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In this paper some aspects of nuclear beta and gamma decay will be
discussed and the places where additional experimental information or where 2
theoretical problems still exist will be stressed. The material will be ‘
divided into two parts: first those rules which are geometrical in origin

will be discussed and second results arising from isospin will be cousidered,
209T1

. 09 8177128
state in 82Pb127 could yield important information about a possible dif~-

It will be shown that a measurement of the beta decay to the §+

fercnce in the radii of the neutron and proton single particle potential
wells, Further, the problem of the anomalously fast AT = 0 El transitions

in 4n-nuclei will be discussed.
14

- 1. Geouetrical Rules

)

It is well known that for a given model space, once the single
particle energics and matrix elements of the residual two-body force are
known the energy eigenvalues of the multi-nucleon system can be calculated
in a purely geometrrical manner -~ that is from a knowledge of Racah coeffi-

cients and coefficients of fractional parentazge. In this section some gamma

A
A

and beta decay results that arise from similar purely geometrical consider—
ations will be discussed.
(a) Gamna Decay

The simplest geometrical results occur for Ml decays involving identi-
cal nucleons in the configuration jn. (By identical is meant either all
protons or all neutrons.) The matrix element governing this decay is given
by

E = <G, lem 1G6™, >
Ifo A Ii“i
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. .M . . .
where the notation (j )IM stands for n-nucleons in the single particle
orbit j coupling their spins to total angular momentum I and z-~component M,

The usual form for the Ath spherical component of the MI operator, (M’)A'

is (2

1-1 (1) 1+1_(i) _
SOy

(M),

énczmc

where T, (i) is the z-component of the isospin operator for the i particle

and has the eigenvalue +! (~1) when operating on a neutron (proton). o (1)

and L
.th
i

1(1) are the Pauli spin and orbital angular momentum operators for the
nucleon and "p and u are the magnetic moments of the proton and
neutroa respectively (up = 2.79, Bo= ~1.91 for free nucleons).

In general, the matrix element of any single particle operator Tk(l)

which ks_a spherical tensor of rank one, satisfies the Wigner-Eckart theorm
LIPIETR DU o TRETIR JURI '
age DT, [ @)> = Gmaliw)od [T 6 [ > (2)

vhere (jlmxlj'm') is the Clebsch-Gordan coefficient and the double-barred
quantity is the reduced matrix element which is independent of m, m' and
A. If j = j' it follows from Eq (2) that -

<X (l)flT (1)[|x (i)>
<O T ¥ @>

< DT DL @> = «d 15, @ hd >

= aod, @[5, x> )

where ;; is the single particle angular momentum operator and a(i), the
ratio of the reduced matrix elements, is independent of the z~-components
of angular momentum. If matrix elements of ZT (1) are calculated within
the configuration J s a(i) = ¢ -~ that is s1;ce all nucleons are in the

same single particle orbit a(i) is independent of which nucleon we discuss.



Thus

ET{(i) = uf;;(i) = a1, %)

where JA is the ACh component of the total angular momentum operator, Thus

LN I,. .n .n .n
<G, L IET @GN > = e o 131G >
If“f il IiMi Ifo A IiMi

n N
= a1, 1M ]I M) <( )IfllJII(J 171, )

where the 61 i arises because the total angular momentum operator cannot
i“f

change the angular momentum of a nuclear state, Thus we arrive at the select-

ion rule: Within the identical nucleon confighration Jn there can be no M!

trunsitions.

In Table | we give some emperical evidence supporting this selection

rule, The Weisskopf estimate for the mean lifetime of the state is based on

the relationship (3
o 13 .3 '
=G 3.2x 107 E (6)
W
where E is the gamma-ray energy measured in MeV. Normally ) for nuclei with
A <50
Hﬁm) o1
—

Thus as seen from Table 1 these configuration forbidden Ml's are inhibited

by an extra factor of frow 10 to 100.



"Table 1

Comparison of lifetimes of forbidden Ml transitions with those computed

using the Weisskopf estimate, Eq (5)

Nucleus Transition Gamma-Ray | Mean life TW(MI)
Energy in T
in MeV |picoseconds Texpt: Ml
l9 3 -2
8 1" (I.)015/2)3/2 -> (ud5/2)5/2 0,096 1890 1.9 x 10,
- (of2 > 3, 0.373 50 | 1.2x1072
43, 5122572 1121/2 y
20 323 5 -3
0. . 0
(I.)f7/2)3/2 (Uf7/2)5/2 221 380 6.8 x 1
45, : 5 N ~2
20 25 (Uf7/2)5/2 -> (uf7/2)7/2 9.1745 577 1.0 x 10
5| 3 -3
3323 ("f7/z s/2* €327/ 0.320 289 3.4 x 10

A second interesting result for Ml's emerges when we consider transiti-

ons within the multiplet formed by the configuration [(njn)I x (UjT)I ]I’
P N

where I is the angular momentum of the n-protons im the single particle

P

oxrbit j, I, is that of the m-neutrons in jl and [ x ]I stands for vector

coupling tg resultant spin I. An example of such a multiplet is provided by
the states with angular momentum 2+, 3+, ceny 7% in the nucleus 2%Nb51

(see fig. 1). These states are thought to arise from the configuration
[“89/2 x ud5/2]I The same angular momenta are seen in Lhe nucleus 9?Nb55
and presumably arise from the configuration ["39/2 x Ud5/2]I' If these
states in the two nuclei do indeed come from these configurations their

)

spectra are related by the equation

B3] 535D = DO+ UGS 5T0B G 1535) Q)
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Figure |. Experimental spectrum of szbSI nd 96Hb55. The theoretical pre=-

dictions for 2?Nb55 are computed by use of Eq (7).

vwhere E (JJl,JJ ) are the energies in the particle-particle nucleus (42Nb51),
E (JJ-l°JJ-|) are the energies in the particle-hole nucleus (in this case
29Nb ) and W is tgg Racah coefficient. In fig. 1 the theoretical and exzperi-
mental spectra of 4le55 are compared, As is seen, the agreement is remark-

able - the mms error in any one of the predicted excitation energies in
z?NbSS is only 56-keV. Thus as far as spectra are concerned the 2+ 3+,...
’ + 92 96
R | ,states in 41 5l and 4le55 act as though they came from the con=-
f.azurations [“39/2 x Ud5/2]I and ['nggl,2 x ud5/2] respect1ve1y.
A more stringent test of these assignments is provided by a measurement

of the Ml gamma decays within either of these multiplets, Since the Ml



w
. ..
operator is the sum of a proton part and a neutron part'and since the
. protons (neutrons) are confined to the configuration (rj )I ((le)I ) it
follows that
1,. l,.
M), = £ wm@E)+ I v, (i) = a(3 ), + B(J)
A protons A neutrons A P n'A
a+8 a=B '
)(J + J ) T)(Jp Jn)A (8)

.t

where ﬂ;(i)_is the Ml operator for the i~ proton and ?&(i) is the M)

operator for the i npeutron. In writing the second line of this equation

use has been made of Eq (3), that is

i j
<x(')l|n<1)H (i)

3 b1
« Ty o ) x T

8. - N 3
J ~ Jy -
R I ERI PR PR

Finally Jp and J are the total angular momentum operators for the protons
and neutrons respectlvely. Since (Jp +J )l = IA‘ the total angular momentun
operator, it follows that the (a+8)/2 term in Eq (8) does not contribute to
gamma decay. Therefore, within a multiplet all Ml decays are proportional

to a single number, (a-B)/2. By straight forward Racah algebra one easily

shows that



21 _+1
CBMGI > I = ) [<[ni™y x 0 1l x @iy 112
21,+1 L 3 I P 01,
2 2 .
= (c-B) IP(IP+I)(21P+I)(21f+I)w (IIprIn’IpIi) 9

Consequently the ratios of B(MI)'s within a multiplet depend only on geometric-

al factors and the precise form of the M) operator (provided only that it is

a sum of single particle operators) is not important,

In Table 2 the recent results obtained for 2?Nb51 by Btenneq_gg‘gl.(y)
are listed, From the B(MI) ratios alone, it is apparent that a substantial
amount of conf;guratxon m1x1ng outside the “g9/2 ud 5/2 model space is
needed 1n the 6% and/or 77 to explain the traunsition. However, the other
three Mi's act as if they could be attributed to transitions between the

assumed model space states,

Table 2

. M{ transition rates in szbSl. In the theoretical calculation of B(Ml) By and
B, were taken te be 1.37 and -0.52 respectively. The unit for B(M1) is ui

wheretuN is the nuclear magne »n.

B(MI) Ratios B(MI) in'u:
Transition
Experiment Theory Experiment Theory

+ + + 0.8! + 6
3’ -2 1.28 _ 0.57 0.72 10 _ 4 2.79
+ +

4 -3 0.85 + 0,21 0,88 6.6 + 1 3.4
&t~ st 1.00 | 1.00 7.8+ 1.5 3.88
+ +

6 —>7 0.11 + 0,03 0.41 0.89 + 0.13 1.58




By looking at the absolute magnetudes of the B(Mi)'s one can also
check how closely the effective M1 operator in the odd-odd nuclei resembles
‘the magnetic moment operator in the odd-even system, The quantities a and
8 that appear in Eqs (8) and (9) are related to the nuclear g-factors,

o=V G oo

8=V &g o5

The value of g, can be obtained directly from the measured magnetic moment(s)
of 9 ' 8, (J = 5/2) = ~0,52. There is no data on 9le 0° However, the
40 5| ! 3 4

measured moment of the ground state of 41 b52 and the moments of the 8"
.states ® in 40Lr50 an 23 05 give values of g“(j = 9/2) = 1.37, 1.355 and
1.409 réspectively. In the theoretical estimates given in the last column of
Table 2 we have taken g”(j = 9/2) = 1.37, Clearly the configuration mixing
effects that lead to an effective operator for the magnetic moments in the
odd A nuclei are different from those that are needed to explain the transi-
tion rates in the even A-nucleus,

A similar situation exists in ?gKZI.— the B(M 1)*s within the

(ﬂd3/2 x uf7/2) multiplet do not have the values predicted by use of the
4! 39

. d
20 2| and ]9 20 g-factors. In this case the predicted value for the MI

transition between the two highest spin members of the multiplet (4 =+ 5 )
is again much larger than observeu experimentally (10) (B(Ml) expt = 0,065 "5)

whereas B(Ml)theor 0.157 uN) On the other hand, the two measured magnetic
moments of states of the multiplet are in excellent agreement with the pre-
dictions made by use of the g~factors of the odd A nuclei. For the & ,

an

"expt_= theory -1,25 1% and a recent experiment on

the 3 1level gave “expt = «~1,29 *+ 0,09 uy while "theory -1,368 Mo
Consequently & measurement of the g-factors for states of the Niobium nuclei

-1.298 "N whereas u

would be interesting to see whether the same situation prevails. For a state

of angular momentum I the g-factor for either szSI or 4! 55 is

-1 (1
g=M +2)+ (¢ -8 )[EP(I"H) o “H)]} 10)
" u b v I(L+1)




To gain some insight into the degree of impurity needed to explain the
. Nb data one can look at the situation in ??CQZl (i.e. the (11‘:13/2 x uf7/2)
multiplet). In this case to explain experiment one needed about a 207 admixture
from other configurations('z). Since the pure configuration results are worse
in szbSl than they are in ?30121 one would expect at least this degree of
impurity in the Niobium states.
(b) Beta Decay
The theoretical ft value for allowed beta decay,(IiTi)-+ (Ifo) is given

by

6250
(b

ft =
2

AT 1, 4 :
[T (40 =T, T, Jog g 8y 1 * 1St <y T, (Ds@IIY 7|
. i"f i i’f i ia

£

where z (i) is the operator which changes a proton to a neutron and z_(i)
does just the reverse. The selection rules for this decay follow immediately

from the form of the operators = that is, al = 0, + | (no parity change),

209

1" aT = 0, + 1; whereas 0—> 0
81 128 ' ‘ AT # 0 transitions are forbidden.
+
yb-——————- In addition there is another
' 1000 - gelection rule which is usually
log ft = 5:; 1" of only academic interest - name~
— 213 1/2+ ly an, the change in the number of
2.01 5/2* » radial nodes in the wave function,
———1525-1552_ must be zero. Thus for example, the
148 N5 decay of a 3si proton to a 455
078 11/2* neutron would vanish because
| dafr), @R, @ Far ()
+ 3s s
—90 9, | 45
209Pb . is zero if Coulomb effects are
1 d.
g2 o7 neglecte

Figure 2. Beta decay of 22?“128 and the This selection rule seems to

be observed in one instance =~ name-~

209T1 8 vhose ground

level sequence of 209pb
82 81 12

127° ly the decay of



state is described as a 355 proton hole (13). As shown in Fig. 2 there is

no transition observed to the 455 neutron state in zgng|27 at 2.032 MeV;

instead the decay goes entirely to the } Py hole state at 2,151 MeV, At
first glance this seems like rather nice confirmation of the An rule.
However, further reflection indicates, as we shall now show, tha the result

is too nice.

The i+ state in 283 127 has the structure

?g (209

12.,.) = (0455)¢c (13a)

where ¢ is the 82Pb126 core. On the other hand, the structure of the i+

€ 209
state in 82Tl 28 is dominated by

209 |

v* & ) O Q3b)

.2 -
128) B ?uj (UJ )O¢C(“3S£

20

where @ch3s;l) is the P 126 core with a 35i proton hole in it and

Eu.(ujz) is the wave functxon for the two neutrons outside 222 126 " that

1s the zgngIZB neutron eigenfunction. With the wave functions of Eq (13)

it is straight forward to show that
N 209 * 209 - V’
<¥? (%5 127[|1 ol l¥* ¢ Tl ,0)> 32y Ny (13)

whereJZ is given by Eq (12). The coefficient ui is the probability that the

two extra core neutrons are in the 4si orbit and according to Herling and

o (14)

2
In addition to this contribution to the beta decay matrix element there

w, has a value of about 0.05.

should also be one that arises from weak configuration mixing effects in

209

82
to the Z = 82-126 shell and at the same time a neutron is excited from one

Pb127. The important mixings are those in which a 3s§ proton is excited

of the N = 82~126 core orbits to say the As! level, This type of admixture



together with the unperturbed initial
FINAL STATE and final state wave functions of
Eq (it) is illustrated schematically

——— -
> N=126 —*—| in Fig, 3. Clearly if the particle-hole
——— - ol
-82 ot —._,_o—.' pair in the 82~126 shell couple to spin
*foh | o one a contribution to the beta decay
which is linear in the admixture coef-
J ficient Bph can arise, Such an admix-
ture is known to give a substantial
destructive interference (15) to allow-
Ao
= ed beta decay when An = 0. Consequently
—— .
- if-x_z s Eq (12) is indeed zero there is
o . nothing with which this collective
effect can destructively interfere and
hence one would expect a substantial
. sqs +
. probability for beta decay to the }
INITIAL STATE state in zgng”J. Clearly the absence
Yigure 3. Schematic illustratiorn of of this decay is a problem and it is
b vave func:;ggs involved in th? important that a reliable limit for
beta dcgay of T1528' The coeffi- 209
cient B givesf! the probabi~ this branch in the decay of 81T1128 be
lity of admixture of the particle established.

hole wave functions.
If this branch is indeed small, as

it seems to be, the walue of i must be
sufficiently large to cancel out the collective contribution. In Table 3 we
give values (16) of J, Eq (12), as a function of the radius of the neutron
single particle well, The integral is rather insensitive to the diffuseness
parameter, a, and consequently values are only given for a = 0.65 fm, Clearly
JZ is extremely sensitive to the difference in the neutron and protom well
radii and essentially vanishes when they are equal, Thus a measurement of this
beta decay branching ratio is likely to provide a stringent condition om the
allowable difference of these radii in heavy nuclei and it is well knowm that

G7)

Coulomb energy differences are very sensitive to this guantity



Table-3

Values of the overlap integral be, Eq (12). The proton well radius was held

fixed at 1.2 x Al/3

fm and the strength of the Woods-Saxon potential,

V(r) = ~V°/(l + exp (r-Rp)/a) was adjusted so that the 3si proton was bound,
in the presence of the Coulomb field of a uniform charge distribution, by
7.367 MeV, For each neutron radius the dz2pth of the neutron well was chosen
so that the 454 neutron was bound by 1.928 MeV, In all céses the diffuseness

parameter, a, was chosen to be 0.65 fm.

Neutron Well radius in fum L= jo?l:,'s(r)kas(r)rzd.r
1.0 x a!/3 ~0.439

l 1.1 x a'/3 ~0,228
1.2 x A!/3 0,013
1.3 x a!/3 0,243

2. Isospin Rules

Pyt somami

We now turn to selection rules or inhibitions brought about by isospin
considerations.
{a) Garma Decay

There is a stringent isospin selection rule which occurs for El transiti~-

ons =~ that is T=0 - T=0 transitions are strictly forbidden if isospin is a

good quantum number. This rule is easily deduced from the properties of the

El operator, which has the form
I=t_(i)
3 . z
(El)x et fk(l){ 5 ]

Py

-

where r(i) is the positionm vector of the ith nucleon and the factor [I-Tz(i)]/Z

.



insures that only protons contribute to the transition probability. Since

where A is the number of nucleons in the nucleus and R is the position
vector of the center of mass, it follows that only the tz(i)rl(i) part of
the El operator coatributes to transition rates, This is true because the

center of masz of the nucleus must always be in its ground state and hence

If‘ l Ii
<Y iR, [¥,, > = 0, . .
MR T
Thus
K] c e . :
(E')A = 5‘)2; e i rl<1)tz(1) ' Q4)

£
Since 1z(i) is a tensor operator of rank one it follows that T=0 =+ T=0

transitions are forbidden,
3,18)

An examination of the experimental data shows that all El's

between low-lying states are severely inhibited and on the average the iso~
spin allowed transitions have
B(EI)

expt =5 x lo—k

B(El)Weisskopf

whereas the T=0 + T=0 transitions show an additional irhibitiocn of a factor
of 10-50, '

However, there are some isospin forbidden transitions which are anoma-
lously fast and consequently poée an interesting theoretical problem. For
example, the 6,95 MeV (l-, T=0) decay to the 0% T=0 ground state in ggcazo has

BED expe «2x 1073

B(EI)t\Ie.J'.sskopf

In other vords, this transition is faster than usual isospin allowed decays.



In Table 3 we have collected all the 1~ T=0 to 0% T=0 transitions which have
the above ratio greater than 10-4. From a krowledge of the position (19) of
" the closest |~ T=l state that can mix with the | T=0 level we can estimate
the size of <H>, the isospin non-conserving matrix element, which is needed
to explain the transition rate. In making this estimate we have always assumed
that B(El) for the admixed state is one Weisskopf unit, Thus once AE, the
enerpy difference between the 1~ T=0 and T=1 states is known <H> can be com-

puted from the expression

B(El)expt . <H» sy
B(El) 4E '
Weisskopf

The results that emerge from this calculation are listed in the last column
of Tablg 4. In all cases <H> is much larger than would be computed from the
Coulomb'interaction and in fact is much larger than the values deduced from
the beta-gamma-circular-polarization experiments. These latter experiments(zo)

require <H> between | and 40 keV,

Table 4

1~ T=0 to 0+ T=0 transitioﬁs with anomalously large B(El) values

(a) Estimated from the excitation energy (2.10 MeV) of the lowest I~ state in
40K
19721 - 3%

(b) The first candidate for 1 in l7Cll9 is at 2,52 MeV

(c) The lowest known 1 state in lSPl7 is at 4 .04 MeV,

Nucleus| Tranmsition B(El)ex ¢ Energy of nearest [Required value of <H>

) E. . ., (MeV) ——XEC - . the isospin mixing
initial B 1 T=1 state in MeV . .
> E.. (E|)weissko £ watrix element in keV

final p

40 -3 (a)

20Ca20 6.95 + 0 2x10 9,76 126

36 : -4 (b)

|8Ar|8 5.84 + 0 6 x 10 9.13 80

32 ~4 (c)

I6S|6 5.80 + Q 5 x 10 11,04 117

905 7.12+0 | 3.9 x 107 13.09 118

%
i
K
i
H
{
%




Since these isospin mixing matrix elements are so large, one must look
for other ways to explain these anomalously fast isospin forbidden El's.
Several possibilitics present themselves:

(i) Mixing with the El Giant Resonconce State

To estimate <H> required with this type of mixing we assume the giant

resonance is concentrated at 20 MeV excitation energy and has a strength of

ten Weisskopf units. In the most favorable case, I808' we need a value of
<fI> = 80 keV

to explain experiment. Again this matrix element is much too large.
(ii) Departure from the long wave length limit
Since these gamma transitions are of high energy one should check
whaether the neglected (kr)3 term in the transition matrix element is important.

Since 3-
"o s ey o KT _ (kr)
§y(kr) = =5 = 55

one would expect Lhe neglected term to give rise to a matrix element approxi-

2
mately (kfa times the usual Weisskopf estimate. Thus B'(El) due to this

added tem is

kR4
100

t py .
B (El)f’ B(El)Weisskopf

where R is the nuclear radius. For the 6.95 MeV transition in ggCazo this

leads to

‘ =6 .
L L)
B'(El) 2 4.4 x 10 B(E')Weisskopf

) /3

when R is taken to be 1.2 x 40i fm. Thus this gives too small a contribution

and is ruled out as a possible explanation,

(iii) Magnetic contributions to the El operator

The El operator also contains a contribution which is proportiomal to the

proton magnetic moment (2), that is

b E o xve,6)

1 .
(E1), = e v Y, (0,¢) - i u
. AT P 4me2 4

A



where E is the energy of the emitted gamma-ray. The ratio of the contributi-

"ons of these two terms should be approximately

A B -
-Ei--ns.leo3
4me

Thus in this case B'(El) would be

' — -5 ’
B'(El)= 2.6 x 10 B(El)Weisskopf

Again this result is too small.
(iv) Possible Spin orbit effect
Since the single particle shell model Hamiltonian

p2
H=-— +V(r) + £(r)g.(x x p)

2m

has a strong one-body spin orbit force one shoyld logically take this into
account when constructing the electromagnetic operator. Thus for the electric

multipole operator, instead of considering = E%-Eﬂé’ one should use

‘ _E.EB,A-—f(r)o.(rxA)

In the dipole limit the vector potential, A = eeEEﬂ-, is replaced by g, its

polarization vector, Thus we have to evaluate the matrix element

: 1 I,
ME = <¥ f[ 2 pet - S f(r)o.(r x ) |v > = ——<W fl[r H].el?
Mg’ m e s M

I I.
= - ey Ir.elv

Therefore when matrix elements of the usual El operator, Eq (14) are computed

@n

this effect has already been taken into account



Conscquently it would appear that the simple mechanisms for getting such a
large isospin admixture do not work and the theorist is faced with finaing
an adequate explanation for these results. Moreover, the explamation, when it
is found, much be such that it does not lead to large isospin forbidden El's
in nuclei other than the 4n- nuclei listed in Tabie 4.

{b) Beta Decay
As stated in the previous section, the beta-gamma-circular-polarization

experiments are consistent with small isospin admixtures (small values of <H>).
It is, of course, important to know whether these small estimates based on
polarization are consistent with other methods of extracting isospin impuri-
ties and we shall now discuss this question. ’

An attempt to measure isospin mixing has recently been made by Garvey et

al. (22) who look for a beta branch from the I=0 T=] ;fSc ground state to the

1.84 MeV excited I=0 T=1 state in ;gCazz. They estimate that due to Coulomb

effects one would expect

4

42

. 42 .
218c2| {ground state) - 20 22(0 }.84 MeV)

= 0.6 x 1072

42

42 +
215¢9; {ground state) + 200322(0 : groun§ state)

Experimentally ‘they find this branching ratio to be less than 1.2 x 10-3 and

hence no evidence for any anomalously large mixing.
Another alternative is to deduce these admixtures from the data on iso-
N . + + s N
spin forbidden 0 -» 0 transitions (23). In general the wave functions of the

nuclear states involved in the decay can be written as

vhere a:,(l) is the probability that a state with isospin T' (T°'>T) will be
mixed into the state which is mainly isospin T. For the case that Ii = If = Q,
T. ¢ T it follows from Eq (11) that isospin admixtures alone contribute to
the beta decay. If we denote the larger value of (T ’ T ) by T and concentrate
on decays for which Tz. = Ti’ Tz = '1‘f it follows that for 0 +0" isospin
forbidden decays r £

6250

2
ZTuT

ft = (16)




Table 5

Isospin mixing matrix elements deduced from beta decay. The first three entries
give the value of ¢H> deduced from the isospin forbidden 0+—+ o* transitions.
The last three give an upper limit for <H> based on the assumption that the
Gamow~Teller matrix element is zero. The notation 2+* indicates that the. decay

+ .
goes to the second 2 state in Fe,

Transition "|Energy difference, |Isospin Mixing
log £t oy 4E, in MeV betweenjmatrix element,
Nucleus Spin admixed states <H>, in keV

SiGag, > Sozn. | 0+ 0" | 6.6 1,98 x 1072 1.7 3%
8%, +'gan36 o* +0*| 7.9]5.62 x 1073 3.6 13
gg€é34 + 88ca, | 0" 0" |57.4 [ €7.9 x 107 6.7 53
aoCag * 318e7/2747/27 8.5 1,68 x 1073 8.38 <14
SeC0,0 * eFesol 4 + 4" | 8.5 k.22 x 107 6.0 <13
3o, + 28 2+ 2% 7.6 k5.1 x 1073 7.35 <38

279931 7 26783,

In Table 5 the sparse experimental data pertaining to isospin admixtures
deduced in this way are tabulated. Although Eq (16) is only rigorously true
for 0+ +o" transitions, it can also be applied to cases where the decay is
severely inhibited, In these cases if one assumes the process goes entirely
through isospin mixing (i.e. one assumes that the Gamow-Teller matrix element
is zero) an upper limit on a, can be obtained, Once ap is known <H> may be

T
determined from the relationship

<H>

AE



where AE is the energy difference between the admixed stﬁtes. This latter
quantity can be obtained from either a knowledge of the position of the anzlog
state (13) or can be deduced from binding enecrgy differences. For example, in
the A=64 and 66 nuclci the position of the analog state is not known and AF is

estimated as follows: The neutron binding energy to the N = Z = 28 core can
@) ¢ Sy

be obtained directly from the known total binding energies 28Vi28 and
57N' .
28 29

. 56... o
) - BE(28h128) 10.267 MeV

57 .
€, = BEGgNi,g

Because the mass of §;Cu28 is not known, one must proceed in a round-about way

to find €yt the proton binding to the core, From the known mass of ngi30 one

can calculate the interaction energy, Eo’ between the two neutrons outside
6yi
28728

4

the core

BE(ggNi3o) - BE(;gNiZG) = 2€u + Eo

Thus E_ = -1,936 MeV, Further, since the analog of this state in ;gCuzg is
knowm 13) to lie at 0,202 MeV it follows that the proton binding energy to the

core is
Cw L4 -0n7ls MeV,

The excitation encrgy of the analog of the (N+1, Z-1) ground state
in the nucleus (N,Z) is then given by the relationship

AE = BE(N+1, Z~1) ~ BE(N,Z) + (e' - eu)

From Table 5 it is apparent that the matrix elements of <> deduced in
this way have values consistent with those given by the beta-gamma-circular-

polarization experiments and hence the E! properties of the nuclei listed in

Table 4 are indeed anomalous.



In suamary, it is clear that there are still many interesting problems
~ both theoretical and experimental = associated with conventional beta and
‘gamma decay. The measurement of Ml's within a multiplet does nuch to shed
light on the question of configuratiom purity. Studies such as those described

for Niobium could be profitably carried out on 2;331127 where one deals with

the (1!'h91.2 x 039/2) negative parity multiplet. A re-examination of the
beta decay of zg?TIIZB is clearly called for since if the trausition
to the i+ state in zgng|27 is indeed severely inhibited onc can

unambiguously determine whether oxr not the proton single particle well is
larger than that of the neutron. Finally, the theorectical problem of the
anomalously fast El's may well be explained by the fact that there are 5 large
number of admixed I=] T=| states that interfere constructively to give the
large®” E] matrix element . However, if this is the case one must still answer
thé question "Why only for 4n-nuclei?™ Alternatively the fast El's may be

due to an isospin non-conserving part of the nucleon-nucleon interaction,

If this, is the answer, the "4n-nuclei question" still remains and in addi-
tion one must then address the question “Why do the of + 0" ar # 0 transi-

tions require such small isospin admixture?
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