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I. INTRODUCTION

This paper concerns the creep of a hollow sphere subject to constant

internal pressure. Considerable attention has been given to this problem over

the years and it is the subject of a definitive monograph [l] by Hult. While

Hult's work considers strain-hardening creep and thus involves a more general

material description than that assumed below, the main results developed in this

paper employ methods not common in such analysis and, further, should be capable

of extension to more general problems of creep analysis.

In what follows, a method is derived for obtaining a priori upper and

lower bounds for the displacement of any point in the spherical body at any time.

It is well known, of course, that if elastic strains are neglected in comparison

to creep strains, the sphere problem has a closed-form solution. However, in

certain situations of technological importance, such an assumption cannot be made.

For example, in the design of nuclear reactor components for elevated temperature

service, quite restrictive limits are often placed on allowable creep deformation.

In such cases, elastic response should be included in the constitutive law as is

done in equation (2.4) below.

It could be argued that even with the inclusion of elastic strain, the

problem could be solved directly using a general purpose finite element program.

Such a procedure, however, would involve considerable time and expense and, since

in preliminary design work precise answers are often not required, it is better to

obtain simple bounds on deformation. Examples of such bounds for the case of dis-

placement of the outer surface are given in inequalities (3.13) and (3.14) below.



The method by which these bounds are derived is based on various elementary

principles of analysis and is different from the bounding techniques of Leckie,

Martin, and Ponter [2], [3]. These authors have derived bounds for the displace-

ment of points on the surface of bodies of fairly general geometry under creep and

other inelastic deformations. Their results are quite general; however, in apply-

ing them to a specific problem, one must obtain a solution to the stress equations

of equilibrium which has a prescribed singularity on the boundary of the body. The

bounds (3.13), (3.14) are given entirely in terns of known quantities and their

application does not involve the solution of boundary value problems.

Although the results of paper apply only to the hollow sphere, the method

of derivation should be adaptable to other creep problems - especially those with

a high degree of symmetry.

In the course of the derivation of the displacement bounds, two other results

were obtained, both of which have counterparts in the work of Hult [l]. First a

technique is indicated for representing the solution of the hollow sphere problem

as a power series in tine, t. Second, a formal limit has been obtained for the

stress state in the body as time tends to infinity. This result is given in equa-

tion (2.32) below and agrees with that of Hult in the case of no strain-hardening.

Of course, the method of derivation is quite different in that elastic strain has

not been neglected in the process of obtaining the Halting behavior.



II. STATEMENT OF THE PROBLEM

We consider a hollow thick-walled sphere with inner radius a > 0 and outer

radius b < • described by a spherical coordinate system r, 6, 9 whose center is

at the center of the sphere. Here 0 stands for latitude and • for longitude.

The sphere is assuaed to be under a uniform internal pressure and zero body

force. Thus, the boundary conditions are

arr| " - P j
'r - a h - b

where 0 is the component of the stress normal to surfaces r * constant. It is

assumed! that p > 0.

By virtue of the symmetry of this problem together with the assumption of

material isotropy we may take the displacement components u , uQt u, in the form
r 0 •

u « u(rtt), ufl - u. • 0 in fa,b] x [o,») . (2.2)

Using the infinitesimal strain-displacement relations in polar coordinates

(see e.g.(4] page 184) together with the assumptions (2.2) we obtain

£rr ' ft ' f 86 " %• - f ' Ere - cr* " efl* ' ° • (2*3)

We shall consider creep laws of the form

c / •*" 'ij

where o.. , e., are components of stress and strain respectively* 6.. is the

Kronecker delta, indices i,J,k have the range 1,2,3 and summation over repeated

indices is implied. The s.. are components of the deviatoric stress defined by

and



It is assuaed that

B > O , c > O , - l < v < | , » - 1,2 (2.5)

The law (2.4) has the form

where e.. is the elastic strain and depends linearly on the stress, and e/j is

the creep strain, whose dependance on the stress takes the form of Norton'? law

a* generalised to the case of triaxial stress by Odqviet [5].

By virtue of the symmetry of the problem,

°re " °r* " °6 f " ° • <2'6>
Also, it follows from (2.3) and (2.4) that

0 " (1E V^[gee(r't) ~ %/*•*> I + 8- a ) dt . (2.7)

Since (2.7) has the form of a homogeneous linear Voltcrra integral equation

of the second kind in a A A - a.. , it follows that
w ft

°?t"°ee
 ln L**b1* C°»-> • C2.8)

Due to (2.6) and (2.8),

*2 " (orr " ff«e>2 • (2'9)

It is convenient to sake the abbreviations

t t

Z -| f s2" (orr - oee) dT - f f o2"*1 (r,x) dt .
t

2"*1 (2.11)
o

With this notation, it follows from (2.3), (2.4), (2.8), and (2.9) that

the displacement-stress relations take the form

3u 1
3r err I

r " C68 " E

°^. ~ 2v °«* + 2E <2'12)

(2.13)

In the absence of body forctt, the only non trivial equation of equilibrium

(or quasistatlc equation of motion) is



3orr 2

~ £ + £ o - 0 . (2.14)

Equations (2.12), (2.13), and (2.14) together with boundary conditions

(2.1) form a complete statement of the problem. We now use them to derive an

equation in a alone. To this end, we first eliminate u from (2.12), (2,13) and

obtain the stress equation of compatibility

-r|f--iL+vIo + 3, . (2.15)

do
Elimination of the term ~ ^ between (2.14) and (2.15) yields the desired

equation in o :

"̂  [rfr"+3°] "rTr +3E * C 2 * 1 6 >
2

Multiplying (2.16) through by r and integrating, we get

(v I X) o(r,t) « E(r,t)+^|i . (2.17)

In order to evaluate f(t), we Integrate (2.14) and apply the boundary

conditions (2.1) to get

b

- f - f a(C,t) f- . (2.18)
"i

If we then multiply (2.17) through by r~ and integrate with respect to r

from a to b, we obtain an expression for f(t), which, when inserted back into

(2.17), yields the equation

where

b

o(r.t) - - ̂ -(r!r) *<**> + 7 ( 1 ^ ) /««. t) f (2.19)

- 7 (a"3 - b~3) . (2.20)



Defining

c E
Hl 3(1 - v)

and using the definition (2.11) of z we express (2.19) in the form

(2.21)

a(r,t) - - -^r - v- I o'Brri(r,T)dT + -±=± / I a ( 5 , T ) ^ dT . (2.22)

This integral equation completely determines o . In order to calculate u,

given a , we use (2.13), (2.14) and 2.1) to obtain

r

u(r,t) - - £ I(1 - v)a(r,t) + (1 - 2v)p + 2(1 - 2v)• »t) - - ̂ I (1 -

- r E (r,t) . (2.23)

Notice that (2.22) immediately yields a power series expansion in t. In

fact,
3, P

a(i:,O) - - - — • (2.24)

2 r3

which is the initial elastic response, and

o(r,t) - - p1 o (r,t) + '3 - / o (5,t)|«- . (2.25)

Setting t - 0 in (2.25) and substituting from (2.24) yields the second coefficient

in the expansion: .2m+1i
i i / i i V 1

(2.26)

Equations (2.25) and (2.26) are recorded above not only because of their

role in the power series expansion but also because they are Important in the

theory developed below.

Using (2.20), we put (2.26) in the form
2m+l.

(2.H).6 I-3 (2.27)



From (2.27) and the assumption a < b, it follows immediately that

o(a,0) > 0 , a(b,O) < 0 . (2.28)

Equations (2.18) and (2.25) lead to the formal asymptotic limit of a(r,t)

as t + • . We assume that

lim c(r,t) - *(r) , lim a(r,t) - 0 . (2.29)
t -> » t -> •

Then, in the limit, (2.25) becomes

0 b
1 r
* ii

Function <»(r) is a solution of (2.30) if and only if

*2n+1(r) - *j , (2.31)

where k is arbitrary. In order to evaluate k, we substitute <»(r) for a in

(2.18) on the theory that, since (2.18) holds for all o(r,t) it should hold in

the limit as well. This leads to the formula

3
, _ " 2»H

*Cr) " 7553* 3 3 - ' (2'32>

"%#£ " aiSa
a — p

Unlike Hult [1] in the case of strain-hardening creep, we are able to

obtain a formula for the limiting stress distribution without having to neglect

the elastic strain. Equation (2.32) agrees exactly with Hult'a equations (33)

and (34) in the absence of strain-hardening. Notice that (2.23) and the

assumptions (2.29) lead to the following formula for the limiting displacement

rate:

lla u(r,t) - - *-£ •2-tfl(r) . (2.33)
t •*• »



III. BOUNDS ON a(r,t) AND u(r,t).

2
We assume throughout that there exists a solution o(r,t) which is C in

[a,b] x [O,~).

Theorem 3.1. For all (r,t) in £a,b] x [0t<»), o(r,t) < 0 .

Proof. Suppose that the theorem is false and let

It in [0,°°): there exists r in [a,b] such that a(r,t) i^O \.

Let t. • g.l.b.jT^ . By the Bolzano-Weierstrass Theorem, there exists r.. in

[a,b] such that a(r 1t 1)^0 . Therefore (2.24) implies that t. > 0. Since

a < 0 for all t in [ 0 , 0 it follows from the continuity of a that

a(r. , 0 - 0 , a(r- ,t.) ̂  0 . (3.1)

Applying (3.1) to (2.25) we see that

b

rl a ' X ^

Since, by the continuity of o(r,t), we must have a(£,t.) ̂  0 for all £

in [a,b ] , it follows from (3.2) that o(g,t.) m 0 in [a,b] . But, for p > 0,

this contradicts (2.18).

Theorem 3.2. For all (r,t) in [a,b] x [0,«),

(a) |f > 0 , (b) f- (r3a) < 0 . (3.3)
or <7t

Proof. Notice that (2.24) implies that

|f (r,0) > 0 , |j- (r3o) (r.O) - 0 . (3.4)

Now suppose a function w on [0,«) satisfies an equation of the form

w + lew - g , (3.5)

where k and g are continuous on [0,<») .

Since (3.5) Implies that w has the representation



expl fk(OdE, I w(t) = w(0) + j expl /k(X)dX I g(x)dr , (3.6)

it follows that if g > 0 (resp. g < 0) in (0,«°) and w(0) ̂s 0 (resp. w(0) ̂  0)

then w > 0 (resp. w < 0) on [0,<») . We can apply this fact to both -r—• and

3 3
T — (r a) . Differentiation of (2.25) with respect to r yields

3a , ... 2m 3a
+ (2m+l) y1 a "g7

r
a

This equation has the same form as (3.5) if we take w = ~ , etc., and its

right-hand side is strictly positive by Theorem 1. Inequality (3.4) furnishes

the positive initial condition. This proves (3.3) (a). In order to get (3.3) (b),

we multiply (2.25) through by r and differentiate with respect to r :

3 / 3« \ . 2m 3 t 3 % n 3 2m 3a «« -,\

^ (r o) + p, a TJJ- (r a) = - 2m ̂  r a —̂ . (3.8)

This is another equation of the form (3.5), only this time the right-hand side

is strictly negative by (3.3) (a) . This fact and the initial condition (3.4)

imply (3.3) (b) .

Notice that if we allowed the linear case m • 0 , then (3.4) and (3.8)
_3

would imply that a is always proportional to r

Theorem 3.3. For t > 0 ,

31 P

^ a(a,0) = H f » and <3*9)
2 SL
3i P

^ a(b,O) = =-=• . (3.10)
2 bJ

Proof. We shall only prove (3.9), since the proof of (3.10) is very

similar. It follows from (2e25) that

oC,t> - - V .t) + i£ f
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Therefore, by Theorem 3.1 and (3.3) (a) , together with (2.18) and (2.24) ,

b

.^5o(a , t ) ^ - u a2m+1(a,t) + - ^ a2m(a,t) f

a J

[ o

a(a,t) +-^r
2 a3

a(a,t)^- Uj a m(a,t) I a(a,t) - a(a,O) I (3.11)

Inequality (3.11) may be thought of as a first order differential inequality

in cr(a,t) which when multiplied by the appropriate integrating factor and

integrated yields

I ! r t

cr(a,t) - a ( a , O ) ^ I exp I ji. la (a,T)dx I - 1 } a(a,O)[ t -I / r t

U1 / a m(a,T)dT |ff(a,t) - a(a,0)^s I exp I ̂  l

This proves (3.9).

It i s immediate from (3.3) (a) and Theorem 3.3 that

- - ^ - o(a,0).«£ 0(r,t)s£ a(b,O) = - - ^ (3.12)

2 a J 2 bJ

for all (r,t) in [a,b] x [0,°°) . That is, we have explicit bounds on a at any

point in the shell for any time t ?=* 0 . But then by (2.23) we have bounds on the

radial displacement u(r,t) .

For instance, suppose we want bounds on the displacement at a given time

t of the cuter surface of the spherical shell. Setting r = b In (2.23) and

appealing to (2.11) and (2.18) we get
t -I

.» , c f 2111+1,, s, I,t) + -j I o (b,x)dT I .u(b,t) = - b | . v% VJ a(b

'o

Together with (3.12), this leads to the bounds

tfl

(3.13)



2m+l

Theorems 3.2 and 3.3 also furnish bounds for

(b) and (3.12) Imply that

2 a4

11

(3.14)

In fact, (3.3) (a) and

(3.15)
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