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Abstract : _J

A system consisting of an electromagnetic field interacting
minimally with a massive Rarita-Schwinger spin-3/2 field is quan-
tized to all orders in the coupling constant. The generators of
the Poincaré group are identified and the field (anti)commutators
are used to explicitly verify that the independent fieids trans-~
form in accordance with the action principle. Because we have
quantized the electromagnetic field in the (non-manifestly co-
variant) Coulomb gauge this strongly suggests, but dogs not prove
covariance. The spin-3/2 field anticommutator is not positive
definite and is in fact identical to the expression obtained when
the electromagnetic field is taken to be external. While the non-
linear constraints which appear are relatively simple in compari-
son with many systems obeying such constraints, the constraint
structure is sufficiently rich to illﬁstrate some of the basic
techniques required to quantize the fields and cqnstfuct the

. 4
Poincare generators.
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Introduction

The original interest in a massive spin-3/2 field interacting minimally
with an electromagne;ic field resulted from the work of Johnson and
Sudarshan.1 They considered the case where the electromagnetic field was
external, quantized the spin-3/2 field, and discovered the anticommutator
was not positive definite. The major advantage in taking the electromag-
netic field to be‘an external field is that all the constraints are then
linear in the second quantized fields. But then it is difficult to
determine whether or not the fields transform covariantly under a Poincaré
transformation because the external electromagnetic field is not trans-
formed while only that part of the spin-3/2 field which is independent of

the electromagnetic field is transformed. Recently, however, Johnson and

Sudarshan's quantization has been shown to lead to covariant transformation

c

properties for the spin-3/2 field.2

A more direct approach is to quanfiée'both the electromagnetic and
spin-3/2 fields. Using the non-linear constraints to eliminate the
dependent fields, Gupta and Repko3 rewrote the Lagrangian as a power
series in the electromagnetic coupling constant e. They then canonically
quantized the system to second order in e. Kimel and Nath4 carried out
a similar program to second order using the Yang-Feldman quantization
formalism, and Soo5 extended their work to fourth order in e. A short~,
coming of this approach is that it ié difficult tolfiﬁd out if the
spin-3/2 field anticommutator is positive definite sincé only the first

few terms in an infinite expansion in e are known.



Here we quantize both fields to all orders in the coupling constant.
We find that the indefinite metric found by Johnson and Sudarshan1 persists-
in the fully quantized theory.6 In fact, the 'spin-3/2 field anticommutator
is the same regardless of whether the electromagnetic field is quantized or
external, a result anticipated from the fourth order calculation.5 As a
check on the consistency of our quantization we identify the generators of
the Poincaré group and explicitly verify that the transformation properties.

of the independent fields are consistent with the action principle.

If a second quantized field is to carry a representétion of the Poincaré
group, a delicate interdependent relationship must exist between the field
equations, the expressions for the generators of the Poincaré group, and the
field quantization conditions. Dirac7 discovered that if the classical
field equations and definitions of the éenerators of the Poincaré group are
refained, the usual prescription for quantizing the fields, namely by

making the substitution

{_A JB}D? ‘iL A ) B] for integral spin

- - i A , B} for half integral spin (191)

doeé not alﬁays lead to g set of quantized fields which carry representa-
tion of the Poincaré group. [In (1.1), {A’B}D.B.’ [A,B] and {A,B} are
respectively the Dirac bracket, commutator, and anticommutator.] It is
poséible to see what goes wrong by examining, for example, Heisenberg's
equations of motion. If we use the Dirac bracket for classical fields,

in general we find that



{¢L) PV}DB - 5U¢L + commutators 1.2)

Since all classical fields commute, Heisenberg's equation of motion are
satisfied. 1If we calculated -i[¢i,Pv]'for fields quantized according to
(1.1), we would again obtain the result (1.2) but we would have no guaran-
tee that the additional commutators summed to zero. If we were unlucky
and they did not, the classical equations of motion and élassical exprASA
sions for Poincaré generators in combination with the usual quantization
procedure would not provide quantized fields which obey Heisenberg's
equations of motion.

A major problem in making the transition from a classical to a quantum
field theory is determining the arrangement of products of fields appearing
in the field equations, field (anti)commutétors, and Poincaré generators.
The ordering of fields in classical expressions is arbitrary as all the
fields commute; thus it is arbitrary to take the classical field equatioms
and Poincaré génerators with some particﬁiar ordering of the fields to be
the quantum expressions. If the fields are quantized according to (1.1),
one ordering of fields in the field equations, field (anti)commutators,
and Poincaré generators may result in the quantized fields carrying a
representation of the Poincaré group while other orderings may not. When
fields obey linear constraints there is generally little ambiguity in the
ordering of fields in the equations of motion and generatérs after the
dependent fields have been eliminated. Only when non-linear constraints
occur does the question of ordering become a serious problem. As we shall

show, for the spin-3/2 field interacting minimally with an electromagnetic



field, there exists an ordering of the fields for the classical Poincaré

generators such that when the generators are taken to be the quantum

We will quantize the fields using the action princip1e8 rather than
the Dirac procedure (l.1) although both lead to the same result. The
advantage of the action principle is that it also determines what the
commutators of the Poincaré generators witﬁ the second quantized fields
should be. It is then possible to use the quantization conditions and
expressions for the Poincaré generators to explicitly calculate the com-
mutators of the generators with the fields and verify that they are éﬁn-

sistent with the relations demanded by the action principle.

We wish to emphasize that the action principlé, like the Dirac
procedure, at best does not provide a fully specified précedure for
making the transition from classical field theory to quantum field
theory. The quantities we obtain from_;he action principle are classi-

cal: (classical) Dirac brackets, classical expressions for the Poincaré

generators, and classical equations of motion. In general, if the quantized"

fields are to carry a representation of the Poincaré group, the classical
fields must be reordered on a trial-and-error basis on the right-hand-éide
of the Dirac brackets, in the expressions for the poincaré generators,
and in the field equations before the fields are quéntized according to
the prescription (1.1). ([While (1.1) is implicit in the action priﬁciple
it is not generally stated explicitly.]

Our notation is that of Bjorken and Drell..9 The space-time coordinates

. v 00

are denoted xu==(t,x1,x2,x3) and we use the metric tensor g& where g =
i .

-g11= -g22 = -g33 =1. The Dirac gamma matrices Yu satisfy Y6T= Yo., Y t. -Y .
Greek indices range from O through 3, Roman indices range from 1 through 3,

and all repeated indices are summed over the range of the index.

. . . . . . . 8
- expressions, the field transformations are consistent with the action principle.

!
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II. Classical Equations of Motion
The spin-3/2 field can be conveniently represented by the Rarita-
Schwinger10 vector spinor wl which, in the presence of a minimal electro=-
magnetic interaction, obeys field equétion that can be obtained from the

Lagrangian3
Z£= E&LE_ ( Do_%o-*"}n) 9#1" - (_DWXM“' D‘#zv)
+Z'M(DF%P‘T")'3y]%“i_5LyF#y - (2.1)

where Du==-ia“4-eA“, Fuv=’Au,v"Av,u and e is the charge of the spin-3/2
field. The classiqal field equations obtained from (2.1) are .
T, M Vpy e Y : \ -
(D %7+ )Y¥* - (D7*+ D*¥) Y, +3* (D3 - m )3 Y, =0 (2.2)
and . ‘
- ,
) FAT - 37 (2.3)
&

where

3-0'-’e(%’ﬁfy}*“v“%'uwm*wa‘%“%.;‘W}*%'Mg"-xuWv )' ' @.4)

Before quantizing the fields we must determine all the constraints obeyed
by the system and choose a set of independent fields. We obtain one of the

two primary constraints

s i . ‘
D: W - D*?%?Siqf +my; Y=o 2.5)
by taking 4 = 0 in (2.2). The secondary constraint

SR, 2o

is found by left-multiplying (2.2) by YH and Dp and combining thg two

resulting equations. The second primary constraint’



( = _ TO
3 0A, =-7J . 2.7)
follows from (2.3) when we take ¢ = 0 and use the Coulomb gauge condition

Lo
0; A" =o, » (2.8)

the gauge in which we choose to quantize the electromagnetic field.
The quantization conditions take a partlcularly 31mp1e form when they

are expressed in terms of the sp1n-3/2 field ¢J and the spin-1/2 field x where .
k o
.= P \lf | 2.9) -
é} ¥k

X = '3} ‘L}”’ ' (2.10)

and ij is a projection operator defined by

oTnc e

We would now like to rewrite our constraint equations and equations of motion

in terms of the field variables (2.9) and (2.10), but before we do this it is

convenient to define the following quantities which occur regularly throughout

the remainder of the paper.

NE %.m - D“Z; (2.12a)
—_ 0 Iy
r==m+D 4; (2.12b)

(2.12¢)



V = % m?® ~D'D; -2 Fy ;. =ST=TS (2.124)

7 :".l:e u'-\[xiFL'ijé‘%FLa'G_ X] . (2;]72e5.

éogrr—i'b'c(Di'Z!L‘+m)¢ +L'X,,P.dD"7
+ 2o (-D +%, D ¥ - m3 )X @.120)

In terms of the newly defined quantities, the constraints (2.5)-(2.7) can

be rewritten respectively as

C_3 iR
X=-55 D¢-k“ L @a13)

Y= (p-2) + LW B (¢9-38%) e
/\ (} \\rz !_(}595 + 2 X‘XJ - (2.15)

From the definition of the spin-3/2 field, it satisfies the constraint

. i. ' '
3; ¢ = 0. 2.16)
To write the equation of motion for ¢r in a convenient form, we take k=1

in (2.2) and léft—multiply by Pri with the result




9

bosﬁ( = Bo¢~; «-Ler¢r
e Py D'W'Fy, (#¥-33%X), @

At first sight, the manner in which (2.14) and (2.17) are split might seem
arbitrary. - As we shall show, [¢i(§,t),Aj(§',t)] = 0 with the result that
the ordering of fields in T and 6°5r is of'no consequence. However,
neither ¢i nor Aj commutes with Fko and it is just such terms involving
non-commuting fields that can cause unwanted commutators of the type éppearé
ing in (1.2). We group the terms that do not cause problems into T and
805r and thereby isolate the potential tréuble makers.

To summarize the constraint structure, we see from (2.13)-(2.15) that
X Wb’ and Ao are dependent fields. The spin-3/2 field ¢i obeys one con-
straint (2.16), the electromagnetic field_,Ai obeys one constraint (2.8),
and the time derivative of the electromagnetic field Ai,o satisfies'the

Coulomb gauge constraint.

I1I. The Action Principle
In this section we give the Poincaré transformation properties and the
canonical (anti)commutation relations for the independent fields. Since
the derivation of these equations from the action principle appears in the
. R 11,12
literature for various systems, we merely state the results.,

Under a.Poincaré transformation the action principle requires that

the independent fields transform in the following manner:

-1 )_ Ah) 'PM] = 5MAh | (3.1a)

-] Ah'c, pA] =" AR ' (3.1b)



AT,

LA T )=

10

-l gk, Pr] = ¥4

) L}

] Tyl

v Ak R
-L }_ Ahj jm_] = (Xe éa_"xa. Bo)Ak+Ios. Ap '*Wa
A 3=

-i ] ¢k, T ] = Po L -Yedo) WL P Wp]
- %Wm‘}gh - L'ae' ¢hWa |

where

T = 4[%,7‘ 14* §+Tdﬁ

A dp
e

=P T[(xta}

| 2 R
Xi 0§~ X4 0; JA+1 f

= 30(/* Sﬁv '339‘6&

= ( éb bb)‘i ( Aa,g +

L1=005-%4 Y, )A"+I 2 Ag
Ag”

a)‘!f +15 Y]

(Xo a&".x.a ao ) Ak +T Aﬁ + W J A

Ao,a)

. 1cﬁ)'

(3.2a)

~(3.2b)

(3.2¢)

(3.3a)

(3.3b)

(3.3c)

(3.4a)
(3.4b)

(3.4c¢)



With the exception of the terms proportional to'wa,'the relations. (3.1)-(3.3)
are the usual re'lations..l3 The term Wa’k in (3.3a) is the well known term

that' occurs when the Coulomb gauge is used and must be present for the equa-

tion to be compatible with the (non-manifestly covariant) Coulomb gauge-

condition.9 The terms proportional to wa in (3.3c) are required for (3.3a)
and (3.3c) to be compatible with the constraint (2.13). In (3..‘3c)rWa and ¢k
do not commute so the action principle does not uniquely specify that commu-
tator for quantum fields. Motivated by past experience with quantum fields,
‘we have symmetrized the non-commuting terms. If we had introduced an indefi-
nite metric for the electromagnetic field by quantizing in the (manifestly
covariant) Lorentz gauge tﬁe terms proportional to Wa in (3.3) would be miss-
ing and the electromagnetic field would transform in a manifestly covariant
manner. But then it would be difficult to distinguish between the indefinite
metric inherent in the minimally inte;acting Rarita-Schwinger field and that
introduced to quantize the electromagnetic field.

To quantize the fields using the action-principlé, we assume that the
field variations commute with the fields. Then, with the help of Lagrange
multipliers, it is a straightforward task to construct the canonical

(anti)commutation relations for the independent fields.6’11

L' o =1 ¢'i(i,-t))/\kti‘,+)] =| Aiti,f) , Ahti',f)] =0 (3.5)
. ‘i , ) o .
{$*an, ¢ «vl=-P"[ Py - D,U'D,] P ¢33-%9 (3.6)
X R, Lo < r : " -1 |

| A ot'i,-«)) NEh =i | g‘h— a‘a“(aab“) ] $3(x-X) (3.7)

N . i
L A" &, ¢ x't)]=-ie [ g"" “3%7 (A ) _l]x
(¢t + %y’f%r) u-.i D.S PSL SBCR“T(‘) (3.8)
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Using the expressions (2.13) and (2.15) which express ¥ and Ab:in terms
of independent fields, we readily calculate the additional useful

{anti)commutators:

X &m, ¢} = TUD, P S -2 @9

[ K, ¢ &nl=-e (33" [¢] (PH-PD D, PH)

T 4
“2°Y'TU l[)‘, Pl S &%)y (.10

R . Y ; all 3 o
l ¥F°km,ﬂ, A®n)=-i ] gm--bhé (&) "] &%) 6.1

From (3.5) we note that all fields on the right-hand-side of (3.6)-(3.11)
comnute; therefore, for this system thg gction'principle uniqueiy specifies
the (anti)commutators. The problems creéted by non-linear constraints
appear when we attempt to construct the Poincaré,generators.

As a check on the internal consistency of Fhe quantization conditions
and the field equations, we calculate the_commutator [Aj’o(i,t), Akfo(igt)]
to verify that'Aj commutes with itself. Since the commutator (3.7) is

- 2

time-independent

0=3 [ Aj, X, A, &@n]

L A oo Bt Agin]+ LA, &0, A, i ]

or

L Ajo &0, Ay ] =1 Ag (Kt Ao K1),

(3.13)

(3.12)



Using the equation of motion for A.'o'we~are able to evaluate the commutator
s

on the right-hand-side of (3.13) with the result
‘ — v — , . ~1
L Aé,o xn), Ak,o (Xﬁ)] = e?] 946 ‘aa‘, Qs(éu ) ]x
T, 2 “lf 1¥_2 yr , 2 Y RN '
Lg%+ 300U (47 33%) ~ (f 309 U (95- 39 )
. /0 / /b ~1 o —v | . | :
L Grx - BR (359 )18 (X=X), - (3'{14)

The left-hand-side of (3.14) has the obvious symmetry ﬁroperty-thét if:"
goes into the negative of itself under the transformation X«X', j<k.

By Fourier transforming the right—h;nd—side of (3.14), it is mnot difficult
to ascertain that it also possesses this symmetry. Thus the right4hand-.
side of (3.14) vanishes if j=k and X=X', verifying that Aj~o commutes

2

with itself as fequired.

IV. Translational Invariance

To pemonstraﬁe that the theory is translationaily invariant it is
sufficient to show that relations (3.1) are satisfied. Using the fact’
that Ak commutes with the time derivative of PM’ (3.15) follows from (3.1a)
so we need only explicitly verify (3.1a) and (3.1c). To construct the
generators of Poincaré transformations we begin with the classical expressions
which follow from the action principle. In the limit that all fields com-

mute, the quantum expressions must reduce to the classical ones so we go

from the classical to the quantum expressions by commuting fields on a

e A A et ot A St e n kRS e m et menmn .
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trial and error basis as if they were classical until we obtain generators
satisfying (3.1). For the system under study we have succeeded in con-
structing the generators by using the constraints to eliminate as many terms
as possible in the classical expressions. Then, guided by intuition we
symmetrize some of the non-commuting fields.

' The classical generator of translations Prc) is given by
v (44 2 ~t ’
Py =ReSdx{-i (43¢, + FU'¥X) +FFA,
| + 3 q°” Fdﬁ Feft .1)

~ Taking v=k and eliminating ka with the help of (2.13) we find

pk - fd¥{-i gSTS L Gsq* %DSVPIDQ;J ()hd’{(
- g vl gi-3ain) A
R ALY e

There is no ambiguity as to where A, should appear in the second term as

. . i,k
it commutes with A' and ¢1, and in the last term the two non-commuting
fields are symmetrized. We take (4.2) to be the quantum expression for Pk.

A short, simple calculation verifies that pK

transforms A" and ¢" as shown
in (3.1la) and (3.1lc).
Before we construct the quantum expression for Po, we would like to

explicitly show what goes wrong if we take ?° to be given by the classical °

expression (4.1). Using the classical equation of motion (2.17) and the

. canonical (anti)commutation relations we find
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-i[ Py #aml= dd'mn -5 [A&n, @] |
“EPUD Ul ¢ @0 -3%, X ® AT @ + Ay ]

(14 A ko &oh), SIRX) PB, U ) ( g -39 o h)}

where (4.3)
</ <S
Do =i 3¢, +e A n, A G

The commutators appearing on the right hand side of (4.3) are those discussed
in the introduction and their presence stops us from“identifying-P?c) in
(4.1) as the quantum generator of time translations.

Starting with (4.1) we will now construct the quantum expression for P°

by first eliminating as many terms as possible that are functions of the

dependent fields. Taking v=0 in (4.1) and using (2.13) to rewrite 'Bo‘x
o of 4 Fs, 3 - otk
P(q = P‘e—ScP)(i"- ¢ ( Ssk-\- 5 st iDh) 3 ¢
-3yie ts - kR_2xk
= ¢ DsV 1Ak,o(¢ -39 X)
4 . NS _ A5 4 . DS
'fZ(AO,*A)ﬁ-A' A3)0+A1,5A1) )} 4.5)
The first term in (4.5) can be written in a more convenient form by employ-'

ing the expression (2.17) for 5°¢k and simplifying one of the resulting

quantities 'using the identity

pi D; D; = u-3sv o .6

with the result
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S d3y {-i%is('g REEDAT WP
= S i-id™(qq + 3 DV'D)EF - ieA, §%)
- ¢*SDSV"'FO»‘ ($r-39R0)} wn

Comb1n1ng (4.5) and (4.7)

(g)"P\ Sd X{ L¢ (QSk aDV D"?. ao ‘€¢ ( Sh aDSV—ql)Ao¢k
3L€ ¢SDS ~|A0)h(¢h~§_xkx) |
+5 (Mo g AF = AFAL, + AL AP a

The second term in (4.8) is simplified by writing V-1Dk = T-ls-le_and]
commuting Ao to tbe left of S‘le. At this point.we are sfiil trea?ing all
the fields as if they were classical but A.0 neither commutes with_Dk nor
S-l because of the derivatives. With the above 6peration the éebond‘and

thicd toms in 4.8 conbine as follovs:
xi-ed U gg, + 2V DA - 6 DV Aoy (4-390)
=Sdx e (¢ 5Ads + 3AA]  <4-9>
Symmetrizing (4.9)
= S [-§ (474 + 5XA - S A, (679, +300) ] @

The constraint (2.15) permits (4.10) to be rewritten in the simple form
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=5d% (- A, , A%®)

%.11)
Using (4.11), (4.8) becomes
PO:_ Sd3x [-% ¢TS( gt $DV'D,) S, #Th
6o (g +2BVBOE
”él(/\é,h/\o'k+A_k,cAh’°- Aé,s Aé’s)]_ .12)

We take (4.12) to be the quantum generator of time translations. The calcu-

. A .
lation of the commutator -1[A1,P ] is simple with the result agreeing with

(3.1a) as required. The evaluation of -i[¢1,Po] is more difficult. From
4.12)

-] ¢‘:4(§t',+)) Pl=Sdf[-21 ¢,':,(R',+)) gt;ts} (g +3 DQV'|Dk)5°$kJI
! { iy T .
L[N, 08 (g, + 3DV D) 5],
+ {‘;'_’ L ¢"ﬁ’,ﬂj Ao ] AZR 4L NPT ¢£(i;-f)) Aor]} -

£L30En, A JA™ 5 Al e, Ah»°]}ﬂ'

“4.13)
- - [ ots _ ts =
where we have suppressed the coordinates X and t K¢ =¢ (x,t)). The four

brackets respectively simplify so that (4.13) can be rewritten as
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~il ‘& Pl =S [ £ %0, gf‘] [ E8aw, 8l
+{ S QTR+ AP + SR E- P DU (-8 Aoy

+$ Ao S0 PED U (-390 3
+ {7 %) PD U (4758 ) Ay
‘-% AT,O Sz(i‘i') P‘:aéD-o“ u‘l(¢r~ %%rz)}m}v (4.14)

Only the contents of the second bracket in (4.13) are difficult to simplify
and that calculation is outlined in the appendix. Combining terms in (4.14)

we obtain the desired result:
~il iy Pl=fd%] s (o, p -l p 4i
Ll¢lk,t)) ]=§d%| $>®x) ¢ A Ao¢)

+£ 63 P DL ¢ qb'- 58X,
Fbw-‘%z X E)‘a-[) Ll; ( ¢Sr 2.Q$f;{;)]

M“’

(4.15)

 The derivatives that act to the left do not operate on any fields to the

left of the delta function. The right hand side of (4.15) is the duantum

" expression for 50¢1(§',t) and differs from the classical equation (2.17) in

~ that the non-commuting fields have been symmetrized in a particular manner.

Translational invariance has now been established so we turn our attention

to (homogeneous) Lorentz invariance.
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V. Lorentz Invariance

In this section we will demonstrate that (3.2) and (3.3) are satisfied.
Our choice of the (non-covariant) Coulomb gauge and the resultant appearance

of the terms Wa in (3.3) stop us from concluding that the relations (3.1)-

(3.3) imply covariance. The action principle does.not‘uniquely specify
all the field transformation properties. In (3.3c) we have symmetrized
the non-commuting field variables Wa and ¢i,‘an operation motivated by
past experience with quantum fields but nof demanded by the action
principle.

We need not directly verify all six equations (3.2a; - (3.3¢) since
(3.2b) and (3.3b) follow respectively from (3.2a) and (3.3a) just as (3.la)
implies (3.1b). From the action princiéle the classical expregsion for the

generator of spacial rotations Jab is

ot S Lne i B 8 H 05 Ao A -2 A )
g R Lot 4o
OO - E XN X e fymE Ano A
-3 Ay Aa,o - (Ou'—bb):! ‘ (5.1)

which we also take to be the quantum expression. The calculation of the

i i . . ..
commutators of ¢ and A' with Ja is similar to but somewhat more lengthy

b
than the calculation of the commutators of the fields with Pa. The calcu-~’
lated commutators do agree with (3.2a) and (3.2¢c).

The steps leading from the classical to the quantum expression for Joa

are essentially the same’ as those required to construct Po. Thus the
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quantum expression for Joa is as follows:

.So@ = %, Po_ + SCPX%_“XQ.% - L¢:,'3°X +i.XT'50 G
S3 (g e 5V LD+ m) Dy + § D X]
SATRC RS LML ARERE LV
* ‘ﬁ ( /'\a.,o Ao+AoAa,o)}

(5.2)

where the quantum expression (4.12) for Po is given by Po = J&3X3C. Pro-

vided we take the quantum analog of the classical constraint (2.14) to be

given by the symmetrized eguation
- \ 4 b8 by g4 -2 i
Y=, (9-2)+ 15 B U (4F - 3%3)
+E Y (- 3YFX) Fio | (5.3)

we find that Joa as given in (5.2) satisfies (3.3a) - (3.3c).
The above results strongly suggest that the fields have been quantized
correctly and the generators of the Poincard transformation have been identi-
i fied. To complete the proof of covariance in the CoulombAgauge we would need
to calculate the commutators of P, J,., and J with J  and verify that the
" ij ob oa
relations are identical with those of the Poincaré group. An alternative '

and less laborious approach would be to use (3.1)-(3.4) to calculate the

commutators
[Gi’ dependent fields] , Gi = Poincaré generator,

and then employ the Jacobi jdentity to simplify the commutators

[Gi,[Gj,ﬂ]] , T = independent field.




A third approach would be to qhantize the electromagnetic field in the
Lorentz gauge (thereby introducing a negative metric) and verify that the

analog of (3.1)-(3.3) is satisfied.

I would like to thank Professors L. O'Raifeartaigh and E. C. G.
Sudarshan for helpful discussions. Much of the work was done at the School
of Theoretical’Physics of the Dublin Institute for Advanced Studies; I
wish to express my gratitude to the Governing Board bf the School and fo

its director, Professor L. O'Raifeartaigh, for mdking my stay in Dublin

possible.




22

‘Appendix

In this appendix we calculate and then simplify the term in the second

bracket of (4.13). From the definitions (2.12 e,f) and the (qpti)commutators
(3.5)

Sdxz i¢‘i?<1-r>",(aoé>'f)?} (9% +3DV'Dg)$®

=5 (dxl {df&’,n) ¢:} (- D?}';;é..f,mm
%1 ¢£(T(',1), X (-D+ D%+ B +mBe) ¥y
+€{¢zli‘,'t)) TéFék'Xh*%ﬂF&kogk}W'D}'"P,,m.b’o}x |
(9% +% D'V'Dg) ¢S

ALy

Using (3.6) and (3.9) to evaluate the anticommutators

-a
ro—

5§y P asof[-i PR P~ DU Do) P (-0 ¥t+m)y,
-4 P, S (D, + DB, +m¥ )%, ] g + TDVD,) °
+ % [-(PH-P7D, UMD, PTH) Py ok

+L PUD WIS F¥ay, 1%,V7'D,¢53
(A2)

The last term in (Al) has been simplified using (4.6). .The first two terms

in (A2) can be rewritten in a more convenient form by commuting to the left
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respectively the quantities (-Dj YJ +m) and (-Dr+ Dj YJ Yr+ m'Yr) with the

result that (Al) becomes

=3[ d% SPaf 0% (D, BFm) ¢l -3 308 5Dy em)X
-2l PL?rD LD, Dk¢k+e P‘*D u"z F sy, r
438 (PUD D P - PUs)F 2%,V "D Y, 4,
AL P D LS, DU, -im P D U, DY,
+ Y, (-D “3%°D; ¥ )L

LD (S F gy i XFE )V, D', Y

+{ - (PH- P D,UD, P, %"
+§P“D,.u"SF?fk0”k]% VD p* 3}
o (a3)
Conbining various terns
= £ 5d% ST L% D; ¥ v m) ¢¢ - % e (-5 D BT +m)X |
+3 (- DU 5D AN +e% P D UYL F S
+eX, P, W (§ TRk, - F >0,

2D; Feen. ) thﬁk} .» as)
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The quantity.in the parenthesis in the last term in (A4) equals

(i/Z)FrSOfST. Therefore (A4) can be rewritten as

= 3 o @50 0% (D rm) g1+ 3y, (- Di+¥D ¥7-m )Y
it -V C esk
+ 1% PUD i U (8 F 3R -5 F o5 0] s,
Comparing (A5) with (2.12 e,f) gives the result

= SN S ET) Q4

which appears in the second bracket of (4.14).

>
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