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1. Introduction

The transport equation (transfer equation, linear
Boltzmann equation) governs the distribution of neutrons
in a nuclear reactor or of radiation in a stellaf or
planetary atmosphere. It is an integro-differential
equation of some complexity in its more general forms.
Primary independent variables are position and.direction,
speed (alternatively energy, frequency or wavelength),
plus possibly time. The differential operator in the
equation describes attenuation due té both absorption and
5cattering away from a particular direction. The inte-
gral operator describes scattering into a particular
direction from otﬁer directions and production by fission.
Source terms may be present. On any boundary surface
there are boundary conditions corresponding to incoming
directions. For time-dependent problems there are

initial conditions.
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Since the traﬁsport equation can be solved explicitly
only in a few very special cases, approximation methods
are commonly used. The discrete ordinates method involves
the replacement of the integral operator by a numerical
integral operator in order to obtain differential equations
for.aéproximate solutions. Empirically, this method_yiélds

very satisfactory results for a large class of transport

problems. However, a complete and rigorous convergence

and error analysis is presently available. only in some
rather'idealiéed caseé. |

The discrete ordinates method was first applied by
Wick [18]. and by Chandrasekhar [7, 8] tézparticular
steady-state problems‘from astrophysics QithAhomogeneous
ﬁedia bounded by single planes or pa?aliel plaﬁes (hélf—
spaces or slabs), usually under conditions of isotropic
scatteriﬁg and isotropic sources. Convergence theorems
for the approximations were obtained for variousAproblems
of this type with isotropié SCatteriné by Anselone [1-5],

Kofink [13], Keller [10, 1l1] and Wendroff [17]. Subse-

A quently, convergence theorems have been obtained for
‘certain transport problems involving anisotropic

‘scattering, other geometries, and time-dependence, by

Keller [12], Nestell [16], Madsen [14] and Wilson [20].
We shall survey these contributions from an abstract

and unifying point of view in order to isolate what is

_.essential to the convergence_of the discrete ordinates

approximations. In the process, methods of analysis
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will be developed which appear to be‘applicable to very
general transport problems and to othef integro-
differential equatiéns. The discussion is in terms of
a sequenée of model problems of increasing complexify.

All functions considered will be real. For méthematical

convenience and physical relevence specified functions

are continuous and usually nonnegéﬁive. We remark that
the problems surveyed here involve discfete ordinates
approximations only for the angulér integrals, and thus
do not represent the most general case of discretization
és practiced, say, in many nuclear reactor applications.
today, where the spatial variable is also discretized.
However, as noted below, the powerful analytical tqols
developed in applications to angular discrete ordinates
épproximations also show'promise fqr investigations of

the more general case.

2a. An Isotropic Transport Problem in a Finite Slab

b,

| A

Consider the problem for ¢(x, py) with a < x

-1 < u <1, given by

A 1 ' '
u 3Eé§4~£) + ¢o(x, w) =’% j:l ¢(x, u')du' + g(x),
(2.1) | |

¢(a, w) = 0 £for u >0, ¢(b, ) = 0 for u <0,

¥

where ¢(x, y) 1is the one-speed angulér flux at depth

X . in a homogeneous slab in a direction making an angle

6 = COS_lp with the positive x~axis. The positive



-

numbér c Ais of order 1 _and represents the mean'number
of secondary neutrons per collision. In the above equation,
distance has been measured in units of neutron mean free
paths, i.e., x.= otT, where o is the tofal cross section
and T is the actual distance. -

The boundary conditions correspond to a situation
with no reflection of neutrons at the sﬁrface and no
incident neutrons. Actually, a non-zero incident flux
boupda;y condition coﬁld'have beenlaésumed. However,

such a problem can be reduced to 12.1) for ¢, = ¢ —A¢0,

. where ¢, satisfies the homogeneous equation

p ad)o (x, U)'

H ox

+ ¢ (x, w) = 0

and the giveniboundaryiconaitiohs.' If this reduction is
not made, then an unnécessary approximation is introduced
for ¢0, which can be found explicitly. For the same
reason, zero boundary conditions can and should be assumed
also in applications of the discrete ordinates method to
more genefal transport problems. | |

To proceed, assume a numerical integration rule such

'that, for any continuous function h(u), -1 < u <1,

n - 1 :
L Yh3 h(unj) > jll h(u)dy, n.* w,‘

w . =W . > 0 L, = - .
n,-j n,j * ¥n, -5 M, g

0 < unl < un2 tre < Ynn <1



The Gauss quadratﬁre‘formﬁlé is an example. Tﬁe-symmetry
coﬁditions on the wnj and unj are a convenience rather .
thanva necéssity. »

Discrete ordinates approximations ¢n(x, u),

n=1, 2, ..., satisfy

3¢n(X, u) C n | -
R S S SRR
(2.2) |

¢ (a, W) =0 for u>0, ¢ (b, n) =0 for u« 0.

y 1 =21, ..., ¥tn, this is a system of

For u = uni

ordinary differential equations for ¢n(x, “ni)' Then
(2.2) yields o (%, w) . '
The broblems for @ “and ¢n have equivalent integral

equation formulations which are more convenient for the

_convergence analysis. Let

1 .
(2.3) -£(x) = §~j’ ¢(x, wydy + g(x),
_ : -1 - ,
‘ c n .
(2.4) £,x) = E'jfii Y ¢(x,'1,1n.j)-+ g(X) .

From (2.1) and (2.3}, it follows that

$(x, 0) = £(x),
(2.5) ,
X _ 'z =a, u.> 0,
H(x, W) = = X ey = ¥/ £(y)ay,
. H b4 z2 =Db, u <0,

The equations for ¢n in terms of f# are identical.

From (2.3) and (2.5),



b : N
(2.6) f(x) - % X El(lx - y]) £ly)dy = g(x),
a .

where E; is the exponential integral function of

order one,
1 -s/un _~-1 |
(2.7) E, (s} = e y ~ du, s >0,
which has a logarithmic singularity at s = 0. -Similarly,
c b o .
(2.8) £,000 - 3 S Eyx -y £ y)dy = glx),

a

where E_, is a numerical integration approximation.to

El: o
A n T =s/U_ .
(2.9) E (s) = I w..2—"R s>0,
A nl =1 nj '“nj "

(2.10) Enl(s) > El(s) uniformly for s > € as n > 0o

for each € > 0. Thus, the discrete ordinates method is
seen to be equivalent to the apprdximation of the integral
operator”in (2.6) by the integral operator in (2.8).

Express (2.6) and (2.8) in operator form
(2.11) (1 - X) £ =g, (x - Kn)fn =9

on the space Cla, b] with the max norm. Then K and

Kn are Fredholm integral operators with kernels

k (x, Y) = % El(lx _'Y|)r Akn‘(xl Y) = %Enlux - Y|)°



These are bounded linear operators on Cla, b] and for

¢ not too large (the case of a subcritical médium,

-rassumed here) we have

’ b
& = max X K(x, y)dy < 1.

Hence, (I-— K)_l

Na - a- k™,

a

exists,

1

and f and ¢ are uniquely determined.

Fromﬂ(Z.lO),

’
'

.0l > Xl as n > =

Thus, we are in the realm of standard operator approxi-

mation theory. For n sufficiently large, ”Knﬂ <1,

(T - Kn)
(2.12)

(2.13)

(2.14)
(2.15)

(2.16)

exists and is bounded uniformly in n, and

-1
(I-K )

-1
N(I—Kn)

/

- (I-K)

1

| (T- )"

-1
I-x)

-1
I (T-x )

1

1 I
= ) g0 e T

(I—K)fl” ill(I-Kn)th ”Kn—K“ H(I—K)_IH ’

s a2 ik k||
(I-r) “|| < = '
L - -r) T R K|
. "l 2 13 -
- (x-x_) ] © il -K| -
. (I—K) ]_” i ” n l — n l ,
L= ) T ]
(I;K)-IH + 0 as n - o,

The error bound in (2.14) is "theoretical" in the sense
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1

H

that it involves (I - Ks_l, whereas (2.15) is “"practical"
because it depends on (I - Kn)—l; and can thus'be coﬁputed.'
The bound (2.13) is of mixed type. It follows from (2.16)
and (2.5)ff that £ > f and ¢_ > ¢ uniformly as
. .

" This is essentially tbe path followed by Anselone
~[4, 5] and by'Keller [11], although Keller's analysis
was less abstréct and'he defined the discrete ordinates
app?oximations 6n1y at the quadrature points. Previously,
Keller [10] and Wendroff [17] treated the differential
operators directly without inverting them. The results
were iess satisfactory: L2 convergence on éuadrature
points, and uniform convergence on quadrature points
under‘a restrictive assumptibn. Kofink t13] established
L2 convergence on quadfature points by éxploiting'an
'equivalence between the discrete ordinates method and the

?

spherical harmonics method.

2b. An Isotropic Transport Problem in a ﬁalf Séacev
Anseiqne [1-4]—also derived uniform convergence
theorems for isotropic transport problems in the case
of semi—infinite slabs (O < x < «). In particular,
tﬁe classical Milne problem leads to the homogeneous
equation (I - K)f = 0, where K 1is the same integral'
operator as above. The Wiener-Hopf method, based on

. ' { . . . .
Fourier transforms, was devised originally to solve

this eguation.



A more direct method, which,anticipated later
theories of positive and monotone operators, was giVen
by Hopf [92] for the case ¢ = 1. It involves é change
.Of variable 'f(x) = x + gq({x). Then g satisfies the
inhompgenebus equation (I - K)g = E3, where E3 isv‘
the exponential integral function of order 3,

E;(s) = jlnens/“ udu, s > 0.
0o - : 4
~A nonnegativé solution q is soughﬁhin the.spgce of
bounded céﬁtinuous fﬁnctions on [0, =). Althoﬁgh now
[IX]] = 1, monotonicity considerations yield a unique
- solution q given by the uniformly convergent Newmann

series

‘The discrete ordinates approximation problem can be
recast in the form (r - Kn)fn = 0. Let fn(x):= x + qn(x).
Then (I - Kn)qn = E 3 where En3 is a numerical
integration approximation - to Ej, and a, is given by

y m

9, = E Kn En3’
m=0

A detailed term by term analysis yields q, > g uniformly

as n »> «, It follows that ‘fn + £ and ¢n + ¢ uniformly.

3a. An‘Anisotropic Transport Problem in a Finite Slab
Consider the problem for ¢(x, u) with a < x < b,

-1 < u <1, given by



1 T . B
e L j- P ko, ') 0x, it ) dnt + glx,u),
‘ -1 : :
(3.1)

(a, ) =0 for u>0, ¢(b, ) =0 for u<o0.

Here, x represents the optical depth measured from the .

plane of the origin, i.e.,

T _ o
x(1) = X o(t')dt"*,

with o(t) the total crosé‘sectioﬁ at position ‘T,

and - T tﬂe distance measured from '0.. The differentiél
kernel p(x, u, u')dn represents the avéragé number of
neﬁtfons'emerging with direction'cosines in‘ du, following
a cgllision by a neutron With direction cosine u; at
position x. The function g represents sources within
. the slab. We assume here that both p éﬁd. é are
continuous functions of x and .

Let |
(3.2) £(x, y) = 5]_1 pilx, u, u')¢(>§, u')dap'.

Then the problem is expressed in operator form as
(3.3) D¢ = f, £=1L¢ + g,

where f,g € C(X) with X = [a, bl x [-1, 1)]. Under

s -1 .
reasonable conditions on ¢, M =D exists as an

1

operator on C(X), and ¢ = Mf = D ~f is given by’
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¢(XI' 0) ='f(xl 0),

(3.4) |

. e X v z=a for u>o0,
¢(Xl u) = 1'];‘ J' e(X X)/}J f(x‘l U)dX'l ’
: ; Z ‘ ) z =

b for u < 0.

Therefore, an equivalent formulation of the problem is
(3.5) ¢ = Mf, (I -KE£=g, K = LM.

It can be shown that K 1is a bounded integral opefator
which maps C(X). into C(X). Since K has a non-

negative kernel
Ikll=llke|l , eecx), e=1.

If p is not too largé, then |||  < l; which we assume
in what follows. Then (I - K) T exists as a bounded
operator'on c(X), and £, ¢ are uniquély determined.
Aséume a convergent, positiﬁe Quadrafure rule:

n 1 L _ ' '

I w_. h(p .) +.I h(u)du‘ as n >, he€ecC[~-1, 1],

j=1 ™ nJ 0

wnj > 0, l<3j<n, n =,1( 2, «oo

11k
'—l
~

In particular, for h = e

Hence, there exists B < « such that
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The discrete ordinates approximations ¢n sétisfy

a¢n(xl U) 1 n - _ ’ '
u ra— + ¢n(x,u) = > jil an p(X,]J,]Jnj)(b(Xlunj) + g(XIU) r
(3.6)
¢n(a, u) =0 for u >0, ¢n(b, B) =0 ‘for u < 0.
Equivalent formulations are
(3.7)  Dey = £, £ = I+

‘where K, is a boundéd linear opéiaté; dn d(xy.

Since the "kernel" of K  is positive, JIKn”-= ”Kne” .
where e = 1. S :

A- It follows from (3.5) that Kn + K, i.e.,

]]Knh - Khj|> 0 as n->w for each h € C(x). Howéver,
I}Kn - K||4 0 in the anisotropic case, so~the'stapda£d |
operator approxima£ion theor? used in Section 2 above is
‘not applicable. An alternative course of action is..
pursued here. | |

It follows from K - K, ||]] = ||ke]] and ',Kn”.= IIx ell

that ||k || ~ IIK]] . Recall that |k[| < 1. Hence, for n
sufficiently large, IfKn” <1, (1 - Kn)-l exists and is

bounded uniformly in =n, and

1

1l _ _ -1 _ _ -
= (I Kn) .(Kn K) (I K) '

. —l‘ _
(3.9) (I - Kn)' - (I - K)

L d -l r '__ td
(3.10) fn - £ = (I - hn) (hnf Kf),



ean g - £l <@ - kT Iy E - xE]] .

- It follows that fn - £ and ¢n > ¢ ﬁniformly as
n + «, The error bound in (3.11) is of mixed type,
neither purely theoretical nor pufely practical.v
The fact that K and K are positive operators
is gssential'tq the foregoing analysis, which is an
'ébstract version of th&t carried out by Keller [12] in
a more ;1assical spirit. . |
3b. An Anisotropic Transport Proﬁlem in a Half Space
- We remark tha£ the case of anisotropic scattering
problems in a half—gpace was treated by Nestell [16] by
an adaptation of the pdsitive operator'theofy of Hopf.
AThaE work is an extension of the isotropic écattering'

problem discussed in Section 2b above.

4. Collectively Compactkoberator Approximation Theory

We shall consider the same prohlem as in 3 from
another point of view; which yields both theoretical and
practical (computable) error bounds. The analysis is
based on collectively compact operator‘approximation
‘theory (cf. Anselone [6]). |

It can be shown that the operator K in (3.4) is'
compact: {Kh : [|hl| i‘l} is relatively compact or,
“equivalently, bounded and equicontinuous. The sequence
{k, :n>1} is collectively compact: {x_h : IIh|} < 1, n > 1}

is relatively compact. Thus, we have
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Kﬁ + K, K compact, K, collectively compact.
These are the hypotheses for a general operator
approximation theory in a Banach space setting. Some
of the main conélusions of the theoxy are as follows.
The operétor (1 - K)ml exists iff for n |
sufficiently large (I - Kn)-'l exists‘and is bounded
uniformly in n, In which case
—l -l.'.
( - Kn) + (I - K) ~.
Let £ = (I - K) g and fn»= (1. - Kn) g. Then .
l|€ - £]| » 0. Let
n A
A =l (x - K)—l” [| (X - K)K |['
n ' n n' '
n _ e 1 e o _
A ella - ), - 0l
Then
An > 0, ,An f 0 as n'+ é,’
) —1 )
o a0 kg - xgll 4 a2l
”fn - £]] < . N | : for A < 1,
) -1 n
I =x)""l llxk g - Kgll + 87| £ | :
e, - £l < < 2 . al for A" < 1.

1 - A"

1

Moreover, (I - K)_l exists whenever (I - Kn)_ exists

and An_< 1. Thus the existence of £ = (I - K)—lg

can be inferred from approximations.

[
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The convergence of the diséreﬁe ordinates approxi-
mations'was established by means of the collectively |
compact theory by Nestell [16] for an anisotropic
transport probiem in a finite slab with p = p(u, u')
and by Nelson [15] in greater generalit&. Both authors
worked directly with expliqit repfesentations of K .and
K. - Since K 1is an iptegral operator on functiqns of
two variables, its kernel involves four variables. The
kernel has a weak singularity. The éefiniﬁion of Kn is

similar, with the p-integral replaced by a sum. The

complications of K and K.+ particularly the singularity,

make it difficult to see what makes the analysis go
through. We propose a different approach here, which is
more transparent and extends mofe readily'to a lafger
class of transport problems. By (3.5) and (3.7),

K = LM, K =L M
o n n

where M ie defined in (3.4) and

(L) (x, n) = %—fl p(x, u, u")¢(x, u')du',
- ‘ l n
(L ¢) (x, W) =35 ji;L Wy P(x u',‘unj)gb(x, Mpy) -

The basis of the analysis is to take advantage of the
fact that only L, which has a continuous kernel, is
approximated in order to define Kn = LnM. The singu-

larity comes from M, which can be treated separadately.
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" Consider b = Mf for f € C(X). From (3.4),

¢(x, 0)

= £(x, 0),
e (x-z)
‘¢(xl p) = X H e-t f(x - tu, w)dt,
0 . o

4

z

=a for u >0,

=b for u < 0.

It follows that ¢ is continuous except perhaps at

(a, 0) and (b, 0). The boundafy conditions

)

: ¢(a' “). = 0  for H > OI d)(bl ]J)A

oy

are satisfied and

¢ (x,n) » ¢(a;0)

4¢(x,u) > ¢(b,0) .

$Ge) - (1~ @XMy 4ia,0) » 0 

Co(x,u) - (1 - e(p”X)/“)¢(b,0) > 0.

Thus, R(M), the range of M, consiste of
functions which are continuous except perhaps
points. By routine arguments, L and Ln map

C(X). Define the domains of L -and L. by

as

as

as

0 for wu < O,

a, p > 0-,
b, u > 0+,
a, o - 0'*‘,-

b, u-~+» 0-,

bounded
at two
R(M) into

D(L) ='D(Ln) = R(M).

Then,the operétors K = LM and Kn = LnM map C(X) into ,c(x).'

It follows easily from K - K=

(Ln - L)M . and the

properties of R(M)' that Kn + K. To prove that K 1is

- compact and '{Kn} is collectively compact, consider

Kf = LMf and K f = Lan for | £} < 1. As above, let

¢ = ME. Then for any € > 0 and any

vV

0

there



exists 6 = §(e, v) independent of £ such that
lo(x, w) - ¢(x', u)| < ¢ for |x - x'| <&, |u] > v.

This is an equicontinuity proberty'in x,  uniform foxr
|u] > v. Essentially, M is a qémpact operator with
respect to x,- uniformly fof eacﬁ v'> 0. Siﬁilarly,'
the operator L 1is compact with respect to ’u‘ uniformly
for .a < x < b., Examiﬁation of (Z¢)(k, u) - (L¢)(x; u')

and. (L¢) (x, ﬂ) - (L¢)(x','u) reveais that'the sets
ARE = wMf : f[£]] < 1}, AR f =1L ME : ||£l <1, n > 1}

are bounded and equicontinuous. Therefore, K 1is compact
and 'Kh is collectively compact.
The error bounds in the'Collectively compact theorxry

'depend particularly on

N, - K)gll = | (L, - gl .

I 0, = 0xl] = | Gy, - zmnl]
' |V|'(1.<n - KK || = | (i.n - nymr M| .

Calculations based on these equations should yield-

éharper bounds than would be obtained otherwise.

5. A Three-Dimensional Anisotropic Transport Problem
Let T Dbe a domain in ‘R3 with boundafy 9I' which,
at least piece-wise, has a well=defined tangenteplane at

each point. Directions will be denoted by Q € $, the
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unit sphere in R>. Consider the problem for ¢(x, ),

xerlr, Q€ 8:

Q « Vv ¢(X,Q) + G(X, Q)d’(xl Q) = f(xl ‘Q)I
(5:.1) . |

f(x, Q) = _[ p(g, Q, Q')¢(x, @")aQ' + g(x, ),
s o . o .

with ¢(x, Q) = 0 for x € al' . and Q an incoming
direction. The gradieht operator' V acts with respect
to x. Assﬁme that £, g and p " are continuous and
and that p is nonnegative. 1In operator férm (5.1)

becomes
(5.2) D¢ = £, £ =1 + g.

Motivated by the fact that Q - V . is the directional
derivative .in the direction , we introduce additional

. notation as illustrated in the following diagtam.v

The ray through x in the direction -Q is given by
x - sQ, s > 0. Let d(x, 2 =|x - y[|,, the Euclidean

distance from x to 3l along the ray.



19

. An equivalent formulation of D¢ = £ is

(5.3) -é% p(x - sQ,0) + o(x - sQ,¢(x - s2,Q) = £(x - s0,0).

Solve (5.3) to obtain

s
a(x,) - ‘—j o(x - rQ,Q)dr
(5-4) ¢ (x,0) = ‘(

f(x - sQ,2) e”/0 , ds.

Thus, M = D™l exists as an operator on C(X), where
X=T x 8, and 4 = Mf is given by (5.4). The original

préblem now becomes
(5.5) b = Mf, (I -KE£f=g,  K=LM,

where L is the integral operator in (4.1).
Discrete ordinates approximations ,¢n(x, Q)

satisfy
(5.6) . D¢n = ,fn'l fn = Ln¢n + g,

where L, is a numerical integration approximation to
L defined in terms of a positive convergent quadrature
rule. Now-familiar reasoning yields the equivalent

formulation of (5.6),

(5.7) ¢, ="ME_, (I -XK)E =g, K =L M.

The tasks are the same as before, namely to prove

1

that (I - K) — . exists, (I - K'n)“l exists for n

sufficiently large, and

@-x) s -



which implies tha£ fn -+ f‘ and ¢n + ¢ uniformly.
If ||K|| <1 and K~ K, then these conclusions Follow
aé in Section 3. If also K is compact and '{Kn} is
coliectively compact, then the error boqnds of Section 4
are obtained. This program will be undertaken in a
forthcoming sequel. | |

The ;ollectively compact operator approximatioﬂ
theory may also be appiicable to the caSe where the
approximations are made with respeét to the spatial
variable; either by approximating the detaiied Variation
of o(x, @) and p(x, @, Q') with respect to position
X by appropriate'smoothed functions,'and/or by carrying
out the spatial integrations by some éuadratﬁre apéroki—
mation. In this morelgénefal setting, we ﬁave M

approximated by Mj as well as L approximated by L,-

"Thus, it will be neceséary to consider LnMj -+ LM in an

‘appropriate sense.

6. A Positive Operator Approach
Explicit results for the three dimensional problem '
can be obtained‘rather.easily if an additional assumption

is made. Consider the problem of Section 5 in the form
(6.1) ¢ = g, T=D-L
under the restriction

(6.2) Co(x,Q) - j p{x,Q,Q')de' > c > 0, xer, ¢ es.
S
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Physiéally,.ﬁhis requirement'meéns that absérption
dominates production by fission, i.e., that g, > (v - l)ofi
where o, and Oe afe the absorption and fiséion'cross‘
sections, ana 'Q is the mean number of neutrons produced
produced per fission. This inequality'is always satisfied
in a non-multiplying medium (of = 0) as long as some
absorption is present (Gé >‘8); however, it may nbt be
satisfied in some nucléér reactor applications.

Supbose that for'eaéh' g € C(X) the equation’
T¢ = g has a uﬁique solution ¢ = T—;g such that
¢ >0 if g'z 0. Then vl is a positive operator
from C(X) to an appropriate solution space, Let

e(x, Q) =1 on X. Then (6.2) is equivalent to
(6.3) ) Te > ¢ > .0 on X.

"By an elementary argument, ¢‘= T-lg is bounded for
‘each g € C(X) and |4 < ¢ |lg]l in terms of the sup
nofm, 'I‘hus,'T—l maps C(X) onto a subspace of the

1 is bounded, and

bounded functions on X, T
-1 -1
72 = 7Tl < 1/c.

-The discrete ordinates approximations ¢n satisfy

(6.4) ! Tn¢n.= g, Tn é D - Ln.

As above, suppose that anl exists and is a positive
operator on' C(X). " Since L, > L, we have T ~+ T and,
in particular, Tne + Te. Therefore, for n sufficiently

large,
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(6.5) Tne >c >0 on X,
-1, -1 o
T, ~ 1is bounded and ]]Tn | < 1/c. Now,
“1 -l -1, -1
TOC =T =T (T Tn)T .
Let ¢ = T_lg and ¢ =\T _lg - Then
. n n 7° o
6 - ¢ =T T(f -T)¢
n - n X n'v’

No = ol <z, I Um0 - Toll
oy = ¢lf > 0.

The error bound for “¢n -¢]| is of mixed type, neither
pureiy theoretical nor pufely practicél;
A special case of this scheme was carried out by

Madsen [14] in a classical analysis setting.

7. A Time-Dependent Transport Problem

Wilson [20] investigaﬁed the discrete ordinates

‘method for a generalized transport equation in several

space dimensions:

dd (t,x,v)

(7.1) 3t

+ v o« Vlt,x,v) + |v]| 5 G(t}x;V)¢(t,x,v)

= ji p(t,x,Q,v')¢(t,x,v')dv' + g(t,x,v).
. a _

Independent variables are time ‘t € (0, T), position
x € T, a rectangle in Rn, and velocity v € 8, a ball

in R". The gradient acts with respect to x. An
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a .
initial condition specifies ¢(0, x, Q). Partial
specular reflection on oT, rangihg from full feflecfion
to an exterior vacuum, was assumed by Wilson. |

In operator forﬁ (7.1) becomes D¢ - L + g.
Discrete ordinates approximations ¢h ‘saﬁisfy eéuations
D¢n = Ln¢n + g, where L# is a numerical integration
approximationAto L with a convergent positive quadrature
‘rule. | B

.Wiléon [19].ob£ained existence and uniqueness
theorems for weak and strong solutions of a general
pfoblém théh includes both D¢ = L¢ + g 'and D¢5'f Ln¢n + g
aé special cases.. The analysis invqlves an-equivalent
1formulation of'£he problem as an inteéfal equation.which
is of Volterra type in t. Direct iteration yields the
existencevand uniqueness of ¢ and '¢n,'plus'inequalities

‘of the form
o - | ol + a
(7'2) |I¢n(t) “ i (a ” ¢n(0)” + b “g" ) e(C ”GH ”Ln“ .)t'
with max norms on the functions oVér undisplayed
argﬁments. o :
Since D(d)n - ¢)4= Ln(¢n - ¢) + Ln¢ - L¢ with zero

initial and boundary conditions, (7.2) implies’

(7.4) ¢

n” o) uniformly as n +~ o,

The error bound in (7.3) is of mixed type.
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8. Conclusions.

‘In the preceding, we have attembted to survey develop-
ﬁents in the investigation of convexgenée proéerties and |
error bounds for the discrete ordinates approximations to the
transport equation. This summary has been carried out in an
abstract setting which, we believe, sef?es'to unify and |
clarify much previous(work in this area. The direction of
future investigations is also clearly indicated.

While the first studies of»convergenéeAproperties_of
the discrete ordinates methods were carried out ﬁeariy fifteen
years ago,‘in an astrophysical_seﬁting, £hey have generally
not come to the gtteﬁtion of‘workers interested in éracticai
applicafions of the method to nﬁclear reactor computational
problems. InAfact, as recently aé 1968, a standardAwork on
reactor computing methods refers to the convergence of the
discrete ordinates methéd as an unsolved problem. |

A number of practicai implications follow from the
results surveyed above. For.example,'the eqﬁivaiencg of the

spherical harmonics (P ).‘and Gaﬁss—quadrature methods for

N
slab geometry transport problems (in the senée that- the N
solutions agree at the quadrature points) establishes the
convergence of,. and provides error bounds for, the PN
solutions at the quadrature points.

Hopefully, future extensions of the results $urveyed here
to include three—dimenéional systems and diséretization of ﬁhe
spatial variable will provide convergence proofs aﬁd practical

_error estimates which will be of use even in the most .complicated

practical applications of discrete ordinates methods.
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