2 field interacting minimally

with an electromagnetic field resulted from the work of Johnson and

1
Sudarshan. They considered the case where the electromagnetic field was

external, quantized the spin-3/2 field, and discovered the anticommutator

was not positive definite.  The major advantage in taking the electromag-

netic field to be an external field is that all the constraints are then

linear in the second quantized fields.  But then it is difficult to

determine whether or not the fields transform covariantly under a Poincard

transformation because the external electromagnetic field is not trans-

formed while only that part of the spin-3/2 field which is independent of

the electromagnetic field is transformed.  Recently, however, Johnson and

Sudarshan's quantization has been shown to lead to covariant transformation

2
properties for the spin-3/2 field.

A more direct approach is to quantize both the electromagnetic and

spin-3/2 fields.  Using the non-linear constraints to eliminate the

3
dependent fields, Gupta and Repko  rewrote the Lagrangian as a power

series in the electromagnetic coupling constant e.  They then canonically

4quantized the system to second order in e.  Kimel and Nath  carried out

a similar program to second order using the Yang-Feldman quantization

5
formalism, and Soo  extended their work to fourth order in e.  A short-,

coming of this approach is that it is difficult to find out if the

spin-3/2 field anticommutator is positive definite since only the first

few terms in an infinite expansion in e are known.

t>                                      -
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Here we quantize both fields to all orders in the coupling constant.

1
We find that the indefinite metric found by Johnson and Sudarshan  persists

6
in the fully quantized theory. In fact, the 'spin-3/2 field anticommutator

is the same regardless of whether the electromagnetic field is quantized or

external, a result anticipated from the fourth order calculation. 5  As a

check on the consistency of our quantization we identify the generators of

the Poincar& group and explicitly verify that the transformation properties

of the independent fields are consistent with the action principle.

If a second quantized field is to carry a representation of the Poincar&

group, a delicate interdependent relationship must exist between the field

equations, the expressions for the generators of the Poincar& group, and the

7
field quantization conditions.  Dirac  discovered that if the classical

field equations and definitions of the generators of the Poincar4 group are

retained, the usual prescription for quantizing the fields, namely by

making the substitution

[A   8102  -l[ A,B] for integral spin

_>-i CA,Bl for half integral spin (1.1)

does not always lead to a set of quantized fields which carry representa-

tion of the Poincar& group.  [In (1.1), {A, B D.B.' [A, B] and {A, B] are
respectively the Dirac bracket, commutator, and anticommutator. ]     It  is

possible to see what goes wrong by examining, for example, Heisenberg's

equations of motion. If we use the Dirac bracket for classical fields,

in general we find that

.
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1 0, Ovi
M   J 0,8.  =   jv 

l
+ commutators (1.2)

)

Since all classical fields commute, Heisenberg's equation of motion are

satisfied.  If we calculated -i[ti,pvl.for fields quantized according to

(1.1), we would again obtain the result (1.2) but we would have no guaran-

tee that the additional commutators summed to zero.  If we were unlucky

and they did not, the classical equations of motion and classical expres4

sions for Poincar& generators in combination with the usual quantization

procedure would not provide quantized fields which obey Heisenberg's

equations of motion.

A major problem in making the transition from a classical to a quantum

field theory is determining the arrangement of products of fields appearing

in the field equations, field (anti)commutators, and Poincar& generators.

The ordering of fields in classical expressions is arbitrary as all the

fields commute; thus it is arbitrary to take the classical field equations

and Poincar& generators with some particular ordering of the fields to be

the quantum expressions.  If the fields are quantized according to (1.1),

one ordering of fields in the field equations, field (anti)commutators,

and Poincar& generators may result in the quantized fields carrying a

representation of the Poincar& group while other orderings may not.  When

fields obey linear constraints there is generally little ambiguity in the

ordering of fields in the equations of motion and generators after the

dependent fields have been eliminated.  Only when non-linear constraints

occur does the question of ordering become a serious problem.  As we shall

show, for the spin-3/2 field interacting minimally with an electromagnetic
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field, there exists an ordering of the fields for the classical Poincar&

generators such that when the generators are taken to be the quantum
8

expressions, the field transformations are consistent with the action principle.

8
We will quantize the fields using the action  principle  rather than

the Dirac procedure (1.1) although both lead to the same result.  The

advantage of the action principle is that it also determines what the

commutators of the Poincard generators with the second quantized fields

should be.  It is then possible to use the quantization conditions and

expressions for the Poincar& generators to explicitly calculate the com-

mutators of the generators with the fields and verify that they are don-

sistent with the relations demanded by the action principle.

We wish to emphasize that the action principle, like the Dirac

procedure, at best does not provide a fully specified procedure for

making the transition from classical field theory to quantum field

theory.  The quantities we obtain from the action principle are classi-

cal:  (classical) Dirac brackets, classical expressions for the Poincar&

generators, and classical equations of motion. In general, if the quantized

fields are to carry a representation of the Poincar& group, the classical

fields must be reordered on a trial-and-error basis on the right-hand-side

of the Dirac brackets, in the expressions for the poincar6 generators,

and in the field equations before the fields are quantized according to

the prescription (1.1). [While. (1.1) is implicit in the action principle

it is not generally stated explicitly.]
9

Our notation is that of Bjorken and Drell. The space-time coordinates

P 123 ILV 00
are denoted x = (t,x ,x ,x ) and we use the metric tens

or g  where g   =

 11=- 22=_g33=1. The Dirac gamma matrices y  satisfy yot=Yo, Yit=-Yi.

Greek indices range   from 0 through 3, Roman indices range   from  1   through  3,

and all repeated indices are summed over the r
ange of the index.

-W.
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II.  Classical Equations of Motion

The spin-3/2 field can be conveniently represented by the Rarita-

10Schwinger   vector spinor Wk which, in the presence of a minimal electro-

magnetic interaction, obeys field equation that can be obtained from the

3
Lagrangian

.-

i  =   115+  [   C   Dry e.+ 1711  9/ * 1,  -    l  D"FA  +  DR  3' )

+2(» C  Dpge- 7» )'*V] 111  -  t 5„,FF" (2.1)

where  D  = -i311 + eA .   F     =A        -A         and  e  is the charge  of the spin-3/2' BV 11,V  V,11

field.  The classical field equations obtained from (2.1) are

C De-'8<*h' )1'f/.  - (D<'3»- D'+7 )11'w +7*' (Dp'3 f ·- ·»t )1 11f:,  = 0 (2.2)

and

3 FAr= 3, (2.3)
B

where

3. e(FF,0-p»- 3.'SBY-' -9©3»v,  +ig.q»'5'-* 2'1 tv ). (2.4)

Before quantizing the fields we must determine all the constraints obeyed

by the system and choose a set of independent fields.  We obtain one of the

two primary constraints

b lll.f i  -  50 74. < V e .r 711 Y; 1 f L ·=
0

(2.5),

by taking F=O i n (2.2).  The secondary constraint

1'3" +3%24»YFY"V»)  11'I,   =
0 (2.6)

is found by left-multiplying (2.2) by y  and D  and combining the two

resulting equations.  The second primary constraint
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0, ALAo = - j                                 (2.7)

MO

follows from (2.3) when we take a=0 and use the Coulomb gauge condition

a i A L =0, (2.8)

the gauge in which we choose to quantize the electromagnetic field.

The quantization conditions take a particularly simple form when they

are expressed in terms of the spin-3/2 field $. and the spin-1/2 field X where
]

lir k
4 - 111' '1' (2.9)

X      =  43   1 f i.                                                                                                        (2.10)

and Pjk is a projection operator defined by

Ilk     -  9 i k   -3  14 2<k• (2.11)

We would now like to rewrite our constraint equations and equations of motion

in terms of the field variables (2.9) and (2.10), but before we do this it is

convenient to define the following quantities which occur regularly throughout

the remainder of the paper.

S = 3 4 -Di)2 (2.12a)

T  =    81 + Dt'lgi (2.12b)

U -- 3- 1112 -    2      F  : + 6-Li (2  .  12 c)
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v = 1-10' D2b: - 4 Fti'r·· = ST =TS (2.12d)
L 6-  L 

,,

-I r  A,i r-         ,  4-  i.  i=  L
'    =-  i e  U     L  5    r i s  P 3 ,  Y 076 -)6 ] (2 . 12 e)

4J

80tr =-27«(DLY'+7,1)tr + E' eP<LD'.7

+    Ve (-Dr +Yr D:'3i -0,1.)X (2.12 f)

In terms of the newly defined quantities, the constraints (2.5)-(2.7) can

be rewritten respectively as

X= -3 5-1 Dyk (2. 13)

Y= *(9-X)+Leu-iF (0 -4'841) (2.14)
t0

A, = -e ( Akbk)-1 I  &:02 + 92)6 J (2.15)

From the definition of the spin-3/2 field, it satisfies the constraint

3, 0, = o. (2.16)

To  write the equation of motion  for  0r  in a convenient  form,  we  take  B = i

in (2.2) and left-multiply by P . with the resultr 1

--
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3. dI    =   J o      _  L e 540  ru T<

-e P · DIU-1 Irio ( 0'- f.39%). (2.17)FL

At first sight, the manner in which (2.14) and (2.17) are split might seem

arbitrary. · As we shall show, [$i.(SE, t),Aj (x',t)]  = 0 with the result  that

the ordering of fields in 1 and 8 T  is of no consequence.  However,
o r

j
neither 01 nor A commutes with F and it is just such terms involving

ko

non-commuting fields that can cause unwanted commutators of the type appear-

ing in (1.2).  We group the terms that do not cause problems into 1 and

3 S  and thereby isolate the potential trouble makers.
o r

To summarize the constraint structure, we see from (2.13)-(2.15) that

x,    to,   and   Ao are dependent fields. The spin-3/2 field $i obeys   one   con-

straint (2.16), the electromagnetic field. Ai obeys one constraint (2.8),
and the time derivative of the electromagnetic field A. satisfies the

1,0

Coulomb gauge constraint.

III.  The Action Principle

In this section we give the Poincar& transformation properties and the

canonical (anti)commutation relations for the independent fields.  Since

the derivation of these equations from the action principle appears in the

11,12literature for various systems, we merely state the results.

Under a. Poincar& transformation the action principle requires that

the independent fields transform in the following manner:

- i  I  Ak,    p.'*]=   3» Ak (3.la)

- t  1,    A ,e,    p...l    =  3..  Ak,  (3.lb)

.
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. 1    J k     - 14 7
- L L ·" J = bAL + (3.lc)T 1

A k B
.iI Ak, Ils] =( xib&-x; bi)Ak+I.·A (3.2a)Lt  

-i[  Ak., 3 t.

1= (xiDS-xiai)A ,«+IMB A *1. Li L k t3
(3.2b)

-Litz, I,+J  =P"r[ cxibi.-xijo,F.+I:filsl (3.2c)

-, I A ,3..] = (x. 42-x.2,)A"+i *A#,·LW.,k (3.3a)

-1  1 A .'' 3..] = 3'[ (x, 3.-x. 3,)Ak +itt AB + Wtkl (3.3b)

-i  [  011  To«]   =  P'r[  l)G 3.,- X.30) 4 .+l e« 11'IA]
-r. r p

-t ·wa01, - £* 0"Wa (3.3c)

where

Itt = tty>.,i.]9*4 +ill (3.4a)

4 48I» = 919% -Eft gf" (3.4b)

\N      =     (A£ bb)-1 (Aa,0  + A o GL) (3.4c)



With the exception of the terms proportional to Wa' the relations (3.1)-(3.3)

13              k
are the usual relations. The term W '  in (3.3a) is the well known term

that' occurs when the Coulomb gauge is used and must be present for the equa-

tion to be compatible with the (non-manifestly covariant) Coulomb gauge

condition.   The terms proportional to Wa in (3.3c) are required for (3.3a)

and (3.3c) to be compatible with the constraint (2.13).  In (3.3c) Wa and *k

do not commute so the action principle does not uniquely specify that commu-

tator for quantum fields.  Motivated by past experience with quantum fiel
ds,

we have symmetrized the non-commuting terms.  If we had intr
oduced an indefi-

nite metric for the electromagnetic field by quantizing in the (manifes
tly

covariant) Lorentz gauge the terms proportional to Wa in (3.
3) would be miss-

ing and the electromagnetic field would transform in a manifestly covari
ant

manner.  But then it would be difficult to distinguish between the indefin
ite

metric inherent in the minimally interacting Rarita-Schwinger
 field and that

introduced to quantize the electromagnetic field.

To quantize the fields using the action principle, we assum
e that the

field variations commute with the fields.  Then, with the help of Lagrange

multipliers, it is a straightforward task to construct t
he canonical

6,11
(anti)commutation relations for the independent fields.

- .i -    0*lg:.1,1 = [ 4.,xit),A"cx''a)] =[Nlk,t), Aklx''t)1 -D   (3.5)
1 p  (X,+) J

It,   1
I 04(x,+), 0  (x',t)1   -P6rI prk- DrU-'DIt] PI2, S3(-x-Sil (3.6)

1

I Ak"(ii,), A (Ri,)21= t[ 9 Lk- 0,8" ( 3.2)-ils' IR-R') (3.7)

tl-'  .                         -1

ll Ak"ix,t), 0 (-g,+11 =-
Le  [  9"r  - 31'b. (3=  3.)  . ]  x

(0 + 412*f} 11-lbs Ps. 63(52-R) (3.8)
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Using the expressions  ,(2.13)   and (2.15) which express  X  and  A  .in terms

of independent fields, we readily calculate the additional useful

(anti)commutators.:

C X liz,t) , 0,I(w: t) 1 - T u-1 Dr Pri 63 Ii- x,) (3.9)

2£                                 i r    t[A'(R,t),0 0)A =-e(jab« L04(Pit-pirbrU-iD, Pk')

- T Xtr U- i  Dr  Pr' ]    53(20-xo (3.10)a

[ Fohts.,),A£(r',t)]=-i[ 91:,-31'J'(&,.j„)-i] S,(2-R') (3.11)

From (3.5) we note that all fields on the right-hand-side of (3.6)-(3.11)
commute; therefore, for this system the action principle uniquely specifies

the (anti)commutators.  The problems created by non-linear constraints

appear when we attempt to construct the Poincard.generators.

As a check on the internal consistency of the quantization conditions

and the field equations, we calculate the commutator [A.  (SE, t), A  (xit)]1,0 K,0

to verify that A. commutes with itself.  Since the commutator (3.7) is, J,O

time-independent

0 = A [ A 4, ocx..t)., Alt <R' t,1

=  I  Ai,00   (R,+1  A k iR>)1 + [ Ai,0  li,t),  A k,0 tx;+J]
(3.12)

or

[  A*,o t-x,+3,  A  (EL+)] =[  Ak (Rif),  AS,00  Ix,•11].
(3.13)



Using the equation of motion for A.'  we are able to evaluate the commutator
1,0

on the right-hand-side of (3.13) with the result

.- -

[ AMo 1*,t), Ato (E:+J  = e21 9£5 -1.7 (3- P.)11x9 5  8

{  ( 0*S t  Z+3') U-1 ( #r- 1 21'X)  - (04+  )23")U-'( 05- 35)0 ]x

I  erk -i, 4 C Shib)-'] 63 IX-R), (3.14)

The left-hand-side of (3.14) has the obvious symmetry property that it

goes into the negative of itself under the transformation x-SE', j"k.

By Fourier transforming the right-hand-side of (3.14), it is not difficult

to ascertain that it also possesses this symmetry.  Thus the right-hand-

side of (3.14) vanishes if j= k and x =SE', verifying that A. commutes
3,0

with'itself as required.

IV.  Translational Invariance

Todemonstrate that the theory is translationally invariant it is

sufficient to show that relations (3.1) are satisfied.  Using the fact

that A  commutes with the time derivative of P . (3.lb) follows from (3.la)B.

so we need only explicitly verify (3.la) and (3.lc).  To construct the

generators of Poincar& transformations we begin with the classical expressions

which follow from the action principle. In the limit that all fields com-

mute, the quantum expressions must reduce to the classical ones so we go              1

1

from the classical to the quantum expressions by commuting fields on a

1

1

-                                                                                                   1
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trial and error basis as if they were classical until we obtain generators

satisfying (3.1).  For the system under study we have succeeded in con-

structing the generators by using the constraints to eliminate as many terms

as possible in the classical expressions.  Then, guided by intuition we

symmetrize some of the non-commuting fields.

VThe classical generator of translations P is given by

P ,  =  Rejd3xi-£(0++ 310·    +Lf«fYX)  ·+Fo'13"Ak
'   0

+   k  90"  17,4'   F *Fl (4.1)

Taking v=k and eliminating 3 X with the help of (2.13) we find

pk = f '1 'x {-l 41s [ 9s k + 1 DBV-1 Di] b'10*

--*0 DSV-1(06-3'31.z)Ai'k
3'   ts

-*IA· Akk +AS,kALo)1      (4.2)0,0

There is no ambiguity as to where A. should appear in the second term as
J,k

it commutes·with Al and 01, and inthe last term the two non-commuting

fields are symmetrized.  We take (4.2) to be the quantum expression for Pk.

A short, simple calculation verifies that pk transforms Ai and *i as shown

in (3.la) and (3.lc).

Before we construct the quantum expression for P', we would like to

explicitly show what goes wrong if we take P' to be given by the classical  

expression (4.1). Using the classical equation of motion (2.17) and the

canonical (anti)commutation relations we find
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r oc
-Ll 1-(c),0 (il, t) 1 -  bo 06(T,t)  -6;. [ Ao (57,t), 02(52,+)]

-

i   Pi     ba  U-ili.+)I  tr  (x,+) - f,rx Lx,+),  A"'(ji,+, +A   'lx,t, 1

+f d.'x' l- S [Ah,ocr,+J, S'IR-x'J P'« i  U-'(Rit)J (0"ci",t)- '51'X (*;t))1
where (4.3)

fl-

*-/    A
D« =  i  32- + e Aa (Rit). (4.4)

The commutators appearing   on the right   hand    s ide   o f    (4.3) are those d iscussed
0in the introduction and their presence stops us from identifying P in
(C)

(4.1) as the quantum generator of time translations.

Starting with (4.1) we will now construct the quantum expression for P'

by first eliminating as many terms as possible that are functions of the

dependent fields. Taking v= 0 in (4.1) and using 0.13) to rewrite BIX

13'c)  =  Refelix<-2 0ts ( Q  .  * 32 Dsv-'Dk) 300 kJ SIt
3 ie   ts
-2    0      DsV-'A k,O   C  0't -  231111)

+6 (Ao,+ A"*-A£°Ai,0 +Ai,sA*'S)}    (4.5)
The first term in (4.5) can be written in a more convenient form by employ-

ing the expression (2.17) for B'*k and simplifying one of the resulting

quantities using the identity                                                         :

P' *  DL D*=  U-23·V (4.6)

with the result

---
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4 .

r e,3  C . /+S.

J d  x  1-L f    ( 93% + 1 DBV-'Dit) 300 11 1
r . its /0'16

=  fc'3x i-it    (gsk+ *2- DsV-' Dk)(090 4-LeAD0*)
._    3 L €       its r,    ,  •-1

-2-   0      us v       Fok   (  0 k - '3 k I) 1 (4.7)

Combining (4.5) and (4.7)

P"    = Pe J d3x {-1 p   C 954+ 2 444 4) j'0-k- e ts(gsk+*Ds\/-'4)/L ith·  its

Lc)     1

-

36&4ts DsV-'Ao k ( 01 -234"X)
.....

+ 6-  (  Ao  &  A°'    ·-   AF'A·'         +  Ak  s Ai"s)}. (4.8)3,0 3,

The second term in (4.8) is simplified by writing V-]Dk = T-,S-11).  andK

commuting A  to the left of S-11 k.  At this point we are still treating all

the fields as if they were classical but A  neither commutes with Dk nor
s-1 because of the derivatives.  With the above operation the second and

third terms in 4.8 combine as follows:

r        C 1-ts. k  lie itsJd Xi-eg (gst:+ DBV-'Dk)ADS* ---I-g DsV-'Ao,k(0k-234kz)

= f d'x  I-e (0+'Aots  + 23WtA„X)] (4.9)

Symmetrizing (4.9)

- f cl'x [-22 (0,505+  7(tx)Ao -& A«(0*,0,+Iiztz)1 (4.10)

The constraint (2.15) permits (4.10) to be rewritten in the simple form
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= f c13x (-Ao L Ao,k) (4.11)
, t<

Using (4.11), (4.8) becomes

i ,ts. 2 -k
PO= Sd3X [*IP    (a  ·+3  DsV-'DI )300JSk

i                                                     .6-

+ i (Do 0'h)' C 91's +   'Dkv-' Ds) 05

- 12 ( AO,k A411 + A k,„Ak"-  A ,s A"s )]. (4.12)

We take (4.12) to be the quantum generator of time translations.  The calcu-

lation of the commutator -i[Al,PO] is simple with the result agreeing with

(3.la) as required. The evaluation of -i[(1)1'PO] is more difficult.  From

(4. 12)

N L

-i 1 0' iX;t), P'] = f d3x< [- I i 4'.cx>), 0t,1 C gsk+,2 DBV-'Dk) 3'0 "JI
r i < ,6

+ l 2  1 * Wit),  (both)tl C  91:s + 32  DkV-'Ds) 0slir
C L r ,£.-I L    o,k r  j i- ,

+ 1-F L 9 lx,t), Ao,k]AO,k+TA  L 9 ix,t), Ao,41 1 

+It[ 0''Rit),   A ke] Ak,0 +S  Ak" [  0,(0},   A k.01 1 11

(4.13)

' ts    tswhere we have suppressed the coordinates x and t 10  - ch  (x,t)).  The four
brackets respectively simplify so that (4.13) can be rewritten as
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- i I d.(R'+)    P'J  = f (13xl[   S'IR--R,) 3« 0,2. I+I S  &3(x--R, 30 0-illr# I'

f  -l e -3 -  , AL(1 -

+ 1  -2  b R-R')[ 0IR+A'04] + % 63(k-*) r     De. U-'(0< 3'3'X)Ao,r
Q+ 2  1\0'*  &3(w- R)  P,4.iU-' (0* -f'3 ) jm·

r_9   2 -
+  12 64(x-R') P'a Da. U-' ( 0 -  '3-Y) Ar,c

-

el A r,0 63(R-R,) Pt".6  ll-' C 0·- 2JYrz).1IK   ·
(4.14)

Only the contents of the second bracket in (4.13) are difficult to simplify

and that calculation is outlined in the appendix.  Combining terms in (4.14)

we obtain the desired result:

-

i I 4,1,ilit), P'] =f dix [  53(x-R') C 3« 0-,- 95It,A«- *A«0£)

+ S 63(R-R') Piabo ll--I ( *r-  '8'X) For

+   f   gr  S38-ii')  PC"li  UJ'  (  0''.- #1' :K)]
(4.15)

The derivatives that act to the left do not operate on any fields to the

left of the delta function.  The right hand side of (4.15) is the quantum

expression for 8 $i(i''t) and differs from the classical equation (2.17) in

that the non-commuting fields have been symmetrized in a particular manner.

Translational invariance has now been established so we turn our attention  

to (homogeneous) Lorentz invariance.
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V.  Lorentz Invariance

In this section we will demonstrate that (3.2) and (3.3) are satisfied.

Our choice of the (non-covariant) Coulomb gauge and the resultant appearance

of the terms Wa in (3.3) stop us from concluding that the relations (3.1)-

(3.3)  imply covariance.  The action principle does not uniquely specify

all the field transformation properties. In (3.3c) we have symmetrized

the non-commuting field variables Wa and *i, an operation motivated by

past experience with quantum fields but not demanded by the action

principle.

We need not directly verify all six equations (3.2a)  -  (3.3c)  since

(3.2b) and (3. 3b) follow respectively from (3.2a) and (3.3a) just as (3.la)

implies (3.lb).  From the action principle the classical expression for the

generator of spacial rotations Jab is

30.6 = fd'x [ x. (4 0* ¢k,6 -3 •X.tz,6 - 6 A k,« At 6 -   At6 A 40 )

-     |  MAYk  0k  -  tz·r «'Kbx-  l   10b   -      A« 0  A 6

-

   A t, Ao.,0     -  C  a» 6) ] (5.1)

which we also take to be the quantum expression.  The calculation of the

commutators of *i and Ai with J . is similar to but somewhat more lengthy
ab

than the calculation of the commutators of the fields with P . The calcu-'a

lated commutators do agree with (3.2a) and (3.2c).

The steps leading from the classical to the quantum expression for J
oa

are essentially the same'as those required to construct P .  Thus the
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quantum expression for J is as follows:
oa

.T

Tea  =   Xe  Pa  +  f c13X 1. -x e,W-  L 0« 90 1   ·+ i  Zt)« 0'£

- 1  (01+ 572%)V-'10[ ( Di'g'+1,t) blith + 9/m D'91,1.1

,.

+141[ AD*(- Di'K' +Yn) -#711%**kD"JY,V-'(0.- ty.x)

+ dE(  Aa,o A. + A. A  ,o) 1
(5.2)

where the quantum expression (4.12) for P  is given by Po = rd 3x X.  Pro-

vided we take the quantum analog of the cl
assical constraint (2.14) to be

given by the symmetrized equation

9 = 20 (9.%) + a F U-' ( 04 - ,86-Z)2 *0

+  9  u- '  C   t i· . .  (19 6 X) F· (5.3)p0

we find that J as given in (5.2) satisfies (3.3a) - (3.3c
).

oa

The above results strongly suggest that the fields have been quantized

correctly and the generators of the Poinca
r& transformation have been identi-

I
fied.  To complete the proof of covariance

 in the Coulomb gauge we would need

to calculate the commutators of P . J... a
nd J with J and verify that the

A'  il       ob       oa

relations are identical with those of the 
Poincar6 group.  An alternative

and less laborious approach would be to us
e (3.1)-(3.4) to calculate the

commutators

[Gi, dependent fields]  , Gi = Poincar& gen
erator,

and then employ the Jacobi identity to sim
plify the commutators

[Gi, [Gj,91] ]   ,  1= independent field.

A-
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A third approach would be to quantize the electromagnetic field in the

Lorentz gauge (thereby introducing a negative metric) and verify that the

analog of (3.1)-(3.3) is satisfied.
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of Theoretical Physics of the Dublin Institute for Advanced Studies.  I

wish to express my gratitude to the Governing Board of the School and to

its director, Professor L. O'Raifeartaigh, for making my stay in Dublin

possible.
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Appendix

In this appendix we calculate and then simplify the term in the second

bracket of (4.13).  From the definitions (2.12 e,f) and the (anti)coramutators

(3.5)

3 d'xj (0£(RP,), 13'K)t] C 9.s ·*1DrV-'Ds)05
./.

= AE fd'x{ i i tici,t), 0&}(- Dilti ...9'Iyse

- 4   1  0'(,t), 11,](-D,+  DtiV#'Mr *,n'*r) 30

+e10'ei'.t) 0-rl'F. 'gk+,t•)(2Fi'kcA } Ll-'D'»'P  K-Kx
)                   E k                                                                                                      /'71 r      0 3

C  grs + 1  D.V-' Ds ) +S (Al)

Using (3.6) and (3.9) to evaluate the anticommutators

-   8  fdix  S3(i-RQ<I-i  P k (P     -D.  U-' ba)  P"r  (-D '8&+ln)'*oka. k
-26  Dia3 ,    D«U-'5(-D,+D**t'31+7ny,)701(9rs+32brV-'Ds) 0*

.+33[-(P *-p:"DDU-'D, Pr&)F· Vk
*k

+6  PirD,U-'5 Fika-   ]'3  V-'Dsts 1hk  0

(A2)

The last term in (Al) has been simplified using (4.6).  The first two terms

in (A2) can be rewritten in a more convenient form by commuting to the left
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respectively the quantities (-D Y  +m) and (-Dr+D.Y Y tmyr) with the
"                                                                                           

                                                                                            
    Jr

result that (Al) becomes

=  h f dix  63<2-1,11 {-2 Ye ( D*'3£+M) 02 - 14 1,91 (- 9 Di 1'+h')1

.. %  '3, P '* Di 11-' Dr'3'DI'   + e P'*D  U-'Fs F l,s 'Ke 'A'

+32 ( PLS Dill-'IYEs- P's) F«s'3AV-'Dk'3, tk 1

114 P 4 Di 11-' S '8. DI'01' - ii" P'SDa li-'1, DI'A

+   i.  30  ( -D  4-#,3 ;D i 'Ki }X

+ i P,7 D"ll-' (-43.  Frs'30'rs '*i -lie b:F ri'3r) V-' Mo D'1012 1
.+ i   32   [-  (p, k-  P 'B   D. U-' D r p r k  )  F·     Y kjk

L   fl L F A+3 r 1-4 U-'SFik°-;k]goV-'Ds051}
(A3)

Combining various terms

= * 5 cl'x  538 -1.) {-£21.( Djvt.+ln) 02 - 4 9,32 (- 9 25' 6 +1,1)Z
Air

.+  4  % ( -D'  +  i Y,D i.Y i)X   +  e '30  1·'        Dr  U-' Ts  F  s k  011

+  2'50  PL" Dz  U-'  C  ·i  T  F i.k 0-:      -  4  Frs,i.(Trs'84-ah K-

-2DLFT"Mr )V-'Dktk} (A4)

-
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4

The quantity.in the parenthesis in the last term in (A4) equals
1

(i/2)Frsa  T.  Therefore (A4) can be rewritten asrs

' '

= i fd3* 53&-11 {-2'8, (Da'*6· in) 04+ 1&'3, C- D' +X'D) M,-in),)1           1
·   W      n  L f n       T

+   l  Do  Y       l.,r     - i e  ll-' ('gs  F  St'At  -Ii  F  st,° Sk  X)]  1               (AS)

Comparing (A5) with (2.12 e,f) gives the result

=    i  S J' *     S' (R- R,)   30   
V i

t

which appears in the second bracket of (4.14).
.

- A
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